mteb 2.7.10__py3-none-any.whl → 2.7.12__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (33) hide show
  1. mteb/abstasks/abstask.py +2 -1
  2. mteb/models/model_implementations/bedrock_models.py +1 -0
  3. mteb/tasks/bitext_mining/multilingual/bible_nlp_bitext_mining.py +1 -1
  4. mteb/tasks/classification/ben/bengali_document_classification.py +2 -2
  5. mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +2 -2
  6. mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -1
  7. mteb/tasks/classification/multilingual/hin_dialect_classification.py +1 -1
  8. mteb/tasks/classification/multilingual/indic_lang_classification.py +1 -1
  9. mteb/tasks/classification/multilingual/indic_sentiment_classification.py +1 -1
  10. mteb/tasks/classification/multilingual/language_classification.py +1 -1
  11. mteb/tasks/classification/multilingual/south_african_lang_classification.py +1 -1
  12. mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +2 -2
  13. mteb/tasks/classification/swa/swahili_news_classification.py +2 -2
  14. mteb/tasks/clustering/deu/ten_k_gnad_clustering_p2p.py +1 -1
  15. mteb/tasks/clustering/deu/ten_k_gnad_clustering_s2s.py +1 -1
  16. mteb/tasks/clustering/nob/vg_hierarchical_clustering.py +2 -2
  17. mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +1 -1
  18. mteb/tasks/pair_classification/multilingual/pub_chem_wiki_pair_classification.py +1 -1
  19. mteb/tasks/retrieval/code/code_rag.py +4 -4
  20. mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
  21. mteb/tasks/retrieval/dan/tv2_nordretrieval.py +1 -1
  22. mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +1 -1
  23. mteb/tasks/retrieval/nob/norquad.py +1 -1
  24. mteb/tasks/retrieval/nob/snl_retrieval.py +1 -1
  25. mteb/tasks/sts/multilingual/sem_rel24_sts.py +1 -1
  26. mteb/tasks/sts/multilingual/sts_benchmark_multilingual_sts.py +1 -1
  27. mteb/tasks/sts/por/assin2_sts.py +1 -1
  28. {mteb-2.7.10.dist-info → mteb-2.7.12.dist-info}/METADATA +1 -1
  29. {mteb-2.7.10.dist-info → mteb-2.7.12.dist-info}/RECORD +33 -33
  30. {mteb-2.7.10.dist-info → mteb-2.7.12.dist-info}/WHEEL +1 -1
  31. {mteb-2.7.10.dist-info → mteb-2.7.12.dist-info}/entry_points.txt +0 -0
  32. {mteb-2.7.10.dist-info → mteb-2.7.12.dist-info}/licenses/LICENSE +0 -0
  33. {mteb-2.7.10.dist-info → mteb-2.7.12.dist-info}/top_level.txt +0 -0
mteb/abstasks/abstask.py CHANGED
@@ -116,7 +116,7 @@ class AbsTask(ABC):
116
116
  logger.warning(msg)
117
117
  warnings.warn(msg)
118
118
 
119
- def dataset_transform(self, num_proc: int = 1):
119
+ def dataset_transform(self, num_proc: int = 1, **kwargs: Any) -> None:
120
120
  """A transform operations applied to the dataset after loading.
121
121
 
122
122
  This method is useful when the dataset from Huggingface is not in an `mteb` compatible format.
@@ -124,6 +124,7 @@ class AbsTask(ABC):
124
124
 
125
125
  Args:
126
126
  num_proc: Number of processes to use for the transformation.
127
+ kwargs: Additional keyword arguments passed to the load_dataset function. Keep for forward compatibility.
127
128
  """
128
129
  pass
129
130
 
@@ -32,6 +32,7 @@ logger = logging.getLogger(__name__)
32
32
  class BedrockModel(AbsEncoder):
33
33
  def __init__(
34
34
  self,
35
+ model_name: str,
35
36
  model_id: str,
36
37
  provider: str,
37
38
  max_tokens: int,
@@ -914,7 +914,7 @@ class BibleNLPBitextMining(AbsTaskBitextMining):
914
914
  self.dataset_transform()
915
915
  self.data_loaded = True
916
916
 
917
- def dataset_transform(self) -> None:
917
+ def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
918
918
  # Convert to standard format
919
919
  for lang in self.hf_subsets:
920
920
  l1, l2 = (l.split("_")[0] for l in lang.split("-"))
@@ -43,7 +43,7 @@ Islam, Tanvir},
43
43
  superseded_by="BengaliDocumentClassification.v2",
44
44
  )
45
45
 
46
- def dataset_transform(self) -> None:
46
+ def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
47
47
  self.dataset = self.dataset.rename_columns(
48
48
  {"article": "text", "category": "label"}
49
49
  )
@@ -92,7 +92,7 @@ Islam, Tanvir},
92
92
  """,
93
93
  )
94
94
 
95
- def dataset_transform(self) -> None:
95
+ def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
96
96
  self.dataset = self.stratified_subsampling(
97
97
  self.dataset, seed=self.seed, splits=["test"]
98
98
  )
@@ -46,7 +46,7 @@ Montoyo, Andres},
46
46
  )
47
47
  samples_per_label = 16
48
48
 
49
- def dataset_transform(self) -> None:
49
+ def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
50
50
  self.dataset = self.dataset.rename_columns(
51
51
  {"comment": "text", "rating_str": "label"}
52
52
  )
@@ -99,7 +99,7 @@ Montoyo, Andres},
99
99
  )
100
100
  samples_per_label = 16
101
101
 
102
- def dataset_transform(self) -> None:
102
+ def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
103
103
  self.dataset = self.stratified_subsampling(
104
104
  self.dataset, seed=self.seed, splits=["test"]
105
105
  )
@@ -46,7 +46,7 @@ Montoyo, Andres},
46
46
  )
47
47
  samples_per_label = 16
48
48
 
49
- def dataset_transform(self) -> None:
49
+ def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
50
50
  self.dataset = self.dataset.rename_columns(
51
51
  {"comment": "text", "sentiment_int": "label"}
52
52
  )
@@ -60,7 +60,7 @@ class HinDialectClassification(AbsTaskClassification):
60
60
  """,
61
61
  )
62
62
 
63
- def dataset_transform(self) -> None:
63
+ def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
64
64
  self.dataset = self.dataset.rename_columns(
65
65
  {"folksong": "text", "language": "label"}
66
66
  )
@@ -137,6 +137,6 @@ Okazaki, Naoaki},
137
137
  self.dataset_transform()
138
138
  self.data_loaded = True
139
139
 
140
- def dataset_transform(self) -> None:
140
+ def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
141
141
  self.dataset = self.dataset.remove_columns(["language", "script"])
142
142
  self.dataset = self.dataset.rename_columns({"native sentence": "text"})
@@ -52,7 +52,7 @@ class IndicSentimentClassification(AbsTaskClassification):
52
52
  """,
53
53
  )
54
54
 
55
- def dataset_transform(self) -> None:
55
+ def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
56
56
  label_map = {"Negative": 0, "Positive": 1}
57
57
  # Convert to standard format
58
58
  for lang in self.hf_subsets:
@@ -66,7 +66,7 @@ in Natural Language Processing},
66
66
  """,
67
67
  )
68
68
 
69
- def dataset_transform(self) -> None:
69
+ def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
70
70
  self.dataset = self.dataset.rename_columns({"labels": "label"})
71
71
  self.dataset = self.stratified_subsampling(
72
72
  self.dataset, seed=self.seed, splits=["test"]
@@ -49,7 +49,7 @@ class SouthAfricanLangClassification(AbsTaskClassification):
49
49
  """,
50
50
  )
51
51
 
52
- def dataset_transform(self) -> None:
52
+ def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
53
53
  self.dataset = self.dataset.rename_columns(
54
54
  {" text": "text", "lang_id": "label"}
55
55
  )
@@ -35,7 +35,7 @@ class SlovakMovieReviewSentimentClassification(AbsTaskClassification):
35
35
  superseded_by="SlovakMovieReviewSentimentClassification.v2",
36
36
  )
37
37
 
38
- def dataset_transform(self) -> None:
38
+ def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
39
39
  self.dataset = self.dataset.rename_columns({"comment": "text"})
40
40
 
41
41
  self.dataset = self.stratified_subsampling(
@@ -76,7 +76,7 @@ class SlovakMovieReviewSentimentClassificationV2(AbsTaskClassification):
76
76
  adapted_from=["SlovakMovieReviewSentimentClassification"],
77
77
  )
78
78
 
79
- def dataset_transform(self) -> None:
79
+ def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
80
80
  self.dataset = self.stratified_subsampling(
81
81
  self.dataset, seed=self.seed, splits=["test"]
82
82
  )
@@ -37,7 +37,7 @@ class SwahiliNewsClassification(AbsTaskClassification):
37
37
  superseded_by="SwahiliNewsClassification.v2",
38
38
  )
39
39
 
40
- def dataset_transform(self) -> None:
40
+ def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
41
41
  self.dataset = self.dataset.rename_columns(
42
42
  {"content": "text", "category": "label"}
43
43
  )
@@ -81,7 +81,7 @@ class SwahiliNewsClassificationV2(AbsTaskClassification):
81
81
  adapted_from=["SwahiliNewsClassification"],
82
82
  )
83
83
 
84
- def dataset_transform(self) -> None:
84
+ def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
85
85
  self.dataset = self.stratified_subsampling(
86
86
  self.dataset, seed=self.seed, splits=["train"]
87
87
  )
@@ -63,7 +63,7 @@ class TenKGnadClusteringP2PFast(AbsTaskClustering):
63
63
  adapted_from=["TenKGnadClusteringP2P"],
64
64
  )
65
65
 
66
- def dataset_transform(self) -> None:
66
+ def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
67
67
  ds = _convert_to_fast(
68
68
  self.dataset, self.input_column_name, self.label_column_name, self.seed
69
69
  )
@@ -63,7 +63,7 @@ class TenKGnadClusteringS2SFast(AbsTaskClustering):
63
63
  adapted_from=["TenKGnadClusteringS2S"],
64
64
  )
65
65
 
66
- def dataset_transform(self) -> None:
66
+ def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
67
67
  ds = _convert_to_fast(
68
68
  self.dataset, self.input_column_name, self.label_column_name, self.seed
69
69
  )
@@ -45,7 +45,7 @@ class VGHierarchicalClusteringP2P(AbsTaskClustering):
45
45
  prompt="Identify the categories (e.g. sports) of given articles in Norwegian",
46
46
  )
47
47
 
48
- def dataset_transform(self) -> None:
48
+ def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
49
49
  self.dataset = self.dataset.rename_columns(
50
50
  {"article": "sentences", "classes": "labels"}
51
51
  )
@@ -92,7 +92,7 @@ class VGHierarchicalClusteringS2S(AbsTaskClustering):
92
92
  prompt="Identify the categories (e.g. sports) of given articles in Norwegian",
93
93
  )
94
94
 
95
- def dataset_transform(self) -> None:
95
+ def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
96
96
  self.dataset = self.dataset.rename_columns(
97
97
  {"ingress": "sentences", "classes": "labels"}
98
98
  )
@@ -66,7 +66,7 @@ Yih, Scott Wen-tau},
66
66
  },
67
67
  )
68
68
 
69
- def dataset_transform(self) -> None:
69
+ def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
70
70
  labels = [
71
71
  "q2_label",
72
72
  "q3_label",
@@ -60,7 +60,7 @@ class PubChemWikiPairClassification(AbsTaskPairClassification):
60
60
  """,
61
61
  )
62
62
 
63
- def dataset_transform(self) -> None:
63
+ def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
64
64
  _dataset = {}
65
65
  for lang in self.hf_subsets:
66
66
  _dataset[lang] = {}
@@ -59,7 +59,7 @@ class CodeRAGProgrammingSolutionsRetrieval(AbsTaskRetrieval):
59
59
  self.dataset_transform()
60
60
  self.data_loaded = True
61
61
 
62
- def dataset_transform(self) -> None:
62
+ def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
63
63
  """And transform to a retrieval dataset, which have the following attributes
64
64
 
65
65
  self.corpus = Dict[doc_id, Dict[str, str]] #id => dict with document data like title and text
@@ -116,7 +116,7 @@ class CodeRAGOnlineTutorialsRetrieval(AbsTaskRetrieval):
116
116
  self.dataset_transform()
117
117
  self.data_loaded = True
118
118
 
119
- def dataset_transform(self) -> None:
119
+ def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
120
120
  """And transform to a retrieval dataset, which have the following attributes
121
121
 
122
122
  self.corpus = Dict[doc_id, Dict[str, str]] #id => dict with document data like title and text
@@ -176,7 +176,7 @@ class CodeRAGLibraryDocumentationSolutionsRetrieval(AbsTaskRetrieval):
176
176
  self.dataset_transform()
177
177
  self.data_loaded = True
178
178
 
179
- def dataset_transform(self) -> None:
179
+ def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
180
180
  """And transform to a retrieval dataset, which have the following attributes
181
181
 
182
182
  self.corpus = Dict[doc_id, Dict[str, str]] #id => dict with document data like title and text
@@ -233,7 +233,7 @@ class CodeRAGStackoverflowPostsRetrieval(AbsTaskRetrieval):
233
233
  self.dataset_transform()
234
234
  self.data_loaded = True
235
235
 
236
- def dataset_transform(self) -> None:
236
+ def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
237
237
  """And transform to a retrieval dataset, which have the following attributes
238
238
 
239
239
  self.corpus = Dict[doc_id, Dict[str, str]] #id => dict with document data like title and text
@@ -55,7 +55,7 @@ Derczynski, Leon},
55
55
  self.dataset_transform()
56
56
  self.data_loaded = True
57
57
 
58
- def dataset_transform(self) -> None:
58
+ def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
59
59
  """And transform to a retrieval dataset, which have the following attributes
60
60
 
61
61
  self.corpus = dict[doc_id, dict[str, str]] #id => dict with document data like title and text
@@ -68,7 +68,7 @@ Piperidis, Stelios},
68
68
  self.dataset_transform()
69
69
  self.data_loaded = True
70
70
 
71
- def dataset_transform(self) -> None:
71
+ def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
72
72
  """And transform to a retrieval dataset, which have the following attributes
73
73
 
74
74
  self.corpus = dict[doc_id, dict[str, str]] #id => dict with document data like title and text
@@ -44,7 +44,7 @@ class TwitterHjerneRetrieval(AbsTaskRetrieval):
44
44
  self.dataset_transform()
45
45
  self.data_loaded = True
46
46
 
47
- def dataset_transform(self) -> None:
47
+ def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
48
48
  """And transform to a retrieval dataset, which have the following attributes
49
49
 
50
50
  self.corpus = dict[doc_id, dict[str, str]] #id => dict with document data like title and text
@@ -58,7 +58,7 @@ Fishel, Mark},
58
58
  self.dataset_transform()
59
59
  self.data_loaded = True
60
60
 
61
- def dataset_transform(self) -> None:
61
+ def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
62
62
  """And transform to a retrieval dataset, which have the following attributes
63
63
 
64
64
  self.corpus = dict[doc_id, dict[str, str]] #id => dict with document data like title and text
@@ -45,7 +45,7 @@ class SNLRetrieval(AbsTaskRetrieval):
45
45
  self.dataset_transform()
46
46
  self.data_loaded = True
47
47
 
48
- def dataset_transform(self) -> None:
48
+ def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
49
49
  """And transform to a retrieval dataset, which have the following attributes
50
50
 
51
51
  self.corpus = dict[doc_id, dict[str, str]] #id => dict with document data like title and text
@@ -66,6 +66,6 @@ Seid Muhie Yimam and Saif M. Mohammad},
66
66
  min_score = 0
67
67
  max_score = 1
68
68
 
69
- def dataset_transform(self) -> None:
69
+ def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
70
70
  for lang, subset in self.dataset.items():
71
71
  self.dataset[lang] = subset.rename_column("label", "score")
@@ -56,6 +56,6 @@ class STSBenchmarkMultilingualSTS(AbsTaskSTS):
56
56
  min_score = 0
57
57
  max_score = 5
58
58
 
59
- def dataset_transform(self) -> None:
59
+ def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
60
60
  for lang, subset in self.dataset.items():
61
61
  self.dataset[lang] = subset.rename_column("similarity_score", "score")
@@ -39,7 +39,7 @@ class Assin2STS(AbsTaskSTS):
39
39
  min_score = 1
40
40
  max_score = 5
41
41
 
42
- def dataset_transform(self) -> None:
42
+ def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
43
43
  self.dataset = self.dataset.rename_columns(
44
44
  {
45
45
  "premise": "sentence1",
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mteb
3
- Version: 2.7.10
3
+ Version: 2.7.12
4
4
  Summary: Massive Text Embedding Benchmark
5
5
  Author-email: MTEB Contributors <niklas@huggingface.co>, Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Nouamane Tazi <nouamane@huggingface.co>, Nils Reimers <info@nils-reimers.de>
6
6
  Maintainer-email: Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Roman Solomatin <risolomatin@gmail.com>, Isaac Chung <chungisaac1217@gmail.com>
@@ -32,7 +32,7 @@ mteb/_evaluators/text/summarization_evaluator.py,sha256=ZHn3kIFGJ1XzgbI21jEeTnP5
32
32
  mteb/abstasks/__init__.py,sha256=1iAwpYTWX7U-goak2KMmacPFCzxPchLQAmZ_uI0t-p0,1130
33
33
  mteb/abstasks/_statistics_calculation.py,sha256=4opttohaS6LV5K0zQIqfG2IGIzQAdKAaLTpSTQ6auBc,5988
34
34
  mteb/abstasks/_stratification.py,sha256=GnqYRtkFYsB-412EvMR2iMqIinFr98NCSmxHeCXctlw,14347
35
- mteb/abstasks/abstask.py,sha256=6Szz24K5886rR3U2yoN5g7N9Ou_eU7auwa9C-5LTLFA,26690
35
+ mteb/abstasks/abstask.py,sha256=9bpPnrwwGBWE--MGoTOb-J-RtOnoo0YUaAjAPv7JC1g,26831
36
36
  mteb/abstasks/aggregate_task_metadata.py,sha256=WXYY_DUU55s4PkxMVz7lwbdZarq6QznhbvJYdSTYZZI,5846
37
37
  mteb/abstasks/aggregated_task.py,sha256=8NY_vaqmMuYNxuB05YjU4W6aEipyKrF2iDFS3m-eXNc,6167
38
38
  mteb/abstasks/classification.py,sha256=zSA9nTplwspktPnZiN_RQrPvOgEKYxeQASm_Q1lb3ww,14052
@@ -1500,7 +1500,7 @@ mteb/models/model_implementations/andersborges.py,sha256=au-947iRW4F6aq57QoYWZwQ
1500
1500
  mteb/models/model_implementations/ara_models.py,sha256=b-Qa5q3O8M5XbkauVm7I6D6aZSU1cd9XePT6ZVvSBtk,1517
1501
1501
  mteb/models/model_implementations/arctic_models.py,sha256=MfYvAkcGcb3FdbvieYmiekSvZREwu2pRJ_2sbbcUIPk,11051
1502
1502
  mteb/models/model_implementations/b1ade_models.py,sha256=-czgy_Ym5LHAX4-f-F7YaUGqTkfwsKmTL-tiCiihLnU,1705
1503
- mteb/models/model_implementations/bedrock_models.py,sha256=FStjboIV3gsbUTN3CcbY0ULn-1_2Lk7CP-TrytMkTaI,9047
1503
+ mteb/models/model_implementations/bedrock_models.py,sha256=tqfQofVHbKGY163x46CPtrLiyjpyHXf6JLNIjcmCXw4,9072
1504
1504
  mteb/models/model_implementations/bge_models.py,sha256=JuO1FRWrsqlsM_jslQ96oVsD3FeWVD_uHBnMv8JJyNA,28033
1505
1505
  mteb/models/model_implementations/bica_model.py,sha256=Yx3iZrXF6ZMJS9SH5lbzNHoUWGNH3dypRtZ7dX5o7rA,1305
1506
1506
  mteb/models/model_implementations/blip2_models.py,sha256=C6egwozJthHmv92I0SWID3-sQCPROPJP0TzfQVKNzlo,7898
@@ -1655,7 +1655,7 @@ mteb/tasks/bitext_mining/fas/fa_mteb_summary_retrieval.py,sha256=lXCOsUs8vNfS3I-
1655
1655
  mteb/tasks/bitext_mining/kat/__init__.py,sha256=a-KcFJ3Ol7R8yq02RcGjaOxEfqnwJeo7AAib-RU-JFw,116
1656
1656
  mteb/tasks/bitext_mining/kat/tbilisi_city_hall_bitext_mining.py,sha256=xVCxpJr7UW2KadNdn7Gsw-wZ65uz5vhRDhQZ7eILokQ,1918
1657
1657
  mteb/tasks/bitext_mining/multilingual/__init__.py,sha256=LcPygeOuvrka67aDkktT-2lSqcxpWPSMmd_BaxIsl24,2012
1658
- mteb/tasks/bitext_mining/multilingual/bible_nlp_bitext_mining.py,sha256=lNbCz3dN9o3F04Y7vtNBhF-lPUNyVbAOKgUR-QKZn_8,29082
1658
+ mteb/tasks/bitext_mining/multilingual/bible_nlp_bitext_mining.py,sha256=uhpDmX6gPhL_RFEYpwuU3RVV4nJUUga_t3UZV5zge-w,29111
1659
1659
  mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py,sha256=E74rYz32fFuEWrV0O_7zfI7l2Z3h7jnrxoifRhWsFKc,2892
1660
1660
  mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py,sha256=P_UHMWh2gKG6CloXmP5J2kjrCTQwoJAU1MKdLl6JFKc,1836
1661
1661
  mteb/tasks/bitext_mining/multilingual/danish_medicines_agency_bitext_mining.py,sha256=5iengckKv1NCHILjrX6WDEgBNJlmbSV5y-WWdaLZYrs,1703
@@ -1689,15 +1689,15 @@ mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py,sha2
1689
1689
  mteb/tasks/classification/ara/tweet_emotion_classification.py,sha256=MpLxj0WOuHYV6LIaAwBg__jcOmzsApPxPRBKgkO3RhA,3258
1690
1690
  mteb/tasks/classification/ara/tweet_sarcasm_classification.py,sha256=fU5Bsv1NlukvLPGiWD-L5mrC9vTGMOYvSBIPmbI-47Q,3957
1691
1691
  mteb/tasks/classification/ben/__init__.py,sha256=j_vQLxEOUKR8hLBgTe2sSzvLyoVXRByF0g_f5-i1mRQ,592
1692
- mteb/tasks/classification/ben/bengali_document_classification.py,sha256=K4KTkca4HwKa77045kY7hMxHxRklyC44RzfNKOP0C4I,3636
1692
+ mteb/tasks/classification/ben/bengali_document_classification.py,sha256=JV-O7KHOHkfIlpx7I_EP3q_edQXjvM7wRs8QEGAolmI,3694
1693
1693
  mteb/tasks/classification/ben/bengali_hate_speech_classification.py,sha256=B69ZwZyzBGdfZvLFhjDGYF7TnwXBrWqOkmAD0x439CE,3369
1694
1694
  mteb/tasks/classification/ben/bengali_sentiment_analysis.py,sha256=hBR5KOwrjVolFHsE7VWNMxykdIZy7sWmfJuhv7n_Gtc,2997
1695
1695
  mteb/tasks/classification/bul/__init__.py,sha256=2-wLDHKcyykalSp9zWCgOaqMh4nnDo92lYdiUgJIP04,170
1696
1696
  mteb/tasks/classification/bul/bulgarian_store_review_sentiment_classfication.py,sha256=osa2K_eQDMV0WJIC3CoXRugt5S3ALLIOwgVYrRlKvfo,1862
1697
1697
  mteb/tasks/classification/ces/__init__.py,sha256=0vuGRyaBaW-V6_3pdGGLIEwQh3uB5UpewY6NdJZ3vrw,860
1698
1698
  mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py,sha256=ioYXVOYvEoOYw5QEZic4wClYUKksdNvCOVDHchabzBs,3580
1699
- mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py,sha256=gVcg6m6Pikhi5DY2HSpj7iMcd5QRw_iZfVFlXX97m0g,4119
1700
- mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py,sha256=NthCj4xcDnSwSe5mMX3a6ldELv_qmkN5wuM4UAdE3js,3618
1699
+ mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py,sha256=r2B4x0w2DiKr4aBy-ZxxqjMlCBEUc30Y3SDztDlCqrM,4177
1700
+ mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py,sha256=Npi545LwJbbcoATiKHHTHXpIvJSLdm3smiqc78XC7nM,3647
1701
1701
  mteb/tasks/classification/ces/czech_subjectivity_classification.py,sha256=31lTpWh0adXA8C6TY64NbSKi4pVbnH7ocEDEQCd5JEA,1520
1702
1702
  mteb/tasks/classification/dan/__init__.py,sha256=edrG5UqewQ_YfQD3KtCTs9GU5z1jo4wjlkSEHuQg1ww,864
1703
1703
  mteb/tasks/classification/dan/angry_tweets_classification.py,sha256=GmNu5-ec_6ebMCxKIgDU54ZfaM0xFV_tYE6hYLN8ItM,3154
@@ -1828,12 +1828,12 @@ mteb/tasks/classification/multilingual/amazon_counterfactual_classification.py,s
1828
1828
  mteb/tasks/classification/multilingual/amazon_reviews_classification.py,sha256=ZmJqujSsL34RrVLYI9_hlzDTR57r44-FB1yqL3pggoA,1639
1829
1829
  mteb/tasks/classification/multilingual/catalonia_tweet_classification.py,sha256=zJQopR6Zj_UOOhPGTZaChxASXSARG0j8TLXpCrD8Mpk,2833
1830
1830
  mteb/tasks/classification/multilingual/cyrillic_turkic_lang_classification.py,sha256=AbqslsX2RnRpOPspzxv6vQXjs8QV393bWfpEpnS6nrU,1912
1831
- mteb/tasks/classification/multilingual/hin_dialect_classification.py,sha256=PphXUzMLB1NS9mb9qNQFdP1JmSrJ9SIpiqP2g4_T1I4,2276
1831
+ mteb/tasks/classification/multilingual/hin_dialect_classification.py,sha256=B5uIp5SgcXXeWePMSc7GfffG7TVjdhYi-aoDDzxyDfE,2305
1832
1832
  mteb/tasks/classification/multilingual/hume_multilingual_sentiment_classification.py,sha256=-EmXnWOuBbVdiuM3kjgo41EkRuOtMsrSTr-HAglsoJA,2130
1833
- mteb/tasks/classification/multilingual/indic_lang_classification.py,sha256=cKW55MKqRv990ICo_2H4WA3ZMvLWF8hd2PZaFXEUWwQ,5007
1833
+ mteb/tasks/classification/multilingual/indic_lang_classification.py,sha256=c3Qn7MShSaKBBjEihXUnwWZqYOhBuAOWxruvXyD2KYs,5036
1834
1834
  mteb/tasks/classification/multilingual/indic_nlp_news_classification.py,sha256=Mmdm6pONBDWHZmKsSYYnUDO55n-XnT0mL3p6pwVbGrI,2242
1835
- mteb/tasks/classification/multilingual/indic_sentiment_classification.py,sha256=D23tfPg1RI9wnofgcYRKgkF7xYOBTXg7a9QSsBpuJpA,2530
1836
- mteb/tasks/classification/multilingual/language_classification.py,sha256=Arrqbef9GhYTM417ygVww-J7s_4hfkcijQAgL4tMBvE,2116
1835
+ mteb/tasks/classification/multilingual/indic_sentiment_classification.py,sha256=2UeLO4iz0wRqNQuU720myvzr1HnCb6ut-0Zf50EFRh4,2559
1836
+ mteb/tasks/classification/multilingual/language_classification.py,sha256=xs8iMoNKbsuWrn2u_B1KPSRBvyI_fa73Ob9vlz264l8,2145
1837
1837
  mteb/tasks/classification/multilingual/masakha_news_classification.py,sha256=tRcA1GZo3fNkkf_u0o74Z63KsIHodKY1wInAtSFvITM,3334
1838
1838
  mteb/tasks/classification/multilingual/massive_intent_classification.py,sha256=Reze-3PuQvCKg6t7V8n9WcWoIuU10Ne9cu_Xm0pxhUY,3006
1839
1839
  mteb/tasks/classification/multilingual/massive_scenario_classification.py,sha256=2GnRe2D2ZXLWLdulPAJIusOo-_gK8BoAiyhTfUq0aeE,3014
@@ -1851,7 +1851,7 @@ mteb/tasks/classification/multilingual/ru_sci_bench_classification.py,sha256=K2t
1851
1851
  mteb/tasks/classification/multilingual/scala_classification.py,sha256=aXE0-R_vecN0RhnHPm3qP6ZmwX4sKmh5C8vyuqIl1Tk,2551
1852
1852
  mteb/tasks/classification/multilingual/scandi_sent_classification.py,sha256=yNZ-Jb97GOsKtQ5GskT4F_opOATyQ3HqKL2pHAv_n5E,1812
1853
1853
  mteb/tasks/classification/multilingual/sib200_classification.py,sha256=GbPoN90a2Hw-20QWhQ_QKqUa9m660KsOM14JMcxGVsE,8082
1854
- mteb/tasks/classification/multilingual/south_african_lang_classification.py,sha256=uAhxQMWQaQIoeO6pOVGViUJdma5Z56t967W9cbZYq7E,1790
1854
+ mteb/tasks/classification/multilingual/south_african_lang_classification.py,sha256=Is02vKeHFWuezaXaOKL5o69FZoIrGvGR_ddNM5awA54,1819
1855
1855
  mteb/tasks/classification/multilingual/swiss_judgement_classification.py,sha256=vcPSMLduwmvt0VpAFN0dlA2DnobTlqR0wqI1ZxLN7rU,1513
1856
1856
  mteb/tasks/classification/multilingual/turkic_classification.py,sha256=53cSlnIWhNzc0qMSvbpLw_UwCA3i8hrJ3ll47ikROOQ,2385
1857
1857
  mteb/tasks/classification/multilingual/tweet_sentiment_classification.py,sha256=mLhgGAzq-DHe5GM1XqS7t7mtojDI3kHWrlaLg2t7UEE,2091
@@ -1901,7 +1901,7 @@ mteb/tasks/classification/sin/sinhala_news_source_classification.py,sha256=0a8qw
1901
1901
  mteb/tasks/classification/slk/__init__.py,sha256=UJKOGK5cfdo3Qd2e769ghbphpPE9aK1ZG4NZpcZmDGI,726
1902
1902
  mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py,sha256=JjkPAeijUYMoPkj7ORYg3zTaZPnYtZWTEWVivgHoQL4,3612
1903
1903
  mteb/tasks/classification/slk/slovak_hate_speech_classification.py,sha256=C7I1PtNkw9TOSlhf5Zc_Bq_WKpLsjhtz0DS4yLbtbcw,2349
1904
- mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py,sha256=suh4Uc2pJQRpjvtDZNeh8qCyMEIdCe7Wkqwjbd6C0w4,3314
1904
+ mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py,sha256=HKyfUgziqQzxXnqwwPhNbLNRmN-AVqO23rmFkiNnrKg,3372
1905
1905
  mteb/tasks/classification/slv/__init__.py,sha256=BwsXnZBq2EudbPz0AGUnonVe4bmNUHSeIfEIyTVQXcg,148
1906
1906
  mteb/tasks/classification/slv/frenk_sl_classification.py,sha256=eGzRFGzffM1rhLWVNcCCvQW90dxUcZNbwHSvctG8rU4,3046
1907
1907
  mteb/tasks/classification/spa/__init__.py,sha256=-FRjuZqV_8uVdnL9GmzTP3Y7zr7ktkHE9ugsTMgZqC8,394
@@ -1910,7 +1910,7 @@ mteb/tasks/classification/spa/spanish_sentiment_classification.py,sha256=dayQOZF
1910
1910
  mteb/tasks/classification/ssw/__init__.py,sha256=4PzlaxBkbg2yMqJBmkBZVO1ArZQoefiFLx03rJNU6TQ,181
1911
1911
  mteb/tasks/classification/ssw/siswati_news_classification.py,sha256=fJqM22y53xInELhvSPXy1KC2jkNXkGE46UGeT6HYw5Q,3078
1912
1912
  mteb/tasks/classification/swa/__init__.py,sha256=gIM7OBbNAWRJUa7_ElWc4EHEvVX2TUrs0jXYxnKETPY,181
1913
- mteb/tasks/classification/swa/swahili_news_classification.py,sha256=xamx-C0hwOq57MoRd8n9n4a_LXniFH4SMDU1MzSixc4,3593
1913
+ mteb/tasks/classification/swa/swahili_news_classification.py,sha256=3DnBB9NZkTpUpbzHTA510tF_F1s-_IpYxOfAPhn6UUE,3651
1914
1914
  mteb/tasks/classification/swe/__init__.py,sha256=phSBojx1lLs7Ow8fAsxFaewkc-_bKqZqZT03okvqRbg,489
1915
1915
  mteb/tasks/classification/swe/dalaj_classification.py,sha256=x1GajvgbWwxqi85PBXh3CzPxpwf0UGQ6-klLvcEn678,2950
1916
1916
  mteb/tasks/classification/swe/swe_rec_classification.py,sha256=f4qe5IOY2yw-Ud-wxWej35Hqrgn_dcCJ3TZY1ElEIgE,3302
@@ -1955,8 +1955,8 @@ mteb/tasks/clustering/__init__.py,sha256=on2FxT3bKFn4-ttmyd13nqKCPHGw1UYV5X2lsrI
1955
1955
  mteb/tasks/clustering/deu/__init__.py,sha256=7vq3Nqz34nS1JSuS_Izm7vBpkDN8q4-uf809yPw3RF8,591
1956
1956
  mteb/tasks/clustering/deu/blurbs_clustering_p2p.py,sha256=C8byjvsiO6YzqMrJt4C7ObtcNNFwxn2FzYAxvl7nHgE,3356
1957
1957
  mteb/tasks/clustering/deu/blurbs_clustering_s2s.py,sha256=Zu9K75HpEbeWMvdPJS9euoEo_lrRY0S6CRdByaGDJyo,4347
1958
- mteb/tasks/clustering/deu/ten_k_gnad_clustering_p2p.py,sha256=d45FkAZe5NlsQxOgxKvbZBGA22WuFo-6pYOh-8bREto,2503
1959
- mteb/tasks/clustering/deu/ten_k_gnad_clustering_s2s.py,sha256=LOfwsV-M8HitE9bRqme2GKlyvlej07i1aPOQbjs3vY4,2511
1958
+ mteb/tasks/clustering/deu/ten_k_gnad_clustering_p2p.py,sha256=yDTe23_rvWgt_vtaxZgg4SKHpL62H0YbCWhDqRp5nvg,2532
1959
+ mteb/tasks/clustering/deu/ten_k_gnad_clustering_s2s.py,sha256=LOQP5fdHo94XXnexGGFzAumZZvwVbqFLcewJoobjMvI,2540
1960
1960
  mteb/tasks/clustering/eng/__init__.py,sha256=TVoj51ZAZkrgByvsrYvqPXtxW_6h-gpUGB9tRFTOOnI,3143
1961
1961
  mteb/tasks/clustering/eng/arxiv_clustering_p2p.py,sha256=UXozex9TMxctnmwkfWlgAAvhx6ufiVtPpM9r7uuB63A,3935
1962
1962
  mteb/tasks/clustering/eng/arxiv_clustering_s2s.py,sha256=dIcS8YTP7J2ituucxwgAXv5PyfgtJrCdWSet394renA,1431
@@ -2016,7 +2016,7 @@ mteb/tasks/clustering/nob/__init__.py,sha256=de-t3amIyZAo0iPjy33xVMFKCQlcDNmS4M8
2016
2016
  mteb/tasks/clustering/nob/snl_clustering.py,sha256=WOGSPRHr2us9OpHxkBGAxXtWDYCoMSLhN275NXh8Klo,3674
2017
2017
  mteb/tasks/clustering/nob/snl_hierarchical_clustering.py,sha256=OfdGmodK0eHTQMLo22SMI4FxM47wUCJmYYL8OOPqrCg,3328
2018
2018
  mteb/tasks/clustering/nob/vg_clustering.py,sha256=dARqlFm-uzO7-3s9pmTZS7bhvPP_Khtooe8hjlQ-8Fk,3695
2019
- mteb/tasks/clustering/nob/vg_hierarchical_clustering.py,sha256=lVPCrnei7S8EfLav38F3rv80WPCffBOcju5w8pCjioI,3893
2019
+ mteb/tasks/clustering/nob/vg_hierarchical_clustering.py,sha256=MyWjykOJG3n7FGRuGylNDbBXvw_9AfqyP5JRRXW4pEo,3951
2020
2020
  mteb/tasks/clustering/pol/__init__.py,sha256=na-Vwcu9J6P-05_40WLSI0DvhP2hdSRzDRT4A38gbvY,370
2021
2021
  mteb/tasks/clustering/pol/polish_clustering.py,sha256=TUzc8jjz1DJNGBfBqLUsJgGnZKEl8-uFfi1qZ_UGbSw,11263
2022
2022
  mteb/tasks/clustering/rom/__init__.py,sha256=a0tC9aXwVpj8sis0icrgLegnhFKN5gQsFXo1BIpHSk8,96
@@ -2080,7 +2080,7 @@ mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py,sha256=w
2080
2080
  mteb/tasks/multilabel_classification/multilingual/__init__.py,sha256=gYOJftJq07gP6SH5QMn-SZQ83MQINfWlz1fvFRDdqmI,139
2081
2081
  mteb/tasks/multilabel_classification/multilingual/multi_eurlex_multilabel_classification.py,sha256=vfnIfW_oOy8dnrXd2zKBNmhTfg8ydVtYIJqZxRMsqr0,2405
2082
2082
  mteb/tasks/multilabel_classification/nld/__init__.py,sha256=84hVtfQAZNYt1lGzf0Oc_Hrx6vBKHjN2L_h2ilcIKRk,297
2083
- mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py,sha256=LgRBPVW6gMHtlpfYDs4TTl7E1QJYNOKeuH1kszFjNrM,3085
2083
+ mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py,sha256=0F6Hltg7qoqhC3KqDBj6Pl-gv4EKeOctkCAtlXIm9uE,3114
2084
2084
  mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py,sha256=_eapD0SUYG8ZUhnc3-NmN86Qer8qkTGRnrSn_T-Ch5Y,1939
2085
2085
  mteb/tasks/multilabel_classification/por/__init__.py,sha256=mJW70APO6ofl6XiPEbsRgL1qVi_RMsWpJwHrdx5_wmw,136
2086
2086
  mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py,sha256=Ke5roy0MYEYgRsdNDL4q_AwmY_rYKpo0H_k8wFnt2s8,1929
@@ -2124,7 +2124,7 @@ mteb/tasks/pair_classification/multilingual/__init__.py,sha256=Se4NBy208UzG7ZYWL
2124
2124
  mteb/tasks/pair_classification/multilingual/indic_xnli_pair_classification.py,sha256=8wmaLY1h5XZfz9dhkj2SkhGvwvpf5Mo-7YanQ4YEfN4,2230
2125
2125
  mteb/tasks/pair_classification/multilingual/opusparcus_pc.py,sha256=h8LHHaWxuvsdtW9rFP5oKyLhnNJcEDq7b_a_DoH84rU,1500
2126
2126
  mteb/tasks/pair_classification/multilingual/paws_x_pair_classification.py,sha256=0IpodQ1H3rM_YEcODUDQPNeOHbkKrBi4OCbwC9LI2OE,1651
2127
- mteb/tasks/pair_classification/multilingual/pub_chem_wiki_pair_classification.py,sha256=sYgOlneCYiGm6xi8IpJCr8aWdYDzoeJhq79fvxh5GfQ,2773
2127
+ mteb/tasks/pair_classification/multilingual/pub_chem_wiki_pair_classification.py,sha256=8dfz67oJA54jdtiOMeiXytIA1yXD_CGDoY1HqmvaaV4,2802
2128
2128
  mteb/tasks/pair_classification/multilingual/rte3.py,sha256=JM-R1De9aa3yuls3spoTeB-pifGW1E4WQ7GX0hJsJeM,3085
2129
2129
  mteb/tasks/pair_classification/multilingual/x_stance.py,sha256=NPLzF8j_d_Y8kLocfIr8qaeJzJBwWE-1uveXxmGYI8M,1536
2130
2130
  mteb/tasks/pair_classification/multilingual/xnli.py,sha256=n30pByUOtlJHsC4YPOPMfUY_Ns_3CeCQ-R4VgcwbU_E,4696
@@ -2200,7 +2200,7 @@ mteb/tasks/retrieval/code/code1_retrieval.py,sha256=bFQjQtKw0Lpn5Yj_uRFbRYUKnd61
2200
2200
  mteb/tasks/retrieval/code/code_edit_search_retrieval.py,sha256=HGyxyTC5HPGKnZp3bkLLQg0RTBNEj1Oz5KCug6VFmXA,2906
2201
2201
  mteb/tasks/retrieval/code/code_feedback_mt_retrieval.py,sha256=CiJ8pYt3gmYR0mnk8KqdaO1jXgQbpU4aKvOe4d7lpu4,1489
2202
2202
  mteb/tasks/retrieval/code/code_feedback_st_retrieval.py,sha256=eNV1DKxmKJzhIlBVP4u1JsxPRV_SrfKG4Uy6csbXZjM,1477
2203
- mteb/tasks/retrieval/code/code_rag.py,sha256=q91XaKCR-mRzj0dvXeXI1kl7FOO_jx5-itEuJZr_3Rg,9501
2203
+ mteb/tasks/retrieval/code/code_rag.py,sha256=L3_brhU2HXCSlLaZ1Xr4_0wUBtGuhxySdjhPyVm9C30,9617
2204
2204
  mteb/tasks/retrieval/code/code_search_net_cc_retrieval.py,sha256=T7f80kRBXaUAbB7r14cpMDdYXAQRLWXYLjmTpLlEquk,3845
2205
2205
  mteb/tasks/retrieval/code/code_search_net_retrieval.py,sha256=BECmHuIQXeDjjUBKmvjYji395Ep-RnF0fCgpGXDZTus,1504
2206
2206
  mteb/tasks/retrieval/code/code_trans_ocean_contest_retrieval.py,sha256=pkFKpaKuBbGYU-tezvSz_BMESUKY5Pp17CmSj4e0_K8,1497
@@ -2216,9 +2216,9 @@ mteb/tasks/retrieval/code/stack_overflow_qa_retrieval.py,sha256=NjD7b7234xrlA2xK
2216
2216
  mteb/tasks/retrieval/code/synthetic_text2_sql_retrieval.py,sha256=TQikfAT_n65OzJEWmlxaj4mncce3hdzFpuB9ZIsBktQ,1640
2217
2217
  mteb/tasks/retrieval/code/wiki_sql_retrieval.py,sha256=6hDRUIUvaM0QoBf1AFLi0Ba4PVq1fyW8L8RKWeAAbgI,3339
2218
2218
  mteb/tasks/retrieval/dan/__init__.py,sha256=gHkyCxzEZ-Nyv5HBLsQ0VPs1y0JjoxNX5q5kOhPiCT4,280
2219
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py,sha256=mLemS1WQgqK3ToiJfPYjHGcqkTNwzvIo59_Z723NBGM,5635
2220
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py,sha256=yc9_nVqqSurU2JjhPeoFzS8311W76gy-CZgApqddZrA,3771
2221
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py,sha256=BKNYl4eue0KE22lJc2KAv0NfVTOeR1_S3yZ-C9BYZqI,3404
2219
+ mteb/tasks/retrieval/dan/dan_fever_retrieval.py,sha256=7ROdaY_zOwTAezN9CyQJGuQZCi1GbaZHkeHYFOKzaAI,5664
2220
+ mteb/tasks/retrieval/dan/tv2_nordretrieval.py,sha256=C7zBXvAVFKkg34Y_D0hnSJcR6E2swGq27rTBJpQub4Y,3800
2221
+ mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py,sha256=GxFwmUK-FgnU7iR_49npZ7qkZutgl7M8flHaLzQCMKk,3433
2222
2222
  mteb/tasks/retrieval/deu/__init__.py,sha256=xgC4Nt2DCgcoCAkiErKSCQENs18DJtHFbocSMWS_278,719
2223
2223
  mteb/tasks/retrieval/deu/ger_da_lir_retrieval.py,sha256=ZQFzZLguoOmrZ_pZVk4w5N7vzhiUYcg8sTvs62S4EaY,1371
2224
2224
  mteb/tasks/retrieval/deu/ger_da_lir_small_retrieval.py,sha256=zb5SGbztP3xQI9tt-3MEFsxEvxXzVlpo-ahx1cFd-WU,1572
@@ -2482,8 +2482,8 @@ mteb/tasks/retrieval/nld/touche2020_nl_retrieval.py,sha256=nPLZxNvhTDWkIJU6i2EPY
2482
2482
  mteb/tasks/retrieval/nld/treccovidnl_retrieval.py,sha256=d9rL10YNTUBVubdFxIVxqEhkf8tx9Iuxsp1BZ-Ctoyk,1671
2483
2483
  mteb/tasks/retrieval/nld/vabb_retrieval.py,sha256=FoudYkcY4IY0PNHCvx87bjoUnJJolWVwNhq6xH9HE84,1834
2484
2484
  mteb/tasks/retrieval/nob/__init__.py,sha256=6PYJtnMhN5OtRwXWLAMu5V-3JnZnbHrLxMOk8Ir-b9w,126
2485
- mteb/tasks/retrieval/nob/norquad.py,sha256=rXorsjpCXKL3yfAEKtozfJLugW_2_8fc3rh5rXEWjXU,3776
2486
- mteb/tasks/retrieval/nob/snl_retrieval.py,sha256=vp5HjDriHBb67N0KzILgGguoGlVa9O-_5AGc_r3serU,3140
2485
+ mteb/tasks/retrieval/nob/norquad.py,sha256=7ky8ONIeE7aeawAOCOMOk3v-DfpAQCAM-TKnNCcbE8M,3805
2486
+ mteb/tasks/retrieval/nob/snl_retrieval.py,sha256=XBYi0OU-nNK5Z6FbyqmQxt71fqBwfzNkKvvU3zea6p0,3169
2487
2487
  mteb/tasks/retrieval/pol/__init__.py,sha256=Ha3wf63NJliq1z6cqxLE8uSZH8RlscnNV-5Sq9tqwCM,2017
2488
2488
  mteb/tasks/retrieval/pol/argu_ana_pl_retrieval.py,sha256=ztNXnRDCp5nKCd2BhR6Fg2tgzMsx4jqIxRaNYvbU-Y8,1252
2489
2489
  mteb/tasks/retrieval/pol/cqadupstack_pl_retrieval.py,sha256=mwBibm87FjrDgrmozkPZTVzgQiquOJ4s1a7X-j2eZk0,16558
@@ -2582,18 +2582,18 @@ mteb/tasks/sts/kor/kor_sts.py,sha256=h07kLWJj6aBDeYR5_VSHGN4IaW5_cW7c2Xw_rjriYU0
2582
2582
  mteb/tasks/sts/multilingual/__init__.py,sha256=O14mSF1h5cEefkgFLf6PHiiOXeVPM20-aY5Pu0xVrQw,763
2583
2583
  mteb/tasks/sts/multilingual/humests22.py,sha256=vAZieRmx269Mxc_HrgazEAxSFoLKayffR4vFdLlLdoc,1993
2584
2584
  mteb/tasks/sts/multilingual/indic_crosslingual_sts.py,sha256=RHwbYd6egzA7Head4WlL3fGLx0WwvL7rHw_5hR64xYA,2565
2585
- mteb/tasks/sts/multilingual/sem_rel24_sts.py,sha256=bMPP6N_tsLws9YAwL4tSuSQx1rDHmC2_b1CRMKeBbzI,2615
2585
+ mteb/tasks/sts/multilingual/sem_rel24_sts.py,sha256=wHAf2ykmx8UbDRW8FLFtbj54h8NC9WdsluLF0mAm4Cs,2644
2586
2586
  mteb/tasks/sts/multilingual/sts17_crosslingual_sts.py,sha256=C8689GeoBLmcDIfguxkE2TzSK-EYcb2-NRtx6_WMZus,2164
2587
2587
  mteb/tasks/sts/multilingual/sts17_multilingual_visual_sts.py,sha256=k0Z1wv7esoKWwdm5ftOjfLtbLgRC2ZGCn_jV3JriSjQ,1833
2588
2588
  mteb/tasks/sts/multilingual/sts22_crosslingual_sts.py,sha256=zf50mdAKKZZN_sU5Ga8DYoihWmo89eMTYEVQXt37D-g,4315
2589
- mteb/tasks/sts/multilingual/sts_benchmark_multilingual_sts.py,sha256=QXenk9v8Mg5pNdkTmEO1X4JFp-3OCUfhHOPO3BE32OQ,1806
2589
+ mteb/tasks/sts/multilingual/sts_benchmark_multilingual_sts.py,sha256=iXyd26lQuivI4-xcRXth3OvHTQYXOq9XnbM11sDRqcc,1835
2590
2590
  mteb/tasks/sts/multilingual/sts_benchmark_multilingual_visual_sts.py,sha256=yH4DLkgrBk6Qg7LHLfAyyclynN_XrichBraNDbxRWl8,1855
2591
2591
  mteb/tasks/sts/nld/__init__.py,sha256=NdpfPHekoMIo9sw75Gahm_YCn8hzcVHixEStny107fk,67
2592
2592
  mteb/tasks/sts/nld/sick_nl_sts.py,sha256=rnZ9KeM4Id_eeJJrqcYYdxoH7f6-2lr9obgiuxtHnGY,1557
2593
2593
  mteb/tasks/sts/pol/__init__.py,sha256=Ob56PuMH_-J3gH9Pygg0fdEisWYKRT_fy_D0iE2zIpo,83
2594
2594
  mteb/tasks/sts/pol/polish_sts.py,sha256=qJCw-28dZ-o3epx44Zz-u6ZLE8HIu4ocJaJRyD0JQkc,3418
2595
2595
  mteb/tasks/sts/por/__init__.py,sha256=mUc8zOCeFl456-AEqKqgLQ4_sLnt_eUqD-cbcowRu0U,107
2596
- mteb/tasks/sts/por/assin2_sts.py,sha256=TmtfKxWuJ1gCzy62VeLG-weFWGzKDQRVa-ORCiuArqU,1626
2596
+ mteb/tasks/sts/por/assin2_sts.py,sha256=8k7NEmcNVKgBrg17q0qJcaSbyyIdqcuzB1SaDoce-U8,1655
2597
2597
  mteb/tasks/sts/por/sick_br_sts.py,sha256=0Ae5wmS_24nLtJJ081O5biTJnzGRHaY_qUhXf0H-9dE,2087
2598
2598
  mteb/tasks/sts/ron/__init__.py,sha256=JM3_jsds0JzYpoMJln8tQV3MbqdqskxHJlpQLpGi5sI,50
2599
2599
  mteb/tasks/sts/ron/ron_sts.py,sha256=AhthI43l1QSC2xSkiNjV87lE8EKsKCtRKBjmJ5MYxjY,1491
@@ -2644,9 +2644,9 @@ mteb/types/_metadata.py,sha256=NN-W0S6a5TDV7UkpRx1pyWtGF4TyyCyoPUfHOwdeci8,2290
2644
2644
  mteb/types/_result.py,sha256=UKNokV9pu3G74MGebocU512aU_fFU9I9nPKnrG9Q0iE,1035
2645
2645
  mteb/types/_string_validators.py,sha256=PY-dYq4E8O50VS3bLYdldPWp400fl_WzUjfVSkNWe8U,523
2646
2646
  mteb/types/statistics.py,sha256=gElgSShKBXpfcqaZHhU_d2UHln1CyzUj8FN8KFun_UA,4087
2647
- mteb-2.7.10.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
2648
- mteb-2.7.10.dist-info/METADATA,sha256=eT_71NOIURglAbnihIm_UKjwB6zn5c_uLYiYetWXqpE,14458
2649
- mteb-2.7.10.dist-info/WHEEL,sha256=qELbo2s1Yzl39ZmrAibXA2jjPLUYfnVhUNTlyF1rq0Y,92
2650
- mteb-2.7.10.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
2651
- mteb-2.7.10.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
2652
- mteb-2.7.10.dist-info/RECORD,,
2647
+ mteb-2.7.12.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
2648
+ mteb-2.7.12.dist-info/METADATA,sha256=qFfnF_lPdIQWnBIiunbaPAatQI_x21ouRUpgasLHbM0,14458
2649
+ mteb-2.7.12.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
2650
+ mteb-2.7.12.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
2651
+ mteb-2.7.12.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
2652
+ mteb-2.7.12.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (80.10.1)
2
+ Generator: setuptools (80.10.2)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5