mteb 2.6.9__py3-none-any.whl → 2.7.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/_evaluators/retrieval_metrics.py +1 -1
- mteb/abstasks/retrieval_dataset_loaders.py +2 -2
- mteb/abstasks/text/reranking.py +1 -1
- mteb/benchmarks/benchmarks/__init__.py +2 -0
- mteb/benchmarks/benchmarks/benchmarks.py +66 -10
- mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +13 -7
- mteb/models/model_implementations/nvidia_models.py +58 -5
- mteb/models/model_implementations/voyage_models.py +84 -0
- mteb/models/model_implementations/voyage_v.py +5 -3
- mteb/models/model_meta.py +1 -1
- mteb/models/sentence_transformer_wrapper.py +16 -3
- mteb/models/vllm_wrapper.py +327 -0
- mteb/tasks/retrieval/eng/__init__.py +2 -0
- mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
- mteb/tasks/retrieval/multilingual/__init__.py +2 -0
- mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +90 -100
- {mteb-2.6.9.dist-info → mteb-2.7.1.dist-info}/METADATA +5 -1
- {mteb-2.6.9.dist-info → mteb-2.7.1.dist-info}/RECORD +25 -20
- {mteb-2.6.9.dist-info → mteb-2.7.1.dist-info}/WHEEL +0 -0
- {mteb-2.6.9.dist-info → mteb-2.7.1.dist-info}/entry_points.txt +0 -0
- {mteb-2.6.9.dist-info → mteb-2.7.1.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.6.9.dist-info → mteb-2.7.1.dist-info}/top_level.txt +0 -0
|
@@ -15,7 +15,7 @@ class Vidore3FinanceEnRetrieval(AbsTaskRetrieval):
|
|
|
15
15
|
metadata = TaskMetadata(
|
|
16
16
|
name="Vidore3FinanceEnRetrieval",
|
|
17
17
|
description="Retrieve associated pages according to questions. This task, Finance - EN, is a corpus of reports from american banking companies, intended for long-document understanding tasks. Original queries were created in english, then translated to french, german, italian, portuguese and spanish.",
|
|
18
|
-
reference="https://
|
|
18
|
+
reference="https://arxiv.org/abs/2601.08620",
|
|
19
19
|
dataset={
|
|
20
20
|
"path": "vidore/vidore_v3_finance_en_mteb_format",
|
|
21
21
|
"revision": "fa78cb14152b3dde8c5defdc4e3ddf50de69dfeb",
|
|
@@ -34,15 +34,14 @@ class Vidore3FinanceEnRetrieval(AbsTaskRetrieval):
|
|
|
34
34
|
modalities=["text", "image"],
|
|
35
35
|
sample_creation="created and machine-translated",
|
|
36
36
|
bibtex_citation=r"""
|
|
37
|
-
@
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
year = {2025},
|
|
37
|
+
@article{loison2026vidorev3comprehensiveevaluation,
|
|
38
|
+
archiveprefix = {arXiv},
|
|
39
|
+
author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
|
|
40
|
+
eprint = {2601.08620},
|
|
41
|
+
primaryclass = {cs.AI},
|
|
42
|
+
title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
|
|
43
|
+
url = {https://arxiv.org/abs/2601.08620},
|
|
44
|
+
year = {2026},
|
|
46
45
|
}
|
|
47
46
|
""",
|
|
48
47
|
prompt={"query": "Find a screenshot that is relevant to the user's question."},
|
|
@@ -53,7 +52,7 @@ class Vidore3FinanceFrRetrieval(AbsTaskRetrieval):
|
|
|
53
52
|
metadata = TaskMetadata(
|
|
54
53
|
name="Vidore3FinanceFrRetrieval",
|
|
55
54
|
description="Retrieve associated pages according to questions. This task, Finance - FR, is a corpus of reports from french companies in the luxury domain, intended for long-document understanding tasks. Original queries were created in french, then translated to english, german, italian, portuguese and spanish.",
|
|
56
|
-
reference="https://
|
|
55
|
+
reference="https://arxiv.org/abs/2601.08620",
|
|
57
56
|
dataset={
|
|
58
57
|
"path": "vidore/vidore_v3_finance_fr_mteb_format",
|
|
59
58
|
"revision": "8a2adfda85a7967c7252129703d9b3c7c9f038a9",
|
|
@@ -71,15 +70,14 @@ class Vidore3FinanceFrRetrieval(AbsTaskRetrieval):
|
|
|
71
70
|
dialect=[],
|
|
72
71
|
sample_creation="created and machine-translated",
|
|
73
72
|
bibtex_citation=r"""
|
|
74
|
-
@
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
year = {2025},
|
|
73
|
+
@article{loison2026vidorev3comprehensiveevaluation,
|
|
74
|
+
archiveprefix = {arXiv},
|
|
75
|
+
author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
|
|
76
|
+
eprint = {2601.08620},
|
|
77
|
+
primaryclass = {cs.AI},
|
|
78
|
+
title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
|
|
79
|
+
url = {https://arxiv.org/abs/2601.08620},
|
|
80
|
+
year = {2026},
|
|
83
81
|
}
|
|
84
82
|
""",
|
|
85
83
|
prompt={"query": "Find a screenshot that is relevant to the user's question."},
|
|
@@ -91,7 +89,7 @@ class Vidore3IndustrialRetrieval(AbsTaskRetrieval):
|
|
|
91
89
|
metadata = TaskMetadata(
|
|
92
90
|
name="Vidore3IndustrialRetrieval",
|
|
93
91
|
description="Retrieve associated pages according to questions. This dataset, Industrial reports, is a corpus of technical documents on military aircraft (fueling, mechanics...), intended for complex-document understanding tasks. Original queries were created in english, then translated to french, german, italian, portuguese and spanish.",
|
|
94
|
-
reference="https://
|
|
92
|
+
reference="https://arxiv.org/abs/2601.08620",
|
|
95
93
|
dataset={
|
|
96
94
|
"path": "vidore/vidore_v3_industrial_mteb_format",
|
|
97
95
|
"revision": "f732b725cf4a70803210edfe265a04f8bd5328f6",
|
|
@@ -110,15 +108,14 @@ class Vidore3IndustrialRetrieval(AbsTaskRetrieval):
|
|
|
110
108
|
modalities=["text", "image"],
|
|
111
109
|
sample_creation="created and machine-translated",
|
|
112
110
|
bibtex_citation=r"""
|
|
113
|
-
@
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
year = {2025},
|
|
111
|
+
@article{loison2026vidorev3comprehensiveevaluation,
|
|
112
|
+
archiveprefix = {arXiv},
|
|
113
|
+
author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
|
|
114
|
+
eprint = {2601.08620},
|
|
115
|
+
primaryclass = {cs.AI},
|
|
116
|
+
title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
|
|
117
|
+
url = {https://arxiv.org/abs/2601.08620},
|
|
118
|
+
year = {2026},
|
|
122
119
|
}
|
|
123
120
|
""",
|
|
124
121
|
prompt={"query": "Find a screenshot that is relevant to the user's question."},
|
|
@@ -130,7 +127,7 @@ class Vidore3PharmaceuticalsRetrieval(AbsTaskRetrieval):
|
|
|
130
127
|
metadata = TaskMetadata(
|
|
131
128
|
name="Vidore3PharmaceuticalsRetrieval",
|
|
132
129
|
description="Retrieve associated pages according to questions. This dataset, Pharmaceutical, is a corpus of slides from the FDA, intended for long-document understanding tasks. Original queries were created in english, then translated to french, german, italian, portuguese and spanish.",
|
|
133
|
-
reference="https://
|
|
130
|
+
reference="https://arxiv.org/abs/2601.08620",
|
|
134
131
|
dataset={
|
|
135
132
|
"path": "vidore/vidore_v3_pharmaceuticals_mteb_format",
|
|
136
133
|
"revision": "237ed4f43c7fb3c4df07ec4e9dd0a4366be555b0",
|
|
@@ -149,15 +146,14 @@ class Vidore3PharmaceuticalsRetrieval(AbsTaskRetrieval):
|
|
|
149
146
|
modalities=["text", "image"],
|
|
150
147
|
sample_creation="created and machine-translated",
|
|
151
148
|
bibtex_citation=r"""
|
|
152
|
-
@
|
|
153
|
-
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
|
|
159
|
-
|
|
160
|
-
year = {2025},
|
|
149
|
+
@article{loison2026vidorev3comprehensiveevaluation,
|
|
150
|
+
archiveprefix = {arXiv},
|
|
151
|
+
author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
|
|
152
|
+
eprint = {2601.08620},
|
|
153
|
+
primaryclass = {cs.AI},
|
|
154
|
+
title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
|
|
155
|
+
url = {https://arxiv.org/abs/2601.08620},
|
|
156
|
+
year = {2026},
|
|
161
157
|
}
|
|
162
158
|
""",
|
|
163
159
|
prompt={"query": "Find a screenshot that is relevant to the user's question."},
|
|
@@ -169,7 +165,7 @@ class Vidore3ComputerScienceRetrieval(AbsTaskRetrieval):
|
|
|
169
165
|
metadata = TaskMetadata(
|
|
170
166
|
name="Vidore3ComputerScienceRetrieval",
|
|
171
167
|
description="Retrieve associated pages according to questions. This dataset, Computer Science, is a corpus of textbooks from the openstacks website, intended for long-document understanding tasks. Original queries were created in english, then translated to french, german, italian, portuguese and spanish.",
|
|
172
|
-
reference="https://
|
|
168
|
+
reference="https://arxiv.org/abs/2601.08620",
|
|
173
169
|
dataset={
|
|
174
170
|
"path": "vidore/vidore_v3_computer_science_mteb_format",
|
|
175
171
|
"revision": "fb7fb69f81f7db62790f40494124b8ad22b424ab",
|
|
@@ -188,15 +184,14 @@ class Vidore3ComputerScienceRetrieval(AbsTaskRetrieval):
|
|
|
188
184
|
modalities=["text", "image"],
|
|
189
185
|
sample_creation="created and machine-translated",
|
|
190
186
|
bibtex_citation=r"""
|
|
191
|
-
@
|
|
192
|
-
|
|
193
|
-
|
|
194
|
-
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
|
|
198
|
-
|
|
199
|
-
year = {2025},
|
|
187
|
+
@article{loison2026vidorev3comprehensiveevaluation,
|
|
188
|
+
archiveprefix = {arXiv},
|
|
189
|
+
author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
|
|
190
|
+
eprint = {2601.08620},
|
|
191
|
+
primaryclass = {cs.AI},
|
|
192
|
+
title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
|
|
193
|
+
url = {https://arxiv.org/abs/2601.08620},
|
|
194
|
+
year = {2026},
|
|
200
195
|
}
|
|
201
196
|
""",
|
|
202
197
|
prompt={"query": "Find a screenshot that is relevant to the user's question."},
|
|
@@ -208,7 +203,7 @@ class Vidore3HrRetrieval(AbsTaskRetrieval):
|
|
|
208
203
|
metadata = TaskMetadata(
|
|
209
204
|
name="Vidore3HrRetrieval",
|
|
210
205
|
description="Retrieve associated pages according to questions. This dataset, HR, is a corpus of reports released by the european union, intended for complex-document understanding tasks. Original queries were created in english, then translated to french, german, italian, portuguese and spanish.",
|
|
211
|
-
reference="https://
|
|
206
|
+
reference="https://arxiv.org/abs/2601.08620",
|
|
212
207
|
dataset={
|
|
213
208
|
"path": "vidore/vidore_v3_hr_mteb_format",
|
|
214
209
|
"revision": "bc7d43d64815ed30f664168c8052106484aba7fd",
|
|
@@ -227,15 +222,14 @@ class Vidore3HrRetrieval(AbsTaskRetrieval):
|
|
|
227
222
|
modalities=["text", "image"],
|
|
228
223
|
sample_creation="created and machine-translated",
|
|
229
224
|
bibtex_citation=r"""
|
|
230
|
-
@
|
|
231
|
-
|
|
232
|
-
|
|
233
|
-
|
|
234
|
-
|
|
235
|
-
|
|
236
|
-
|
|
237
|
-
|
|
238
|
-
year = {2025},
|
|
225
|
+
@article{loison2026vidorev3comprehensiveevaluation,
|
|
226
|
+
archiveprefix = {arXiv},
|
|
227
|
+
author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
|
|
228
|
+
eprint = {2601.08620},
|
|
229
|
+
primaryclass = {cs.AI},
|
|
230
|
+
title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
|
|
231
|
+
url = {https://arxiv.org/abs/2601.08620},
|
|
232
|
+
year = {2026},
|
|
239
233
|
}
|
|
240
234
|
""",
|
|
241
235
|
prompt={"query": "Find a screenshot that is relevant to the user's question."},
|
|
@@ -247,7 +241,7 @@ class Vidore3EnergyRetrieval(AbsTaskRetrieval):
|
|
|
247
241
|
metadata = TaskMetadata(
|
|
248
242
|
name="Vidore3EnergyRetrieval",
|
|
249
243
|
description="Retrieve associated pages according to questions. This dataset, Energy Fr, is a corpus of reports on energy supply in europe, intended for complex-document understanding tasks. Original queries were created in french, then translated to english, german, italian, portuguese and spanish.",
|
|
250
|
-
reference="https://
|
|
244
|
+
reference="https://arxiv.org/abs/2601.08620",
|
|
251
245
|
dataset={
|
|
252
246
|
"path": "vidore/vidore_v3_energy_mteb_format",
|
|
253
247
|
"revision": "84fca99e5978604bae30f2436eacb6dbaa0532e9",
|
|
@@ -266,15 +260,14 @@ class Vidore3EnergyRetrieval(AbsTaskRetrieval):
|
|
|
266
260
|
modalities=["text", "image"],
|
|
267
261
|
sample_creation="created and machine-translated",
|
|
268
262
|
bibtex_citation=r"""
|
|
269
|
-
@
|
|
270
|
-
|
|
271
|
-
|
|
272
|
-
|
|
273
|
-
|
|
274
|
-
|
|
275
|
-
|
|
276
|
-
|
|
277
|
-
year = {2025},
|
|
263
|
+
@article{loison2026vidorev3comprehensiveevaluation,
|
|
264
|
+
archiveprefix = {arXiv},
|
|
265
|
+
author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
|
|
266
|
+
eprint = {2601.08620},
|
|
267
|
+
primaryclass = {cs.AI},
|
|
268
|
+
title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
|
|
269
|
+
url = {https://arxiv.org/abs/2601.08620},
|
|
270
|
+
year = {2026},
|
|
278
271
|
}
|
|
279
272
|
""",
|
|
280
273
|
prompt={"query": "Find a screenshot that is relevant to the user's question."},
|
|
@@ -286,7 +279,7 @@ class Vidore3PhysicsRetrieval(AbsTaskRetrieval):
|
|
|
286
279
|
metadata = TaskMetadata(
|
|
287
280
|
name="Vidore3PhysicsRetrieval",
|
|
288
281
|
description="Retrieve associated pages according to questions. This dataset, Physics, is a corpus of course slides on french bachelor level physics lectures, intended for complex visual understanding tasks. Original queries were created in french, then translated to english, german, italian, portuguese and spanish.",
|
|
289
|
-
reference="https://
|
|
282
|
+
reference="https://arxiv.org/abs/2601.08620",
|
|
290
283
|
dataset={
|
|
291
284
|
"path": "vidore/vidore_v3_physics_mteb_format",
|
|
292
285
|
"revision": "2c18ef90ab3ef93a9d86ecc6521cdae2a29f8300",
|
|
@@ -305,15 +298,14 @@ class Vidore3PhysicsRetrieval(AbsTaskRetrieval):
|
|
|
305
298
|
modalities=["text", "image"],
|
|
306
299
|
sample_creation="created and machine-translated",
|
|
307
300
|
bibtex_citation=r"""
|
|
308
|
-
@
|
|
309
|
-
|
|
310
|
-
|
|
311
|
-
|
|
312
|
-
|
|
313
|
-
|
|
314
|
-
|
|
315
|
-
|
|
316
|
-
year = {2025},
|
|
301
|
+
@article{loison2026vidorev3comprehensiveevaluation,
|
|
302
|
+
archiveprefix = {arXiv},
|
|
303
|
+
author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
|
|
304
|
+
eprint = {2601.08620},
|
|
305
|
+
primaryclass = {cs.AI},
|
|
306
|
+
title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
|
|
307
|
+
url = {https://arxiv.org/abs/2601.08620},
|
|
308
|
+
year = {2026},
|
|
317
309
|
}
|
|
318
310
|
""",
|
|
319
311
|
prompt={"query": "Find a screenshot that is relevant to the user's question."},
|
|
@@ -325,7 +317,7 @@ class Vidore3NuclearRetrieval(AbsTaskRetrieval):
|
|
|
325
317
|
metadata = TaskMetadata(
|
|
326
318
|
name="Vidore3NuclearRetrieval",
|
|
327
319
|
description="Retrieve associated pages according to questions.",
|
|
328
|
-
reference="https://
|
|
320
|
+
reference="https://arxiv.org/abs/2601.08620",
|
|
329
321
|
dataset={
|
|
330
322
|
"path": "mteb-private/Vidore3NuclearRetrieval",
|
|
331
323
|
"revision": "a463fc67fefc01152153101e88a32d5f9515e3e3",
|
|
@@ -344,15 +336,14 @@ class Vidore3NuclearRetrieval(AbsTaskRetrieval):
|
|
|
344
336
|
modalities=["text", "image"],
|
|
345
337
|
sample_creation="created and machine-translated",
|
|
346
338
|
bibtex_citation=r"""
|
|
347
|
-
@
|
|
348
|
-
|
|
349
|
-
|
|
350
|
-
|
|
351
|
-
|
|
352
|
-
|
|
353
|
-
|
|
354
|
-
|
|
355
|
-
year = {2025},
|
|
339
|
+
@article{loison2026vidorev3comprehensiveevaluation,
|
|
340
|
+
archiveprefix = {arXiv},
|
|
341
|
+
author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
|
|
342
|
+
eprint = {2601.08620},
|
|
343
|
+
primaryclass = {cs.AI},
|
|
344
|
+
title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
|
|
345
|
+
url = {https://arxiv.org/abs/2601.08620},
|
|
346
|
+
year = {2026},
|
|
356
347
|
}
|
|
357
348
|
""",
|
|
358
349
|
prompt={"query": "Find a screenshot that is relevant to the user's question."},
|
|
@@ -364,7 +355,7 @@ class Vidore3TelecomRetrieval(AbsTaskRetrieval):
|
|
|
364
355
|
metadata = TaskMetadata(
|
|
365
356
|
name="Vidore3TelecomRetrieval",
|
|
366
357
|
description="Retrieve associated pages according to questions.",
|
|
367
|
-
reference="https://
|
|
358
|
+
reference="https://arxiv.org/abs/2601.08620",
|
|
368
359
|
dataset={
|
|
369
360
|
"path": "mteb-private/Vidore3TelecomRetrieval",
|
|
370
361
|
"revision": "a54635a274ef2835721b7cbe3eb27483b9ec964b",
|
|
@@ -383,15 +374,14 @@ class Vidore3TelecomRetrieval(AbsTaskRetrieval):
|
|
|
383
374
|
modalities=["text", "image"],
|
|
384
375
|
sample_creation="created and machine-translated",
|
|
385
376
|
bibtex_citation=r"""
|
|
386
|
-
@
|
|
387
|
-
|
|
388
|
-
|
|
389
|
-
|
|
390
|
-
|
|
391
|
-
|
|
392
|
-
|
|
393
|
-
|
|
394
|
-
year = {2025},
|
|
377
|
+
@article{loison2026vidorev3comprehensiveevaluation,
|
|
378
|
+
archiveprefix = {arXiv},
|
|
379
|
+
author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
|
|
380
|
+
eprint = {2601.08620},
|
|
381
|
+
primaryclass = {cs.AI},
|
|
382
|
+
title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
|
|
383
|
+
url = {https://arxiv.org/abs/2601.08620},
|
|
384
|
+
year = {2026},
|
|
395
385
|
}
|
|
396
386
|
""",
|
|
397
387
|
prompt={"query": "Find a screenshot that is relevant to the user's question."},
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: mteb
|
|
3
|
-
Version: 2.
|
|
3
|
+
Version: 2.7.1
|
|
4
4
|
Summary: Massive Text Embedding Benchmark
|
|
5
5
|
Author-email: MTEB Contributors <niklas@huggingface.co>, Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Nouamane Tazi <nouamane@huggingface.co>, Nils Reimers <info@nils-reimers.de>
|
|
6
6
|
Maintainer-email: Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Roman Solomatin <risolomatin@gmail.com>, Isaac Chung <chungisaac1217@gmail.com>
|
|
@@ -32,6 +32,8 @@ Requires-Dist: rich>=0.0.0
|
|
|
32
32
|
Requires-Dist: pytrec-eval-terrier>=0.5.6
|
|
33
33
|
Requires-Dist: pydantic>=2.0.0
|
|
34
34
|
Requires-Dist: polars>=0.20.22
|
|
35
|
+
Requires-Dist: torch; python_full_version < "3.14"
|
|
36
|
+
Requires-Dist: torch>=2.9.0; python_full_version >= "3.14"
|
|
35
37
|
Provides-Extra: image
|
|
36
38
|
Requires-Dist: torchvision>0.2.1; extra == "image"
|
|
37
39
|
Requires-Dist: transformers[torch-vision,vision]; extra == "image"
|
|
@@ -108,6 +110,8 @@ Provides-Extra: faiss-cpu
|
|
|
108
110
|
Requires-Dist: faiss-cpu>=1.12.0; extra == "faiss-cpu"
|
|
109
111
|
Provides-Extra: eager-embed
|
|
110
112
|
Requires-Dist: qwen_vl_utils>=0.0.14; extra == "eager-embed"
|
|
113
|
+
Provides-Extra: vllm
|
|
114
|
+
Requires-Dist: vllm>=0.11.1; extra == "vllm"
|
|
111
115
|
Dynamic: license-file
|
|
112
116
|
|
|
113
117
|
<h1 align="center">
|
|
@@ -21,7 +21,7 @@ mteb/_evaluators/clustering_evaluator.py,sha256=YfjwpZL03Tiu0jfd6HBSavrOs_WALwIp
|
|
|
21
21
|
mteb/_evaluators/evaluator.py,sha256=CZIFM84KJcbygBqHrd6Reg0FA1ZT5dfVjFTuBYgGyMw,906
|
|
22
22
|
mteb/_evaluators/pair_classification_evaluator.py,sha256=kgxvnzsZPFF7c6GNRWtyAP3AJ3v_heRQUYwmYvNATzI,6440
|
|
23
23
|
mteb/_evaluators/retrieval_evaluator.py,sha256=UVrGtjOQdbDD2ZeH1oVm9ouIlU7Uup2a09ylzm0-QaM,3024
|
|
24
|
-
mteb/_evaluators/retrieval_metrics.py,sha256=
|
|
24
|
+
mteb/_evaluators/retrieval_metrics.py,sha256=fwsPemssWqQRvo0t4PZTGrrv5KXK8N6U35kOFSkRbEU,23755
|
|
25
25
|
mteb/_evaluators/sklearn_evaluator.py,sha256=lipgxkGXWeKGD2jhaNL9WQqLBS1_2L_WZpUobZR7iBI,3838
|
|
26
26
|
mteb/_evaluators/zeroshot_classification_evaluator.py,sha256=Y5ZFUsBAWXMpKnZ6Iw1K0lm0_L4chLMxC4LAdZCBbPs,2296
|
|
27
27
|
mteb/_evaluators/image/__init__.py,sha256=CsQd7OMkeV2Phun7paPWjayZ5qRnvj8H0TYBFeqMxag,148
|
|
@@ -43,7 +43,7 @@ mteb/abstasks/multilabel_classification.py,sha256=D_bdK3yyZFgaH1pg9PpO5LHQMVaJP3
|
|
|
43
43
|
mteb/abstasks/pair_classification.py,sha256=-T8q7JQRjHZ3ihLqnuR2yuuci9xljvUqCldsHGnGLGc,13767
|
|
44
44
|
mteb/abstasks/regression.py,sha256=sROjvfasLS89KRPUTsc1ONFsBTzfoqlpxLQfIkKBQXs,8763
|
|
45
45
|
mteb/abstasks/retrieval.py,sha256=keuf7GeYyM0ODPlVFGZIFBmBoSil0c1glmcu6C0YzhA,26921
|
|
46
|
-
mteb/abstasks/retrieval_dataset_loaders.py,sha256=
|
|
46
|
+
mteb/abstasks/retrieval_dataset_loaders.py,sha256=Jcr2hHe5sqWc8eL3WDhR9J7bJokD7tyhz_z3eD14o0M,9403
|
|
47
47
|
mteb/abstasks/sts.py,sha256=b_19QvclU0_q0aEJdfvB3weUQ96bUS7uDuuRrjpz8Bc,9245
|
|
48
48
|
mteb/abstasks/task_metadata.py,sha256=7TM_ls5bzYA1dHFq3VQgeioiyLrvMQz4i3hmWIsnD4M,27029
|
|
49
49
|
mteb/abstasks/zeroshot_classification.py,sha256=O8jxoBgnrRx-BzOnr1aJVK3wIEBwkA4xuMxdVxlzJqI,6053
|
|
@@ -54,14 +54,14 @@ mteb/abstasks/image/__init__.py,sha256=NgvMJnp1g2mUv27RL-TvzA7s1BOdMG-EB1CrZfdbW
|
|
|
54
54
|
mteb/abstasks/image/image_text_pair_classification.py,sha256=4RfPdAlb4ZlAE-9DiFQUvm7YpcQg9kTY7HRjRVenLmk,7935
|
|
55
55
|
mteb/abstasks/text/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
56
56
|
mteb/abstasks/text/bitext_mining.py,sha256=0Ff7t1jMEonajHzB5CzZZoSMVkC5KTa0muoytcNzOjM,11152
|
|
57
|
-
mteb/abstasks/text/reranking.py,sha256=
|
|
57
|
+
mteb/abstasks/text/reranking.py,sha256=vD5YUwst--zJ01bU40Z7juqQyuv8jrareRTtoCwt8E4,7871
|
|
58
58
|
mteb/abstasks/text/summarization.py,sha256=qCUWfxaVAW0EYTFClUh9puBMGttyV6C7qKpCcHPAZN8,7148
|
|
59
59
|
mteb/benchmarks/__init__.py,sha256=MQEVeli-zLaJ7Xg0z7RhXQwsdmm7Ht_W2Ln0rZo1Szc,225
|
|
60
60
|
mteb/benchmarks/_create_table.py,sha256=b2RqGqi0ZonKbHecEcZiF4pkfE96smFRIzxOI82ETA8,22304
|
|
61
61
|
mteb/benchmarks/benchmark.py,sha256=RheQOo0iQbu_ylN7oFLr2r-z_ahrMCTvKscVuwUx6yo,5694
|
|
62
62
|
mteb/benchmarks/get_benchmark.py,sha256=nzR6cu5yXu1kIJKhd4A2R62xp43Z62bluPbOpNXHMWQ,2545
|
|
63
|
-
mteb/benchmarks/benchmarks/__init__.py,sha256=
|
|
64
|
-
mteb/benchmarks/benchmarks/benchmarks.py,sha256=
|
|
63
|
+
mteb/benchmarks/benchmarks/__init__.py,sha256=767VzDgayFSB3KJ05o0gFdOeo2f1EarbEfnCsy_karw,2294
|
|
64
|
+
mteb/benchmarks/benchmarks/benchmarks.py,sha256=zAm1NTggaWb5Am6O30FUf-8zIbbF39eiuhSyLHzlpxQ,102370
|
|
65
65
|
mteb/benchmarks/benchmarks/rteb_benchmarks.py,sha256=QnCSrTTaBfcRlAQp2Nu81tgv1idMXqiM16Fp2zKJ5Ys,10607
|
|
66
66
|
mteb/cli/__init__.py,sha256=v-csUr3eUZElIvrGB6QGtaIdndDfNWEe9oZchsGsJpg,64
|
|
67
67
|
mteb/cli/_display_tasks.py,sha256=pWKupzak8uxEIwJZbYpZpteeVprOgVT9Wr0HYeypitQ,2206
|
|
@@ -1082,6 +1082,7 @@ mteb/descriptive_stats/Retrieval/CUREv1.json,sha256=lfz-JMLuE5KlWqM08CUF80Nex1Oh
|
|
|
1082
1082
|
mteb/descriptive_stats/Retrieval/ChatDoctorRetrieval.json,sha256=VyyOcmc9GQ1zqXrvAv0pFR5OAK-pE0fQYGJOsl4Wvok,991
|
|
1083
1083
|
mteb/descriptive_stats/Retrieval/ChemHotpotQARetrieval.json,sha256=V2oT8C6Wh5VR6LeBlxrYH0VUJeEisjJELOZHpN2NP1o,2950
|
|
1084
1084
|
mteb/descriptive_stats/Retrieval/ChemNQRetrieval.json,sha256=6E8SefjKJdqVC1R0JvGOPrJdpogDT-1H9X19GryVfI8,985
|
|
1085
|
+
mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json,sha256=kIfyVNgoLtO1QpnKguIovQVUio8RVdc1bBY_kwogT-Q,986
|
|
1085
1086
|
mteb/descriptive_stats/Retrieval/ClimateFEVER-Fa.json,sha256=B1bp66dEPtY6p1zgHTK3fyBN_eFbmprpjhwUovVs4mI,1016
|
|
1086
1087
|
mteb/descriptive_stats/Retrieval/ClimateFEVER-NL.json,sha256=RaHI8NhlXCD28FGFd1-Pofm4lvD-_Kcszde2OgPxQk8,1017
|
|
1087
1088
|
mteb/descriptive_stats/Retrieval/ClimateFEVER-VN.json,sha256=D2xgItr4sBQiW3x8qr12firW0cXsOHygKZcDrtjhQ10,1016
|
|
@@ -1140,6 +1141,7 @@ mteb/descriptive_stats/Retrieval/EnglishFinance3Retrieval.json,sha256=IpCB7e6cwO
|
|
|
1140
1141
|
mteb/descriptive_stats/Retrieval/EnglishFinance4Retrieval.json,sha256=tdSyer5_q9rPZSD0LEjjXluCbWY_W_FewhOTQycU1U0,995
|
|
1141
1142
|
mteb/descriptive_stats/Retrieval/EnglishHealthcare1Retrieval.json,sha256=c_QduudRLaQVFARJxSc-YTFwHeNyhiu7IMv6JGlYC5c,1005
|
|
1142
1143
|
mteb/descriptive_stats/Retrieval/EstQA.json,sha256=qqmmX7ExWg4152S6yiUAyHzaLS0I-QUaOn9KVBZ3UZ8,981
|
|
1144
|
+
mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json,sha256=FIpF0h7hhF7O4jn-rEa9a-_8tPD1MAY-klTkSX3_SI8,4586
|
|
1143
1145
|
mteb/descriptive_stats/Retrieval/FEVER-FaHardNegatives.json,sha256=KMDX6lg671e76rAboz30KgpvJAPxVSa6Thgefj1tgM4,987
|
|
1144
1146
|
mteb/descriptive_stats/Retrieval/FEVER-NL.json,sha256=K810hO-zNJWg3-i30oma72wsjORGu8lLLd4PN_w0VVs,1020
|
|
1145
1147
|
mteb/descriptive_stats/Retrieval/FEVER-VN.json,sha256=MnadQ0FGkXCFCDCI8eGwFYbouo8ta_1W_WlrqNx1clI,1018
|
|
@@ -1459,10 +1461,11 @@ mteb/models/__init__.py,sha256=ABTuoqiBjBtBWW3LYY7ItBHdylR6jWoy06HH0g6j6fU,910
|
|
|
1459
1461
|
mteb/models/abs_encoder.py,sha256=6e9UAk7ckYsJ6hItIPMfSaPdlX_FxfJ-OdJ87oqT2OM,16625
|
|
1460
1462
|
mteb/models/get_model_meta.py,sha256=wVh2FaWevJ10hJlbm-FQtTQazLMfnkEV3IK7PUyBPOQ,6082
|
|
1461
1463
|
mteb/models/instruct_wrapper.py,sha256=GLHg9KcgYu2rF15LEMKesRpPudGfKE2y-aLXVG_CLj0,9670
|
|
1462
|
-
mteb/models/model_meta.py,sha256=
|
|
1464
|
+
mteb/models/model_meta.py,sha256=BDT4Q_aYPm3RUgtXq2poe1VyUUHob_fLrDKA4BPgYrg,31143
|
|
1463
1465
|
mteb/models/models_protocols.py,sha256=5WYOZw3-T-wK7ux0YZVCfbcMTkAisqAqbu44ZNoir4A,9250
|
|
1464
1466
|
mteb/models/search_wrappers.py,sha256=9lXLXUyL6atMCwXp-HBUong6msT3UAUY9QI7zKXbSVU,20945
|
|
1465
|
-
mteb/models/sentence_transformer_wrapper.py,sha256=
|
|
1467
|
+
mteb/models/sentence_transformer_wrapper.py,sha256=liMzSqr0bC-yI_oEL50ckEc4ti9nibDLIiukP2crhOA,13543
|
|
1468
|
+
mteb/models/vllm_wrapper.py,sha256=ebX4JIKPoxW4PIlr3BnaoLGuMGRpHzBe_ZwvFscx1D0,12286
|
|
1466
1469
|
mteb/models/cache_wrappers/__init__.py,sha256=1w1TnMwulWJSzNkLXjbh5MY3sqgHWc6vUntYn49i9X8,169
|
|
1467
1470
|
mteb/models/cache_wrappers/cache_backend_protocol.py,sha256=iGWdqDEoaCxUVEnwsXhy-m9d2QX8KTaQ9m2ZyawrMes,1634
|
|
1468
1471
|
mteb/models/cache_wrappers/cache_wrapper.py,sha256=GPC0UhHfkUH-i-Q4HdFvBev6h6GtMlWEId_B3tL-J54,6600
|
|
@@ -1544,8 +1547,8 @@ mteb/models/model_implementations/nbailab.py,sha256=LM00HJIr4yrA45qh2O21BIDXku9K
|
|
|
1544
1547
|
mteb/models/model_implementations/no_instruct_sentence_models.py,sha256=qLiMok_OxKvIYXWnP0KNWqH1monZx-OdSZrSx3QEhtI,4049
|
|
1545
1548
|
mteb/models/model_implementations/nomic_models.py,sha256=dmQC_cWg6hAmiBHK7fXoXEiGBJnJvrq0RsnCcJ2qe1Q,15137
|
|
1546
1549
|
mteb/models/model_implementations/nomic_models_vision.py,sha256=usCKfZCR7aEi_DnNmVAYjH-lXx_ipQkBVtUAmhJ90QI,6870
|
|
1547
|
-
mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py,sha256=
|
|
1548
|
-
mteb/models/model_implementations/nvidia_models.py,sha256=
|
|
1550
|
+
mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py,sha256=pJqkKBNns6jUYlpI3aGtpmrhXOSYgEvCje1ir_yXdpc,6889
|
|
1551
|
+
mteb/models/model_implementations/nvidia_models.py,sha256=KcnH7wGhz4LQ2F_y9Q9cJTr89DNKeHjVkVgHUfftzIY,26685
|
|
1549
1552
|
mteb/models/model_implementations/octen_models.py,sha256=FFR1-yG2euN-6kgL4qJNHYB6cPsds4NGYFPmc5tHhoE,8514
|
|
1550
1553
|
mteb/models/model_implementations/openai_models.py,sha256=905BajYi_XyOZgqU3AeKpwIttLoUitaAyc48sTWI6Jg,9482
|
|
1551
1554
|
mteb/models/model_implementations/openclip_models.py,sha256=MyosgeYSrgBXGuGFtI2Tyxksxpb7bADFJVSYFCLweVA,11622
|
|
@@ -1591,8 +1594,8 @@ mteb/models/model_implementations/vdr_models.py,sha256=8jlfABvO7Z9ebzAPFHqln3B2I
|
|
|
1591
1594
|
mteb/models/model_implementations/vi_vn_models.py,sha256=Ep2zj4Xvjyu0a_YiLsYvolKdMGSOtzm-N-yNyXmfNwA,6328
|
|
1592
1595
|
mteb/models/model_implementations/vista_models.py,sha256=GkQFHIwwjxwM0wDuo-dWJBo4dLExlHtHfXwhcdKA5uQ,10884
|
|
1593
1596
|
mteb/models/model_implementations/vlm2vec_models.py,sha256=EeWl3kpS_1VDJs4t1QmpaWSuglLPL2GyZu27fVY1VT8,11802
|
|
1594
|
-
mteb/models/model_implementations/voyage_models.py,sha256=
|
|
1595
|
-
mteb/models/model_implementations/voyage_v.py,sha256=
|
|
1597
|
+
mteb/models/model_implementations/voyage_models.py,sha256=jwVjgx9E6-rZxd8wmuNbbQxKTobuWBNWrs0ezqp4Oik,22525
|
|
1598
|
+
mteb/models/model_implementations/voyage_v.py,sha256=JqtXnICeaODRZHBj_Xsaf3PfIG-XPKopblNxAXHqYNo,8159
|
|
1596
1599
|
mteb/models/model_implementations/xyz_models.py,sha256=gjwCx3U4AxMcJDTSWVoYV6xeyXLw7lUZI5D6Q7JjWho,1322
|
|
1597
1600
|
mteb/models/model_implementations/youtu_models.py,sha256=THwWRabutW-qC-JZOVhxXWjKHVyMElzt_xm81ixzN50,5995
|
|
1598
1601
|
mteb/models/model_implementations/yuan_models.py,sha256=j-QIKECPg4TiBW_3Bp6g5yr2UOdFziFSeoGE4uKepSM,980
|
|
@@ -2207,7 +2210,7 @@ mteb/tasks/retrieval/deu/german_qu_ad_retrieval.py,sha256=RYZCPgKaNPi14ncxnvz8_7
|
|
|
2207
2210
|
mteb/tasks/retrieval/deu/legal_qu_ad_retrieval.py,sha256=l_UNVkOQxqlKp6wef2BM-GKtyYnmYLYThGZZnUsR_-c,1594
|
|
2208
2211
|
mteb/tasks/retrieval/ell/__init__.py,sha256=46naXAZtJzyezyqOQGRIlr4zQVkqGQJdj7ztjMrez9Y,72
|
|
2209
2212
|
mteb/tasks/retrieval/ell/greek_civics_qa.py,sha256=uKmiWHHZvL1o5m17XCrzi16kHWFNhlEUHrtlk-LR1as,2514
|
|
2210
|
-
mteb/tasks/retrieval/eng/__init__.py,sha256=
|
|
2213
|
+
mteb/tasks/retrieval/eng/__init__.py,sha256=dVW7pHRu8SXp2_PJwn6InbfWVQ2VVy0PJvr_-bLBrc4,16158
|
|
2211
2214
|
mteb/tasks/retrieval/eng/aila_casedocs_retrieval.py,sha256=UKoN9oE8C412REf8MV16aUDgE5NwkHxnXsh4dcLztpk,1398
|
|
2212
2215
|
mteb/tasks/retrieval/eng/aila_statutes_retrieval.py,sha256=GugjZwaWmTlNyYzK8ACKZHIiUw2YBvLaVyTngN_qQyM,1366
|
|
2213
2216
|
mteb/tasks/retrieval/eng/alpha_nli_retrieval.py,sha256=GpOkizyeOs_ZMbRu9g1yAXdKkQr8PObUepP1OulbJio,1714
|
|
@@ -2228,6 +2231,7 @@ mteb/tasks/retrieval/eng/built_bench_retrieval.py,sha256=pqsIaVMl0ugGl5wx1oHPooq
|
|
|
2228
2231
|
mteb/tasks/retrieval/eng/chat_doctor_retrieval.py,sha256=_PQYn3jXgeLKjnb_uKxzHtM9SCICV3bsmgEcEoD2OXo,3582
|
|
2229
2232
|
mteb/tasks/retrieval/eng/chem_hotpot_qa_retrieval.py,sha256=sLTfqBf967htSU7Ego7zkEC8QYVWFI12YoHxa-urWEw,2114
|
|
2230
2233
|
mteb/tasks/retrieval/eng/chem_nq_retrieval.py,sha256=8bl4PRKJwYgNF0sZPZQINgn81-r3c_2gDoMQJYdpb8I,1886
|
|
2234
|
+
mteb/tasks/retrieval/eng/chemrxiv.py,sha256=-HS_axsMPaEKr8T0d9WvgfJ_UmAr00InHFjFpt4VDVo,1404
|
|
2231
2235
|
mteb/tasks/retrieval/eng/cirr_it2i_retrieval.py,sha256=o_4fVGosZjYsfMQy7tzQGaq8aijhUwXKcV7MYIYY4SY,1583
|
|
2232
2236
|
mteb/tasks/retrieval/eng/climate_fever_retrieval.py,sha256=obIROibY5nQ8oDGbkjG5Z3jrJ-rAXVmF_1w_XN6Nqm0,4615
|
|
2233
2237
|
mteb/tasks/retrieval/eng/cqa_dupstack_android_retrieval.py,sha256=-Uj8BOIPyjl8egm34qZGRKULGgEoaoac4wOhdWXAPgE,1674
|
|
@@ -2392,11 +2396,12 @@ mteb/tasks/retrieval/kor/auto_rag_retrieval.py,sha256=tgffW8zMpDSv1FCOdS4_4SL5zK
|
|
|
2392
2396
|
mteb/tasks/retrieval/kor/ko_strategy_qa.py,sha256=jk13ORetYtF0q36h8ljD6TeTHUwvK5F5ZbDoMCP3eWk,1156
|
|
2393
2397
|
mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py,sha256=AjOLe2l9drBWOCeGzQqxfee3gwwU6ElAJ7-5pbFr6C8,6208
|
|
2394
2398
|
mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py,sha256=M7T5FkN1efK7euRslx-LZN7hS_QdIwqtUuVlWO-dico,1631
|
|
2395
|
-
mteb/tasks/retrieval/multilingual/__init__.py,sha256=
|
|
2399
|
+
mteb/tasks/retrieval/multilingual/__init__.py,sha256=rbeuLmNYooHPjgROuEOH84Q6QmGhuXnedej0d6xAgqc,6841
|
|
2396
2400
|
mteb/tasks/retrieval/multilingual/belebele_retrieval.py,sha256=gaVLEwuLEwMutMi9V-obpiYKbpllX2QNm2j3MVeebfE,7027
|
|
2397
2401
|
mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt19.py,sha256=_6r34ZvRiLVENYcrd87NjilybGaetBwKFEbO29zYmBU,4676
|
|
2398
2402
|
mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt21.py,sha256=Puy0PjpRr4M_Bbxdl7oWfa7pQGM04zaRaTNlnhyKejM,4677
|
|
2399
2403
|
mteb/tasks/retrieval/multilingual/cur_ev1_retrieval.py,sha256=dwzo2sqjamM_xkSiC-jbapyhDFezSJpM4S8KfBsuLPk,4562
|
|
2404
|
+
mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py,sha256=rlbgWMRdQgDD8z4ZBPgGU1fRAqjmoFDzh0uD_P6qR-4,1602
|
|
2400
2405
|
mteb/tasks/retrieval/multilingual/indic_qa_retrieval.py,sha256=K7iWZ-yTftZFQiXBOlkTJXGpQXs-ZFt6OQj_L6HjEwk,1872
|
|
2401
2406
|
mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py,sha256=dw2YuFrA5OWFTL5zREiix93oAj7WcpcnAhCRh8YRoHI,44579
|
|
2402
2407
|
mteb/tasks/retrieval/multilingual/mintaka_retrieval.py,sha256=SwOliONITZM679LIBSMrvx_VymqE-zRN6YiYahhzfzw,2229
|
|
@@ -2413,7 +2418,7 @@ mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py,sha256=Mmcvrt_1cIxPf
|
|
|
2413
2418
|
mteb/tasks/retrieval/multilingual/statcan_dialogue_dataset_retrieval.py,sha256=iFUQUlO_ogBdQBVYBQW3o-AJDQ792yg1pJtRxA5I3Qo,3796
|
|
2414
2419
|
mteb/tasks/retrieval/multilingual/vdr_multilingual_retrieval.py,sha256=UduWKefwP7bPYxiDlztPEvSWXmTdw0xElglMbPY6XhA,4449
|
|
2415
2420
|
mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py,sha256=vOfiruHywYkP8pccdAuGLyYyFTw1zK0qcXDnUFA8Z5A,9091
|
|
2416
|
-
mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py,sha256=
|
|
2421
|
+
mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py,sha256=V3jtSlWhoKR1PCvHsH0HrONy-oFghomwqihBonQs_50,17414
|
|
2417
2422
|
mteb/tasks/retrieval/multilingual/web_faq_retrieval.py,sha256=TM-Q98yXZny_PKHAFNEvw9o9ET_L6VM3aNis1NJ9DgM,2686
|
|
2418
2423
|
mteb/tasks/retrieval/multilingual/wikipedia_retrieval_multilingual.py,sha256=zyqAt63bHXNU_I37jb891pwWUyGzZUGkXCyhWlRbed8,1569
|
|
2419
2424
|
mteb/tasks/retrieval/multilingual/wit_t2i_retrieval.py,sha256=_swZhhMRs5OhzBdJVqQF1i9ZrTvAxaVrG0TpkPWkoHo,4359
|
|
@@ -2617,9 +2622,9 @@ mteb/types/_metadata.py,sha256=NN-W0S6a5TDV7UkpRx1pyWtGF4TyyCyoPUfHOwdeci8,2290
|
|
|
2617
2622
|
mteb/types/_result.py,sha256=UKNokV9pu3G74MGebocU512aU_fFU9I9nPKnrG9Q0iE,1035
|
|
2618
2623
|
mteb/types/_string_validators.py,sha256=PY-dYq4E8O50VS3bLYdldPWp400fl_WzUjfVSkNWe8U,523
|
|
2619
2624
|
mteb/types/statistics.py,sha256=GwkBPmAr18Onu-vHtzHs0PFrhCozdOMiT13HwnWL4ZM,3961
|
|
2620
|
-
mteb-2.
|
|
2621
|
-
mteb-2.
|
|
2622
|
-
mteb-2.
|
|
2623
|
-
mteb-2.
|
|
2624
|
-
mteb-2.
|
|
2625
|
-
mteb-2.
|
|
2625
|
+
mteb-2.7.1.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
|
2626
|
+
mteb-2.7.1.dist-info/METADATA,sha256=olR8WXq0vPmp5FUUNww2hAMIuhr5irC4wnymgFN0xhY,14457
|
|
2627
|
+
mteb-2.7.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
2628
|
+
mteb-2.7.1.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
|
|
2629
|
+
mteb-2.7.1.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
|
|
2630
|
+
mteb-2.7.1.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|