mteb 2.6.9__py3-none-any.whl → 2.7.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -15,7 +15,7 @@ class Vidore3FinanceEnRetrieval(AbsTaskRetrieval):
15
15
  metadata = TaskMetadata(
16
16
  name="Vidore3FinanceEnRetrieval",
17
17
  description="Retrieve associated pages according to questions. This task, Finance - EN, is a corpus of reports from american banking companies, intended for long-document understanding tasks. Original queries were created in english, then translated to french, german, italian, portuguese and spanish.",
18
- reference="https://huggingface.co/blog/QuentinJG/introducing-vidore-v3",
18
+ reference="https://arxiv.org/abs/2601.08620",
19
19
  dataset={
20
20
  "path": "vidore/vidore_v3_finance_en_mteb_format",
21
21
  "revision": "fa78cb14152b3dde8c5defdc4e3ddf50de69dfeb",
@@ -34,15 +34,14 @@ class Vidore3FinanceEnRetrieval(AbsTaskRetrieval):
34
34
  modalities=["text", "image"],
35
35
  sample_creation="created and machine-translated",
36
36
  bibtex_citation=r"""
37
- @misc{mace2025vidorev3,
38
- author = {Macé, Quentin and Loison, Antonio and EDY, Antoine and Xing, Victor and Viaud, Gautier},
39
- day = {5},
40
- howpublished = {\url{https://huggingface.co/blog/QuentinJG/introducing-vidore-v3}},
41
- journal = {Hugging Face Blog},
42
- month = {November},
43
- publisher = {Hugging Face},
44
- title = {ViDoRe V3: a comprehensive evaluation of retrieval for enterprise use-cases},
45
- year = {2025},
37
+ @article{loison2026vidorev3comprehensiveevaluation,
38
+ archiveprefix = {arXiv},
39
+ author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
40
+ eprint = {2601.08620},
41
+ primaryclass = {cs.AI},
42
+ title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
43
+ url = {https://arxiv.org/abs/2601.08620},
44
+ year = {2026},
46
45
  }
47
46
  """,
48
47
  prompt={"query": "Find a screenshot that is relevant to the user's question."},
@@ -53,7 +52,7 @@ class Vidore3FinanceFrRetrieval(AbsTaskRetrieval):
53
52
  metadata = TaskMetadata(
54
53
  name="Vidore3FinanceFrRetrieval",
55
54
  description="Retrieve associated pages according to questions. This task, Finance - FR, is a corpus of reports from french companies in the luxury domain, intended for long-document understanding tasks. Original queries were created in french, then translated to english, german, italian, portuguese and spanish.",
56
- reference="https://huggingface.co/blog/QuentinJG/introducing-vidore-v3",
55
+ reference="https://arxiv.org/abs/2601.08620",
57
56
  dataset={
58
57
  "path": "vidore/vidore_v3_finance_fr_mteb_format",
59
58
  "revision": "8a2adfda85a7967c7252129703d9b3c7c9f038a9",
@@ -71,15 +70,14 @@ class Vidore3FinanceFrRetrieval(AbsTaskRetrieval):
71
70
  dialect=[],
72
71
  sample_creation="created and machine-translated",
73
72
  bibtex_citation=r"""
74
- @misc{mace2025vidorev3,
75
- author = {Macé, Quentin and Loison, Antonio and EDY, Antoine and Xing, Victor and Viaud, Gautier},
76
- day = {5},
77
- howpublished = {\url{https://huggingface.co/blog/QuentinJG/introducing-vidore-v3}},
78
- journal = {Hugging Face Blog},
79
- month = {November},
80
- publisher = {Hugging Face},
81
- title = {ViDoRe V3: a comprehensive evaluation of retrieval for enterprise use-cases},
82
- year = {2025},
73
+ @article{loison2026vidorev3comprehensiveevaluation,
74
+ archiveprefix = {arXiv},
75
+ author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
76
+ eprint = {2601.08620},
77
+ primaryclass = {cs.AI},
78
+ title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
79
+ url = {https://arxiv.org/abs/2601.08620},
80
+ year = {2026},
83
81
  }
84
82
  """,
85
83
  prompt={"query": "Find a screenshot that is relevant to the user's question."},
@@ -91,7 +89,7 @@ class Vidore3IndustrialRetrieval(AbsTaskRetrieval):
91
89
  metadata = TaskMetadata(
92
90
  name="Vidore3IndustrialRetrieval",
93
91
  description="Retrieve associated pages according to questions. This dataset, Industrial reports, is a corpus of technical documents on military aircraft (fueling, mechanics...), intended for complex-document understanding tasks. Original queries were created in english, then translated to french, german, italian, portuguese and spanish.",
94
- reference="https://huggingface.co/blog/QuentinJG/introducing-vidore-v3",
92
+ reference="https://arxiv.org/abs/2601.08620",
95
93
  dataset={
96
94
  "path": "vidore/vidore_v3_industrial_mteb_format",
97
95
  "revision": "f732b725cf4a70803210edfe265a04f8bd5328f6",
@@ -110,15 +108,14 @@ class Vidore3IndustrialRetrieval(AbsTaskRetrieval):
110
108
  modalities=["text", "image"],
111
109
  sample_creation="created and machine-translated",
112
110
  bibtex_citation=r"""
113
- @misc{mace2025vidorev3,
114
- author = {Macé, Quentin and Loison, Antonio and EDY, Antoine and Xing, Victor and Viaud, Gautier},
115
- day = {5},
116
- howpublished = {\url{https://huggingface.co/blog/QuentinJG/introducing-vidore-v3}},
117
- journal = {Hugging Face Blog},
118
- month = {November},
119
- publisher = {Hugging Face},
120
- title = {ViDoRe V3: a comprehensive evaluation of retrieval for enterprise use-cases},
121
- year = {2025},
111
+ @article{loison2026vidorev3comprehensiveevaluation,
112
+ archiveprefix = {arXiv},
113
+ author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
114
+ eprint = {2601.08620},
115
+ primaryclass = {cs.AI},
116
+ title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
117
+ url = {https://arxiv.org/abs/2601.08620},
118
+ year = {2026},
122
119
  }
123
120
  """,
124
121
  prompt={"query": "Find a screenshot that is relevant to the user's question."},
@@ -130,7 +127,7 @@ class Vidore3PharmaceuticalsRetrieval(AbsTaskRetrieval):
130
127
  metadata = TaskMetadata(
131
128
  name="Vidore3PharmaceuticalsRetrieval",
132
129
  description="Retrieve associated pages according to questions. This dataset, Pharmaceutical, is a corpus of slides from the FDA, intended for long-document understanding tasks. Original queries were created in english, then translated to french, german, italian, portuguese and spanish.",
133
- reference="https://huggingface.co/blog/QuentinJG/introducing-vidore-v3",
130
+ reference="https://arxiv.org/abs/2601.08620",
134
131
  dataset={
135
132
  "path": "vidore/vidore_v3_pharmaceuticals_mteb_format",
136
133
  "revision": "237ed4f43c7fb3c4df07ec4e9dd0a4366be555b0",
@@ -149,15 +146,14 @@ class Vidore3PharmaceuticalsRetrieval(AbsTaskRetrieval):
149
146
  modalities=["text", "image"],
150
147
  sample_creation="created and machine-translated",
151
148
  bibtex_citation=r"""
152
- @misc{mace2025vidorev3,
153
- author = {Macé, Quentin and Loison, Antonio and EDY, Antoine and Xing, Victor and Viaud, Gautier},
154
- day = {5},
155
- howpublished = {\url{https://huggingface.co/blog/QuentinJG/introducing-vidore-v3}},
156
- journal = {Hugging Face Blog},
157
- month = {November},
158
- publisher = {Hugging Face},
159
- title = {ViDoRe V3: a comprehensive evaluation of retrieval for enterprise use-cases},
160
- year = {2025},
149
+ @article{loison2026vidorev3comprehensiveevaluation,
150
+ archiveprefix = {arXiv},
151
+ author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
152
+ eprint = {2601.08620},
153
+ primaryclass = {cs.AI},
154
+ title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
155
+ url = {https://arxiv.org/abs/2601.08620},
156
+ year = {2026},
161
157
  }
162
158
  """,
163
159
  prompt={"query": "Find a screenshot that is relevant to the user's question."},
@@ -169,7 +165,7 @@ class Vidore3ComputerScienceRetrieval(AbsTaskRetrieval):
169
165
  metadata = TaskMetadata(
170
166
  name="Vidore3ComputerScienceRetrieval",
171
167
  description="Retrieve associated pages according to questions. This dataset, Computer Science, is a corpus of textbooks from the openstacks website, intended for long-document understanding tasks. Original queries were created in english, then translated to french, german, italian, portuguese and spanish.",
172
- reference="https://huggingface.co/blog/QuentinJG/introducing-vidore-v3",
168
+ reference="https://arxiv.org/abs/2601.08620",
173
169
  dataset={
174
170
  "path": "vidore/vidore_v3_computer_science_mteb_format",
175
171
  "revision": "fb7fb69f81f7db62790f40494124b8ad22b424ab",
@@ -188,15 +184,14 @@ class Vidore3ComputerScienceRetrieval(AbsTaskRetrieval):
188
184
  modalities=["text", "image"],
189
185
  sample_creation="created and machine-translated",
190
186
  bibtex_citation=r"""
191
- @misc{mace2025vidorev3,
192
- author = {Macé, Quentin and Loison, Antonio and EDY, Antoine and Xing, Victor and Viaud, Gautier},
193
- day = {5},
194
- howpublished = {\url{https://huggingface.co/blog/QuentinJG/introducing-vidore-v3}},
195
- journal = {Hugging Face Blog},
196
- month = {November},
197
- publisher = {Hugging Face},
198
- title = {ViDoRe V3: a comprehensive evaluation of retrieval for enterprise use-cases},
199
- year = {2025},
187
+ @article{loison2026vidorev3comprehensiveevaluation,
188
+ archiveprefix = {arXiv},
189
+ author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
190
+ eprint = {2601.08620},
191
+ primaryclass = {cs.AI},
192
+ title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
193
+ url = {https://arxiv.org/abs/2601.08620},
194
+ year = {2026},
200
195
  }
201
196
  """,
202
197
  prompt={"query": "Find a screenshot that is relevant to the user's question."},
@@ -208,7 +203,7 @@ class Vidore3HrRetrieval(AbsTaskRetrieval):
208
203
  metadata = TaskMetadata(
209
204
  name="Vidore3HrRetrieval",
210
205
  description="Retrieve associated pages according to questions. This dataset, HR, is a corpus of reports released by the european union, intended for complex-document understanding tasks. Original queries were created in english, then translated to french, german, italian, portuguese and spanish.",
211
- reference="https://huggingface.co/blog/QuentinJG/introducing-vidore-v3",
206
+ reference="https://arxiv.org/abs/2601.08620",
212
207
  dataset={
213
208
  "path": "vidore/vidore_v3_hr_mteb_format",
214
209
  "revision": "bc7d43d64815ed30f664168c8052106484aba7fd",
@@ -227,15 +222,14 @@ class Vidore3HrRetrieval(AbsTaskRetrieval):
227
222
  modalities=["text", "image"],
228
223
  sample_creation="created and machine-translated",
229
224
  bibtex_citation=r"""
230
- @misc{mace2025vidorev3,
231
- author = {Macé, Quentin and Loison, Antonio and EDY, Antoine and Xing, Victor and Viaud, Gautier},
232
- day = {5},
233
- howpublished = {\url{https://huggingface.co/blog/QuentinJG/introducing-vidore-v3}},
234
- journal = {Hugging Face Blog},
235
- month = {November},
236
- publisher = {Hugging Face},
237
- title = {ViDoRe V3: a comprehensive evaluation of retrieval for enterprise use-cases},
238
- year = {2025},
225
+ @article{loison2026vidorev3comprehensiveevaluation,
226
+ archiveprefix = {arXiv},
227
+ author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
228
+ eprint = {2601.08620},
229
+ primaryclass = {cs.AI},
230
+ title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
231
+ url = {https://arxiv.org/abs/2601.08620},
232
+ year = {2026},
239
233
  }
240
234
  """,
241
235
  prompt={"query": "Find a screenshot that is relevant to the user's question."},
@@ -247,7 +241,7 @@ class Vidore3EnergyRetrieval(AbsTaskRetrieval):
247
241
  metadata = TaskMetadata(
248
242
  name="Vidore3EnergyRetrieval",
249
243
  description="Retrieve associated pages according to questions. This dataset, Energy Fr, is a corpus of reports on energy supply in europe, intended for complex-document understanding tasks. Original queries were created in french, then translated to english, german, italian, portuguese and spanish.",
250
- reference="https://huggingface.co/blog/QuentinJG/introducing-vidore-v3",
244
+ reference="https://arxiv.org/abs/2601.08620",
251
245
  dataset={
252
246
  "path": "vidore/vidore_v3_energy_mteb_format",
253
247
  "revision": "84fca99e5978604bae30f2436eacb6dbaa0532e9",
@@ -266,15 +260,14 @@ class Vidore3EnergyRetrieval(AbsTaskRetrieval):
266
260
  modalities=["text", "image"],
267
261
  sample_creation="created and machine-translated",
268
262
  bibtex_citation=r"""
269
- @misc{mace2025vidorev3,
270
- author = {Macé, Quentin and Loison, Antonio and EDY, Antoine and Xing, Victor and Viaud, Gautier},
271
- day = {5},
272
- howpublished = {\url{https://huggingface.co/blog/QuentinJG/introducing-vidore-v3}},
273
- journal = {Hugging Face Blog},
274
- month = {November},
275
- publisher = {Hugging Face},
276
- title = {ViDoRe V3: a comprehensive evaluation of retrieval for enterprise use-cases},
277
- year = {2025},
263
+ @article{loison2026vidorev3comprehensiveevaluation,
264
+ archiveprefix = {arXiv},
265
+ author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
266
+ eprint = {2601.08620},
267
+ primaryclass = {cs.AI},
268
+ title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
269
+ url = {https://arxiv.org/abs/2601.08620},
270
+ year = {2026},
278
271
  }
279
272
  """,
280
273
  prompt={"query": "Find a screenshot that is relevant to the user's question."},
@@ -286,7 +279,7 @@ class Vidore3PhysicsRetrieval(AbsTaskRetrieval):
286
279
  metadata = TaskMetadata(
287
280
  name="Vidore3PhysicsRetrieval",
288
281
  description="Retrieve associated pages according to questions. This dataset, Physics, is a corpus of course slides on french bachelor level physics lectures, intended for complex visual understanding tasks. Original queries were created in french, then translated to english, german, italian, portuguese and spanish.",
289
- reference="https://huggingface.co/blog/QuentinJG/introducing-vidore-v3",
282
+ reference="https://arxiv.org/abs/2601.08620",
290
283
  dataset={
291
284
  "path": "vidore/vidore_v3_physics_mteb_format",
292
285
  "revision": "2c18ef90ab3ef93a9d86ecc6521cdae2a29f8300",
@@ -305,15 +298,14 @@ class Vidore3PhysicsRetrieval(AbsTaskRetrieval):
305
298
  modalities=["text", "image"],
306
299
  sample_creation="created and machine-translated",
307
300
  bibtex_citation=r"""
308
- @misc{mace2025vidorev3,
309
- author = {Macé, Quentin and Loison, Antonio and EDY, Antoine and Xing, Victor and Viaud, Gautier},
310
- day = {5},
311
- howpublished = {\url{https://huggingface.co/blog/QuentinJG/introducing-vidore-v3}},
312
- journal = {Hugging Face Blog},
313
- month = {November},
314
- publisher = {Hugging Face},
315
- title = {ViDoRe V3: a comprehensive evaluation of retrieval for enterprise use-cases},
316
- year = {2025},
301
+ @article{loison2026vidorev3comprehensiveevaluation,
302
+ archiveprefix = {arXiv},
303
+ author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
304
+ eprint = {2601.08620},
305
+ primaryclass = {cs.AI},
306
+ title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
307
+ url = {https://arxiv.org/abs/2601.08620},
308
+ year = {2026},
317
309
  }
318
310
  """,
319
311
  prompt={"query": "Find a screenshot that is relevant to the user's question."},
@@ -325,7 +317,7 @@ class Vidore3NuclearRetrieval(AbsTaskRetrieval):
325
317
  metadata = TaskMetadata(
326
318
  name="Vidore3NuclearRetrieval",
327
319
  description="Retrieve associated pages according to questions.",
328
- reference="https://huggingface.co/blog/QuentinJG/introducing-vidore-v3",
320
+ reference="https://arxiv.org/abs/2601.08620",
329
321
  dataset={
330
322
  "path": "mteb-private/Vidore3NuclearRetrieval",
331
323
  "revision": "a463fc67fefc01152153101e88a32d5f9515e3e3",
@@ -344,15 +336,14 @@ class Vidore3NuclearRetrieval(AbsTaskRetrieval):
344
336
  modalities=["text", "image"],
345
337
  sample_creation="created and machine-translated",
346
338
  bibtex_citation=r"""
347
- @misc{mace2025vidorev3,
348
- author = {Macé, Quentin and Loison, Antonio and EDY, Antoine and Xing, Victor and Viaud, Gautier},
349
- day = {5},
350
- howpublished = {\url{https://huggingface.co/blog/QuentinJG/introducing-vidore-v3}},
351
- journal = {Hugging Face Blog},
352
- month = {November},
353
- publisher = {Hugging Face},
354
- title = {ViDoRe V3: a comprehensive evaluation of retrieval for enterprise use-cases},
355
- year = {2025},
339
+ @article{loison2026vidorev3comprehensiveevaluation,
340
+ archiveprefix = {arXiv},
341
+ author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
342
+ eprint = {2601.08620},
343
+ primaryclass = {cs.AI},
344
+ title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
345
+ url = {https://arxiv.org/abs/2601.08620},
346
+ year = {2026},
356
347
  }
357
348
  """,
358
349
  prompt={"query": "Find a screenshot that is relevant to the user's question."},
@@ -364,7 +355,7 @@ class Vidore3TelecomRetrieval(AbsTaskRetrieval):
364
355
  metadata = TaskMetadata(
365
356
  name="Vidore3TelecomRetrieval",
366
357
  description="Retrieve associated pages according to questions.",
367
- reference="https://huggingface.co/blog/QuentinJG/introducing-vidore-v3",
358
+ reference="https://arxiv.org/abs/2601.08620",
368
359
  dataset={
369
360
  "path": "mteb-private/Vidore3TelecomRetrieval",
370
361
  "revision": "a54635a274ef2835721b7cbe3eb27483b9ec964b",
@@ -383,15 +374,14 @@ class Vidore3TelecomRetrieval(AbsTaskRetrieval):
383
374
  modalities=["text", "image"],
384
375
  sample_creation="created and machine-translated",
385
376
  bibtex_citation=r"""
386
- @misc{mace2025vidorev3,
387
- author = {Macé, Quentin and Loison, Antonio and EDY, Antoine and Xing, Victor and Viaud, Gautier},
388
- day = {5},
389
- howpublished = {\url{https://huggingface.co/blog/QuentinJG/introducing-vidore-v3}},
390
- journal = {Hugging Face Blog},
391
- month = {November},
392
- publisher = {Hugging Face},
393
- title = {ViDoRe V3: a comprehensive evaluation of retrieval for enterprise use-cases},
394
- year = {2025},
377
+ @article{loison2026vidorev3comprehensiveevaluation,
378
+ archiveprefix = {arXiv},
379
+ author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
380
+ eprint = {2601.08620},
381
+ primaryclass = {cs.AI},
382
+ title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
383
+ url = {https://arxiv.org/abs/2601.08620},
384
+ year = {2026},
395
385
  }
396
386
  """,
397
387
  prompt={"query": "Find a screenshot that is relevant to the user's question."},
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mteb
3
- Version: 2.6.9
3
+ Version: 2.7.1
4
4
  Summary: Massive Text Embedding Benchmark
5
5
  Author-email: MTEB Contributors <niklas@huggingface.co>, Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Nouamane Tazi <nouamane@huggingface.co>, Nils Reimers <info@nils-reimers.de>
6
6
  Maintainer-email: Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Roman Solomatin <risolomatin@gmail.com>, Isaac Chung <chungisaac1217@gmail.com>
@@ -32,6 +32,8 @@ Requires-Dist: rich>=0.0.0
32
32
  Requires-Dist: pytrec-eval-terrier>=0.5.6
33
33
  Requires-Dist: pydantic>=2.0.0
34
34
  Requires-Dist: polars>=0.20.22
35
+ Requires-Dist: torch; python_full_version < "3.14"
36
+ Requires-Dist: torch>=2.9.0; python_full_version >= "3.14"
35
37
  Provides-Extra: image
36
38
  Requires-Dist: torchvision>0.2.1; extra == "image"
37
39
  Requires-Dist: transformers[torch-vision,vision]; extra == "image"
@@ -108,6 +110,8 @@ Provides-Extra: faiss-cpu
108
110
  Requires-Dist: faiss-cpu>=1.12.0; extra == "faiss-cpu"
109
111
  Provides-Extra: eager-embed
110
112
  Requires-Dist: qwen_vl_utils>=0.0.14; extra == "eager-embed"
113
+ Provides-Extra: vllm
114
+ Requires-Dist: vllm>=0.11.1; extra == "vllm"
111
115
  Dynamic: license-file
112
116
 
113
117
  <h1 align="center">
@@ -21,7 +21,7 @@ mteb/_evaluators/clustering_evaluator.py,sha256=YfjwpZL03Tiu0jfd6HBSavrOs_WALwIp
21
21
  mteb/_evaluators/evaluator.py,sha256=CZIFM84KJcbygBqHrd6Reg0FA1ZT5dfVjFTuBYgGyMw,906
22
22
  mteb/_evaluators/pair_classification_evaluator.py,sha256=kgxvnzsZPFF7c6GNRWtyAP3AJ3v_heRQUYwmYvNATzI,6440
23
23
  mteb/_evaluators/retrieval_evaluator.py,sha256=UVrGtjOQdbDD2ZeH1oVm9ouIlU7Uup2a09ylzm0-QaM,3024
24
- mteb/_evaluators/retrieval_metrics.py,sha256=jd5BEinfGPdHPK3kXf6kfBs0gvDuBXEWyx-RS7G4c8g,23756
24
+ mteb/_evaluators/retrieval_metrics.py,sha256=fwsPemssWqQRvo0t4PZTGrrv5KXK8N6U35kOFSkRbEU,23755
25
25
  mteb/_evaluators/sklearn_evaluator.py,sha256=lipgxkGXWeKGD2jhaNL9WQqLBS1_2L_WZpUobZR7iBI,3838
26
26
  mteb/_evaluators/zeroshot_classification_evaluator.py,sha256=Y5ZFUsBAWXMpKnZ6Iw1K0lm0_L4chLMxC4LAdZCBbPs,2296
27
27
  mteb/_evaluators/image/__init__.py,sha256=CsQd7OMkeV2Phun7paPWjayZ5qRnvj8H0TYBFeqMxag,148
@@ -43,7 +43,7 @@ mteb/abstasks/multilabel_classification.py,sha256=D_bdK3yyZFgaH1pg9PpO5LHQMVaJP3
43
43
  mteb/abstasks/pair_classification.py,sha256=-T8q7JQRjHZ3ihLqnuR2yuuci9xljvUqCldsHGnGLGc,13767
44
44
  mteb/abstasks/regression.py,sha256=sROjvfasLS89KRPUTsc1ONFsBTzfoqlpxLQfIkKBQXs,8763
45
45
  mteb/abstasks/retrieval.py,sha256=keuf7GeYyM0ODPlVFGZIFBmBoSil0c1glmcu6C0YzhA,26921
46
- mteb/abstasks/retrieval_dataset_loaders.py,sha256=WukcFAn54rUpXULCG43eysHozXHAxo2CaPhQyL_2Yg8,9401
46
+ mteb/abstasks/retrieval_dataset_loaders.py,sha256=Jcr2hHe5sqWc8eL3WDhR9J7bJokD7tyhz_z3eD14o0M,9403
47
47
  mteb/abstasks/sts.py,sha256=b_19QvclU0_q0aEJdfvB3weUQ96bUS7uDuuRrjpz8Bc,9245
48
48
  mteb/abstasks/task_metadata.py,sha256=7TM_ls5bzYA1dHFq3VQgeioiyLrvMQz4i3hmWIsnD4M,27029
49
49
  mteb/abstasks/zeroshot_classification.py,sha256=O8jxoBgnrRx-BzOnr1aJVK3wIEBwkA4xuMxdVxlzJqI,6053
@@ -54,14 +54,14 @@ mteb/abstasks/image/__init__.py,sha256=NgvMJnp1g2mUv27RL-TvzA7s1BOdMG-EB1CrZfdbW
54
54
  mteb/abstasks/image/image_text_pair_classification.py,sha256=4RfPdAlb4ZlAE-9DiFQUvm7YpcQg9kTY7HRjRVenLmk,7935
55
55
  mteb/abstasks/text/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
56
56
  mteb/abstasks/text/bitext_mining.py,sha256=0Ff7t1jMEonajHzB5CzZZoSMVkC5KTa0muoytcNzOjM,11152
57
- mteb/abstasks/text/reranking.py,sha256=QMgAAndGYRzvQdlhjLRMxrh_yrJZ0VQH40I-7mXo1O0,7872
57
+ mteb/abstasks/text/reranking.py,sha256=vD5YUwst--zJ01bU40Z7juqQyuv8jrareRTtoCwt8E4,7871
58
58
  mteb/abstasks/text/summarization.py,sha256=qCUWfxaVAW0EYTFClUh9puBMGttyV6C7qKpCcHPAZN8,7148
59
59
  mteb/benchmarks/__init__.py,sha256=MQEVeli-zLaJ7Xg0z7RhXQwsdmm7Ht_W2Ln0rZo1Szc,225
60
60
  mteb/benchmarks/_create_table.py,sha256=b2RqGqi0ZonKbHecEcZiF4pkfE96smFRIzxOI82ETA8,22304
61
61
  mteb/benchmarks/benchmark.py,sha256=RheQOo0iQbu_ylN7oFLr2r-z_ahrMCTvKscVuwUx6yo,5694
62
62
  mteb/benchmarks/get_benchmark.py,sha256=nzR6cu5yXu1kIJKhd4A2R62xp43Z62bluPbOpNXHMWQ,2545
63
- mteb/benchmarks/benchmarks/__init__.py,sha256=NeFt0CGdY25-UWJ2aGCjDnpzr5-geih_1jjp1GQXJz4,2256
64
- mteb/benchmarks/benchmarks/benchmarks.py,sha256=w62HyautMAuRrwxUHjGpDqxTrXkb2zTD5cqXJV29Fyo,99644
63
+ mteb/benchmarks/benchmarks/__init__.py,sha256=767VzDgayFSB3KJ05o0gFdOeo2f1EarbEfnCsy_karw,2294
64
+ mteb/benchmarks/benchmarks/benchmarks.py,sha256=zAm1NTggaWb5Am6O30FUf-8zIbbF39eiuhSyLHzlpxQ,102370
65
65
  mteb/benchmarks/benchmarks/rteb_benchmarks.py,sha256=QnCSrTTaBfcRlAQp2Nu81tgv1idMXqiM16Fp2zKJ5Ys,10607
66
66
  mteb/cli/__init__.py,sha256=v-csUr3eUZElIvrGB6QGtaIdndDfNWEe9oZchsGsJpg,64
67
67
  mteb/cli/_display_tasks.py,sha256=pWKupzak8uxEIwJZbYpZpteeVprOgVT9Wr0HYeypitQ,2206
@@ -1082,6 +1082,7 @@ mteb/descriptive_stats/Retrieval/CUREv1.json,sha256=lfz-JMLuE5KlWqM08CUF80Nex1Oh
1082
1082
  mteb/descriptive_stats/Retrieval/ChatDoctorRetrieval.json,sha256=VyyOcmc9GQ1zqXrvAv0pFR5OAK-pE0fQYGJOsl4Wvok,991
1083
1083
  mteb/descriptive_stats/Retrieval/ChemHotpotQARetrieval.json,sha256=V2oT8C6Wh5VR6LeBlxrYH0VUJeEisjJELOZHpN2NP1o,2950
1084
1084
  mteb/descriptive_stats/Retrieval/ChemNQRetrieval.json,sha256=6E8SefjKJdqVC1R0JvGOPrJdpogDT-1H9X19GryVfI8,985
1085
+ mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json,sha256=kIfyVNgoLtO1QpnKguIovQVUio8RVdc1bBY_kwogT-Q,986
1085
1086
  mteb/descriptive_stats/Retrieval/ClimateFEVER-Fa.json,sha256=B1bp66dEPtY6p1zgHTK3fyBN_eFbmprpjhwUovVs4mI,1016
1086
1087
  mteb/descriptive_stats/Retrieval/ClimateFEVER-NL.json,sha256=RaHI8NhlXCD28FGFd1-Pofm4lvD-_Kcszde2OgPxQk8,1017
1087
1088
  mteb/descriptive_stats/Retrieval/ClimateFEVER-VN.json,sha256=D2xgItr4sBQiW3x8qr12firW0cXsOHygKZcDrtjhQ10,1016
@@ -1140,6 +1141,7 @@ mteb/descriptive_stats/Retrieval/EnglishFinance3Retrieval.json,sha256=IpCB7e6cwO
1140
1141
  mteb/descriptive_stats/Retrieval/EnglishFinance4Retrieval.json,sha256=tdSyer5_q9rPZSD0LEjjXluCbWY_W_FewhOTQycU1U0,995
1141
1142
  mteb/descriptive_stats/Retrieval/EnglishHealthcare1Retrieval.json,sha256=c_QduudRLaQVFARJxSc-YTFwHeNyhiu7IMv6JGlYC5c,1005
1142
1143
  mteb/descriptive_stats/Retrieval/EstQA.json,sha256=qqmmX7ExWg4152S6yiUAyHzaLS0I-QUaOn9KVBZ3UZ8,981
1144
+ mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json,sha256=FIpF0h7hhF7O4jn-rEa9a-_8tPD1MAY-klTkSX3_SI8,4586
1143
1145
  mteb/descriptive_stats/Retrieval/FEVER-FaHardNegatives.json,sha256=KMDX6lg671e76rAboz30KgpvJAPxVSa6Thgefj1tgM4,987
1144
1146
  mteb/descriptive_stats/Retrieval/FEVER-NL.json,sha256=K810hO-zNJWg3-i30oma72wsjORGu8lLLd4PN_w0VVs,1020
1145
1147
  mteb/descriptive_stats/Retrieval/FEVER-VN.json,sha256=MnadQ0FGkXCFCDCI8eGwFYbouo8ta_1W_WlrqNx1clI,1018
@@ -1459,10 +1461,11 @@ mteb/models/__init__.py,sha256=ABTuoqiBjBtBWW3LYY7ItBHdylR6jWoy06HH0g6j6fU,910
1459
1461
  mteb/models/abs_encoder.py,sha256=6e9UAk7ckYsJ6hItIPMfSaPdlX_FxfJ-OdJ87oqT2OM,16625
1460
1462
  mteb/models/get_model_meta.py,sha256=wVh2FaWevJ10hJlbm-FQtTQazLMfnkEV3IK7PUyBPOQ,6082
1461
1463
  mteb/models/instruct_wrapper.py,sha256=GLHg9KcgYu2rF15LEMKesRpPudGfKE2y-aLXVG_CLj0,9670
1462
- mteb/models/model_meta.py,sha256=x8EuA8Zpc4DqhK_50v5TAZ7n2J2yhHqf5U0ldCpPnw0,31101
1464
+ mteb/models/model_meta.py,sha256=BDT4Q_aYPm3RUgtXq2poe1VyUUHob_fLrDKA4BPgYrg,31143
1463
1465
  mteb/models/models_protocols.py,sha256=5WYOZw3-T-wK7ux0YZVCfbcMTkAisqAqbu44ZNoir4A,9250
1464
1466
  mteb/models/search_wrappers.py,sha256=9lXLXUyL6atMCwXp-HBUong6msT3UAUY9QI7zKXbSVU,20945
1465
- mteb/models/sentence_transformer_wrapper.py,sha256=3sAev15a07ULA_ikFBBsMta0toy9AGPBbBPi37j_K-A,12932
1467
+ mteb/models/sentence_transformer_wrapper.py,sha256=liMzSqr0bC-yI_oEL50ckEc4ti9nibDLIiukP2crhOA,13543
1468
+ mteb/models/vllm_wrapper.py,sha256=ebX4JIKPoxW4PIlr3BnaoLGuMGRpHzBe_ZwvFscx1D0,12286
1466
1469
  mteb/models/cache_wrappers/__init__.py,sha256=1w1TnMwulWJSzNkLXjbh5MY3sqgHWc6vUntYn49i9X8,169
1467
1470
  mteb/models/cache_wrappers/cache_backend_protocol.py,sha256=iGWdqDEoaCxUVEnwsXhy-m9d2QX8KTaQ9m2ZyawrMes,1634
1468
1471
  mteb/models/cache_wrappers/cache_wrapper.py,sha256=GPC0UhHfkUH-i-Q4HdFvBev6h6GtMlWEId_B3tL-J54,6600
@@ -1544,8 +1547,8 @@ mteb/models/model_implementations/nbailab.py,sha256=LM00HJIr4yrA45qh2O21BIDXku9K
1544
1547
  mteb/models/model_implementations/no_instruct_sentence_models.py,sha256=qLiMok_OxKvIYXWnP0KNWqH1monZx-OdSZrSx3QEhtI,4049
1545
1548
  mteb/models/model_implementations/nomic_models.py,sha256=dmQC_cWg6hAmiBHK7fXoXEiGBJnJvrq0RsnCcJ2qe1Q,15137
1546
1549
  mteb/models/model_implementations/nomic_models_vision.py,sha256=usCKfZCR7aEi_DnNmVAYjH-lXx_ipQkBVtUAmhJ90QI,6870
1547
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py,sha256=6dTGtK1GiaYdpJ4IQFgCCOkGyHQyuEUatKs-Uv-1YmE,6450
1548
- mteb/models/model_implementations/nvidia_models.py,sha256=XnNiyByz6EFrISz1Msb-cXLVQfKnYP5HMRzAXC1KPDo,24937
1550
+ mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py,sha256=pJqkKBNns6jUYlpI3aGtpmrhXOSYgEvCje1ir_yXdpc,6889
1551
+ mteb/models/model_implementations/nvidia_models.py,sha256=KcnH7wGhz4LQ2F_y9Q9cJTr89DNKeHjVkVgHUfftzIY,26685
1549
1552
  mteb/models/model_implementations/octen_models.py,sha256=FFR1-yG2euN-6kgL4qJNHYB6cPsds4NGYFPmc5tHhoE,8514
1550
1553
  mteb/models/model_implementations/openai_models.py,sha256=905BajYi_XyOZgqU3AeKpwIttLoUitaAyc48sTWI6Jg,9482
1551
1554
  mteb/models/model_implementations/openclip_models.py,sha256=MyosgeYSrgBXGuGFtI2Tyxksxpb7bADFJVSYFCLweVA,11622
@@ -1591,8 +1594,8 @@ mteb/models/model_implementations/vdr_models.py,sha256=8jlfABvO7Z9ebzAPFHqln3B2I
1591
1594
  mteb/models/model_implementations/vi_vn_models.py,sha256=Ep2zj4Xvjyu0a_YiLsYvolKdMGSOtzm-N-yNyXmfNwA,6328
1592
1595
  mteb/models/model_implementations/vista_models.py,sha256=GkQFHIwwjxwM0wDuo-dWJBo4dLExlHtHfXwhcdKA5uQ,10884
1593
1596
  mteb/models/model_implementations/vlm2vec_models.py,sha256=EeWl3kpS_1VDJs4t1QmpaWSuglLPL2GyZu27fVY1VT8,11802
1594
- mteb/models/model_implementations/voyage_models.py,sha256=5A5RD2A6B20qLDVEpWL0TNMQOf5hnTVXdBugdh5q4d0,20214
1595
- mteb/models/model_implementations/voyage_v.py,sha256=eFdSOKka5VoLjViZk5umlgTw_ETjyXv4yhZ9SoCR-p0,8124
1597
+ mteb/models/model_implementations/voyage_models.py,sha256=jwVjgx9E6-rZxd8wmuNbbQxKTobuWBNWrs0ezqp4Oik,22525
1598
+ mteb/models/model_implementations/voyage_v.py,sha256=JqtXnICeaODRZHBj_Xsaf3PfIG-XPKopblNxAXHqYNo,8159
1596
1599
  mteb/models/model_implementations/xyz_models.py,sha256=gjwCx3U4AxMcJDTSWVoYV6xeyXLw7lUZI5D6Q7JjWho,1322
1597
1600
  mteb/models/model_implementations/youtu_models.py,sha256=THwWRabutW-qC-JZOVhxXWjKHVyMElzt_xm81ixzN50,5995
1598
1601
  mteb/models/model_implementations/yuan_models.py,sha256=j-QIKECPg4TiBW_3Bp6g5yr2UOdFziFSeoGE4uKepSM,980
@@ -2207,7 +2210,7 @@ mteb/tasks/retrieval/deu/german_qu_ad_retrieval.py,sha256=RYZCPgKaNPi14ncxnvz8_7
2207
2210
  mteb/tasks/retrieval/deu/legal_qu_ad_retrieval.py,sha256=l_UNVkOQxqlKp6wef2BM-GKtyYnmYLYThGZZnUsR_-c,1594
2208
2211
  mteb/tasks/retrieval/ell/__init__.py,sha256=46naXAZtJzyezyqOQGRIlr4zQVkqGQJdj7ztjMrez9Y,72
2209
2212
  mteb/tasks/retrieval/ell/greek_civics_qa.py,sha256=uKmiWHHZvL1o5m17XCrzi16kHWFNhlEUHrtlk-LR1as,2514
2210
- mteb/tasks/retrieval/eng/__init__.py,sha256=loq6PjQTX-ZpCUgy6wFZ74LCpZVmzbiRQKtJQlJbvQM,16093
2213
+ mteb/tasks/retrieval/eng/__init__.py,sha256=dVW7pHRu8SXp2_PJwn6InbfWVQ2VVy0PJvr_-bLBrc4,16158
2211
2214
  mteb/tasks/retrieval/eng/aila_casedocs_retrieval.py,sha256=UKoN9oE8C412REf8MV16aUDgE5NwkHxnXsh4dcLztpk,1398
2212
2215
  mteb/tasks/retrieval/eng/aila_statutes_retrieval.py,sha256=GugjZwaWmTlNyYzK8ACKZHIiUw2YBvLaVyTngN_qQyM,1366
2213
2216
  mteb/tasks/retrieval/eng/alpha_nli_retrieval.py,sha256=GpOkizyeOs_ZMbRu9g1yAXdKkQr8PObUepP1OulbJio,1714
@@ -2228,6 +2231,7 @@ mteb/tasks/retrieval/eng/built_bench_retrieval.py,sha256=pqsIaVMl0ugGl5wx1oHPooq
2228
2231
  mteb/tasks/retrieval/eng/chat_doctor_retrieval.py,sha256=_PQYn3jXgeLKjnb_uKxzHtM9SCICV3bsmgEcEoD2OXo,3582
2229
2232
  mteb/tasks/retrieval/eng/chem_hotpot_qa_retrieval.py,sha256=sLTfqBf967htSU7Ego7zkEC8QYVWFI12YoHxa-urWEw,2114
2230
2233
  mteb/tasks/retrieval/eng/chem_nq_retrieval.py,sha256=8bl4PRKJwYgNF0sZPZQINgn81-r3c_2gDoMQJYdpb8I,1886
2234
+ mteb/tasks/retrieval/eng/chemrxiv.py,sha256=-HS_axsMPaEKr8T0d9WvgfJ_UmAr00InHFjFpt4VDVo,1404
2231
2235
  mteb/tasks/retrieval/eng/cirr_it2i_retrieval.py,sha256=o_4fVGosZjYsfMQy7tzQGaq8aijhUwXKcV7MYIYY4SY,1583
2232
2236
  mteb/tasks/retrieval/eng/climate_fever_retrieval.py,sha256=obIROibY5nQ8oDGbkjG5Z3jrJ-rAXVmF_1w_XN6Nqm0,4615
2233
2237
  mteb/tasks/retrieval/eng/cqa_dupstack_android_retrieval.py,sha256=-Uj8BOIPyjl8egm34qZGRKULGgEoaoac4wOhdWXAPgE,1674
@@ -2392,11 +2396,12 @@ mteb/tasks/retrieval/kor/auto_rag_retrieval.py,sha256=tgffW8zMpDSv1FCOdS4_4SL5zK
2392
2396
  mteb/tasks/retrieval/kor/ko_strategy_qa.py,sha256=jk13ORetYtF0q36h8ljD6TeTHUwvK5F5ZbDoMCP3eWk,1156
2393
2397
  mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py,sha256=AjOLe2l9drBWOCeGzQqxfee3gwwU6ElAJ7-5pbFr6C8,6208
2394
2398
  mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py,sha256=M7T5FkN1efK7euRslx-LZN7hS_QdIwqtUuVlWO-dico,1631
2395
- mteb/tasks/retrieval/multilingual/__init__.py,sha256=mfVGkoB4DO5ktlg8ia-4nImFVmZcqXh1XkgCkIff0tY,6765
2399
+ mteb/tasks/retrieval/multilingual/__init__.py,sha256=rbeuLmNYooHPjgROuEOH84Q6QmGhuXnedej0d6xAgqc,6841
2396
2400
  mteb/tasks/retrieval/multilingual/belebele_retrieval.py,sha256=gaVLEwuLEwMutMi9V-obpiYKbpllX2QNm2j3MVeebfE,7027
2397
2401
  mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt19.py,sha256=_6r34ZvRiLVENYcrd87NjilybGaetBwKFEbO29zYmBU,4676
2398
2402
  mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt21.py,sha256=Puy0PjpRr4M_Bbxdl7oWfa7pQGM04zaRaTNlnhyKejM,4677
2399
2403
  mteb/tasks/retrieval/multilingual/cur_ev1_retrieval.py,sha256=dwzo2sqjamM_xkSiC-jbapyhDFezSJpM4S8KfBsuLPk,4562
2404
+ mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py,sha256=rlbgWMRdQgDD8z4ZBPgGU1fRAqjmoFDzh0uD_P6qR-4,1602
2400
2405
  mteb/tasks/retrieval/multilingual/indic_qa_retrieval.py,sha256=K7iWZ-yTftZFQiXBOlkTJXGpQXs-ZFt6OQj_L6HjEwk,1872
2401
2406
  mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py,sha256=dw2YuFrA5OWFTL5zREiix93oAj7WcpcnAhCRh8YRoHI,44579
2402
2407
  mteb/tasks/retrieval/multilingual/mintaka_retrieval.py,sha256=SwOliONITZM679LIBSMrvx_VymqE-zRN6YiYahhzfzw,2229
@@ -2413,7 +2418,7 @@ mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py,sha256=Mmcvrt_1cIxPf
2413
2418
  mteb/tasks/retrieval/multilingual/statcan_dialogue_dataset_retrieval.py,sha256=iFUQUlO_ogBdQBVYBQW3o-AJDQ792yg1pJtRxA5I3Qo,3796
2414
2419
  mteb/tasks/retrieval/multilingual/vdr_multilingual_retrieval.py,sha256=UduWKefwP7bPYxiDlztPEvSWXmTdw0xElglMbPY6XhA,4449
2415
2420
  mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py,sha256=vOfiruHywYkP8pccdAuGLyYyFTw1zK0qcXDnUFA8Z5A,9091
2416
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py,sha256=wOoC--IVTz0dR6RMVICbz6OWxfCyVahGDSfX_TScCgA,16934
2421
+ mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py,sha256=V3jtSlWhoKR1PCvHsH0HrONy-oFghomwqihBonQs_50,17414
2417
2422
  mteb/tasks/retrieval/multilingual/web_faq_retrieval.py,sha256=TM-Q98yXZny_PKHAFNEvw9o9ET_L6VM3aNis1NJ9DgM,2686
2418
2423
  mteb/tasks/retrieval/multilingual/wikipedia_retrieval_multilingual.py,sha256=zyqAt63bHXNU_I37jb891pwWUyGzZUGkXCyhWlRbed8,1569
2419
2424
  mteb/tasks/retrieval/multilingual/wit_t2i_retrieval.py,sha256=_swZhhMRs5OhzBdJVqQF1i9ZrTvAxaVrG0TpkPWkoHo,4359
@@ -2617,9 +2622,9 @@ mteb/types/_metadata.py,sha256=NN-W0S6a5TDV7UkpRx1pyWtGF4TyyCyoPUfHOwdeci8,2290
2617
2622
  mteb/types/_result.py,sha256=UKNokV9pu3G74MGebocU512aU_fFU9I9nPKnrG9Q0iE,1035
2618
2623
  mteb/types/_string_validators.py,sha256=PY-dYq4E8O50VS3bLYdldPWp400fl_WzUjfVSkNWe8U,523
2619
2624
  mteb/types/statistics.py,sha256=GwkBPmAr18Onu-vHtzHs0PFrhCozdOMiT13HwnWL4ZM,3961
2620
- mteb-2.6.9.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
2621
- mteb-2.6.9.dist-info/METADATA,sha256=l-i7rdEestHq4eEfqtwTtdvHS7le1gDwi4EMzu0NW4g,14281
2622
- mteb-2.6.9.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
2623
- mteb-2.6.9.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
2624
- mteb-2.6.9.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
2625
- mteb-2.6.9.dist-info/RECORD,,
2625
+ mteb-2.7.1.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
2626
+ mteb-2.7.1.dist-info/METADATA,sha256=olR8WXq0vPmp5FUUNww2hAMIuhr5irC4wnymgFN0xhY,14457
2627
+ mteb-2.7.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
2628
+ mteb-2.7.1.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
2629
+ mteb-2.7.1.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
2630
+ mteb-2.7.1.dist-info/RECORD,,
File without changes