mteb 2.6.9__py3-none-any.whl → 2.7.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/_evaluators/retrieval_metrics.py +1 -1
- mteb/abstasks/retrieval_dataset_loaders.py +2 -2
- mteb/abstasks/text/reranking.py +1 -1
- mteb/benchmarks/benchmarks/__init__.py +2 -0
- mteb/benchmarks/benchmarks/benchmarks.py +66 -10
- mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +13 -7
- mteb/models/model_implementations/nvidia_models.py +58 -5
- mteb/models/model_implementations/voyage_models.py +84 -0
- mteb/models/model_implementations/voyage_v.py +5 -3
- mteb/models/model_meta.py +1 -1
- mteb/models/sentence_transformer_wrapper.py +16 -3
- mteb/models/vllm_wrapper.py +327 -0
- mteb/tasks/retrieval/eng/__init__.py +2 -0
- mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
- mteb/tasks/retrieval/multilingual/__init__.py +2 -0
- mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +90 -100
- {mteb-2.6.9.dist-info → mteb-2.7.1.dist-info}/METADATA +5 -1
- {mteb-2.6.9.dist-info → mteb-2.7.1.dist-info}/RECORD +25 -20
- {mteb-2.6.9.dist-info → mteb-2.7.1.dist-info}/WHEEL +0 -0
- {mteb-2.6.9.dist-info → mteb-2.7.1.dist-info}/entry_points.txt +0 -0
- {mteb-2.6.9.dist-info → mteb-2.7.1.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.6.9.dist-info → mteb-2.7.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,327 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
import atexit
|
|
4
|
+
import gc
|
|
5
|
+
import logging
|
|
6
|
+
import os
|
|
7
|
+
from collections.abc import Callable
|
|
8
|
+
from typing import TYPE_CHECKING, Any, Literal
|
|
9
|
+
|
|
10
|
+
import numpy as np
|
|
11
|
+
import torch
|
|
12
|
+
from torch.utils.data import DataLoader
|
|
13
|
+
|
|
14
|
+
from mteb._requires_package import requires_package
|
|
15
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
16
|
+
from mteb.models import ModelMeta
|
|
17
|
+
from mteb.models.abs_encoder import AbsEncoder
|
|
18
|
+
from mteb.types import Array, BatchedInput, PromptType
|
|
19
|
+
|
|
20
|
+
if TYPE_CHECKING:
|
|
21
|
+
from vllm.config import PoolerConfig # type: ignore[import-not-found]
|
|
22
|
+
else:
|
|
23
|
+
PoolerConfig = dict[str, Any]
|
|
24
|
+
|
|
25
|
+
logger = logging.getLogger(__name__)
|
|
26
|
+
|
|
27
|
+
Dtype = Literal["half", "float16", "float", "float32", "bfloat16", "auto"]
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
class VllmWrapperBase:
|
|
31
|
+
"""Wrapper for vllm serving engine."""
|
|
32
|
+
|
|
33
|
+
convert = "auto"
|
|
34
|
+
mteb_model_meta: ModelMeta | None = None
|
|
35
|
+
|
|
36
|
+
def __init__(
|
|
37
|
+
self,
|
|
38
|
+
model: str | ModelMeta,
|
|
39
|
+
revision: str | None = None,
|
|
40
|
+
*,
|
|
41
|
+
trust_remote_code: bool = True,
|
|
42
|
+
dtype: Dtype = "auto",
|
|
43
|
+
head_dtype: Literal["model"] | Dtype | None = None,
|
|
44
|
+
max_model_len: int | None = None,
|
|
45
|
+
max_num_batched_tokens: int | None = None,
|
|
46
|
+
max_num_seqs: int = 128,
|
|
47
|
+
tensor_parallel_size: int = 1,
|
|
48
|
+
enable_prefix_caching: bool | None = None,
|
|
49
|
+
gpu_memory_utilization: float = 0.9,
|
|
50
|
+
hf_overrides: dict[str, Any] | None = None,
|
|
51
|
+
pooler_config: PoolerConfig | None = None,
|
|
52
|
+
enforce_eager: bool = False,
|
|
53
|
+
**kwargs: Any,
|
|
54
|
+
):
|
|
55
|
+
"""Wrapper for vllm serving engine.
|
|
56
|
+
|
|
57
|
+
Args:
|
|
58
|
+
model: model name string.
|
|
59
|
+
revision: The revision of the model to use.
|
|
60
|
+
trust_remote_code: Whether to trust remote code execution when loading the model.
|
|
61
|
+
Should be True for models with custom code.
|
|
62
|
+
dtype: Data type for model weights. "auto" will automatically select appropriate
|
|
63
|
+
dtype based on hardware and model capabilities. vllm uses flash attention by
|
|
64
|
+
default, which does not support fp32. Therefore, it defaults to using fp16 for
|
|
65
|
+
inference on fp32 models. Testing has shown a relatively small drop in accuracy.
|
|
66
|
+
You can manually opt for fp32, but inference speed will be very slow.
|
|
67
|
+
head_dtype: "head" refers to the last Linear layer(s) of an LLMs, such as the score
|
|
68
|
+
or classifier in a classification model. Uses fp32 for the head by default to
|
|
69
|
+
gain extra precision.
|
|
70
|
+
max_model_len: Maximum sequence length (context window) supported by the model.
|
|
71
|
+
If None, uses the model's default maximum length.
|
|
72
|
+
max_num_batched_tokens: Maximum number of tokens to process in a single batch.
|
|
73
|
+
If None, automatically determined.
|
|
74
|
+
max_num_seqs: Maximum number of sequences to process concurrently.
|
|
75
|
+
tensor_parallel_size: Number of GPUs for tensor parallelism.
|
|
76
|
+
enable_prefix_caching: Whether to enable KV cache sharing for common prompt prefixes.
|
|
77
|
+
If None, uses the model's default setting.
|
|
78
|
+
gpu_memory_utilization: Target GPU memory utilization ratio (0.0 to 1.0).
|
|
79
|
+
hf_overrides: Dictionary mapping Hugging Face configuration keys to override values.
|
|
80
|
+
pooler_config: Controls the behavior of output pooling in pooling models.
|
|
81
|
+
enforce_eager: Whether to disable CUDA graph optimization and use eager execution.
|
|
82
|
+
**kwargs: Additional arguments to pass to the vllm serving engine model.
|
|
83
|
+
"""
|
|
84
|
+
requires_package(
|
|
85
|
+
self,
|
|
86
|
+
"vllm",
|
|
87
|
+
"Wrapper for vllm serving engine",
|
|
88
|
+
install_instruction="pip install mteb[vllm]",
|
|
89
|
+
)
|
|
90
|
+
|
|
91
|
+
os.environ["VLLM_WORKER_MULTIPROC_METHOD"] = "spawn"
|
|
92
|
+
|
|
93
|
+
from vllm import LLM, EngineArgs
|
|
94
|
+
|
|
95
|
+
hf_overrides = {} if hf_overrides is None else hf_overrides
|
|
96
|
+
|
|
97
|
+
if head_dtype is not None:
|
|
98
|
+
hf_overrides["head_dtype"] = head_dtype
|
|
99
|
+
|
|
100
|
+
model_name = model if isinstance(model, str) else model.name
|
|
101
|
+
|
|
102
|
+
if isinstance(model, ModelMeta):
|
|
103
|
+
logger.info(
|
|
104
|
+
"Using revision from model meta. Passed revision will be ignored"
|
|
105
|
+
)
|
|
106
|
+
revision = model.revision
|
|
107
|
+
|
|
108
|
+
args = EngineArgs(
|
|
109
|
+
model=model_name,
|
|
110
|
+
revision=revision,
|
|
111
|
+
runner="pooling",
|
|
112
|
+
convert=self.convert, # type: ignore[arg-type]
|
|
113
|
+
max_model_len=max_model_len,
|
|
114
|
+
max_num_batched_tokens=max_num_batched_tokens,
|
|
115
|
+
max_num_seqs=max_num_seqs,
|
|
116
|
+
tensor_parallel_size=tensor_parallel_size,
|
|
117
|
+
enable_prefix_caching=enable_prefix_caching,
|
|
118
|
+
gpu_memory_utilization=gpu_memory_utilization,
|
|
119
|
+
hf_overrides=hf_overrides,
|
|
120
|
+
pooler_config=pooler_config,
|
|
121
|
+
enforce_eager=enforce_eager,
|
|
122
|
+
trust_remote_code=trust_remote_code,
|
|
123
|
+
dtype=dtype,
|
|
124
|
+
**kwargs,
|
|
125
|
+
)
|
|
126
|
+
self.llm = LLM(**vars(args))
|
|
127
|
+
|
|
128
|
+
if isinstance(model, str):
|
|
129
|
+
self.mteb_model_meta = ModelMeta.from_hub(model=model, revision=revision)
|
|
130
|
+
else:
|
|
131
|
+
self.mteb_model_meta = model
|
|
132
|
+
|
|
133
|
+
atexit.register(self.cleanup)
|
|
134
|
+
|
|
135
|
+
def cleanup(self):
|
|
136
|
+
"""Clean up the VLLM distributed runtime environment and release GPU resources."""
|
|
137
|
+
if self.llm is None:
|
|
138
|
+
return
|
|
139
|
+
|
|
140
|
+
from vllm.distributed import ( # type: ignore[import-not-found]
|
|
141
|
+
cleanup_dist_env_and_memory,
|
|
142
|
+
)
|
|
143
|
+
|
|
144
|
+
self.llm = None
|
|
145
|
+
gc.collect()
|
|
146
|
+
cleanup_dist_env_and_memory()
|
|
147
|
+
|
|
148
|
+
def __del__(self):
|
|
149
|
+
try:
|
|
150
|
+
self.cleanup()
|
|
151
|
+
except Exception:
|
|
152
|
+
pass
|
|
153
|
+
|
|
154
|
+
|
|
155
|
+
class VllmEncoderWrapper(AbsEncoder, VllmWrapperBase):
|
|
156
|
+
"""vLLM wrapper for Encoder models.
|
|
157
|
+
|
|
158
|
+
Args:
|
|
159
|
+
model: model name string or ModelMeta.
|
|
160
|
+
revision: The revision of the model to use.
|
|
161
|
+
prompt_dict: A dictionary mapping task names to prompt strings.
|
|
162
|
+
use_instructions: Whether to use instructions from the prompt_dict.
|
|
163
|
+
When False, values from prompt_dict are used as static prompts (prefixes).
|
|
164
|
+
When True, values from prompt_dict are used as instructions to be formatted
|
|
165
|
+
using the instruction_template.
|
|
166
|
+
instruction_template: A template or callable to format instructions.
|
|
167
|
+
Can be a string with '{instruction}' placeholder or a callable that takes
|
|
168
|
+
the instruction and prompt type and returns a formatted string.
|
|
169
|
+
apply_instruction_to_documents: Whether to apply instructions to documents prompts.
|
|
170
|
+
**kwargs: Additional arguments to pass to the vllm serving engine model.
|
|
171
|
+
"""
|
|
172
|
+
|
|
173
|
+
convert = "embed"
|
|
174
|
+
|
|
175
|
+
def __init__(
|
|
176
|
+
self,
|
|
177
|
+
model: str | ModelMeta,
|
|
178
|
+
revision: str | None = None,
|
|
179
|
+
prompt_dict: dict[str, str] | None = None,
|
|
180
|
+
use_instructions: bool = False,
|
|
181
|
+
instruction_template: (
|
|
182
|
+
str | Callable[[str, PromptType | None], str] | None
|
|
183
|
+
) = None,
|
|
184
|
+
apply_instruction_to_documents: bool = True,
|
|
185
|
+
**kwargs: Any,
|
|
186
|
+
):
|
|
187
|
+
if use_instructions and instruction_template is None:
|
|
188
|
+
raise ValueError(
|
|
189
|
+
"To use instructions, an instruction_template must be provided. "
|
|
190
|
+
"For example, `Instruction: {instruction}`"
|
|
191
|
+
)
|
|
192
|
+
|
|
193
|
+
if (
|
|
194
|
+
isinstance(instruction_template, str)
|
|
195
|
+
and "{instruction}" not in instruction_template
|
|
196
|
+
):
|
|
197
|
+
raise ValueError(
|
|
198
|
+
"Instruction template must contain the string '{instruction}'."
|
|
199
|
+
)
|
|
200
|
+
|
|
201
|
+
self.prompts_dict = prompt_dict
|
|
202
|
+
self.use_instructions = use_instructions
|
|
203
|
+
self.instruction_template = instruction_template
|
|
204
|
+
self.apply_instruction_to_passages = apply_instruction_to_documents
|
|
205
|
+
super().__init__(
|
|
206
|
+
model,
|
|
207
|
+
revision,
|
|
208
|
+
**kwargs,
|
|
209
|
+
)
|
|
210
|
+
|
|
211
|
+
def encode(
|
|
212
|
+
self,
|
|
213
|
+
inputs: DataLoader[BatchedInput],
|
|
214
|
+
*,
|
|
215
|
+
task_metadata: TaskMetadata,
|
|
216
|
+
hf_split: str,
|
|
217
|
+
hf_subset: str,
|
|
218
|
+
prompt_type: PromptType | None = None,
|
|
219
|
+
**kwargs: Any,
|
|
220
|
+
) -> Array:
|
|
221
|
+
"""Encodes the given sentences using the encoder.
|
|
222
|
+
|
|
223
|
+
Args:
|
|
224
|
+
inputs: The sentences to encode.
|
|
225
|
+
task_metadata: The metadata of the task. Sentence-transformers uses this to
|
|
226
|
+
determine which prompt to use from a specified dictionary.
|
|
227
|
+
prompt_type: The name type of prompt. (query or passage)
|
|
228
|
+
hf_split: Split of current task
|
|
229
|
+
hf_subset: Subset of current task
|
|
230
|
+
**kwargs: Additional arguments to pass to the encoder.
|
|
231
|
+
|
|
232
|
+
Returns:
|
|
233
|
+
The encoded sentences.
|
|
234
|
+
"""
|
|
235
|
+
prompt = ""
|
|
236
|
+
if self.use_instructions and self.prompts_dict is not None:
|
|
237
|
+
prompt = self.get_task_instruction(task_metadata, prompt_type)
|
|
238
|
+
elif self.prompts_dict is not None:
|
|
239
|
+
prompt_name = self.get_prompt_name(task_metadata, prompt_type)
|
|
240
|
+
if prompt_name is not None:
|
|
241
|
+
prompt = self.prompts_dict.get(prompt_name, "")
|
|
242
|
+
|
|
243
|
+
if (
|
|
244
|
+
self.use_instructions
|
|
245
|
+
and self.apply_instruction_to_passages is False
|
|
246
|
+
and prompt_type == PromptType.document
|
|
247
|
+
):
|
|
248
|
+
logger.info(
|
|
249
|
+
f"No instruction used, because prompt type = {prompt_type.document}"
|
|
250
|
+
)
|
|
251
|
+
prompt = ""
|
|
252
|
+
else:
|
|
253
|
+
logger.info(
|
|
254
|
+
f"Using instruction: '{prompt}' for task: '{task_metadata.name}' prompt type: '{prompt_type}'"
|
|
255
|
+
)
|
|
256
|
+
|
|
257
|
+
prompts = [prompt + text for batch in inputs for text in batch["text"]]
|
|
258
|
+
outputs = self.llm.encode(
|
|
259
|
+
prompts, pooling_task="embed", truncate_prompt_tokens=-1
|
|
260
|
+
)
|
|
261
|
+
embeddings = torch.stack([output.outputs.data for output in outputs])
|
|
262
|
+
return embeddings
|
|
263
|
+
|
|
264
|
+
|
|
265
|
+
class VllmCrossEncoderWrapper(VllmWrapperBase):
|
|
266
|
+
"""vLLM wrapper for CrossEncoder models."""
|
|
267
|
+
|
|
268
|
+
convert = "classify"
|
|
269
|
+
|
|
270
|
+
def __init__(
|
|
271
|
+
self,
|
|
272
|
+
model: str | ModelMeta,
|
|
273
|
+
revision: str | None = None,
|
|
274
|
+
query_prefix: str = "",
|
|
275
|
+
document_prefix: str = "",
|
|
276
|
+
**kwargs: Any,
|
|
277
|
+
):
|
|
278
|
+
super().__init__(
|
|
279
|
+
model,
|
|
280
|
+
revision,
|
|
281
|
+
**kwargs,
|
|
282
|
+
)
|
|
283
|
+
self.query_prefix = query_prefix
|
|
284
|
+
self.document_prefix = document_prefix
|
|
285
|
+
|
|
286
|
+
def predict(
|
|
287
|
+
self,
|
|
288
|
+
inputs1: DataLoader[BatchedInput],
|
|
289
|
+
inputs2: DataLoader[BatchedInput],
|
|
290
|
+
*,
|
|
291
|
+
task_metadata: TaskMetadata,
|
|
292
|
+
hf_split: str,
|
|
293
|
+
hf_subset: str,
|
|
294
|
+
prompt_type: PromptType | None = None,
|
|
295
|
+
**kwargs: Any,
|
|
296
|
+
) -> Array:
|
|
297
|
+
"""Predicts relevance scores for pairs of inputs. Note that, unlike the encoder, the cross-encoder can compare across inputs.
|
|
298
|
+
|
|
299
|
+
Args:
|
|
300
|
+
inputs1: First Dataloader of inputs to encode. For reranking tasks, these are queries (for text only tasks `QueryDatasetType`).
|
|
301
|
+
inputs2: Second Dataloader of inputs to encode. For reranking, these are documents (for text only tasks `RetrievalOutputType`).
|
|
302
|
+
task_metadata: Metadata of the current task.
|
|
303
|
+
hf_split: Split of current task, allows to know some additional information about current split.
|
|
304
|
+
E.g. Current language
|
|
305
|
+
hf_subset: Subset of current task. Similar to `hf_split` to get more information
|
|
306
|
+
prompt_type: The name type of prompt. (query or passage)
|
|
307
|
+
**kwargs: Additional arguments to pass to the cross-encoder.
|
|
308
|
+
|
|
309
|
+
Returns:
|
|
310
|
+
The predicted relevance scores for each inputs pair.
|
|
311
|
+
"""
|
|
312
|
+
queries = [
|
|
313
|
+
self.query_prefix + text for batch in inputs1 for text in batch["text"]
|
|
314
|
+
]
|
|
315
|
+
corpus = [
|
|
316
|
+
self.document_prefix + text for batch in inputs2 for text in batch["text"]
|
|
317
|
+
]
|
|
318
|
+
# TODO: support score prompt
|
|
319
|
+
|
|
320
|
+
outputs = self.llm.score(
|
|
321
|
+
queries,
|
|
322
|
+
corpus,
|
|
323
|
+
truncate_prompt_tokens=-1,
|
|
324
|
+
use_tqdm=False,
|
|
325
|
+
)
|
|
326
|
+
scores = np.array([output.outputs.score for output in outputs])
|
|
327
|
+
return scores
|
|
@@ -18,6 +18,7 @@ from .built_bench_retrieval import BuiltBenchRetrieval
|
|
|
18
18
|
from .chat_doctor_retrieval import ChatDoctorRetrieval
|
|
19
19
|
from .chem_hotpot_qa_retrieval import ChemHotpotQARetrieval
|
|
20
20
|
from .chem_nq_retrieval import ChemNQRetrieval
|
|
21
|
+
from .chemrxiv import ChemRxivRetrieval
|
|
21
22
|
from .cirr_it2i_retrieval import CIRRIT2IRetrieval
|
|
22
23
|
from .climate_fever_retrieval import (
|
|
23
24
|
ClimateFEVER,
|
|
@@ -254,6 +255,7 @@ __all__ = [
|
|
|
254
255
|
"ChatDoctorRetrieval",
|
|
255
256
|
"ChemHotpotQARetrieval",
|
|
256
257
|
"ChemNQRetrieval",
|
|
258
|
+
"ChemRxivRetrieval",
|
|
257
259
|
"ClimateFEVER",
|
|
258
260
|
"ClimateFEVERHardNegatives",
|
|
259
261
|
"ClimateFEVERHardNegativesV2",
|
|
@@ -0,0 +1,33 @@
|
|
|
1
|
+
from mteb.abstasks.retrieval import AbsTaskRetrieval
|
|
2
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class ChemRxivRetrieval(AbsTaskRetrieval):
|
|
6
|
+
metadata = TaskMetadata(
|
|
7
|
+
name="ChemRxivRetrieval",
|
|
8
|
+
dataset={
|
|
9
|
+
"path": "BASF-AI/ChemRxivRetrieval",
|
|
10
|
+
"revision": "5377aa18f309ec440ff6325a4c2cd3362c2cb8d7",
|
|
11
|
+
},
|
|
12
|
+
description="A retrieval task based on ChemRxiv papers where queries are LLM-synthesized to match specific paragraphs.",
|
|
13
|
+
reference="https://arxiv.org/abs/2508.01643",
|
|
14
|
+
type="Retrieval",
|
|
15
|
+
category="t2t",
|
|
16
|
+
modalities=["text"],
|
|
17
|
+
eval_splits=["test"],
|
|
18
|
+
eval_langs=["eng-Latn"],
|
|
19
|
+
main_score="ndcg_at_10",
|
|
20
|
+
date=("2025-01-01", "2025-05-01"),
|
|
21
|
+
domains=["Chemistry"],
|
|
22
|
+
task_subtypes=["Question answering", "Article retrieval"],
|
|
23
|
+
license="cc-by-nc-sa-4.0",
|
|
24
|
+
annotations_creators="LM-generated and reviewed",
|
|
25
|
+
dialect=[],
|
|
26
|
+
sample_creation="found",
|
|
27
|
+
bibtex_citation="""@article{kasmaee2025chembed,
|
|
28
|
+
author = {Kasmaee, Ali Shiraee and Khodadad, Mohammad and Astaraki, Mahdi and Saloot, Mohammad Arshi and Sherck, Nicholas and Mahyar, Hamidreza and Samiee, Soheila},
|
|
29
|
+
journal = {arXiv preprint arXiv:2508.01643},
|
|
30
|
+
title = {Chembed: Enhancing chemical literature search through domain-specific text embeddings},
|
|
31
|
+
year = {2025},
|
|
32
|
+
}""",
|
|
33
|
+
)
|
|
@@ -6,6 +6,7 @@ from .cross_lingual_semantic_discrimination_wmt21 import (
|
|
|
6
6
|
CrossLingualSemanticDiscriminationWMT21,
|
|
7
7
|
)
|
|
8
8
|
from .cur_ev1_retrieval import CUREv1Retrieval
|
|
9
|
+
from .euro_pirq_retrieval import EuroPIRQRetrieval
|
|
9
10
|
from .indic_qa_retrieval import IndicQARetrieval
|
|
10
11
|
from .jina_vdr_bench_retrieval import (
|
|
11
12
|
JinaVDRAirbnbSyntheticRetrieval,
|
|
@@ -107,6 +108,7 @@ __all__ = [
|
|
|
107
108
|
"CUREv1Retrieval",
|
|
108
109
|
"CrossLingualSemanticDiscriminationWMT19",
|
|
109
110
|
"CrossLingualSemanticDiscriminationWMT21",
|
|
111
|
+
"EuroPIRQRetrieval",
|
|
110
112
|
"IndicQARetrieval",
|
|
111
113
|
"JinaVDRAirbnbSyntheticRetrieval",
|
|
112
114
|
"JinaVDRArabicChartQARetrieval",
|
|
@@ -0,0 +1,43 @@
|
|
|
1
|
+
from mteb.abstasks.retrieval import AbsTaskRetrieval
|
|
2
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
3
|
+
|
|
4
|
+
_LANGUAGES = {
|
|
5
|
+
"en": ["eng-Latn"],
|
|
6
|
+
"fi": ["fin-Latn"],
|
|
7
|
+
"pt": ["por-Latn"],
|
|
8
|
+
}
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class EuroPIRQRetrieval(AbsTaskRetrieval):
|
|
12
|
+
metadata = TaskMetadata(
|
|
13
|
+
name="EuroPIRQRetrieval",
|
|
14
|
+
description="The EuroPIRQ retrieval dataset is a multilingual collection designed for evaluating retrieval and cross-lingual retrieval tasks. Dataset contains 10,000 parallel passages & 100 parallel queries (synthetic) in three languages: English, Portuguese, and Finnish, constructed from the European Union's DGT-Acquis corpus.",
|
|
15
|
+
reference="https://huggingface.co/datasets/eherra/EuroPIRQ-retrieval",
|
|
16
|
+
dataset={
|
|
17
|
+
"path": "eherra/EuroPIRQ-retrieval",
|
|
18
|
+
"revision": "59225ed25fbcea2185e1acbc8c3c80f1a8cd8341",
|
|
19
|
+
},
|
|
20
|
+
type="Retrieval",
|
|
21
|
+
category="t2t",
|
|
22
|
+
modalities=["text"],
|
|
23
|
+
eval_splits=["test"],
|
|
24
|
+
eval_langs=_LANGUAGES,
|
|
25
|
+
main_score="ndcg_at_10",
|
|
26
|
+
date=("2025-12-01", "2025-12-31"),
|
|
27
|
+
domains=["Legal"],
|
|
28
|
+
task_subtypes=[],
|
|
29
|
+
license="not specified",
|
|
30
|
+
annotations_creators="LM-generated and reviewed",
|
|
31
|
+
dialect=[],
|
|
32
|
+
sample_creation="found",
|
|
33
|
+
is_public=True,
|
|
34
|
+
bibtex_citation=r"""
|
|
35
|
+
@misc{eherra_2025_europirq,
|
|
36
|
+
author = { {Elias Herranen} },
|
|
37
|
+
publisher = { Hugging Face },
|
|
38
|
+
title = { EuroPIRQ: European Parallel Information Retrieval Queries },
|
|
39
|
+
url = { https://huggingface.co/datasets/eherra/EuroPIRQ-retrieval },
|
|
40
|
+
year = {2025},
|
|
41
|
+
}
|
|
42
|
+
""",
|
|
43
|
+
)
|