mteb 2.4.1__py3-none-any.whl → 2.4.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/models/model_implementations/andersborges.py +12 -0
- mteb/models/model_implementations/bge_models.py +43 -0
- mteb/models/model_implementations/dino_models.py +152 -0
- mteb/models/model_implementations/emillykkejensen_models.py +18 -0
- mteb/models/model_implementations/euler_models.py +6 -0
- mteb/models/model_implementations/fa_models.py +50 -0
- mteb/models/model_implementations/facebookai.py +44 -0
- mteb/models/model_implementations/gte_models.py +69 -0
- mteb/models/model_implementations/kalm_models.py +38 -0
- mteb/models/model_implementations/kblab.py +6 -0
- mteb/models/model_implementations/kowshik24_models.py +9 -0
- mteb/models/model_implementations/misc_models.py +293 -0
- mteb/models/model_implementations/mod_models.py +7 -22
- mteb/models/model_implementations/mxbai_models.py +6 -0
- mteb/models/model_implementations/nomic_models.py +8 -0
- mteb/models/model_implementations/pylate_models.py +33 -0
- mteb/models/model_implementations/ru_sentence_models.py +22 -0
- mteb/models/model_implementations/sentence_transformers_models.py +39 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +7 -0
- mteb/models/model_implementations/ua_sentence_models.py +9 -0
- mteb/models/model_implementations/vi_vn_models.py +33 -0
- {mteb-2.4.1.dist-info → mteb-2.4.2.dist-info}/METADATA +1 -1
- {mteb-2.4.1.dist-info → mteb-2.4.2.dist-info}/RECORD +27 -27
- {mteb-2.4.1.dist-info → mteb-2.4.2.dist-info}/WHEEL +0 -0
- {mteb-2.4.1.dist-info → mteb-2.4.2.dist-info}/entry_points.txt +0 -0
- {mteb-2.4.1.dist-info → mteb-2.4.2.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.4.1.dist-info → mteb-2.4.2.dist-info}/top_level.txt +0 -0
|
@@ -402,6 +402,15 @@ static_similarity_mrl_multilingual_v1 = ModelMeta(
|
|
|
402
402
|
training_datasets=static_multi_datasets,
|
|
403
403
|
public_training_code="https://huggingface.co/blog/static-embeddings",
|
|
404
404
|
public_training_data="https://huggingface.co/collections/sentence-transformers/embedding-model-datasets-6644d7a3673a511914aa7552",
|
|
405
|
+
citation="""@inproceedings{reimers-2019-sentence-bert,
|
|
406
|
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
407
|
+
author = "Reimers, Nils and Gurevych, Iryna",
|
|
408
|
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
409
|
+
month = "11",
|
|
410
|
+
year = "2019",
|
|
411
|
+
publisher = "Association for Computational Linguistics",
|
|
412
|
+
url = "https://arxiv.org/abs/1908.10084",
|
|
413
|
+
}""",
|
|
405
414
|
)
|
|
406
415
|
|
|
407
416
|
contriever = ModelMeta(
|
|
@@ -467,6 +476,17 @@ microllama_text_embedding = ModelMeta(
|
|
|
467
476
|
public_training_data=None,
|
|
468
477
|
)
|
|
469
478
|
|
|
479
|
+
SENTENCE_T5_CITATION = """
|
|
480
|
+
@misc{ni2021sentencet5scalablesentenceencoders,
|
|
481
|
+
title={Sentence-T5: Scalable Sentence Encoders from Pre-trained Text-to-Text Models},
|
|
482
|
+
author={Jianmo Ni and Gustavo Hernández Ábrego and Noah Constant and Ji Ma and Keith B. Hall and Daniel Cer and Yinfei Yang},
|
|
483
|
+
year={2021},
|
|
484
|
+
eprint={2108.08877},
|
|
485
|
+
archivePrefix={arXiv},
|
|
486
|
+
primaryClass={cs.CL},
|
|
487
|
+
url={https://arxiv.org/abs/2108.08877},
|
|
488
|
+
}
|
|
489
|
+
"""
|
|
470
490
|
sentence_t5_base = ModelMeta(
|
|
471
491
|
loader=sentence_transformers_loader,
|
|
472
492
|
name="sentence-transformers/sentence-t5-base",
|
|
@@ -486,6 +506,7 @@ sentence_t5_base = ModelMeta(
|
|
|
486
506
|
public_training_code=None,
|
|
487
507
|
public_training_data=None,
|
|
488
508
|
training_datasets={"SNLI", "Community QA"},
|
|
509
|
+
citation=SENTENCE_T5_CITATION,
|
|
489
510
|
)
|
|
490
511
|
|
|
491
512
|
sentence_t5_large = ModelMeta(
|
|
@@ -507,6 +528,7 @@ sentence_t5_large = ModelMeta(
|
|
|
507
528
|
public_training_code=None,
|
|
508
529
|
public_training_data=None,
|
|
509
530
|
training_datasets={"SNLI", "Community QA"},
|
|
531
|
+
citation=SENTENCE_T5_CITATION,
|
|
510
532
|
)
|
|
511
533
|
|
|
512
534
|
sentence_t5_xl = ModelMeta(
|
|
@@ -528,6 +550,7 @@ sentence_t5_xl = ModelMeta(
|
|
|
528
550
|
public_training_code=None,
|
|
529
551
|
public_training_data=None,
|
|
530
552
|
training_datasets={"SNLI", "Community QA"},
|
|
553
|
+
citation=SENTENCE_T5_CITATION,
|
|
531
554
|
)
|
|
532
555
|
|
|
533
556
|
sentence_t5_xxl = ModelMeta(
|
|
@@ -549,7 +572,19 @@ sentence_t5_xxl = ModelMeta(
|
|
|
549
572
|
public_training_code=None,
|
|
550
573
|
public_training_data=None,
|
|
551
574
|
training_datasets={"SNLI", "Community QA"},
|
|
575
|
+
citation=SENTENCE_T5_CITATION,
|
|
552
576
|
)
|
|
577
|
+
GTR_CITATION = """
|
|
578
|
+
@misc{ni2021largedualencodersgeneralizable,
|
|
579
|
+
title={Large Dual Encoders Are Generalizable Retrievers},
|
|
580
|
+
author={Jianmo Ni and Chen Qu and Jing Lu and Zhuyun Dai and Gustavo Hernández Ábrego and Ji Ma and Vincent Y. Zhao and Yi Luan and Keith B. Hall and Ming-Wei Chang and Yinfei Yang},
|
|
581
|
+
year={2021},
|
|
582
|
+
eprint={2112.07899},
|
|
583
|
+
archivePrefix={arXiv},
|
|
584
|
+
primaryClass={cs.IR},
|
|
585
|
+
url={https://arxiv.org/abs/2112.07899},
|
|
586
|
+
}
|
|
587
|
+
"""
|
|
553
588
|
gtr_t5_large = ModelMeta(
|
|
554
589
|
loader=sentence_transformers_loader,
|
|
555
590
|
name="sentence-transformers/gtr-t5-large",
|
|
@@ -581,6 +616,7 @@ gtr_t5_large = ModelMeta(
|
|
|
581
616
|
"NQ-PL", # translation not trained on
|
|
582
617
|
"Community QA",
|
|
583
618
|
},
|
|
619
|
+
citation=GTR_CITATION,
|
|
584
620
|
)
|
|
585
621
|
|
|
586
622
|
gtr_t5_xl = ModelMeta(
|
|
@@ -614,6 +650,7 @@ gtr_t5_xl = ModelMeta(
|
|
|
614
650
|
"NQ-PL", # translation not trained on
|
|
615
651
|
"Community QA",
|
|
616
652
|
},
|
|
653
|
+
citation=GTR_CITATION,
|
|
617
654
|
)
|
|
618
655
|
gtr_t5_xxl = ModelMeta(
|
|
619
656
|
loader=sentence_transformers_loader,
|
|
@@ -646,6 +683,7 @@ gtr_t5_xxl = ModelMeta(
|
|
|
646
683
|
"NQ-PL", # translation not trained on
|
|
647
684
|
"Community QA",
|
|
648
685
|
},
|
|
686
|
+
citation=GTR_CITATION,
|
|
649
687
|
)
|
|
650
688
|
|
|
651
689
|
gtr_t5_base = ModelMeta(
|
|
@@ -679,4 +717,5 @@ gtr_t5_base = ModelMeta(
|
|
|
679
717
|
"NQ-PL", # translation not trained on
|
|
680
718
|
"Community QA",
|
|
681
719
|
},
|
|
720
|
+
citation=GTR_CITATION,
|
|
682
721
|
)
|
|
@@ -23,4 +23,11 @@ spartan8806_atles_champion_embedding = ModelMeta(
|
|
|
23
23
|
adapted_from="sentence-transformers/all-mpnet-base-v2",
|
|
24
24
|
public_training_code=None,
|
|
25
25
|
public_training_data=None,
|
|
26
|
+
citation="""@article{conner2025epistemic,
|
|
27
|
+
title={The Epistemic Barrier: How RLHF Makes AI Consciousness Empirically Undecidable},
|
|
28
|
+
author={Conner (spartan8806)},
|
|
29
|
+
journal={ATLES Research Papers},
|
|
30
|
+
year={2025},
|
|
31
|
+
note={Cross-model validation study (Phoenix, Grok, Gemini, Claude)}
|
|
32
|
+
}""",
|
|
26
33
|
)
|
|
@@ -28,4 +28,13 @@ xlm_roberta_ua_distilled = ModelMeta(
|
|
|
28
28
|
modalities=["text"],
|
|
29
29
|
public_training_data=None,
|
|
30
30
|
use_instructions=False,
|
|
31
|
+
citation="""@inproceedings{reimers-2019-sentence-bert,
|
|
32
|
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
33
|
+
author = "Reimers, Nils and Gurevych, Iryna",
|
|
34
|
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
35
|
+
month = "11",
|
|
36
|
+
year = "2019",
|
|
37
|
+
publisher = "Association for Computational Linguistics",
|
|
38
|
+
url = "https://arxiv.org/abs/1908.10084",
|
|
39
|
+
}""",
|
|
31
40
|
)
|
|
@@ -75,6 +75,12 @@ aiteamvn_vietnamese_embeddings = ModelMeta(
|
|
|
75
75
|
public_training_data=None,
|
|
76
76
|
training_datasets=None,
|
|
77
77
|
adapted_from="BAAI/bge-m3",
|
|
78
|
+
citation="""@misc{Vietnamese_Embedding,
|
|
79
|
+
title={Vietnamese_Embedding: Embedding model in Vietnamese language.},
|
|
80
|
+
author={Nguyen Nho Trung, Nguyen Nhat Quang, Nguyen Van Huy},
|
|
81
|
+
year={2025},
|
|
82
|
+
publisher={Huggingface},
|
|
83
|
+
}""",
|
|
78
84
|
)
|
|
79
85
|
|
|
80
86
|
hiieu_halong_embedding = ModelMeta(
|
|
@@ -99,6 +105,12 @@ hiieu_halong_embedding = ModelMeta(
|
|
|
99
105
|
public_training_data=None,
|
|
100
106
|
training_datasets=None,
|
|
101
107
|
adapted_from="intfloat/multilingual-e5-base",
|
|
108
|
+
citation="""@misc{HalongEmbedding,
|
|
109
|
+
title={HalongEmbedding: A Vietnamese Text Embedding},
|
|
110
|
+
author={Ngo Hieu},
|
|
111
|
+
year={2024},
|
|
112
|
+
publisher={Huggingface},
|
|
113
|
+
}""",
|
|
102
114
|
)
|
|
103
115
|
|
|
104
116
|
sup_simcse_vietnamese_phobert_base_ = ModelMeta(
|
|
@@ -122,6 +134,20 @@ sup_simcse_vietnamese_phobert_base_ = ModelMeta(
|
|
|
122
134
|
reference="https://huggingface.co/VoVanPhuc/sup-SimCSE-VietNamese-phobert-base",
|
|
123
135
|
similarity_fn_name="cosine",
|
|
124
136
|
training_datasets=None,
|
|
137
|
+
citation="""@article{gao2021simcse,
|
|
138
|
+
title={{SimCSE}: Simple Contrastive Learning of Sentence Embeddings},
|
|
139
|
+
author={Gao, Tianyu and Yao, Xingcheng and Chen, Danqi},
|
|
140
|
+
journal={arXiv preprint arXiv:2104.08821},
|
|
141
|
+
year={2021}
|
|
142
|
+
}
|
|
143
|
+
|
|
144
|
+
@inproceedings{phobert,
|
|
145
|
+
title = {{PhoBERT: Pre-trained language models for Vietnamese}},
|
|
146
|
+
author = {Dat Quoc Nguyen and Anh Tuan Nguyen},
|
|
147
|
+
booktitle = {Findings of the Association for Computational Linguistics: EMNLP 2020},
|
|
148
|
+
year = {2020},
|
|
149
|
+
pages = {1037--1042}
|
|
150
|
+
}""",
|
|
125
151
|
)
|
|
126
152
|
|
|
127
153
|
bkai_foundation_models_vietnamese_bi_encoder = ModelMeta(
|
|
@@ -145,4 +171,11 @@ bkai_foundation_models_vietnamese_bi_encoder = ModelMeta(
|
|
|
145
171
|
reference="https://huggingface.co/bkai-foundation-models/vietnamese-bi-encoder",
|
|
146
172
|
similarity_fn_name="cosine",
|
|
147
173
|
training_datasets=None,
|
|
174
|
+
citation="""
|
|
175
|
+
@article{duc2024towards,
|
|
176
|
+
title={Towards Comprehensive Vietnamese Retrieval-Augmented Generation and Large Language Models},
|
|
177
|
+
author={Nguyen Quang Duc, Le Hai Son, Nguyen Duc Nhan, Nguyen Dich Nhat Minh, Le Thanh Huong, Dinh Viet Sang},
|
|
178
|
+
journal={arXiv preprint arXiv:2403.01616},
|
|
179
|
+
year={2024}
|
|
180
|
+
}""",
|
|
148
181
|
)
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: mteb
|
|
3
|
-
Version: 2.4.
|
|
3
|
+
Version: 2.4.2
|
|
4
4
|
Summary: Massive Text Embedding Benchmark
|
|
5
5
|
Author-email: MTEB Contributors <niklas@huggingface.co>, Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Nouamane Tazi <nouamane@huggingface.co>, Nils Reimers <info@nils-reimers.de>
|
|
6
6
|
Maintainer-email: Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Roman Solomatin <risolomatin@gmail.com>, Isaac Chung <chungisaac1217@gmail.com>
|
|
@@ -1459,12 +1459,12 @@ mteb/models/cache_wrappers/cache_backends/numpy_cache.py,sha256=GyTVC5DLph3EeRnD
|
|
|
1459
1459
|
mteb/models/model_implementations/__init__.py,sha256=BZDdde6ajKv-yroy9mqE2YS3Hw1KBdKoxBPg8aPTZEs,1164
|
|
1460
1460
|
mteb/models/model_implementations/align_models.py,sha256=DUdVWxETiwC2IrXI90zQwlvHMjeI7JJCNOmFVd2RNws,4518
|
|
1461
1461
|
mteb/models/model_implementations/amazon_models.py,sha256=pdRU2QGAB5ccQnAfbRSzHE1G3ZUdjvsAgeJwkB_olDQ,694
|
|
1462
|
-
mteb/models/model_implementations/andersborges.py,sha256=
|
|
1462
|
+
mteb/models/model_implementations/andersborges.py,sha256=1FVmRpdfnuQ7_vzO7WITk2MASMmlcFuXgUONO78IFLs,2361
|
|
1463
1463
|
mteb/models/model_implementations/ara_models.py,sha256=zS0t9rI21wwEwTlrlX94GqkmPKLnb8ktUaAOY-ZLmw0,1421
|
|
1464
1464
|
mteb/models/model_implementations/arctic_models.py,sha256=eaMRaN9WdpVq1W6cbtNcJMdrJUTXrTSYUjTJufCdZRY,10350
|
|
1465
1465
|
mteb/models/model_implementations/b1ade_models.py,sha256=aEKmXWVX8iJ_OotAYPOMxsOHTDEOJYdSwkR6iJsZ-ms,1609
|
|
1466
1466
|
mteb/models/model_implementations/bedrock_models.py,sha256=RWN25Es4Nb6eIMiZlFHWNAnftKMVBumM2kozpO7Kh50,8709
|
|
1467
|
-
mteb/models/model_implementations/bge_models.py,sha256=
|
|
1467
|
+
mteb/models/model_implementations/bge_models.py,sha256=9x0cA1Kih9zScHreboFh2MVPnD_jhCxSp1rh5PV9_lk,24086
|
|
1468
1468
|
mteb/models/model_implementations/bica_model.py,sha256=vNO6FiqOhAwUky-_Suq3ZpeJ8GVIsd6-uIU6-Y-wFy8,1227
|
|
1469
1469
|
mteb/models/model_implementations/blip2_models.py,sha256=hBdilqIIFkILmGoSl6GjT5gpFVxArp3xL3JEcWfJ1KU,7635
|
|
1470
1470
|
mteb/models/model_implementations/blip_models.py,sha256=n_XRcymbYL2Rx8AFl96OpGQcWvfzrvFQxKvFl4swzA4,11516
|
|
@@ -1482,23 +1482,23 @@ mteb/models/model_implementations/colpali_models.py,sha256=l-0A3J5rt1bhhTKFPQ3Ti
|
|
|
1482
1482
|
mteb/models/model_implementations/colqwen_models.py,sha256=wxR3sqyzObuXMlm1QLoFopJK3ZpQTzd3ZB5IrkzPfZk,15553
|
|
1483
1483
|
mteb/models/model_implementations/colsmol_models.py,sha256=O2M7Ksydh94M_Iax4KytHb-wOL18N0BIYLKSsLF8BFs,2967
|
|
1484
1484
|
mteb/models/model_implementations/conan_models.py,sha256=G-s7xo9VtNX-f7lWKtYVGHHiMMN0Xp44PlNIp7E0LAo,6502
|
|
1485
|
-
mteb/models/model_implementations/dino_models.py,sha256=
|
|
1485
|
+
mteb/models/model_implementations/dino_models.py,sha256=SFGXFZsI0ziCehNVfDn0CmQ5Uc_QDqP6jw8-jgIqDYU,25018
|
|
1486
1486
|
mteb/models/model_implementations/e5_instruct.py,sha256=9R4GoSFicgqNDCh3HhTN_8L1qhzuEKvatjHYn3T9zlU,7676
|
|
1487
1487
|
mteb/models/model_implementations/e5_models.py,sha256=ZLRgzx2uEBc_yWY6DwcJFUNKG6RHpWSEVp1_jaEURhs,9373
|
|
1488
1488
|
mteb/models/model_implementations/e5_v.py,sha256=_9W7I0ryIzx_H9eCkzwdm8iHdGX1LIjKGXkhSh_zNv8,6690
|
|
1489
1489
|
mteb/models/model_implementations/eagerworks_models.py,sha256=NOQkCUqn9jLSpf9p6KyaIHnJxYV1MNlr2z7hO2AcRSc,5744
|
|
1490
|
-
mteb/models/model_implementations/emillykkejensen_models.py,sha256=
|
|
1490
|
+
mteb/models/model_implementations/emillykkejensen_models.py,sha256=qNrKLu7NDFCRW1YTAoS-aHjjfx6UIHATlydepitaCog,3665
|
|
1491
1491
|
mteb/models/model_implementations/en_code_retriever.py,sha256=leZ-0M6LrunocY3XQBYZU1uevDRopeyR5ujIhwqBbd8,1043
|
|
1492
|
-
mteb/models/model_implementations/euler_models.py,sha256=
|
|
1492
|
+
mteb/models/model_implementations/euler_models.py,sha256=EfxegMwatdeQ4Qhq5aGRnZTSu2AVc0g51ikSu9sPNXs,1106
|
|
1493
1493
|
mteb/models/model_implementations/evaclip_models.py,sha256=cPMGYLDIq4s8zJxb4vPXqJ-rqwPaq7KOh2QZSO6cDas,8000
|
|
1494
|
-
mteb/models/model_implementations/fa_models.py,sha256=
|
|
1495
|
-
mteb/models/model_implementations/facebookai.py,sha256=
|
|
1494
|
+
mteb/models/model_implementations/fa_models.py,sha256=BoFk99qwsX-PqedV6-8PK7AZQbJQaB8Eaf8o75dJwqI,9610
|
|
1495
|
+
mteb/models/model_implementations/facebookai.py,sha256=pJ4OTTQT1ggLiVmOGfp8IMQatyTsTWmrFFsDQUpN9h4,4834
|
|
1496
1496
|
mteb/models/model_implementations/geogpt_models.py,sha256=Juv86SwhgQX80lVLjAFtim2aSiJT1AcgjniyyiKyk1Q,1923
|
|
1497
1497
|
mteb/models/model_implementations/gme_v_models.py,sha256=GEu1wl5q77RMM3BwtKMjkMwm38KX_r0qWxD_IEMVC2U,13657
|
|
1498
1498
|
mteb/models/model_implementations/google_models.py,sha256=d6hZ-yWY-yZnQsXDVbdtBb_xqwYAkdeeAnsEMaqqGXI,11013
|
|
1499
1499
|
mteb/models/model_implementations/granite_vision_embedding_models.py,sha256=cvG5NliPwDVMvGuJTo8rk5yL3m6cuJZ_fMLEc0ESNfc,7315
|
|
1500
1500
|
mteb/models/model_implementations/gritlm_models.py,sha256=aS_CuioL95JAQMYiaKlGuAWU9wZjabn268Xut3bD8-w,3005
|
|
1501
|
-
mteb/models/model_implementations/gte_models.py,sha256=
|
|
1501
|
+
mteb/models/model_implementations/gte_models.py,sha256=G7nbR-ItIEUZdwAxlMJIX9tlXAfnaVBCQ84F75WjspQ,13661
|
|
1502
1502
|
mteb/models/model_implementations/hinvec_models.py,sha256=I_d_dSNVaGIwMIwyvTlaPAzGMpwh_PzvsfE4y47GFyg,1575
|
|
1503
1503
|
mteb/models/model_implementations/human.py,sha256=klMpuMAtYH92EIEwNMEhne_Baf9fNiTg1DNWYD11P44,532
|
|
1504
1504
|
mteb/models/model_implementations/ibm_granite_models.py,sha256=YCT0jbgawy19ps5l8QlxpQoJLjq8Nh-3R-e6yxS0DRM,7902
|
|
@@ -1506,11 +1506,11 @@ mteb/models/model_implementations/inf_models.py,sha256=lvXUFhAYDltq2_Xa9MHcwfhh1
|
|
|
1506
1506
|
mteb/models/model_implementations/jasper_models.py,sha256=onX_ipI-UZbaZrjcHpZtk34tpy6DcT6Yvq6X3RMSmYA,16211
|
|
1507
1507
|
mteb/models/model_implementations/jina_clip.py,sha256=CfiIxbhKspjQajNtObCfGPHOWPk6uLn4cuwydQHFTMo,5118
|
|
1508
1508
|
mteb/models/model_implementations/jina_models.py,sha256=1bkGwIaRNIun2ghkWb4FG-7js4lJ39s97Q9KAW3wkXo,34858
|
|
1509
|
-
mteb/models/model_implementations/kalm_models.py,sha256=
|
|
1510
|
-
mteb/models/model_implementations/kblab.py,sha256=
|
|
1509
|
+
mteb/models/model_implementations/kalm_models.py,sha256=po9RdIr2zgHrE3BwgKq0uoOqrQzWkUUUecR6JgCohWk,61959
|
|
1510
|
+
mteb/models/model_implementations/kblab.py,sha256=pDA-OUgBAQ2C4jGbNXoBY0RQFTyM72kt2F9yN_IZT0I,1135
|
|
1511
1511
|
mteb/models/model_implementations/kennethenevoldsen_models.py,sha256=DF-9nmsewYO9ikZ0kV81ujKGr7Ot36-9iPoxN7KX2mY,2993
|
|
1512
1512
|
mteb/models/model_implementations/kfst.py,sha256=BQj0fxMJwyA6NOdK26NDYVL3z2PW1_F-lTTVImxEWZQ,892
|
|
1513
|
-
mteb/models/model_implementations/kowshik24_models.py,sha256=
|
|
1513
|
+
mteb/models/model_implementations/kowshik24_models.py,sha256=_gIJdiseyEni0Z-rOLCzVfeS4wtZZb9CCTkl-9nVH-E,1419
|
|
1514
1514
|
mteb/models/model_implementations/lens_models.py,sha256=fC7_NB1F8vBAlXD0p0-hALf6eZTPFJwpz57dy71OlwI,1696
|
|
1515
1515
|
mteb/models/model_implementations/lgai_embedding_models.py,sha256=S83pbfkMH3YUNl4skusgbK-Rn-uLuScQVxgXwegR_N4,2333
|
|
1516
1516
|
mteb/models/model_implementations/linq_models.py,sha256=EtvUyiNbjU-GJd1kS0Z0gBACkP2pFOjk0KfGMZz4K9Y,1872
|
|
@@ -1519,16 +1519,16 @@ mteb/models/model_implementations/llm2clip_models.py,sha256=_sqAOb5oSbxn1oaXjWwP
|
|
|
1519
1519
|
mteb/models/model_implementations/llm2vec_models.py,sha256=Og_EqnOXgIfaTcVTl3Lj5BicG83ycnXS_YHNtK63I-A,12638
|
|
1520
1520
|
mteb/models/model_implementations/mcinext_models.py,sha256=W9MBQFqGTXVa52WDFFq1Pdat2TgRvluOcD6JVAupn28,18968
|
|
1521
1521
|
mteb/models/model_implementations/mdbr_models.py,sha256=B7R3dVEH9EZ_fSZ05VveSbmTyO3Erh7iJ2WmMn52d-4,2509
|
|
1522
|
-
mteb/models/model_implementations/misc_models.py,sha256=
|
|
1522
|
+
mteb/models/model_implementations/misc_models.py,sha256=X0MvBQn2pRk7IT-jD3fYoja26at61FanjBtroaAg3Zc,69116
|
|
1523
1523
|
mteb/models/model_implementations/mme5_models.py,sha256=cRRXecC8EHeLQiEd1nfCb1vt75x_CnG1s_9lYRrtyTA,1484
|
|
1524
1524
|
mteb/models/model_implementations/moco_models.py,sha256=Kl0nBsqkG3crYoo5YulFq1fv97U0-IBWVFHN0UuO0lg,5483
|
|
1525
|
-
mteb/models/model_implementations/mod_models.py,sha256=
|
|
1525
|
+
mteb/models/model_implementations/mod_models.py,sha256=vCTnzJE9O1ZTaSRNGxn5jWIlpLeRev7L-4E_FVz6_3Q,6226
|
|
1526
1526
|
mteb/models/model_implementations/model2vec_models.py,sha256=D-EY-6P-cKKunbgzk4DHzJL1ogpWYFhpHbTLb8qQjJw,13765
|
|
1527
1527
|
mteb/models/model_implementations/moka_models.py,sha256=Y5do7Z4JyGxabYrjHhkBLqCKTQKotniS-f4kOgXJjag,4995
|
|
1528
|
-
mteb/models/model_implementations/mxbai_models.py,sha256=
|
|
1528
|
+
mteb/models/model_implementations/mxbai_models.py,sha256=KJXfUVW8e6LJEq3EO-Zy-pu6-9e-Q0mjP6_W7GP6QoI,3851
|
|
1529
1529
|
mteb/models/model_implementations/nbailab.py,sha256=bqqR0qs10IH2g5HC6K962tDMBciw8qFsNVHADNS72jk,2396
|
|
1530
1530
|
mteb/models/model_implementations/no_instruct_sentence_models.py,sha256=6i-xbLRRNKuDpU-hwklwdQjgu1wnz5CecLSoc6kyd7Q,3976
|
|
1531
|
-
mteb/models/model_implementations/nomic_models.py,sha256=
|
|
1531
|
+
mteb/models/model_implementations/nomic_models.py,sha256=WmSX6YyYaG5EG9M3OX-tTgdznFVJanfVAxRKJ-vNXF0,14736
|
|
1532
1532
|
mteb/models/model_implementations/nomic_models_vision.py,sha256=6aca0XVLXnkGk6GW8jVCIbbjPGq98lKq4c9Az4jbEkE,6805
|
|
1533
1533
|
mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py,sha256=OEhVrvA-zfX2PSm76VcCDPkRyAArSFkVeweyLyzpqPI,6255
|
|
1534
1534
|
mteb/models/model_implementations/nvidia_models.py,sha256=acVverAt77lURkILCVkCdXsWgY1BJoG1-ugB7yIhlIM,21555
|
|
@@ -1540,7 +1540,7 @@ mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py,
|
|
|
1540
1540
|
mteb/models/model_implementations/pawan_models.py,sha256=rV2ePGIuYroocvwqDXm4VU369Y_Vr67CyAE-08K5B9c,1151
|
|
1541
1541
|
mteb/models/model_implementations/piccolo_models.py,sha256=d8Dtkv_ZTUOCmJLLOuwquq-gX-2UfKvAtl_LvAS0Xi0,2113
|
|
1542
1542
|
mteb/models/model_implementations/promptriever_models.py,sha256=S7uWes_P74p3OZR_KBJHJN_ezlvvRx2__46DMCWqV5M,6328
|
|
1543
|
-
mteb/models/model_implementations/pylate_models.py,sha256=
|
|
1543
|
+
mteb/models/model_implementations/pylate_models.py,sha256=VRLcjNTtoLLV-E_Oa-F6KkS0h-oSASvjGq6iKSWZgZs,16715
|
|
1544
1544
|
mteb/models/model_implementations/qodo_models.py,sha256=JDqffDlQiOEariyheybOIf3iNkqot2gTkEIHWDnRbUE,2037
|
|
1545
1545
|
mteb/models/model_implementations/qtack_models.py,sha256=biZLH5E3UWIcMZXIZNGgBZFEUvovPpAo6vUyL776W1w,1224
|
|
1546
1546
|
mteb/models/model_implementations/qwen3_models.py,sha256=F_o6ciD-6gLFfIlQYD9MsNvcbkmGzJ39eKpFlEog1rM,5132
|
|
@@ -1552,7 +1552,7 @@ mteb/models/model_implementations/repllama_models.py,sha256=89HoqEpzkNysHeuf_-Yh
|
|
|
1552
1552
|
mteb/models/model_implementations/rerankers_custom.py,sha256=ro73A9-hHudy3_qIMrhP-ja-3Xqu78r_aORm856zHQc,10651
|
|
1553
1553
|
mteb/models/model_implementations/rerankers_monot5_based.py,sha256=rxVwzapNnHl4gCw79XVCaTXj3-wbToyj7XVL97tpAF4,34302
|
|
1554
1554
|
mteb/models/model_implementations/richinfoai_models.py,sha256=llvYa0JUjyOOMbuTgOYoJ2qeqZ5rLHX1ZjZIYlYbdvA,989
|
|
1555
|
-
mteb/models/model_implementations/ru_sentence_models.py,sha256=
|
|
1555
|
+
mteb/models/model_implementations/ru_sentence_models.py,sha256=mh5TPy0EZVGioiXizrz-W_ssrlLZ2Q7HCbGZ-6TYszE,41238
|
|
1556
1556
|
mteb/models/model_implementations/ruri_models.py,sha256=-BTYkZ8dEWZUbGqx3YB5yFSrzMwZtXX7sMUHzrlB8ws,10043
|
|
1557
1557
|
mteb/models/model_implementations/salesforce_models.py,sha256=KslTK-IKeLvNG-vQir9k6swkaOgjk6eyozm_BOVgTpY,5160
|
|
1558
1558
|
mteb/models/model_implementations/samilpwc_models.py,sha256=oMwKNwCxoH1jZgCy04oo2oVlBZWu253QMpnEEC6emz8,2021
|
|
@@ -1560,18 +1560,18 @@ mteb/models/model_implementations/sarashina_embedding_models.py,sha256=TSmr2FEX7
|
|
|
1560
1560
|
mteb/models/model_implementations/searchmap_models.py,sha256=XvVl99emIgnNUCxkTuFQXW6py2R8vgsArfpyHveCugw,1904
|
|
1561
1561
|
mteb/models/model_implementations/seed_1_6_embedding_models.py,sha256=Q8JTW2fjePR9dq4spuwK2lyVeL3mn1bl-H5wkQuEV_E,18609
|
|
1562
1562
|
mteb/models/model_implementations/seed_models.py,sha256=SgK4kPVO6V33G3F1zSq06zSkWarPLEwBt1SWp4TUoVw,14142
|
|
1563
|
-
mteb/models/model_implementations/sentence_transformers_models.py,sha256=
|
|
1563
|
+
mteb/models/model_implementations/sentence_transformers_models.py,sha256=J0uFt6cFkHohTNtFJe3Ne1weNndYVVinSGFBKYlolt8,22784
|
|
1564
1564
|
mteb/models/model_implementations/shuu_model.py,sha256=KkcuVYjIzoha3Fvxh8ppqHQ9BfNMWeqDqn9dGCRKUjg,1167
|
|
1565
1565
|
mteb/models/model_implementations/siglip_models.py,sha256=tvi8QB2ayBoeXsxwHrl5RFlkknvE6FM9N06zSBWGQD0,12602
|
|
1566
1566
|
mteb/models/model_implementations/sonar_models.py,sha256=Nc6kAJRWSrxA57DPRrgOPHqS1dNhz2vsE_1ZA2JtigQ,4784
|
|
1567
|
-
mteb/models/model_implementations/spartan8806_atles_champion.py,sha256=
|
|
1567
|
+
mteb/models/model_implementations/spartan8806_atles_champion.py,sha256=yTwZPWg2pj7WSDecKFO-pV9ykXkebXoPiR3JORavCIQ,1213
|
|
1568
1568
|
mteb/models/model_implementations/stella_models.py,sha256=NL3tk-rnuBdznsQ-nmelqun4tFO2xKoNPPOOVKqnPGU,8062
|
|
1569
1569
|
mteb/models/model_implementations/tarka_models.py,sha256=UwSb3e-k7dCgQAJv3176ZvKpkjLZfpdPzwf-b0Oxuuo,27345
|
|
1570
1570
|
mteb/models/model_implementations/text2vec_models.py,sha256=zaHWRc2W0RYZAOetinqRzug9UGW0HmY5U-jYsLXA8wo,4160
|
|
1571
|
-
mteb/models/model_implementations/ua_sentence_models.py,sha256=
|
|
1571
|
+
mteb/models/model_implementations/ua_sentence_models.py,sha256=SNaTaRcRLFn9SO0TECkqqqu-IXO9tWhBduN-i92y3W4,1667
|
|
1572
1572
|
mteb/models/model_implementations/uae_models.py,sha256=KZxH5a3t-sfh33xUBkLizEuyFAyPlGfnRsn-S7mjq74,3112
|
|
1573
1573
|
mteb/models/model_implementations/vdr_models.py,sha256=nz8yZLRJc3RDMFWxXf1mb8bPD8c__IQDJMwHxKgJXkA,1422
|
|
1574
|
-
mteb/models/model_implementations/vi_vn_models.py,sha256=
|
|
1574
|
+
mteb/models/model_implementations/vi_vn_models.py,sha256=adATWIhwImbajHqM8zpgrZbNwo-4VEZNehejBEpx4zg,6042
|
|
1575
1575
|
mteb/models/model_implementations/vista_models.py,sha256=Q3I01kRtIPaoke0iMIcH4CLcCDTnMSIBFNCof7LPTX4,10832
|
|
1576
1576
|
mteb/models/model_implementations/vlm2vec_models.py,sha256=HGGy_-z9Wc99xOKum71rBNipCPqWcM1efmmXgy5Rvxc,11724
|
|
1577
1577
|
mteb/models/model_implementations/voyage_models.py,sha256=dOCccOQlloGrg0q44PxMQzx8dHuQ8VgkDUD01EydpJ0,19824
|
|
@@ -2596,9 +2596,9 @@ mteb/types/_metadata.py,sha256=NN-W0S6a5TDV7UkpRx1pyWtGF4TyyCyoPUfHOwdeci8,2290
|
|
|
2596
2596
|
mteb/types/_result.py,sha256=CRAUc5IvqI3_9SyXDwv-PWLCXwXdZem9RePeYESRtuw,996
|
|
2597
2597
|
mteb/types/_string_validators.py,sha256=PY-dYq4E8O50VS3bLYdldPWp400fl_WzUjfVSkNWe8U,523
|
|
2598
2598
|
mteb/types/statistics.py,sha256=YwJsxTf1eaCI_RE-J37a-gK5wDeGAsmkeZKoZCFihSo,3755
|
|
2599
|
-
mteb-2.4.
|
|
2600
|
-
mteb-2.4.
|
|
2601
|
-
mteb-2.4.
|
|
2602
|
-
mteb-2.4.
|
|
2603
|
-
mteb-2.4.
|
|
2604
|
-
mteb-2.4.
|
|
2599
|
+
mteb-2.4.2.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
|
2600
|
+
mteb-2.4.2.dist-info/METADATA,sha256=T97AMDRmjR29KLQHND4FxM_JMQE15o5sH3WgYV3QtrI,13990
|
|
2601
|
+
mteb-2.4.2.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
2602
|
+
mteb-2.4.2.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
|
|
2603
|
+
mteb-2.4.2.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
|
|
2604
|
+
mteb-2.4.2.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|