mteb 2.4.1__py3-none-any.whl → 2.4.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (27) hide show
  1. mteb/models/model_implementations/andersborges.py +12 -0
  2. mteb/models/model_implementations/bge_models.py +43 -0
  3. mteb/models/model_implementations/dino_models.py +152 -0
  4. mteb/models/model_implementations/emillykkejensen_models.py +18 -0
  5. mteb/models/model_implementations/euler_models.py +6 -0
  6. mteb/models/model_implementations/fa_models.py +50 -0
  7. mteb/models/model_implementations/facebookai.py +44 -0
  8. mteb/models/model_implementations/gte_models.py +69 -0
  9. mteb/models/model_implementations/kalm_models.py +38 -0
  10. mteb/models/model_implementations/kblab.py +6 -0
  11. mteb/models/model_implementations/kowshik24_models.py +9 -0
  12. mteb/models/model_implementations/misc_models.py +293 -0
  13. mteb/models/model_implementations/mod_models.py +7 -22
  14. mteb/models/model_implementations/mxbai_models.py +6 -0
  15. mteb/models/model_implementations/nomic_models.py +8 -0
  16. mteb/models/model_implementations/pylate_models.py +33 -0
  17. mteb/models/model_implementations/ru_sentence_models.py +22 -0
  18. mteb/models/model_implementations/sentence_transformers_models.py +39 -0
  19. mteb/models/model_implementations/spartan8806_atles_champion.py +7 -0
  20. mteb/models/model_implementations/ua_sentence_models.py +9 -0
  21. mteb/models/model_implementations/vi_vn_models.py +33 -0
  22. {mteb-2.4.1.dist-info → mteb-2.4.2.dist-info}/METADATA +1 -1
  23. {mteb-2.4.1.dist-info → mteb-2.4.2.dist-info}/RECORD +27 -27
  24. {mteb-2.4.1.dist-info → mteb-2.4.2.dist-info}/WHEEL +0 -0
  25. {mteb-2.4.1.dist-info → mteb-2.4.2.dist-info}/entry_points.txt +0 -0
  26. {mteb-2.4.1.dist-info → mteb-2.4.2.dist-info}/licenses/LICENSE +0 -0
  27. {mteb-2.4.1.dist-info → mteb-2.4.2.dist-info}/top_level.txt +0 -0
@@ -402,6 +402,15 @@ static_similarity_mrl_multilingual_v1 = ModelMeta(
402
402
  training_datasets=static_multi_datasets,
403
403
  public_training_code="https://huggingface.co/blog/static-embeddings",
404
404
  public_training_data="https://huggingface.co/collections/sentence-transformers/embedding-model-datasets-6644d7a3673a511914aa7552",
405
+ citation="""@inproceedings{reimers-2019-sentence-bert,
406
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
407
+ author = "Reimers, Nils and Gurevych, Iryna",
408
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
409
+ month = "11",
410
+ year = "2019",
411
+ publisher = "Association for Computational Linguistics",
412
+ url = "https://arxiv.org/abs/1908.10084",
413
+ }""",
405
414
  )
406
415
 
407
416
  contriever = ModelMeta(
@@ -467,6 +476,17 @@ microllama_text_embedding = ModelMeta(
467
476
  public_training_data=None,
468
477
  )
469
478
 
479
+ SENTENCE_T5_CITATION = """
480
+ @misc{ni2021sentencet5scalablesentenceencoders,
481
+ title={Sentence-T5: Scalable Sentence Encoders from Pre-trained Text-to-Text Models},
482
+ author={Jianmo Ni and Gustavo Hernández Ábrego and Noah Constant and Ji Ma and Keith B. Hall and Daniel Cer and Yinfei Yang},
483
+ year={2021},
484
+ eprint={2108.08877},
485
+ archivePrefix={arXiv},
486
+ primaryClass={cs.CL},
487
+ url={https://arxiv.org/abs/2108.08877},
488
+ }
489
+ """
470
490
  sentence_t5_base = ModelMeta(
471
491
  loader=sentence_transformers_loader,
472
492
  name="sentence-transformers/sentence-t5-base",
@@ -486,6 +506,7 @@ sentence_t5_base = ModelMeta(
486
506
  public_training_code=None,
487
507
  public_training_data=None,
488
508
  training_datasets={"SNLI", "Community QA"},
509
+ citation=SENTENCE_T5_CITATION,
489
510
  )
490
511
 
491
512
  sentence_t5_large = ModelMeta(
@@ -507,6 +528,7 @@ sentence_t5_large = ModelMeta(
507
528
  public_training_code=None,
508
529
  public_training_data=None,
509
530
  training_datasets={"SNLI", "Community QA"},
531
+ citation=SENTENCE_T5_CITATION,
510
532
  )
511
533
 
512
534
  sentence_t5_xl = ModelMeta(
@@ -528,6 +550,7 @@ sentence_t5_xl = ModelMeta(
528
550
  public_training_code=None,
529
551
  public_training_data=None,
530
552
  training_datasets={"SNLI", "Community QA"},
553
+ citation=SENTENCE_T5_CITATION,
531
554
  )
532
555
 
533
556
  sentence_t5_xxl = ModelMeta(
@@ -549,7 +572,19 @@ sentence_t5_xxl = ModelMeta(
549
572
  public_training_code=None,
550
573
  public_training_data=None,
551
574
  training_datasets={"SNLI", "Community QA"},
575
+ citation=SENTENCE_T5_CITATION,
552
576
  )
577
+ GTR_CITATION = """
578
+ @misc{ni2021largedualencodersgeneralizable,
579
+ title={Large Dual Encoders Are Generalizable Retrievers},
580
+ author={Jianmo Ni and Chen Qu and Jing Lu and Zhuyun Dai and Gustavo Hernández Ábrego and Ji Ma and Vincent Y. Zhao and Yi Luan and Keith B. Hall and Ming-Wei Chang and Yinfei Yang},
581
+ year={2021},
582
+ eprint={2112.07899},
583
+ archivePrefix={arXiv},
584
+ primaryClass={cs.IR},
585
+ url={https://arxiv.org/abs/2112.07899},
586
+ }
587
+ """
553
588
  gtr_t5_large = ModelMeta(
554
589
  loader=sentence_transformers_loader,
555
590
  name="sentence-transformers/gtr-t5-large",
@@ -581,6 +616,7 @@ gtr_t5_large = ModelMeta(
581
616
  "NQ-PL", # translation not trained on
582
617
  "Community QA",
583
618
  },
619
+ citation=GTR_CITATION,
584
620
  )
585
621
 
586
622
  gtr_t5_xl = ModelMeta(
@@ -614,6 +650,7 @@ gtr_t5_xl = ModelMeta(
614
650
  "NQ-PL", # translation not trained on
615
651
  "Community QA",
616
652
  },
653
+ citation=GTR_CITATION,
617
654
  )
618
655
  gtr_t5_xxl = ModelMeta(
619
656
  loader=sentence_transformers_loader,
@@ -646,6 +683,7 @@ gtr_t5_xxl = ModelMeta(
646
683
  "NQ-PL", # translation not trained on
647
684
  "Community QA",
648
685
  },
686
+ citation=GTR_CITATION,
649
687
  )
650
688
 
651
689
  gtr_t5_base = ModelMeta(
@@ -679,4 +717,5 @@ gtr_t5_base = ModelMeta(
679
717
  "NQ-PL", # translation not trained on
680
718
  "Community QA",
681
719
  },
720
+ citation=GTR_CITATION,
682
721
  )
@@ -23,4 +23,11 @@ spartan8806_atles_champion_embedding = ModelMeta(
23
23
  adapted_from="sentence-transformers/all-mpnet-base-v2",
24
24
  public_training_code=None,
25
25
  public_training_data=None,
26
+ citation="""@article{conner2025epistemic,
27
+ title={The Epistemic Barrier: How RLHF Makes AI Consciousness Empirically Undecidable},
28
+ author={Conner (spartan8806)},
29
+ journal={ATLES Research Papers},
30
+ year={2025},
31
+ note={Cross-model validation study (Phoenix, Grok, Gemini, Claude)}
32
+ }""",
26
33
  )
@@ -28,4 +28,13 @@ xlm_roberta_ua_distilled = ModelMeta(
28
28
  modalities=["text"],
29
29
  public_training_data=None,
30
30
  use_instructions=False,
31
+ citation="""@inproceedings{reimers-2019-sentence-bert,
32
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
33
+ author = "Reimers, Nils and Gurevych, Iryna",
34
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
35
+ month = "11",
36
+ year = "2019",
37
+ publisher = "Association for Computational Linguistics",
38
+ url = "https://arxiv.org/abs/1908.10084",
39
+ }""",
31
40
  )
@@ -75,6 +75,12 @@ aiteamvn_vietnamese_embeddings = ModelMeta(
75
75
  public_training_data=None,
76
76
  training_datasets=None,
77
77
  adapted_from="BAAI/bge-m3",
78
+ citation="""@misc{Vietnamese_Embedding,
79
+ title={Vietnamese_Embedding: Embedding model in Vietnamese language.},
80
+ author={Nguyen Nho Trung, Nguyen Nhat Quang, Nguyen Van Huy},
81
+ year={2025},
82
+ publisher={Huggingface},
83
+ }""",
78
84
  )
79
85
 
80
86
  hiieu_halong_embedding = ModelMeta(
@@ -99,6 +105,12 @@ hiieu_halong_embedding = ModelMeta(
99
105
  public_training_data=None,
100
106
  training_datasets=None,
101
107
  adapted_from="intfloat/multilingual-e5-base",
108
+ citation="""@misc{HalongEmbedding,
109
+ title={HalongEmbedding: A Vietnamese Text Embedding},
110
+ author={Ngo Hieu},
111
+ year={2024},
112
+ publisher={Huggingface},
113
+ }""",
102
114
  )
103
115
 
104
116
  sup_simcse_vietnamese_phobert_base_ = ModelMeta(
@@ -122,6 +134,20 @@ sup_simcse_vietnamese_phobert_base_ = ModelMeta(
122
134
  reference="https://huggingface.co/VoVanPhuc/sup-SimCSE-VietNamese-phobert-base",
123
135
  similarity_fn_name="cosine",
124
136
  training_datasets=None,
137
+ citation="""@article{gao2021simcse,
138
+ title={{SimCSE}: Simple Contrastive Learning of Sentence Embeddings},
139
+ author={Gao, Tianyu and Yao, Xingcheng and Chen, Danqi},
140
+ journal={arXiv preprint arXiv:2104.08821},
141
+ year={2021}
142
+ }
143
+
144
+ @inproceedings{phobert,
145
+ title = {{PhoBERT: Pre-trained language models for Vietnamese}},
146
+ author = {Dat Quoc Nguyen and Anh Tuan Nguyen},
147
+ booktitle = {Findings of the Association for Computational Linguistics: EMNLP 2020},
148
+ year = {2020},
149
+ pages = {1037--1042}
150
+ }""",
125
151
  )
126
152
 
127
153
  bkai_foundation_models_vietnamese_bi_encoder = ModelMeta(
@@ -145,4 +171,11 @@ bkai_foundation_models_vietnamese_bi_encoder = ModelMeta(
145
171
  reference="https://huggingface.co/bkai-foundation-models/vietnamese-bi-encoder",
146
172
  similarity_fn_name="cosine",
147
173
  training_datasets=None,
174
+ citation="""
175
+ @article{duc2024towards,
176
+ title={Towards Comprehensive Vietnamese Retrieval-Augmented Generation and Large Language Models},
177
+ author={Nguyen Quang Duc, Le Hai Son, Nguyen Duc Nhan, Nguyen Dich Nhat Minh, Le Thanh Huong, Dinh Viet Sang},
178
+ journal={arXiv preprint arXiv:2403.01616},
179
+ year={2024}
180
+ }""",
148
181
  )
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mteb
3
- Version: 2.4.1
3
+ Version: 2.4.2
4
4
  Summary: Massive Text Embedding Benchmark
5
5
  Author-email: MTEB Contributors <niklas@huggingface.co>, Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Nouamane Tazi <nouamane@huggingface.co>, Nils Reimers <info@nils-reimers.de>
6
6
  Maintainer-email: Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Roman Solomatin <risolomatin@gmail.com>, Isaac Chung <chungisaac1217@gmail.com>
@@ -1459,12 +1459,12 @@ mteb/models/cache_wrappers/cache_backends/numpy_cache.py,sha256=GyTVC5DLph3EeRnD
1459
1459
  mteb/models/model_implementations/__init__.py,sha256=BZDdde6ajKv-yroy9mqE2YS3Hw1KBdKoxBPg8aPTZEs,1164
1460
1460
  mteb/models/model_implementations/align_models.py,sha256=DUdVWxETiwC2IrXI90zQwlvHMjeI7JJCNOmFVd2RNws,4518
1461
1461
  mteb/models/model_implementations/amazon_models.py,sha256=pdRU2QGAB5ccQnAfbRSzHE1G3ZUdjvsAgeJwkB_olDQ,694
1462
- mteb/models/model_implementations/andersborges.py,sha256=QUFpASdcCy-IMz2O2C3OAOhMWA2ksNHM4GFWlkELIT4,1879
1462
+ mteb/models/model_implementations/andersborges.py,sha256=1FVmRpdfnuQ7_vzO7WITk2MASMmlcFuXgUONO78IFLs,2361
1463
1463
  mteb/models/model_implementations/ara_models.py,sha256=zS0t9rI21wwEwTlrlX94GqkmPKLnb8ktUaAOY-ZLmw0,1421
1464
1464
  mteb/models/model_implementations/arctic_models.py,sha256=eaMRaN9WdpVq1W6cbtNcJMdrJUTXrTSYUjTJufCdZRY,10350
1465
1465
  mteb/models/model_implementations/b1ade_models.py,sha256=aEKmXWVX8iJ_OotAYPOMxsOHTDEOJYdSwkR6iJsZ-ms,1609
1466
1466
  mteb/models/model_implementations/bedrock_models.py,sha256=RWN25Es4Nb6eIMiZlFHWNAnftKMVBumM2kozpO7Kh50,8709
1467
- mteb/models/model_implementations/bge_models.py,sha256=LL_JnXsjGPnzzxby05Z0Jm3v6-v76nCB-yI36H9fKwo,22386
1467
+ mteb/models/model_implementations/bge_models.py,sha256=9x0cA1Kih9zScHreboFh2MVPnD_jhCxSp1rh5PV9_lk,24086
1468
1468
  mteb/models/model_implementations/bica_model.py,sha256=vNO6FiqOhAwUky-_Suq3ZpeJ8GVIsd6-uIU6-Y-wFy8,1227
1469
1469
  mteb/models/model_implementations/blip2_models.py,sha256=hBdilqIIFkILmGoSl6GjT5gpFVxArp3xL3JEcWfJ1KU,7635
1470
1470
  mteb/models/model_implementations/blip_models.py,sha256=n_XRcymbYL2Rx8AFl96OpGQcWvfzrvFQxKvFl4swzA4,11516
@@ -1482,23 +1482,23 @@ mteb/models/model_implementations/colpali_models.py,sha256=l-0A3J5rt1bhhTKFPQ3Ti
1482
1482
  mteb/models/model_implementations/colqwen_models.py,sha256=wxR3sqyzObuXMlm1QLoFopJK3ZpQTzd3ZB5IrkzPfZk,15553
1483
1483
  mteb/models/model_implementations/colsmol_models.py,sha256=O2M7Ksydh94M_Iax4KytHb-wOL18N0BIYLKSsLF8BFs,2967
1484
1484
  mteb/models/model_implementations/conan_models.py,sha256=G-s7xo9VtNX-f7lWKtYVGHHiMMN0Xp44PlNIp7E0LAo,6502
1485
- mteb/models/model_implementations/dino_models.py,sha256=QFgaFHR5YKrylqJGSljXCBn2W7qHhmF6KdXkvHrQNEI,16380
1485
+ mteb/models/model_implementations/dino_models.py,sha256=SFGXFZsI0ziCehNVfDn0CmQ5Uc_QDqP6jw8-jgIqDYU,25018
1486
1486
  mteb/models/model_implementations/e5_instruct.py,sha256=9R4GoSFicgqNDCh3HhTN_8L1qhzuEKvatjHYn3T9zlU,7676
1487
1487
  mteb/models/model_implementations/e5_models.py,sha256=ZLRgzx2uEBc_yWY6DwcJFUNKG6RHpWSEVp1_jaEURhs,9373
1488
1488
  mteb/models/model_implementations/e5_v.py,sha256=_9W7I0ryIzx_H9eCkzwdm8iHdGX1LIjKGXkhSh_zNv8,6690
1489
1489
  mteb/models/model_implementations/eagerworks_models.py,sha256=NOQkCUqn9jLSpf9p6KyaIHnJxYV1MNlr2z7hO2AcRSc,5744
1490
- mteb/models/model_implementations/emillykkejensen_models.py,sha256=QdhGqCm_1-AURkrniZj2S1MjwwIVOPMzLvpgfJq-3EQ,2779
1490
+ mteb/models/model_implementations/emillykkejensen_models.py,sha256=qNrKLu7NDFCRW1YTAoS-aHjjfx6UIHATlydepitaCog,3665
1491
1491
  mteb/models/model_implementations/en_code_retriever.py,sha256=leZ-0M6LrunocY3XQBYZU1uevDRopeyR5ujIhwqBbd8,1043
1492
- mteb/models/model_implementations/euler_models.py,sha256=fZoXYeDjSRN2Qj1Pf-ROi8xok03PjhYi4FLEZKjMPkk,905
1492
+ mteb/models/model_implementations/euler_models.py,sha256=EfxegMwatdeQ4Qhq5aGRnZTSu2AVc0g51ikSu9sPNXs,1106
1493
1493
  mteb/models/model_implementations/evaclip_models.py,sha256=cPMGYLDIq4s8zJxb4vPXqJ-rqwPaq7KOh2QZSO6cDas,8000
1494
- mteb/models/model_implementations/fa_models.py,sha256=WGal70_ezITWoNdjcMdbOCTSCtoaXzuPadYstLVXxhg,7478
1495
- mteb/models/model_implementations/facebookai.py,sha256=uhE6rB1YgxE0SIc7u8heE1U62qRFFA23IMgpjxBq_Ok,3116
1494
+ mteb/models/model_implementations/fa_models.py,sha256=BoFk99qwsX-PqedV6-8PK7AZQbJQaB8Eaf8o75dJwqI,9610
1495
+ mteb/models/model_implementations/facebookai.py,sha256=pJ4OTTQT1ggLiVmOGfp8IMQatyTsTWmrFFsDQUpN9h4,4834
1496
1496
  mteb/models/model_implementations/geogpt_models.py,sha256=Juv86SwhgQX80lVLjAFtim2aSiJT1AcgjniyyiKyk1Q,1923
1497
1497
  mteb/models/model_implementations/gme_v_models.py,sha256=GEu1wl5q77RMM3BwtKMjkMwm38KX_r0qWxD_IEMVC2U,13657
1498
1498
  mteb/models/model_implementations/google_models.py,sha256=d6hZ-yWY-yZnQsXDVbdtBb_xqwYAkdeeAnsEMaqqGXI,11013
1499
1499
  mteb/models/model_implementations/granite_vision_embedding_models.py,sha256=cvG5NliPwDVMvGuJTo8rk5yL3m6cuJZ_fMLEc0ESNfc,7315
1500
1500
  mteb/models/model_implementations/gritlm_models.py,sha256=aS_CuioL95JAQMYiaKlGuAWU9wZjabn268Xut3bD8-w,3005
1501
- mteb/models/model_implementations/gte_models.py,sha256=o26Xyu_tucUlP435Q_jB4-bl0xckgj4wtbutTwhYgIo,10073
1501
+ mteb/models/model_implementations/gte_models.py,sha256=G7nbR-ItIEUZdwAxlMJIX9tlXAfnaVBCQ84F75WjspQ,13661
1502
1502
  mteb/models/model_implementations/hinvec_models.py,sha256=I_d_dSNVaGIwMIwyvTlaPAzGMpwh_PzvsfE4y47GFyg,1575
1503
1503
  mteb/models/model_implementations/human.py,sha256=klMpuMAtYH92EIEwNMEhne_Baf9fNiTg1DNWYD11P44,532
1504
1504
  mteb/models/model_implementations/ibm_granite_models.py,sha256=YCT0jbgawy19ps5l8QlxpQoJLjq8Nh-3R-e6yxS0DRM,7902
@@ -1506,11 +1506,11 @@ mteb/models/model_implementations/inf_models.py,sha256=lvXUFhAYDltq2_Xa9MHcwfhh1
1506
1506
  mteb/models/model_implementations/jasper_models.py,sha256=onX_ipI-UZbaZrjcHpZtk34tpy6DcT6Yvq6X3RMSmYA,16211
1507
1507
  mteb/models/model_implementations/jina_clip.py,sha256=CfiIxbhKspjQajNtObCfGPHOWPk6uLn4cuwydQHFTMo,5118
1508
1508
  mteb/models/model_implementations/jina_models.py,sha256=1bkGwIaRNIun2ghkWb4FG-7js4lJ39s97Q9KAW3wkXo,34858
1509
- mteb/models/model_implementations/kalm_models.py,sha256=FmW7Z5Qs6WYBLuKvql3u4IJW36kj4k-Ypah8qTBEBkg,59837
1510
- mteb/models/model_implementations/kblab.py,sha256=DDh8gDEI6YPjS4_yGYWC4HatE0mFf7vhGDU83zzV7V0,866
1509
+ mteb/models/model_implementations/kalm_models.py,sha256=po9RdIr2zgHrE3BwgKq0uoOqrQzWkUUUecR6JgCohWk,61959
1510
+ mteb/models/model_implementations/kblab.py,sha256=pDA-OUgBAQ2C4jGbNXoBY0RQFTyM72kt2F9yN_IZT0I,1135
1511
1511
  mteb/models/model_implementations/kennethenevoldsen_models.py,sha256=DF-9nmsewYO9ikZ0kV81ujKGr7Ot36-9iPoxN7KX2mY,2993
1512
1512
  mteb/models/model_implementations/kfst.py,sha256=BQj0fxMJwyA6NOdK26NDYVL3z2PW1_F-lTTVImxEWZQ,892
1513
- mteb/models/model_implementations/kowshik24_models.py,sha256=HoQpybjhquK2XSnawlq0aiSWFI5M7l6N4DNY4MQ-P10,976
1513
+ mteb/models/model_implementations/kowshik24_models.py,sha256=_gIJdiseyEni0Z-rOLCzVfeS4wtZZb9CCTkl-9nVH-E,1419
1514
1514
  mteb/models/model_implementations/lens_models.py,sha256=fC7_NB1F8vBAlXD0p0-hALf6eZTPFJwpz57dy71OlwI,1696
1515
1515
  mteb/models/model_implementations/lgai_embedding_models.py,sha256=S83pbfkMH3YUNl4skusgbK-Rn-uLuScQVxgXwegR_N4,2333
1516
1516
  mteb/models/model_implementations/linq_models.py,sha256=EtvUyiNbjU-GJd1kS0Z0gBACkP2pFOjk0KfGMZz4K9Y,1872
@@ -1519,16 +1519,16 @@ mteb/models/model_implementations/llm2clip_models.py,sha256=_sqAOb5oSbxn1oaXjWwP
1519
1519
  mteb/models/model_implementations/llm2vec_models.py,sha256=Og_EqnOXgIfaTcVTl3Lj5BicG83ycnXS_YHNtK63I-A,12638
1520
1520
  mteb/models/model_implementations/mcinext_models.py,sha256=W9MBQFqGTXVa52WDFFq1Pdat2TgRvluOcD6JVAupn28,18968
1521
1521
  mteb/models/model_implementations/mdbr_models.py,sha256=B7R3dVEH9EZ_fSZ05VveSbmTyO3Erh7iJ2WmMn52d-4,2509
1522
- mteb/models/model_implementations/misc_models.py,sha256=bgKOuXJC8cVQmVRXEfIBlgzxDRb9nzOCsHdJ1kM8Z2Q,56691
1522
+ mteb/models/model_implementations/misc_models.py,sha256=X0MvBQn2pRk7IT-jD3fYoja26at61FanjBtroaAg3Zc,69116
1523
1523
  mteb/models/model_implementations/mme5_models.py,sha256=cRRXecC8EHeLQiEd1nfCb1vt75x_CnG1s_9lYRrtyTA,1484
1524
1524
  mteb/models/model_implementations/moco_models.py,sha256=Kl0nBsqkG3crYoo5YulFq1fv97U0-IBWVFHN0UuO0lg,5483
1525
- mteb/models/model_implementations/mod_models.py,sha256=KHVdZWmag0Yz_NLGDPUz4TgNbKjUYqKVXS_G_rL_5yU,6731
1525
+ mteb/models/model_implementations/mod_models.py,sha256=vCTnzJE9O1ZTaSRNGxn5jWIlpLeRev7L-4E_FVz6_3Q,6226
1526
1526
  mteb/models/model_implementations/model2vec_models.py,sha256=D-EY-6P-cKKunbgzk4DHzJL1ogpWYFhpHbTLb8qQjJw,13765
1527
1527
  mteb/models/model_implementations/moka_models.py,sha256=Y5do7Z4JyGxabYrjHhkBLqCKTQKotniS-f4kOgXJjag,4995
1528
- mteb/models/model_implementations/mxbai_models.py,sha256=33ta2BnhvKYBUgE89wFgPNf-CnOb7ooumZvqHOvbZsA,3593
1528
+ mteb/models/model_implementations/mxbai_models.py,sha256=KJXfUVW8e6LJEq3EO-Zy-pu6-9e-Q0mjP6_W7GP6QoI,3851
1529
1529
  mteb/models/model_implementations/nbailab.py,sha256=bqqR0qs10IH2g5HC6K962tDMBciw8qFsNVHADNS72jk,2396
1530
1530
  mteb/models/model_implementations/no_instruct_sentence_models.py,sha256=6i-xbLRRNKuDpU-hwklwdQjgu1wnz5CecLSoc6kyd7Q,3976
1531
- mteb/models/model_implementations/nomic_models.py,sha256=4N18fKKYXe8FGPqe4s5_6LV4rQsZad_2vAIOuxxwVeI,14417
1531
+ mteb/models/model_implementations/nomic_models.py,sha256=WmSX6YyYaG5EG9M3OX-tTgdznFVJanfVAxRKJ-vNXF0,14736
1532
1532
  mteb/models/model_implementations/nomic_models_vision.py,sha256=6aca0XVLXnkGk6GW8jVCIbbjPGq98lKq4c9Az4jbEkE,6805
1533
1533
  mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py,sha256=OEhVrvA-zfX2PSm76VcCDPkRyAArSFkVeweyLyzpqPI,6255
1534
1534
  mteb/models/model_implementations/nvidia_models.py,sha256=acVverAt77lURkILCVkCdXsWgY1BJoG1-ugB7yIhlIM,21555
@@ -1540,7 +1540,7 @@ mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py,
1540
1540
  mteb/models/model_implementations/pawan_models.py,sha256=rV2ePGIuYroocvwqDXm4VU369Y_Vr67CyAE-08K5B9c,1151
1541
1541
  mteb/models/model_implementations/piccolo_models.py,sha256=d8Dtkv_ZTUOCmJLLOuwquq-gX-2UfKvAtl_LvAS0Xi0,2113
1542
1542
  mteb/models/model_implementations/promptriever_models.py,sha256=S7uWes_P74p3OZR_KBJHJN_ezlvvRx2__46DMCWqV5M,6328
1543
- mteb/models/model_implementations/pylate_models.py,sha256=oNoPndZuiJahSd-ikR4dE4vL9261btXYiJbF3bk3Dco,14546
1543
+ mteb/models/model_implementations/pylate_models.py,sha256=VRLcjNTtoLLV-E_Oa-F6KkS0h-oSASvjGq6iKSWZgZs,16715
1544
1544
  mteb/models/model_implementations/qodo_models.py,sha256=JDqffDlQiOEariyheybOIf3iNkqot2gTkEIHWDnRbUE,2037
1545
1545
  mteb/models/model_implementations/qtack_models.py,sha256=biZLH5E3UWIcMZXIZNGgBZFEUvovPpAo6vUyL776W1w,1224
1546
1546
  mteb/models/model_implementations/qwen3_models.py,sha256=F_o6ciD-6gLFfIlQYD9MsNvcbkmGzJ39eKpFlEog1rM,5132
@@ -1552,7 +1552,7 @@ mteb/models/model_implementations/repllama_models.py,sha256=89HoqEpzkNysHeuf_-Yh
1552
1552
  mteb/models/model_implementations/rerankers_custom.py,sha256=ro73A9-hHudy3_qIMrhP-ja-3Xqu78r_aORm856zHQc,10651
1553
1553
  mteb/models/model_implementations/rerankers_monot5_based.py,sha256=rxVwzapNnHl4gCw79XVCaTXj3-wbToyj7XVL97tpAF4,34302
1554
1554
  mteb/models/model_implementations/richinfoai_models.py,sha256=llvYa0JUjyOOMbuTgOYoJ2qeqZ5rLHX1ZjZIYlYbdvA,989
1555
- mteb/models/model_implementations/ru_sentence_models.py,sha256=GuZFwbzaooufvSMGNjIsL0DDLrqHjhdSsAQHHZo5H08,40480
1555
+ mteb/models/model_implementations/ru_sentence_models.py,sha256=mh5TPy0EZVGioiXizrz-W_ssrlLZ2Q7HCbGZ-6TYszE,41238
1556
1556
  mteb/models/model_implementations/ruri_models.py,sha256=-BTYkZ8dEWZUbGqx3YB5yFSrzMwZtXX7sMUHzrlB8ws,10043
1557
1557
  mteb/models/model_implementations/salesforce_models.py,sha256=KslTK-IKeLvNG-vQir9k6swkaOgjk6eyozm_BOVgTpY,5160
1558
1558
  mteb/models/model_implementations/samilpwc_models.py,sha256=oMwKNwCxoH1jZgCy04oo2oVlBZWu253QMpnEEC6emz8,2021
@@ -1560,18 +1560,18 @@ mteb/models/model_implementations/sarashina_embedding_models.py,sha256=TSmr2FEX7
1560
1560
  mteb/models/model_implementations/searchmap_models.py,sha256=XvVl99emIgnNUCxkTuFQXW6py2R8vgsArfpyHveCugw,1904
1561
1561
  mteb/models/model_implementations/seed_1_6_embedding_models.py,sha256=Q8JTW2fjePR9dq4spuwK2lyVeL3mn1bl-H5wkQuEV_E,18609
1562
1562
  mteb/models/model_implementations/seed_models.py,sha256=SgK4kPVO6V33G3F1zSq06zSkWarPLEwBt1SWp4TUoVw,14142
1563
- mteb/models/model_implementations/sentence_transformers_models.py,sha256=EtEaXg1yFFp3DQEOxu6am8bcVQR-ypcHj6DCqJGHOVU,21160
1563
+ mteb/models/model_implementations/sentence_transformers_models.py,sha256=J0uFt6cFkHohTNtFJe3Ne1weNndYVVinSGFBKYlolt8,22784
1564
1564
  mteb/models/model_implementations/shuu_model.py,sha256=KkcuVYjIzoha3Fvxh8ppqHQ9BfNMWeqDqn9dGCRKUjg,1167
1565
1565
  mteb/models/model_implementations/siglip_models.py,sha256=tvi8QB2ayBoeXsxwHrl5RFlkknvE6FM9N06zSBWGQD0,12602
1566
1566
  mteb/models/model_implementations/sonar_models.py,sha256=Nc6kAJRWSrxA57DPRrgOPHqS1dNhz2vsE_1ZA2JtigQ,4784
1567
- mteb/models/model_implementations/spartan8806_atles_champion.py,sha256=9sWQH7tOT0uxXA7sbQcnqGt2f5O9xcw9HqFpRCzoQAA,918
1567
+ mteb/models/model_implementations/spartan8806_atles_champion.py,sha256=yTwZPWg2pj7WSDecKFO-pV9ykXkebXoPiR3JORavCIQ,1213
1568
1568
  mteb/models/model_implementations/stella_models.py,sha256=NL3tk-rnuBdznsQ-nmelqun4tFO2xKoNPPOOVKqnPGU,8062
1569
1569
  mteb/models/model_implementations/tarka_models.py,sha256=UwSb3e-k7dCgQAJv3176ZvKpkjLZfpdPzwf-b0Oxuuo,27345
1570
1570
  mteb/models/model_implementations/text2vec_models.py,sha256=zaHWRc2W0RYZAOetinqRzug9UGW0HmY5U-jYsLXA8wo,4160
1571
- mteb/models/model_implementations/ua_sentence_models.py,sha256=fcvXR4-Rrt-UDTlDkh2ZAO1gO_ufCOHiT6EhoeKiHx8,1224
1571
+ mteb/models/model_implementations/ua_sentence_models.py,sha256=SNaTaRcRLFn9SO0TECkqqqu-IXO9tWhBduN-i92y3W4,1667
1572
1572
  mteb/models/model_implementations/uae_models.py,sha256=KZxH5a3t-sfh33xUBkLizEuyFAyPlGfnRsn-S7mjq74,3112
1573
1573
  mteb/models/model_implementations/vdr_models.py,sha256=nz8yZLRJc3RDMFWxXf1mb8bPD8c__IQDJMwHxKgJXkA,1422
1574
- mteb/models/model_implementations/vi_vn_models.py,sha256=quWmd3JT2J6SlAsFrV2gcnc67M9zr58mEF2zLUF8-uw,4795
1574
+ mteb/models/model_implementations/vi_vn_models.py,sha256=adATWIhwImbajHqM8zpgrZbNwo-4VEZNehejBEpx4zg,6042
1575
1575
  mteb/models/model_implementations/vista_models.py,sha256=Q3I01kRtIPaoke0iMIcH4CLcCDTnMSIBFNCof7LPTX4,10832
1576
1576
  mteb/models/model_implementations/vlm2vec_models.py,sha256=HGGy_-z9Wc99xOKum71rBNipCPqWcM1efmmXgy5Rvxc,11724
1577
1577
  mteb/models/model_implementations/voyage_models.py,sha256=dOCccOQlloGrg0q44PxMQzx8dHuQ8VgkDUD01EydpJ0,19824
@@ -2596,9 +2596,9 @@ mteb/types/_metadata.py,sha256=NN-W0S6a5TDV7UkpRx1pyWtGF4TyyCyoPUfHOwdeci8,2290
2596
2596
  mteb/types/_result.py,sha256=CRAUc5IvqI3_9SyXDwv-PWLCXwXdZem9RePeYESRtuw,996
2597
2597
  mteb/types/_string_validators.py,sha256=PY-dYq4E8O50VS3bLYdldPWp400fl_WzUjfVSkNWe8U,523
2598
2598
  mteb/types/statistics.py,sha256=YwJsxTf1eaCI_RE-J37a-gK5wDeGAsmkeZKoZCFihSo,3755
2599
- mteb-2.4.1.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
2600
- mteb-2.4.1.dist-info/METADATA,sha256=NSoqOepWRk38b5qA_3AUj6QzR66bca71Bcs7TxJx42o,13990
2601
- mteb-2.4.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
2602
- mteb-2.4.1.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
2603
- mteb-2.4.1.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
2604
- mteb-2.4.1.dist-info/RECORD,,
2599
+ mteb-2.4.2.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
2600
+ mteb-2.4.2.dist-info/METADATA,sha256=T97AMDRmjR29KLQHND4FxM_JMQE15o5sH3WgYV3QtrI,13990
2601
+ mteb-2.4.2.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
2602
+ mteb-2.4.2.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
2603
+ mteb-2.4.2.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
2604
+ mteb-2.4.2.dist-info/RECORD,,
File without changes