mteb 2.4.1__py3-none-any.whl → 2.4.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/models/model_implementations/andersborges.py +12 -0
- mteb/models/model_implementations/bge_models.py +43 -0
- mteb/models/model_implementations/dino_models.py +152 -0
- mteb/models/model_implementations/emillykkejensen_models.py +18 -0
- mteb/models/model_implementations/euler_models.py +6 -0
- mteb/models/model_implementations/fa_models.py +50 -0
- mteb/models/model_implementations/facebookai.py +44 -0
- mteb/models/model_implementations/gte_models.py +69 -0
- mteb/models/model_implementations/kalm_models.py +38 -0
- mteb/models/model_implementations/kblab.py +6 -0
- mteb/models/model_implementations/kowshik24_models.py +9 -0
- mteb/models/model_implementations/misc_models.py +293 -0
- mteb/models/model_implementations/mod_models.py +7 -22
- mteb/models/model_implementations/mxbai_models.py +6 -0
- mteb/models/model_implementations/nomic_models.py +8 -0
- mteb/models/model_implementations/pylate_models.py +33 -0
- mteb/models/model_implementations/ru_sentence_models.py +22 -0
- mteb/models/model_implementations/sentence_transformers_models.py +39 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +7 -0
- mteb/models/model_implementations/ua_sentence_models.py +9 -0
- mteb/models/model_implementations/vi_vn_models.py +33 -0
- {mteb-2.4.1.dist-info → mteb-2.4.2.dist-info}/METADATA +1 -1
- {mteb-2.4.1.dist-info → mteb-2.4.2.dist-info}/RECORD +27 -27
- {mteb-2.4.1.dist-info → mteb-2.4.2.dist-info}/WHEEL +0 -0
- {mteb-2.4.1.dist-info → mteb-2.4.2.dist-info}/entry_points.txt +0 -0
- {mteb-2.4.1.dist-info → mteb-2.4.2.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.4.1.dist-info → mteb-2.4.2.dist-info}/top_level.txt +0 -0
|
@@ -24,6 +24,12 @@ model2vecdk = ModelMeta(
|
|
|
24
24
|
training_datasets=set(), # distilled
|
|
25
25
|
public_training_code="https://github.com/andersborges/dkmodel2vec",
|
|
26
26
|
public_training_data="https://huggingface.co/datasets/DDSC/nordic-embedding-training-data",
|
|
27
|
+
citation="""@article{minishlab2024model2vec,
|
|
28
|
+
author = {Tulkens, Stephan and {van Dongen}, Thomas},
|
|
29
|
+
title = {Model2Vec: Fast State-of-the-Art Static Embeddings},
|
|
30
|
+
year = {2024},
|
|
31
|
+
url = {https://github.com/MinishLab/model2vec}
|
|
32
|
+
}""",
|
|
27
33
|
)
|
|
28
34
|
|
|
29
35
|
|
|
@@ -48,4 +54,10 @@ model2vecdk_stem = ModelMeta(
|
|
|
48
54
|
training_datasets=set(), # distilled
|
|
49
55
|
public_training_code="https://github.com/andersborges/dkmodel2vec",
|
|
50
56
|
public_training_data="https://huggingface.co/datasets/DDSC/nordic-embedding-training-data",
|
|
57
|
+
citation="""@article{minishlab2024model2vec,
|
|
58
|
+
author = {Tulkens, Stephan and {van Dongen}, Thomas},
|
|
59
|
+
title = {Model2Vec: Fast State-of-the-Art Static Embeddings},
|
|
60
|
+
year = {2024},
|
|
61
|
+
url = {https://github.com/MinishLab/model2vec}
|
|
62
|
+
}""",
|
|
51
63
|
)
|
|
@@ -411,6 +411,7 @@ bge_small_zh = ModelMeta(
|
|
|
411
411
|
public_training_data=None,
|
|
412
412
|
training_datasets=bge_chinese_training_data,
|
|
413
413
|
superseded_by="BAAI/bge-small-zh-v1.5",
|
|
414
|
+
citation=BGE_15_CITATION,
|
|
414
415
|
)
|
|
415
416
|
|
|
416
417
|
bge_base_zh = ModelMeta(
|
|
@@ -436,6 +437,7 @@ bge_base_zh = ModelMeta(
|
|
|
436
437
|
public_training_data=None,
|
|
437
438
|
training_datasets=bge_chinese_training_data,
|
|
438
439
|
superseded_by="BAAI/bge-base-zh-v1.5",
|
|
440
|
+
citation=BGE_15_CITATION,
|
|
439
441
|
)
|
|
440
442
|
|
|
441
443
|
bge_large_zh = ModelMeta(
|
|
@@ -461,6 +463,7 @@ bge_large_zh = ModelMeta(
|
|
|
461
463
|
public_training_data=None,
|
|
462
464
|
training_datasets=bge_chinese_training_data,
|
|
463
465
|
superseded_by="BAAI/bge-large-zh-v1.5",
|
|
466
|
+
citation=BGE_15_CITATION,
|
|
464
467
|
)
|
|
465
468
|
|
|
466
469
|
bge_small_en = ModelMeta(
|
|
@@ -486,6 +489,7 @@ bge_small_en = ModelMeta(
|
|
|
486
489
|
public_training_data="https://data.baai.ac.cn/details/BAAI-MTP",
|
|
487
490
|
training_datasets=bge_training_data,
|
|
488
491
|
superseded_by="BAAI/bge-small-en-v1.5",
|
|
492
|
+
citation=BGE_15_CITATION,
|
|
489
493
|
)
|
|
490
494
|
|
|
491
495
|
bge_base_en = ModelMeta(
|
|
@@ -511,6 +515,7 @@ bge_base_en = ModelMeta(
|
|
|
511
515
|
public_training_data="https://data.baai.ac.cn/details/BAAI-MTP",
|
|
512
516
|
training_datasets=bge_training_data,
|
|
513
517
|
superseded_by="BAAI/bge-base-en-v1.5",
|
|
518
|
+
citation=BGE_15_CITATION,
|
|
514
519
|
)
|
|
515
520
|
|
|
516
521
|
bge_large_en = ModelMeta(
|
|
@@ -536,6 +541,7 @@ bge_large_en = ModelMeta(
|
|
|
536
541
|
public_training_data="https://data.baai.ac.cn/details/BAAI-MTP",
|
|
537
542
|
training_datasets=bge_training_data,
|
|
538
543
|
superseded_by="BAAI/bge-large-en-v1.5",
|
|
544
|
+
citation=BGE_15_CITATION,
|
|
539
545
|
)
|
|
540
546
|
|
|
541
547
|
|
|
@@ -561,6 +567,7 @@ bge_small_zh_v1_5 = ModelMeta(
|
|
|
561
567
|
public_training_code=None,
|
|
562
568
|
public_training_data=None,
|
|
563
569
|
training_datasets=bge_chinese_training_data,
|
|
570
|
+
citation=BGE_15_CITATION,
|
|
564
571
|
)
|
|
565
572
|
|
|
566
573
|
bge_base_zh_v1_5 = ModelMeta(
|
|
@@ -585,6 +592,7 @@ bge_base_zh_v1_5 = ModelMeta(
|
|
|
585
592
|
public_training_code=None,
|
|
586
593
|
public_training_data=None,
|
|
587
594
|
training_datasets=bge_chinese_training_data,
|
|
595
|
+
citation=BGE_15_CITATION,
|
|
588
596
|
)
|
|
589
597
|
|
|
590
598
|
bge_large_zh_v1_5 = ModelMeta(
|
|
@@ -609,6 +617,7 @@ bge_large_zh_v1_5 = ModelMeta(
|
|
|
609
617
|
public_training_code=None,
|
|
610
618
|
public_training_data=None,
|
|
611
619
|
training_datasets=bge_chinese_training_data,
|
|
620
|
+
citation=BGE_15_CITATION,
|
|
612
621
|
)
|
|
613
622
|
|
|
614
623
|
bge_m3 = ModelMeta(
|
|
@@ -630,6 +639,14 @@ bge_m3 = ModelMeta(
|
|
|
630
639
|
public_training_code=None,
|
|
631
640
|
public_training_data="https://huggingface.co/datasets/cfli/bge-full-data",
|
|
632
641
|
training_datasets=bge_m3_training_data,
|
|
642
|
+
citation="""@misc{bge-m3,
|
|
643
|
+
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
|
|
644
|
+
author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
|
|
645
|
+
year={2024},
|
|
646
|
+
eprint={2402.03216},
|
|
647
|
+
archivePrefix={arXiv},
|
|
648
|
+
primaryClass={cs.CL}
|
|
649
|
+
}""",
|
|
633
650
|
)
|
|
634
651
|
|
|
635
652
|
# Contents of cfli/bge-full-data
|
|
@@ -722,6 +739,24 @@ bge_multilingual_gemma2 = ModelMeta(
|
|
|
722
739
|
}
|
|
723
740
|
| bge_full_data
|
|
724
741
|
| bge_m3_training_data,
|
|
742
|
+
citation="""@misc{bge-m3,
|
|
743
|
+
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
|
|
744
|
+
author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
|
|
745
|
+
year={2024},
|
|
746
|
+
eprint={2402.03216},
|
|
747
|
+
archivePrefix={arXiv},
|
|
748
|
+
primaryClass={cs.CL}
|
|
749
|
+
}
|
|
750
|
+
|
|
751
|
+
|
|
752
|
+
@misc{bge_embedding,
|
|
753
|
+
title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
|
|
754
|
+
author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff},
|
|
755
|
+
year={2023},
|
|
756
|
+
eprint={2309.07597},
|
|
757
|
+
archivePrefix={arXiv},
|
|
758
|
+
primaryClass={cs.CL}
|
|
759
|
+
}""",
|
|
725
760
|
)
|
|
726
761
|
|
|
727
762
|
bge_en_icl = ModelMeta(
|
|
@@ -778,6 +813,14 @@ bge_m3_unsupervised = ModelMeta(
|
|
|
778
813
|
public_training_code="https://github.com/FlagOpen/FlagEmbedding",
|
|
779
814
|
public_training_data="https://huggingface.co/datasets/cfli/bge-full-data",
|
|
780
815
|
training_datasets=bge_m3_training_data,
|
|
816
|
+
citation="""@misc{bge-m3,
|
|
817
|
+
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
|
|
818
|
+
author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
|
|
819
|
+
year={2024},
|
|
820
|
+
eprint={2402.03216},
|
|
821
|
+
archivePrefix={arXiv},
|
|
822
|
+
primaryClass={cs.CL}
|
|
823
|
+
}""",
|
|
781
824
|
)
|
|
782
825
|
|
|
783
826
|
manu__bge_m3_custom_fr = ModelMeta(
|
|
@@ -123,6 +123,14 @@ dinov2_small = ModelMeta(
|
|
|
123
123
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
124
124
|
use_instructions=False,
|
|
125
125
|
training_datasets=dinov2_training_datasets,
|
|
126
|
+
citation="""@misc{oquab2023dinov2,
|
|
127
|
+
title={DINOv2: Learning Robust Visual Features without Supervision},
|
|
128
|
+
author={Maxime Oquab and Timothée Darcet and Théo Moutakanni and Huy Vo and Marc Szafraniec and Vasil Khalidov and Pierre Fernandez and Daniel Haziza and Francisco Massa and Alaaeldin El-Nouby and Mahmoud Assran and Nicolas Ballas and Wojciech Galuba and Russell Howes and Po-Yao Huang and Shang-Wen Li and Ishan Misra and Michael Rabbat and Vasu Sharma and Gabriel Synnaeve and Hu Xu and Hervé Jegou and Julien Mairal and Patrick Labatut and Armand Joulin and Piotr Bojanowski},
|
|
129
|
+
year={2023},
|
|
130
|
+
eprint={2304.07193},
|
|
131
|
+
archivePrefix={arXiv},
|
|
132
|
+
primaryClass={cs.CV}
|
|
133
|
+
}""",
|
|
126
134
|
)
|
|
127
135
|
|
|
128
136
|
dinov2_base = ModelMeta(
|
|
@@ -145,6 +153,14 @@ dinov2_base = ModelMeta(
|
|
|
145
153
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
146
154
|
use_instructions=False,
|
|
147
155
|
training_datasets=dinov2_training_datasets,
|
|
156
|
+
citation="""@misc{oquab2023dinov2,
|
|
157
|
+
title={DINOv2: Learning Robust Visual Features without Supervision},
|
|
158
|
+
author={Maxime Oquab and Timothée Darcet and Théo Moutakanni and Huy Vo and Marc Szafraniec and Vasil Khalidov and Pierre Fernandez and Daniel Haziza and Francisco Massa and Alaaeldin El-Nouby and Mahmoud Assran and Nicolas Ballas and Wojciech Galuba and Russell Howes and Po-Yao Huang and Shang-Wen Li and Ishan Misra and Michael Rabbat and Vasu Sharma and Gabriel Synnaeve and Hu Xu and Hervé Jegou and Julien Mairal and Patrick Labatut and Armand Joulin and Piotr Bojanowski},
|
|
159
|
+
year={2023},
|
|
160
|
+
eprint={2304.07193},
|
|
161
|
+
archivePrefix={arXiv},
|
|
162
|
+
primaryClass={cs.CV}
|
|
163
|
+
}""",
|
|
148
164
|
)
|
|
149
165
|
|
|
150
166
|
dinov2_large = ModelMeta(
|
|
@@ -167,6 +183,14 @@ dinov2_large = ModelMeta(
|
|
|
167
183
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
168
184
|
use_instructions=False,
|
|
169
185
|
training_datasets=dinov2_training_datasets,
|
|
186
|
+
citation="""@misc{oquab2023dinov2,
|
|
187
|
+
title={DINOv2: Learning Robust Visual Features without Supervision},
|
|
188
|
+
author={Maxime Oquab and Timothée Darcet and Théo Moutakanni and Huy Vo and Marc Szafraniec and Vasil Khalidov and Pierre Fernandez and Daniel Haziza and Francisco Massa and Alaaeldin El-Nouby and Mahmoud Assran and Nicolas Ballas and Wojciech Galuba and Russell Howes and Po-Yao Huang and Shang-Wen Li and Ishan Misra and Michael Rabbat and Vasu Sharma and Gabriel Synnaeve and Hu Xu and Hervé Jegou and Julien Mairal and Patrick Labatut and Armand Joulin and Piotr Bojanowski},
|
|
189
|
+
year={2023},
|
|
190
|
+
eprint={2304.07193},
|
|
191
|
+
archivePrefix={arXiv},
|
|
192
|
+
primaryClass={cs.CV}
|
|
193
|
+
}""",
|
|
170
194
|
)
|
|
171
195
|
|
|
172
196
|
dinov2_giant = ModelMeta(
|
|
@@ -189,6 +213,14 @@ dinov2_giant = ModelMeta(
|
|
|
189
213
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
190
214
|
use_instructions=False,
|
|
191
215
|
training_datasets=dinov2_training_datasets,
|
|
216
|
+
citation="""@misc{oquab2023dinov2,
|
|
217
|
+
title={DINOv2: Learning Robust Visual Features without Supervision},
|
|
218
|
+
author={Maxime Oquab and Timothée Darcet and Théo Moutakanni and Huy Vo and Marc Szafraniec and Vasil Khalidov and Pierre Fernandez and Daniel Haziza and Francisco Massa and Alaaeldin El-Nouby and Mahmoud Assran and Nicolas Ballas and Wojciech Galuba and Russell Howes and Po-Yao Huang and Shang-Wen Li and Ishan Misra and Michael Rabbat and Vasu Sharma and Gabriel Synnaeve and Hu Xu and Hervé Jegou and Julien Mairal and Patrick Labatut and Armand Joulin and Piotr Bojanowski},
|
|
219
|
+
year={2023},
|
|
220
|
+
eprint={2304.07193},
|
|
221
|
+
archivePrefix={arXiv},
|
|
222
|
+
primaryClass={cs.CV}
|
|
223
|
+
}""",
|
|
192
224
|
)
|
|
193
225
|
|
|
194
226
|
webssl_dino_training_datasets = set(
|
|
@@ -215,6 +247,14 @@ webssl_dino300m_full2b = ModelMeta(
|
|
|
215
247
|
similarity_fn_name=None,
|
|
216
248
|
use_instructions=False,
|
|
217
249
|
training_datasets=webssl_dino_training_datasets,
|
|
250
|
+
citation="""@article{fan2025scaling,
|
|
251
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
252
|
+
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
253
|
+
year={2025},
|
|
254
|
+
eprint={2504.01017},
|
|
255
|
+
archivePrefix={arXiv},
|
|
256
|
+
primaryClass={cs.CV}
|
|
257
|
+
}""",
|
|
218
258
|
)
|
|
219
259
|
|
|
220
260
|
webssl_dino1b_full2b = ModelMeta(
|
|
@@ -237,6 +277,14 @@ webssl_dino1b_full2b = ModelMeta(
|
|
|
237
277
|
similarity_fn_name=None,
|
|
238
278
|
use_instructions=False,
|
|
239
279
|
training_datasets=webssl_dino_training_datasets,
|
|
280
|
+
citation="""@article{fan2025scaling,
|
|
281
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
282
|
+
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
283
|
+
year={2025},
|
|
284
|
+
eprint={2504.01017},
|
|
285
|
+
archivePrefix={arXiv},
|
|
286
|
+
primaryClass={cs.CV}
|
|
287
|
+
}""",
|
|
240
288
|
)
|
|
241
289
|
|
|
242
290
|
webssl_dino2b_full2b = ModelMeta(
|
|
@@ -259,6 +307,14 @@ webssl_dino2b_full2b = ModelMeta(
|
|
|
259
307
|
similarity_fn_name=None,
|
|
260
308
|
use_instructions=False,
|
|
261
309
|
training_datasets=webssl_dino_training_datasets,
|
|
310
|
+
citation="""@article{fan2025scaling,
|
|
311
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
312
|
+
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
313
|
+
year={2025},
|
|
314
|
+
eprint={2504.01017},
|
|
315
|
+
archivePrefix={arXiv},
|
|
316
|
+
primaryClass={cs.CV}
|
|
317
|
+
}""",
|
|
262
318
|
)
|
|
263
319
|
|
|
264
320
|
webssl_dino3b_full2b = ModelMeta(
|
|
@@ -281,6 +337,14 @@ webssl_dino3b_full2b = ModelMeta(
|
|
|
281
337
|
similarity_fn_name=None,
|
|
282
338
|
use_instructions=False,
|
|
283
339
|
training_datasets=webssl_dino_training_datasets,
|
|
340
|
+
citation="""@article{fan2025scaling,
|
|
341
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
342
|
+
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
343
|
+
year={2025},
|
|
344
|
+
eprint={2504.01017},
|
|
345
|
+
archivePrefix={arXiv},
|
|
346
|
+
primaryClass={cs.CV}
|
|
347
|
+
}""",
|
|
284
348
|
)
|
|
285
349
|
|
|
286
350
|
webssl_dino5b_full2b = ModelMeta(
|
|
@@ -303,6 +367,14 @@ webssl_dino5b_full2b = ModelMeta(
|
|
|
303
367
|
similarity_fn_name=None,
|
|
304
368
|
use_instructions=False,
|
|
305
369
|
training_datasets=webssl_dino_training_datasets,
|
|
370
|
+
citation="""@article{fan2025scaling,
|
|
371
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
372
|
+
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
373
|
+
year={2025},
|
|
374
|
+
eprint={2504.01017},
|
|
375
|
+
archivePrefix={arXiv},
|
|
376
|
+
primaryClass={cs.CV}
|
|
377
|
+
}""",
|
|
306
378
|
)
|
|
307
379
|
|
|
308
380
|
webssl_dino7b_full8b_224 = ModelMeta(
|
|
@@ -325,6 +397,14 @@ webssl_dino7b_full8b_224 = ModelMeta(
|
|
|
325
397
|
similarity_fn_name=None,
|
|
326
398
|
use_instructions=False,
|
|
327
399
|
training_datasets=webssl_dino_training_datasets,
|
|
400
|
+
citation="""@article{fan2025scaling,
|
|
401
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
402
|
+
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
403
|
+
year={2025},
|
|
404
|
+
eprint={2504.01017},
|
|
405
|
+
archivePrefix={arXiv},
|
|
406
|
+
primaryClass={cs.CV}
|
|
407
|
+
}""",
|
|
328
408
|
)
|
|
329
409
|
|
|
330
410
|
webssl_dino7b_full8b_378 = ModelMeta(
|
|
@@ -347,6 +427,14 @@ webssl_dino7b_full8b_378 = ModelMeta(
|
|
|
347
427
|
similarity_fn_name=None,
|
|
348
428
|
use_instructions=False,
|
|
349
429
|
training_datasets=webssl_dino_training_datasets,
|
|
430
|
+
citation="""@article{fan2025scaling,
|
|
431
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
432
|
+
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
433
|
+
year={2025},
|
|
434
|
+
eprint={2504.01017},
|
|
435
|
+
archivePrefix={arXiv},
|
|
436
|
+
primaryClass={cs.CV}
|
|
437
|
+
}""",
|
|
350
438
|
)
|
|
351
439
|
|
|
352
440
|
webssl_dino7b_full8b_518 = ModelMeta(
|
|
@@ -369,6 +457,14 @@ webssl_dino7b_full8b_518 = ModelMeta(
|
|
|
369
457
|
similarity_fn_name=None,
|
|
370
458
|
use_instructions=False,
|
|
371
459
|
training_datasets=webssl_dino_training_datasets,
|
|
460
|
+
citation="""@article{fan2025scaling,
|
|
461
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
462
|
+
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
463
|
+
year={2025},
|
|
464
|
+
eprint={2504.01017},
|
|
465
|
+
archivePrefix={arXiv},
|
|
466
|
+
primaryClass={cs.CV}
|
|
467
|
+
}""",
|
|
372
468
|
)
|
|
373
469
|
|
|
374
470
|
|
|
@@ -392,6 +488,14 @@ webssl_dino2b_light2b = ModelMeta(
|
|
|
392
488
|
similarity_fn_name=None,
|
|
393
489
|
use_instructions=False,
|
|
394
490
|
training_datasets=webssl_dino_training_datasets,
|
|
491
|
+
citation="""@article{fan2025scaling,
|
|
492
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
493
|
+
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
494
|
+
year={2025},
|
|
495
|
+
eprint={2504.01017},
|
|
496
|
+
archivePrefix={arXiv},
|
|
497
|
+
primaryClass={cs.CV}
|
|
498
|
+
}""",
|
|
395
499
|
)
|
|
396
500
|
|
|
397
501
|
webssl_dino2b_heavy2b = ModelMeta(
|
|
@@ -414,6 +518,14 @@ webssl_dino2b_heavy2b = ModelMeta(
|
|
|
414
518
|
similarity_fn_name=None,
|
|
415
519
|
use_instructions=False,
|
|
416
520
|
training_datasets=webssl_dino_training_datasets,
|
|
521
|
+
citation="""@article{fan2025scaling,
|
|
522
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
523
|
+
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
524
|
+
year={2025},
|
|
525
|
+
eprint={2504.01017},
|
|
526
|
+
archivePrefix={arXiv},
|
|
527
|
+
primaryClass={cs.CV}
|
|
528
|
+
}""",
|
|
417
529
|
)
|
|
418
530
|
|
|
419
531
|
webssl_dino3b_light2b = ModelMeta(
|
|
@@ -436,6 +548,14 @@ webssl_dino3b_light2b = ModelMeta(
|
|
|
436
548
|
similarity_fn_name=None,
|
|
437
549
|
use_instructions=False,
|
|
438
550
|
training_datasets=webssl_dino_training_datasets,
|
|
551
|
+
citation="""@article{fan2025scaling,
|
|
552
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
553
|
+
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
554
|
+
year={2025},
|
|
555
|
+
eprint={2504.01017},
|
|
556
|
+
archivePrefix={arXiv},
|
|
557
|
+
primaryClass={cs.CV}
|
|
558
|
+
}""",
|
|
439
559
|
)
|
|
440
560
|
|
|
441
561
|
webssl_dino3b_heavy2b = ModelMeta(
|
|
@@ -458,6 +578,14 @@ webssl_dino3b_heavy2b = ModelMeta(
|
|
|
458
578
|
similarity_fn_name=None,
|
|
459
579
|
use_instructions=False,
|
|
460
580
|
training_datasets=webssl_dino_training_datasets,
|
|
581
|
+
citation="""@article{fan2025scaling,
|
|
582
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
583
|
+
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
584
|
+
year={2025},
|
|
585
|
+
eprint={2504.01017},
|
|
586
|
+
archivePrefix={arXiv},
|
|
587
|
+
primaryClass={cs.CV}
|
|
588
|
+
}""",
|
|
461
589
|
)
|
|
462
590
|
|
|
463
591
|
webssl_mae300m_full2b = ModelMeta(
|
|
@@ -480,6 +608,14 @@ webssl_mae300m_full2b = ModelMeta(
|
|
|
480
608
|
similarity_fn_name=None,
|
|
481
609
|
use_instructions=False,
|
|
482
610
|
training_datasets=webssl_dino_training_datasets,
|
|
611
|
+
citation="""@article{fan2025scaling,
|
|
612
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
613
|
+
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
614
|
+
year={2025},
|
|
615
|
+
eprint={2504.01017},
|
|
616
|
+
archivePrefix={arXiv},
|
|
617
|
+
primaryClass={cs.CV}
|
|
618
|
+
}""",
|
|
483
619
|
)
|
|
484
620
|
|
|
485
621
|
webssl_mae700m_full2b = ModelMeta(
|
|
@@ -502,6 +638,14 @@ webssl_mae700m_full2b = ModelMeta(
|
|
|
502
638
|
similarity_fn_name=None,
|
|
503
639
|
use_instructions=False,
|
|
504
640
|
training_datasets=webssl_dino_training_datasets,
|
|
641
|
+
citation="""@article{fan2025scaling,
|
|
642
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
643
|
+
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
644
|
+
year={2025},
|
|
645
|
+
eprint={2504.01017},
|
|
646
|
+
archivePrefix={arXiv},
|
|
647
|
+
primaryClass={cs.CV}
|
|
648
|
+
}""",
|
|
505
649
|
)
|
|
506
650
|
|
|
507
651
|
webssl_mae1b_full2b = ModelMeta(
|
|
@@ -524,4 +668,12 @@ webssl_mae1b_full2b = ModelMeta(
|
|
|
524
668
|
similarity_fn_name=None,
|
|
525
669
|
use_instructions=False,
|
|
526
670
|
training_datasets=webssl_dino_training_datasets,
|
|
671
|
+
citation="""@article{fan2025scaling,
|
|
672
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
673
|
+
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
674
|
+
year={2025},
|
|
675
|
+
eprint={2504.01017},
|
|
676
|
+
archivePrefix={arXiv},
|
|
677
|
+
primaryClass={cs.CV}
|
|
678
|
+
}""",
|
|
527
679
|
)
|
|
@@ -21,6 +21,15 @@ embedding_gemma_300m_scandi = ModelMeta(
|
|
|
21
21
|
similarity_fn_name="cosine", # type: ignore[arg-type]
|
|
22
22
|
adapted_from="google/embeddinggemma-300m",
|
|
23
23
|
memory_usage_mb=578,
|
|
24
|
+
citation="""@inproceedings{reimers-2019-sentence-bert,
|
|
25
|
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
26
|
+
author = "Reimers, Nils and Gurevych, Iryna",
|
|
27
|
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
28
|
+
month = "11",
|
|
29
|
+
year = "2019",
|
|
30
|
+
publisher = "Association for Computational Linguistics",
|
|
31
|
+
url = "https://arxiv.org/abs/1908.10084",
|
|
32
|
+
}""",
|
|
24
33
|
)
|
|
25
34
|
|
|
26
35
|
|
|
@@ -67,4 +76,13 @@ mmbert_scandi = ModelMeta(
|
|
|
67
76
|
training_datasets=set(),
|
|
68
77
|
similarity_fn_name="cosine", # type: ignore[arg-type]
|
|
69
78
|
adapted_from="jonasaise/scandmmBERT-base-scandinavian",
|
|
79
|
+
citation="""@inproceedings{reimers-2019-sentence-bert,
|
|
80
|
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
81
|
+
author = "Reimers, Nils and Gurevych, Iryna",
|
|
82
|
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
83
|
+
month = "11",
|
|
84
|
+
year = "2019",
|
|
85
|
+
publisher = "Association for Computational Linguistics",
|
|
86
|
+
url = "https://arxiv.org/abs/1908.10084",
|
|
87
|
+
}""",
|
|
70
88
|
)
|
|
@@ -22,4 +22,10 @@ Euler_Legal_Embedding_V1 = ModelMeta(
|
|
|
22
22
|
training_datasets=set(), # final-data-new-anonymized-grok4-filtered
|
|
23
23
|
adapted_from="Qwen/Qwen3-Embedding-8B",
|
|
24
24
|
superseded_by=None,
|
|
25
|
+
citation="""@misc{euler2025legal,
|
|
26
|
+
title={Euler-Legal-Embedding: Advanced Legal Representation Learning},
|
|
27
|
+
author={LawRank Team},
|
|
28
|
+
year={2025},
|
|
29
|
+
publisher={Hugging Face}
|
|
30
|
+
}""",
|
|
25
31
|
)
|
|
@@ -156,6 +156,15 @@ tooka_sbert = ModelMeta(
|
|
|
156
156
|
public_training_code=None,
|
|
157
157
|
public_training_data=None,
|
|
158
158
|
training_datasets=None,
|
|
159
|
+
citation="""@inproceedings{reimers-2019-sentence-bert,
|
|
160
|
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
161
|
+
author = "Reimers, Nils and Gurevych, Iryna",
|
|
162
|
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
163
|
+
month = "11",
|
|
164
|
+
year = "2019",
|
|
165
|
+
publisher = "Association for Computational Linguistics",
|
|
166
|
+
url = "https://arxiv.org/abs/1908.10084",
|
|
167
|
+
}""",
|
|
159
168
|
)
|
|
160
169
|
|
|
161
170
|
fa_bert = ModelMeta(
|
|
@@ -180,6 +189,29 @@ fa_bert = ModelMeta(
|
|
|
180
189
|
# It's just a base model
|
|
181
190
|
# https://huggingface.co/datasets/sbunlp/hmblogs-v3
|
|
182
191
|
),
|
|
192
|
+
citation="""@inproceedings{masumi-etal-2025-fabert,
|
|
193
|
+
title = "{F}a{BERT}: Pre-training {BERT} on {P}ersian Blogs",
|
|
194
|
+
author = "Masumi, Mostafa and
|
|
195
|
+
Majd, Seyed Soroush and
|
|
196
|
+
Shamsfard, Mehrnoush and
|
|
197
|
+
Beigy, Hamid",
|
|
198
|
+
editor = "Bak, JinYeong and
|
|
199
|
+
Goot, Rob van der and
|
|
200
|
+
Jang, Hyeju and
|
|
201
|
+
Buaphet, Weerayut and
|
|
202
|
+
Ramponi, Alan and
|
|
203
|
+
Xu, Wei and
|
|
204
|
+
Ritter, Alan",
|
|
205
|
+
booktitle = "Proceedings of the Tenth Workshop on Noisy and User-generated Text",
|
|
206
|
+
month = may,
|
|
207
|
+
year = "2025",
|
|
208
|
+
address = "Albuquerque, New Mexico, USA",
|
|
209
|
+
publisher = "Association for Computational Linguistics",
|
|
210
|
+
url = "https://aclanthology.org/2025.wnut-1.10/",
|
|
211
|
+
doi = "10.18653/v1/2025.wnut-1.10",
|
|
212
|
+
pages = "85--96",
|
|
213
|
+
ISBN = "979-8-89176-232-9",
|
|
214
|
+
}""",
|
|
183
215
|
)
|
|
184
216
|
|
|
185
217
|
tooka_sbert_v2_small = ModelMeta(
|
|
@@ -201,6 +233,15 @@ tooka_sbert_v2_small = ModelMeta(
|
|
|
201
233
|
public_training_code=None,
|
|
202
234
|
public_training_data=None,
|
|
203
235
|
training_datasets=None,
|
|
236
|
+
citation="""@inproceedings{reimers-2019-sentence-bert,
|
|
237
|
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
238
|
+
author = "Reimers, Nils and Gurevych, Iryna",
|
|
239
|
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
240
|
+
month = "11",
|
|
241
|
+
year = "2019",
|
|
242
|
+
publisher = "Association for Computational Linguistics",
|
|
243
|
+
url = "https://arxiv.org/abs/1908.10084",
|
|
244
|
+
}""",
|
|
204
245
|
)
|
|
205
246
|
|
|
206
247
|
tooka_sbert_v2_large = ModelMeta(
|
|
@@ -222,4 +263,13 @@ tooka_sbert_v2_large = ModelMeta(
|
|
|
222
263
|
public_training_code=None,
|
|
223
264
|
public_training_data=None,
|
|
224
265
|
training_datasets=None,
|
|
266
|
+
citation="""@inproceedings{reimers-2019-sentence-bert,
|
|
267
|
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
268
|
+
author = "Reimers, Nils and Gurevych, Iryna",
|
|
269
|
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
270
|
+
month = "11",
|
|
271
|
+
year = "2019",
|
|
272
|
+
publisher = "Association for Computational Linguistics",
|
|
273
|
+
url = "https://arxiv.org/abs/1908.10084",
|
|
274
|
+
}""",
|
|
225
275
|
)
|
|
@@ -123,6 +123,28 @@ xlmr_base = ModelMeta(
|
|
|
123
123
|
public_training_code=None,
|
|
124
124
|
public_training_data=None,
|
|
125
125
|
training_datasets=set(),
|
|
126
|
+
citation="""@article{DBLP:journals/corr/abs-1911-02116,
|
|
127
|
+
author = {Alexis Conneau and
|
|
128
|
+
Kartikay Khandelwal and
|
|
129
|
+
Naman Goyal and
|
|
130
|
+
Vishrav Chaudhary and
|
|
131
|
+
Guillaume Wenzek and
|
|
132
|
+
Francisco Guzm{\'{a}}n and
|
|
133
|
+
Edouard Grave and
|
|
134
|
+
Myle Ott and
|
|
135
|
+
Luke Zettlemoyer and
|
|
136
|
+
Veselin Stoyanov},
|
|
137
|
+
title = {Unsupervised Cross-lingual Representation Learning at Scale},
|
|
138
|
+
journal = {CoRR},
|
|
139
|
+
volume = {abs/1911.02116},
|
|
140
|
+
year = {2019},
|
|
141
|
+
url = {http://arxiv.org/abs/1911.02116},
|
|
142
|
+
eprinttype = {arXiv},
|
|
143
|
+
eprint = {1911.02116},
|
|
144
|
+
timestamp = {Mon, 11 Nov 2019 18:38:09 +0100},
|
|
145
|
+
biburl = {https://dblp.org/rec/journals/corr/abs-1911-02116.bib},
|
|
146
|
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
|
147
|
+
}""",
|
|
126
148
|
)
|
|
127
149
|
|
|
128
150
|
xlmr_large = ModelMeta(
|
|
@@ -144,4 +166,26 @@ xlmr_large = ModelMeta(
|
|
|
144
166
|
public_training_code=None,
|
|
145
167
|
public_training_data=None,
|
|
146
168
|
training_datasets=set(),
|
|
169
|
+
citation="""@article{DBLP:journals/corr/abs-1911-02116,
|
|
170
|
+
author = {Alexis Conneau and
|
|
171
|
+
Kartikay Khandelwal and
|
|
172
|
+
Naman Goyal and
|
|
173
|
+
Vishrav Chaudhary and
|
|
174
|
+
Guillaume Wenzek and
|
|
175
|
+
Francisco Guzm{\'{a}}n and
|
|
176
|
+
Edouard Grave and
|
|
177
|
+
Myle Ott and
|
|
178
|
+
Luke Zettlemoyer and
|
|
179
|
+
Veselin Stoyanov},
|
|
180
|
+
title = {Unsupervised Cross-lingual Representation Learning at Scale},
|
|
181
|
+
journal = {CoRR},
|
|
182
|
+
volume = {abs/1911.02116},
|
|
183
|
+
year = {2019},
|
|
184
|
+
url = {http://arxiv.org/abs/1911.02116},
|
|
185
|
+
eprinttype = {arXiv},
|
|
186
|
+
eprint = {1911.02116},
|
|
187
|
+
timestamp = {Mon, 11 Nov 2019 18:38:09 +0100},
|
|
188
|
+
biburl = {https://dblp.org/rec/journals/corr/abs-1911-02116.bib},
|
|
189
|
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
|
190
|
+
}""",
|
|
147
191
|
)
|