mteb 2.0.4__py3-none-any.whl → 2.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (120) hide show
  1. mteb/__init__.py +10 -1
  2. mteb/benchmarks/benchmarks/__init__.py +2 -0
  3. mteb/benchmarks/benchmarks/benchmarks.py +75 -0
  4. mteb/descriptive_stats/BitextMining/BUCC.json +70 -40
  5. mteb/descriptive_stats/Classification/DKHateClassification.json +40 -24
  6. mteb/descriptive_stats/Classification/DutchColaClassification.json +54 -0
  7. mteb/descriptive_stats/Classification/DutchGovernmentBiasClassification.json +54 -0
  8. mteb/descriptive_stats/Classification/DutchNewsArticlesClassification.json +90 -0
  9. mteb/descriptive_stats/Classification/DutchSarcasticHeadlinesClassification.json +54 -0
  10. mteb/descriptive_stats/Classification/FinancialPhrasebankClassification.json +23 -15
  11. mteb/descriptive_stats/Classification/IconclassClassification.json +96 -0
  12. mteb/descriptive_stats/Classification/ImdbClassification.json +40 -24
  13. mteb/descriptive_stats/Classification/KorHateClassification.json +23 -15
  14. mteb/descriptive_stats/Classification/OpenTenderClassification.json +222 -0
  15. mteb/descriptive_stats/Classification/VaccinChatNLClassification.json +1068 -0
  16. mteb/descriptive_stats/Clustering/ArxivClusteringP2P.json +555 -550
  17. mteb/descriptive_stats/Clustering/ArxivClusteringP2P.v2.json +546 -541
  18. mteb/descriptive_stats/Clustering/ArxivClusteringS2S.json +555 -550
  19. mteb/descriptive_stats/Clustering/DutchNewsArticlesClusteringP2P.json +45 -0
  20. mteb/descriptive_stats/Clustering/DutchNewsArticlesClusteringS2S.json +45 -0
  21. mteb/descriptive_stats/Clustering/IconclassClusteringS2S.json +48 -0
  22. mteb/descriptive_stats/Clustering/MLSUMClusteringP2P.json +2466 -2416
  23. mteb/descriptive_stats/Clustering/OpenTenderClusteringP2P.json +111 -0
  24. mteb/descriptive_stats/Clustering/OpenTenderClusteringS2S.json +111 -0
  25. mteb/descriptive_stats/Clustering/RedditClusteringP2P.json +1365 -1360
  26. mteb/descriptive_stats/Clustering/SNLClustering.json +378 -373
  27. mteb/descriptive_stats/Clustering/SwednClustering.json +28 -23
  28. mteb/descriptive_stats/Clustering/VABBClusteringP2P.json +60 -0
  29. mteb/descriptive_stats/Clustering/VABBClusteringS2S.json +60 -0
  30. mteb/descriptive_stats/Clustering/VGClustering.json +54 -49
  31. mteb/descriptive_stats/Image/Any2AnyMultilingualRetrieval/WITT2IRetrieval.json +324 -204
  32. mteb/descriptive_stats/Image/Any2AnyRetrieval/MemotionI2TRetrieval.json +28 -18
  33. mteb/descriptive_stats/Image/DocumentUnderstanding/JinaVDRAirbnbSyntheticRetrieval.json +334 -0
  34. mteb/descriptive_stats/Image/DocumentUnderstanding/JinaVDRGitHubReadmeRetrieval.json +544 -0
  35. mteb/descriptive_stats/Image/DocumentUnderstanding/JinaVDRTweetStockSyntheticsRetrieval.json +334 -0
  36. mteb/descriptive_stats/Image/DocumentUnderstanding/JinaVDRWikimediaCommonsDocumentsRetrieval.json +634 -0
  37. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore2ESGReportsRetrieval.json +154 -0
  38. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore2EconomicsReportsRetrieval.json +154 -0
  39. mteb/descriptive_stats/Image/ImageClassification/Imagenet1k.json +6039 -3007
  40. mteb/descriptive_stats/Image/ZeroShotClassification/Imagenet1kZeroShot.json +3024 -3010
  41. mteb/descriptive_stats/Image/ZeroShotClassification/PatchCamelyonZeroShot.json +30 -16
  42. mteb/descriptive_stats/MultilabelClassification/CovidDisinformationNLMultiLabelClassification.json +84 -0
  43. mteb/descriptive_stats/MultilabelClassification/VABBMultiLabelClassification.json +156 -0
  44. mteb/descriptive_stats/PairClassification/SICKNLPairClassification.json +35 -0
  45. mteb/descriptive_stats/PairClassification/XLWICNLPairClassification.json +35 -0
  46. mteb/descriptive_stats/Reranking/MIRACLReranking.json +555 -479
  47. mteb/descriptive_stats/Reranking/MindSmallReranking.json +29 -25
  48. mteb/descriptive_stats/Retrieval/AlloprofRetrieval.json +25 -26
  49. mteb/descriptive_stats/Retrieval/Code1Retrieval.json +30 -0
  50. mteb/descriptive_stats/Retrieval/DanFEVER.json +25 -26
  51. mteb/descriptive_stats/Retrieval/DutchNewsArticlesRetrieval.json +30 -0
  52. mteb/descriptive_stats/Retrieval/EnglishFinance1Retrieval.json +30 -0
  53. mteb/descriptive_stats/Retrieval/EnglishFinance2Retrieval.json +30 -0
  54. mteb/descriptive_stats/Retrieval/EnglishFinance3Retrieval.json +30 -0
  55. mteb/descriptive_stats/Retrieval/EnglishFinance4Retrieval.json +30 -0
  56. mteb/descriptive_stats/Retrieval/EnglishHealthcare1Retrieval.json +30 -0
  57. mteb/descriptive_stats/Retrieval/French1Retrieval.json +30 -0
  58. mteb/descriptive_stats/Retrieval/FrenchLegal1Retrieval.json +30 -0
  59. mteb/descriptive_stats/Retrieval/German1Retrieval.json +30 -0
  60. mteb/descriptive_stats/Retrieval/GermanHealthcare1Retrieval.json +30 -0
  61. mteb/descriptive_stats/Retrieval/GermanLegal1Retrieval.json +30 -0
  62. mteb/descriptive_stats/Retrieval/JapaneseCode1Retrieval.json +30 -0
  63. mteb/descriptive_stats/Retrieval/JapaneseLegal1Retrieval.json +30 -0
  64. mteb/descriptive_stats/Retrieval/LegalQANLRetrieval.json +30 -0
  65. mteb/descriptive_stats/Retrieval/MIRACLRetrieval.json +475 -494
  66. mteb/descriptive_stats/Retrieval/MSMARCO-Fa.json +25 -26
  67. mteb/descriptive_stats/Retrieval/MSMARCO.json +25 -84
  68. mteb/descriptive_stats/Retrieval/OpenTenderRetrieval.json +30 -0
  69. mteb/descriptive_stats/Retrieval/Touche2020.json +25 -26
  70. mteb/descriptive_stats/Retrieval/VABBRetrieval.json +30 -0
  71. mteb/descriptive_stats/Retrieval/bBSARDNLRetrieval.json +30 -0
  72. mteb/descriptive_stats/STS/SICK-NL-STS.json +28 -0
  73. mteb/descriptive_stats/Summarization/SummEval.json +27 -50
  74. mteb/descriptive_stats/Summarization/SummEvalFr.json +27 -50
  75. mteb/models/model_implementations/kalm_models.py +29 -0
  76. mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +1 -1
  77. mteb/tasks/classification/eng/financial_phrasebank_classification.py +0 -3
  78. mteb/tasks/classification/kor/kor_hate_classification.py +0 -12
  79. mteb/tasks/classification/nld/__init__.py +16 -0
  80. mteb/tasks/classification/nld/dutch_cola_classification.py +38 -0
  81. mteb/tasks/classification/nld/dutch_government_bias_classification.py +37 -0
  82. mteb/tasks/classification/nld/dutch_news_articles_classification.py +30 -0
  83. mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +36 -0
  84. mteb/tasks/classification/nld/iconclass_classification.py +41 -0
  85. mteb/tasks/classification/nld/open_tender_classification.py +38 -0
  86. mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +46 -0
  87. mteb/tasks/clustering/__init__.py +1 -0
  88. mteb/tasks/clustering/nld/__init__.py +17 -0
  89. mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +37 -0
  90. mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +37 -0
  91. mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +47 -0
  92. mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +51 -0
  93. mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +41 -0
  94. mteb/tasks/clustering/nld/vabb_clustering_p2p.py +51 -0
  95. mteb/tasks/clustering/nld/vabb_clustering_s2s.py +51 -0
  96. mteb/tasks/clustering/swe/swedn_clustering.py +2 -2
  97. mteb/tasks/multilabel_classification/__init__.py +1 -0
  98. mteb/tasks/multilabel_classification/nld/__init__.py +9 -0
  99. mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +88 -0
  100. mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +44 -0
  101. mteb/tasks/pair_classification/__init__.py +1 -0
  102. mteb/tasks/pair_classification/nld/__init__.py +7 -0
  103. mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +36 -0
  104. mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +41 -0
  105. mteb/tasks/retrieval/multilingual/vdr_multilingual_retrieval.py +1 -1
  106. mteb/tasks/retrieval/nld/__init__.py +10 -0
  107. mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +41 -0
  108. mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +30 -0
  109. mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +39 -0
  110. mteb/tasks/retrieval/nld/open_tender_retrieval.py +38 -0
  111. mteb/tasks/retrieval/nld/vabb_retrieval.py +41 -0
  112. mteb/tasks/sts/__init__.py +1 -0
  113. mteb/tasks/sts/nld/__init__.py +5 -0
  114. mteb/tasks/sts/nld/sick_nl_sts.py +41 -0
  115. {mteb-2.0.4.dist-info → mteb-2.1.0.dist-info}/METADATA +2 -204
  116. {mteb-2.0.4.dist-info → mteb-2.1.0.dist-info}/RECORD +120 -49
  117. {mteb-2.0.4.dist-info → mteb-2.1.0.dist-info}/WHEEL +0 -0
  118. {mteb-2.0.4.dist-info → mteb-2.1.0.dist-info}/entry_points.txt +0 -0
  119. {mteb-2.0.4.dist-info → mteb-2.1.0.dist-info}/licenses/LICENSE +0 -0
  120. {mteb-2.0.4.dist-info → mteb-2.1.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,88 @@
1
+ from mteb.abstasks.multilabel_classification import (
2
+ AbsTaskMultilabelClassification,
3
+ )
4
+ from mteb.abstasks.task_metadata import TaskMetadata
5
+
6
+
7
+ class CovidDisinformationNLMultiLabelClassification(AbsTaskMultilabelClassification):
8
+ metadata = TaskMetadata(
9
+ name="CovidDisinformationNLMultiLabelClassification",
10
+ dataset={
11
+ "path": "clips/mteb-nl-COVID-19-disinformation",
12
+ "revision": "7ad922bdef875db1f530847c6ffff05fc154f2e8",
13
+ },
14
+ description="The dataset is curated to address questions of interest to journalists, fact-checkers, "
15
+ "social media platforms, policymakers, and the general public.",
16
+ reference="https://aclanthology.org/2021.findings-emnlp.56.pdf",
17
+ type="MultilabelClassification",
18
+ category="t2c",
19
+ modalities=["text"],
20
+ eval_splits=["test"],
21
+ eval_langs=["nld-Latn"],
22
+ main_score="f1",
23
+ date=("2020-01-01", "2021-04-01"),
24
+ domains=["Web", "Social", "Written"],
25
+ task_subtypes=[],
26
+ license="cc-by-4.0",
27
+ annotations_creators="human-annotated",
28
+ dialect=[],
29
+ sample_creation="found",
30
+ bibtex_citation=r"""
31
+ @inproceedings{alam-etal-2021-fighting-covid,
32
+ address = {Punta Cana, Dominican Republic},
33
+ author = {Alam, Firoj and
34
+ Shaar, Shaden and
35
+ Dalvi, Fahim and
36
+ Sajjad, Hassan and
37
+ Nikolov, Alex and
38
+ Mubarak, Hamdy and
39
+ Da San Martino, Giovanni and
40
+ Abdelali, Ahmed and
41
+ Durrani, Nadir and
42
+ Darwish, Kareem and
43
+ Al-Homaid, Abdulaziz and
44
+ Zaghouani, Wajdi and
45
+ Caselli, Tommaso and
46
+ Danoe, Gijs and
47
+ Stolk, Friso and
48
+ Bruntink, Britt and
49
+ Nakov, Preslav},
50
+ booktitle = {Findings of the Association for Computational Linguistics: EMNLP 2021},
51
+ doi = {10.18653/v1/2021.findings-emnlp.56},
52
+ editor = {Moens, Marie-Francine and
53
+ Huang, Xuanjing and
54
+ Specia, Lucia and
55
+ Yih, Scott Wen-tau},
56
+ month = nov,
57
+ pages = {611--649},
58
+ publisher = {Association for Computational Linguistics},
59
+ title = {Fighting the {COVID}-19 Infodemic: Modeling the Perspective of Journalists, Fact-Checkers, Social Media Platforms, Policy Makers, and the Society},
60
+ url = {https://aclanthology.org/2021.findings-emnlp.56/},
61
+ year = {2021},
62
+ }
63
+ """,
64
+ )
65
+
66
+ def dataset_transform(self) -> None:
67
+ labels = [
68
+ "q2_label",
69
+ "q3_label",
70
+ "q4_label",
71
+ "q5_label",
72
+ "q6_label",
73
+ "q7_label",
74
+ ]
75
+ _dataset = {}
76
+
77
+ def map_labels(example):
78
+ ml_labels = []
79
+ for i, label in enumerate(labels):
80
+ if example[label] == "yes":
81
+ ml_labels.append(i)
82
+ return {"label": ml_labels}
83
+
84
+ for split in self.dataset:
85
+ self.dataset[split] = self.dataset[split].filter(
86
+ lambda ex: ex["q1_label"] == "yes"
87
+ )
88
+ self.dataset[split] = self.dataset[split].map(map_labels)
@@ -0,0 +1,44 @@
1
+ from mteb.abstasks.multilabel_classification import (
2
+ AbsTaskMultilabelClassification,
3
+ )
4
+ from mteb.abstasks.task_metadata import TaskMetadata
5
+
6
+
7
+ class VABBMultiLabelClassification(AbsTaskMultilabelClassification):
8
+ samples_per_label = 128
9
+ metadata = TaskMetadata(
10
+ name="VABBMultiLabelClassification",
11
+ dataset={
12
+ "path": "clips/mteb-nl-vabb-mlcls-pr",
13
+ "revision": "584c70f5104671772119f21e9f8a3c912ac07d4a",
14
+ },
15
+ description="This dataset contains the fourteenth edition of the Flemish Academic Bibliography for the Social "
16
+ "Sciences and Humanities (VABB-SHW), a database of academic publications from the social sciences "
17
+ "and humanities authored by researchers affiliated to Flemish universities (more information). "
18
+ "Publications in the database are used as one of the parameters of the Flemish performance-based "
19
+ "research funding system",
20
+ reference="https://zenodo.org/records/14214806",
21
+ type="MultilabelClassification",
22
+ category="t2c",
23
+ modalities=["text"],
24
+ eval_splits=["test"],
25
+ eval_langs=["nld-Latn"],
26
+ main_score="f1",
27
+ date=("2020-01-01", "2021-04-01"),
28
+ domains=["Academic", "Written"],
29
+ task_subtypes=[],
30
+ license="cc-by-4.0",
31
+ annotations_creators="human-annotated",
32
+ dialect=[],
33
+ sample_creation="found",
34
+ bibtex_citation=r"""
35
+ @dataset{aspeslagh2024vabb,
36
+ author = {Aspeslagh, Pieter and Guns, Raf and Engels, Tim C. E.},
37
+ doi = {10.5281/zenodo.14214806},
38
+ publisher = {Zenodo},
39
+ title = {VABB-SHW: Dataset of Flemish Academic Bibliography for the Social Sciences and Humanities (edition 14)},
40
+ url = {https://doi.org/10.5281/zenodo.14214806},
41
+ year = {2024},
42
+ }
43
+ """,
44
+ )
@@ -9,6 +9,7 @@ from .ind import *
9
9
  from .ita import *
10
10
  from .kor import *
11
11
  from .multilingual import *
12
+ from .nld import *
12
13
  from .pol import *
13
14
  from .por import *
14
15
  from .rus import *
@@ -0,0 +1,7 @@
1
+ from .sick_nl_pair_classification import SICKNLPairClassification
2
+ from .xlwic_nl_pair_classification import XLWICNLPairClassification
3
+
4
+ __all__ = [
5
+ "SICKNLPairClassification",
6
+ "XLWICNLPairClassification",
7
+ ]
@@ -0,0 +1,36 @@
1
+ from mteb.abstasks.pair_classification import AbsTaskPairClassification
2
+ from mteb.abstasks.task_metadata import TaskMetadata
3
+
4
+
5
+ class SICKNLPairClassification(AbsTaskPairClassification):
6
+ metadata = TaskMetadata(
7
+ name="SICKNLPairClassification",
8
+ dataset={
9
+ "path": "clips/mteb-nl-sick-pcls-pr",
10
+ "revision": "a13a1892bcb4c077dc416d390389223eea5f20f0",
11
+ },
12
+ description="SICK-NL is a Dutch translation of SICK ",
13
+ reference="https://aclanthology.org/2021.eacl-main.126/",
14
+ type="PairClassification",
15
+ category="t2t",
16
+ modalities=["text"],
17
+ eval_splits=["test"],
18
+ eval_langs=["nld-Latn"],
19
+ main_score="max_ap",
20
+ date=("2020-09-01", "2021-01-01"),
21
+ domains=["Web", "Written"],
22
+ task_subtypes=[],
23
+ license="mit",
24
+ annotations_creators="human-annotated",
25
+ dialect=[],
26
+ sample_creation="machine-translated and verified",
27
+ bibtex_citation=r"""
28
+ @inproceedings{wijnholds2021sick,
29
+ author = {Wijnholds, Gijs and Moortgat, Michael},
30
+ booktitle = {Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume},
31
+ pages = {1474--1479},
32
+ title = {SICK-NL: A Dataset for Dutch Natural Language Inference},
33
+ year = {2021},
34
+ }
35
+ """,
36
+ )
@@ -0,0 +1,41 @@
1
+ from mteb.abstasks.pair_classification import AbsTaskPairClassification
2
+ from mteb.abstasks.task_metadata import TaskMetadata
3
+
4
+
5
+ class XLWICNLPairClassification(AbsTaskPairClassification):
6
+ metadata = TaskMetadata(
7
+ name="XLWICNLPairClassification",
8
+ description="The Word-in-Context dataset (WiC) addresses the dependence on sense inventories by reformulating "
9
+ "the standard disambiguation task as a binary classification problem; but, it is limited to the "
10
+ "English language. We put forward a large multilingual benchmark, XL-WiC, featuring gold standards "
11
+ "in 12 new languages from varied language families and with different degrees of resource "
12
+ "availability, opening room for evaluation scenarios such as zero-shot cross-lingual transfer. ",
13
+ reference="https://aclanthology.org/2020.emnlp-main.584.pdf",
14
+ dataset={
15
+ "path": "clips/mteb-nl-xlwic",
16
+ "revision": "0b33ce358b1b5d500ff3715ba3d777b4d2c21cb0",
17
+ },
18
+ type="PairClassification",
19
+ category="t2t",
20
+ modalities=["text"],
21
+ date=("2019-10-04", "2019-10-04"),
22
+ eval_splits=["test"],
23
+ eval_langs=["nld-Latn"],
24
+ main_score="max_ap",
25
+ domains=["Written"],
26
+ task_subtypes=[],
27
+ license="cc-by-nc-sa-4.0",
28
+ annotations_creators="derived",
29
+ dialect=[],
30
+ sample_creation="created",
31
+ bibtex_citation=r"""
32
+ @inproceedings{raganato2020xl,
33
+ author = {Raganato, A and Pasini, T and Camacho-Collados, J and Pilehvar, M and others},
34
+ booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
35
+ organization = {Association for Computational Linguistics (ACL)},
36
+ pages = {7193--7206},
37
+ title = {XL-WiC: A multilingual benchmark for evaluating semantic contextualization},
38
+ year = {2020},
39
+ }
40
+ """,
41
+ )
@@ -101,7 +101,7 @@ class VDRMultilingualRetrieval(AbsTaskRetrieval):
101
101
  "revision": "9e26ae152f5950ab1a5ff1c58edade3acc894793",
102
102
  },
103
103
  type="Retrieval",
104
- category="it2it",
104
+ category="t2i",
105
105
  modalities=["text", "image"],
106
106
  eval_splits=[_EVAL_SPLIT],
107
107
  eval_langs=_LANGS,
@@ -1,4 +1,5 @@
1
1
  from .argu_ana_nl_retrieval import ArguAnaNL
2
+ from .bbsard_nl_retrieval import BBSARDNLRetrieval
2
3
  from .climate_fevernl_retrieval import ClimateFEVERNL
3
4
  from .cqa_dupstack_android_nl_retrieval import CQADupstackAndroidNLRetrieval
4
5
  from .cqa_dupstack_english_nl_retrieval import CQADupstackEnglishNLRetrieval
@@ -13,17 +14,21 @@ from .cqa_dupstack_unix_nl_retrieval import CQADupstackUnixNLRetrieval
13
14
  from .cqa_dupstack_webmasters_nl_retrieval import CQADupstackWebmastersNLRetrieval
14
15
  from .cqa_dupstack_wordpress_nl_retrieval import CQADupstackWordpressNLRetrieval
15
16
  from .db_pedia_nl_retrieval import DBPediaNL
17
+ from .dutch_news_articles_retrieval import DutchNewsArticlesRetrieval
16
18
  from .fevernl_retrieval import FEVERNL
17
19
  from .fi_qa2018_nl_retrieval import FiQA2018NL
18
20
  from .hotpot_qanl_retrieval import HotpotQANL
21
+ from .legal_qa_nl_retrieval import LegalQANLRetrieval
19
22
  from .mmarconl_retrieval import MMMARCONL
20
23
  from .nf_corpus_nl_retrieval import NFCorpusNL
21
24
  from .nqnl_retrieval import NQNL
25
+ from .open_tender_retrieval import OpenTenderRetrieval
22
26
  from .quora_nl_retrieval import QuoraNLRetrieval
23
27
  from .sci_fact_nl_retrieval import SciFactNL
24
28
  from .scidocsnl_retrieval import SCIDOCSNL
25
29
  from .touche2020_nl_retrieval import Touche2020NL
26
30
  from .treccovidnl_retrieval import TRECCOVIDNL
31
+ from .vabb_retrieval import VABBRetrieval
27
32
 
28
33
  __all__ = [
29
34
  "FEVERNL",
@@ -32,6 +37,7 @@ __all__ = [
32
37
  "SCIDOCSNL",
33
38
  "TRECCOVIDNL",
34
39
  "ArguAnaNL",
40
+ "BBSARDNLRetrieval",
35
41
  "CQADupstackAndroidNLRetrieval",
36
42
  "CQADupstackEnglishNLRetrieval",
37
43
  "CQADupstackGamingNLRetrieval",
@@ -46,10 +52,14 @@ __all__ = [
46
52
  "CQADupstackWordpressNLRetrieval",
47
53
  "ClimateFEVERNL",
48
54
  "DBPediaNL",
55
+ "DutchNewsArticlesRetrieval",
49
56
  "FiQA2018NL",
50
57
  "HotpotQANL",
58
+ "LegalQANLRetrieval",
51
59
  "NFCorpusNL",
60
+ "OpenTenderRetrieval",
52
61
  "QuoraNLRetrieval",
53
62
  "SciFactNL",
54
63
  "Touche2020NL",
64
+ "VABBRetrieval",
55
65
  ]
@@ -0,0 +1,41 @@
1
+ from mteb.abstasks.retrieval import AbsTaskRetrieval
2
+ from mteb.abstasks.task_metadata import TaskMetadata
3
+
4
+
5
+ class BBSARDNLRetrieval(AbsTaskRetrieval):
6
+ ignore_identical_ids = True
7
+
8
+ metadata = TaskMetadata(
9
+ name="bBSARDNLRetrieval",
10
+ description="Building on the Belgian Statutory Article Retrieval Dataset (BSARD) in French, we introduce the "
11
+ "bilingual version of this dataset, bBSARD. The dataset contains parallel Belgian statutory "
12
+ "articles in both French and Dutch, along with legal questions from BSARD and their Dutch "
13
+ "translation.",
14
+ reference="https://aclanthology.org/2025.regnlp-1.3.pdf",
15
+ dataset={
16
+ "path": "clips/mteb-nl-bbsard",
17
+ "revision": "52027c212ba9765a3e9737c9cbf9a06ae83cbb93",
18
+ },
19
+ type="Retrieval",
20
+ category="t2t",
21
+ modalities=["text"],
22
+ eval_splits=["test"],
23
+ eval_langs=["nld-Latn"],
24
+ main_score="ndcg_at_10",
25
+ date=("2021-05-01", "2021-08-26"),
26
+ domains=["Legal", "Written"],
27
+ task_subtypes=[],
28
+ license="cc-by-nc-sa-4.0",
29
+ annotations_creators="expert-annotated",
30
+ dialect=[],
31
+ sample_creation="found",
32
+ bibtex_citation=r"""
33
+ @article{lotfi2025bilingual,
34
+ author = {Lotfi, Ehsan and Banar, Nikolay and Yuzbashyan, Nerses and Daelemans, Walter},
35
+ journal = {COLING 2025},
36
+ pages = {10},
37
+ title = {Bilingual BSARD: Extending Statutory Article Retrieval to Dutch},
38
+ year = {2025},
39
+ }
40
+ """,
41
+ )
@@ -0,0 +1,30 @@
1
+ from mteb.abstasks.retrieval import AbsTaskRetrieval
2
+ from mteb.abstasks.task_metadata import TaskMetadata
3
+
4
+
5
+ class DutchNewsArticlesRetrieval(AbsTaskRetrieval):
6
+ metadata = TaskMetadata(
7
+ name="DutchNewsArticlesRetrieval",
8
+ description="This dataset contains all the articles published by the NOS as of the 1st of January 2010. The "
9
+ "data is obtained by scraping the NOS website. The NOS is one of the biggest (online) news "
10
+ "organizations in the Netherlands.",
11
+ reference="https://www.kaggle.com/datasets/maxscheijen/dutch-news-articles",
12
+ dataset={
13
+ "path": "clips/mteb-nl-news-articles-ret",
14
+ "revision": "c8042a86f3eb0d1fcec79a4a44ebf1eafe635462",
15
+ },
16
+ type="Retrieval",
17
+ category="t2t",
18
+ modalities=["text"],
19
+ eval_splits=["test"],
20
+ eval_langs=["nld-Latn"],
21
+ main_score="ndcg_at_10",
22
+ date=("2009-11-01", "2010-01-01"),
23
+ domains=["Written", "News"],
24
+ task_subtypes=["Article retrieval"],
25
+ license="cc-by-nc-sa-4.0",
26
+ annotations_creators="derived",
27
+ dialect=[],
28
+ sample_creation="found",
29
+ bibtex_citation="",
30
+ )
@@ -0,0 +1,39 @@
1
+ from mteb.abstasks.retrieval import AbsTaskRetrieval
2
+ from mteb.abstasks.task_metadata import TaskMetadata
3
+
4
+
5
+ class LegalQANLRetrieval(AbsTaskRetrieval):
6
+ ignore_identical_ids = True
7
+
8
+ metadata = TaskMetadata(
9
+ name="LegalQANLRetrieval",
10
+ description="To this end, we create and publish a Dutch legal QA dataset, consisting of question-answer pairs "
11
+ "with attributions to Dutch law articles.",
12
+ reference="https://aclanthology.org/2024.nllp-1.12/",
13
+ dataset={
14
+ "path": "clips/mteb-nl-legalqa-pr",
15
+ "revision": "8f593522dfbe7ec07055ca9d38a700e7643d3882",
16
+ },
17
+ type="Retrieval",
18
+ category="t2t",
19
+ modalities=["text"],
20
+ eval_splits=["test"],
21
+ eval_langs=["nld-Latn"],
22
+ main_score="ndcg_at_10",
23
+ date=("2021-05-01", "2021-08-26"),
24
+ domains=["Legal", "Written"],
25
+ task_subtypes=[],
26
+ license="cc-by-nc-sa-4.0",
27
+ annotations_creators="expert-annotated",
28
+ dialect=[],
29
+ sample_creation="found",
30
+ bibtex_citation=r"""
31
+ @inproceedings{redelaar2024attributed,
32
+ author = {Redelaar, Felicia and Van Drie, Romy and Verberne, Suzan and De Boer, Maaike},
33
+ booktitle = {Proceedings of the natural legal language processing workshop 2024},
34
+ pages = {154--165},
35
+ title = {Attributed Question Answering for Preconditions in the Dutch Law},
36
+ year = {2024},
37
+ }
38
+ """,
39
+ )
@@ -0,0 +1,38 @@
1
+ from mteb.abstasks.retrieval import AbsTaskRetrieval
2
+ from mteb.abstasks.task_metadata import TaskMetadata
3
+
4
+
5
+ class OpenTenderRetrieval(AbsTaskRetrieval):
6
+ metadata = TaskMetadata(
7
+ name="OpenTenderRetrieval",
8
+ description="This dataset contains Belgian and Dutch tender calls from OpenTender in Dutch",
9
+ reference="https://arxiv.org/abs/2509.12340",
10
+ dataset={
11
+ "path": "clips/mteb-nl-opentender-ret",
12
+ "revision": "83eec1aa9c58f1dc8acfac015f653a9c25bda3f4",
13
+ },
14
+ type="Retrieval",
15
+ category="t2t",
16
+ modalities=["text"],
17
+ eval_splits=["test"],
18
+ eval_langs=["nld-Latn"],
19
+ main_score="ndcg_at_10",
20
+ date=("2009-11-01", "2010-01-01"),
21
+ domains=["Government", "Written"],
22
+ task_subtypes=["Article retrieval"],
23
+ license="cc-by-nc-sa-4.0",
24
+ annotations_creators="derived",
25
+ dialect=[],
26
+ sample_creation="found",
27
+ bibtex_citation=r"""
28
+ @misc{banar2025mtebnle5nlembeddingbenchmark,
29
+ archiveprefix = {arXiv},
30
+ author = {Nikolay Banar and Ehsan Lotfi and Jens Van Nooten and Cristina Arhiliuc and Marija Kliocaite and Walter Daelemans},
31
+ eprint = {2509.12340},
32
+ primaryclass = {cs.CL},
33
+ title = {MTEB-NL and E5-NL: Embedding Benchmark and Models for Dutch},
34
+ url = {https://arxiv.org/abs/2509.12340},
35
+ year = {2025},
36
+ }
37
+ """,
38
+ )
@@ -0,0 +1,41 @@
1
+ from mteb.abstasks.retrieval import AbsTaskRetrieval
2
+ from mteb.abstasks.task_metadata import TaskMetadata
3
+
4
+
5
+ class VABBRetrieval(AbsTaskRetrieval):
6
+ metadata = TaskMetadata(
7
+ name="VABBRetrieval",
8
+ description="This dataset contains the fourteenth edition of the Flemish Academic Bibliography for the Social "
9
+ "Sciences and Humanities (VABB-SHW), a database of academic publications from the social sciences "
10
+ "and humanities authored by researchers affiliated to Flemish universities (more information). "
11
+ "Publications in the database are used as one of the parameters of the Flemish performance-based "
12
+ "research funding system",
13
+ reference="https://zenodo.org/records/14214806",
14
+ dataset={
15
+ "path": "clips/mteb-nl-vabb-ret",
16
+ "revision": "af4a1e5b3ed451103894f86ff6b3ce85085d7b48",
17
+ },
18
+ type="Retrieval",
19
+ category="t2t",
20
+ modalities=["text"],
21
+ eval_splits=["test"],
22
+ eval_langs=["nld-Latn"],
23
+ main_score="ndcg_at_10",
24
+ date=("2009-11-01", "2010-01-01"),
25
+ domains=["Academic", "Written"],
26
+ task_subtypes=["Article retrieval"],
27
+ license="cc-by-nc-sa-4.0",
28
+ annotations_creators="derived",
29
+ dialect=[],
30
+ sample_creation="found",
31
+ bibtex_citation=r"""
32
+ @dataset{aspeslagh2024vabb,
33
+ author = {Aspeslagh, Pieter and Guns, Raf and Engels, Tim C. E.},
34
+ doi = {10.5281/zenodo.14214806},
35
+ publisher = {Zenodo},
36
+ title = {VABB-SHW: Dataset of Flemish Academic Bibliography for the Social Sciences and Humanities (edition 14)},
37
+ url = {https://doi.org/10.5281/zenodo.14214806},
38
+ year = {2024},
39
+ }
40
+ """,
41
+ )
@@ -7,6 +7,7 @@ from .fra import *
7
7
  from .jpn import *
8
8
  from .kor import *
9
9
  from .multilingual import *
10
+ from .nld import *
10
11
  from .pol import *
11
12
  from .por import *
12
13
  from .ron import *
@@ -0,0 +1,5 @@
1
+ from .sick_nl_sts import SICKNLSTS
2
+
3
+ __all__ = [
4
+ "SICKNLSTS",
5
+ ]
@@ -0,0 +1,41 @@
1
+ from mteb.abstasks import AbsTaskSTS
2
+ from mteb.abstasks.task_metadata import TaskMetadata
3
+
4
+
5
+ class SICKNLSTS(AbsTaskSTS):
6
+ fast_loading = True
7
+ metadata = TaskMetadata(
8
+ name="SICK-NL-STS",
9
+ dataset={
10
+ "path": "clips/mteb-nl-sick-sts-pr",
11
+ "revision": "7f88f003fc4e37ed8cd9ade84e390d871b032fef",
12
+ },
13
+ description="SICK-NL (read: signal), a dataset targeting Natural Language Inference in Dutch. SICK-NL is "
14
+ "obtained by translating the SICK dataset of (Marelli et al., 2014) from English into Dutch.",
15
+ reference="https://aclanthology.org/2021.eacl-main.126/",
16
+ type="STS",
17
+ category="t2t",
18
+ modalities=["text"],
19
+ eval_splits=["test"],
20
+ eval_langs=["nld-Latn"],
21
+ main_score="cosine_spearman",
22
+ date=("2012-01-01", "2017-12-31"),
23
+ domains=["News", "Social", "Web", "Spoken", "Written"],
24
+ task_subtypes=[],
25
+ license="mit",
26
+ annotations_creators="human-annotated",
27
+ dialect=[],
28
+ sample_creation="machine-translated",
29
+ bibtex_citation=r"""
30
+ @inproceedings{wijnholds2021sick,
31
+ author = {Wijnholds, Gijs and Moortgat, Michael},
32
+ booktitle = {Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume},
33
+ pages = {1474--1479},
34
+ title = {SICK-NL: A Dataset for Dutch Natural Language Inference},
35
+ year = {2021},
36
+ }
37
+ """,
38
+ )
39
+
40
+ min_score = 0
41
+ max_score = 5