mteb 2.0.4__py3-none-any.whl → 2.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (120) hide show
  1. mteb/__init__.py +10 -1
  2. mteb/benchmarks/benchmarks/__init__.py +2 -0
  3. mteb/benchmarks/benchmarks/benchmarks.py +75 -0
  4. mteb/descriptive_stats/BitextMining/BUCC.json +70 -40
  5. mteb/descriptive_stats/Classification/DKHateClassification.json +40 -24
  6. mteb/descriptive_stats/Classification/DutchColaClassification.json +54 -0
  7. mteb/descriptive_stats/Classification/DutchGovernmentBiasClassification.json +54 -0
  8. mteb/descriptive_stats/Classification/DutchNewsArticlesClassification.json +90 -0
  9. mteb/descriptive_stats/Classification/DutchSarcasticHeadlinesClassification.json +54 -0
  10. mteb/descriptive_stats/Classification/FinancialPhrasebankClassification.json +23 -15
  11. mteb/descriptive_stats/Classification/IconclassClassification.json +96 -0
  12. mteb/descriptive_stats/Classification/ImdbClassification.json +40 -24
  13. mteb/descriptive_stats/Classification/KorHateClassification.json +23 -15
  14. mteb/descriptive_stats/Classification/OpenTenderClassification.json +222 -0
  15. mteb/descriptive_stats/Classification/VaccinChatNLClassification.json +1068 -0
  16. mteb/descriptive_stats/Clustering/ArxivClusteringP2P.json +555 -550
  17. mteb/descriptive_stats/Clustering/ArxivClusteringP2P.v2.json +546 -541
  18. mteb/descriptive_stats/Clustering/ArxivClusteringS2S.json +555 -550
  19. mteb/descriptive_stats/Clustering/DutchNewsArticlesClusteringP2P.json +45 -0
  20. mteb/descriptive_stats/Clustering/DutchNewsArticlesClusteringS2S.json +45 -0
  21. mteb/descriptive_stats/Clustering/IconclassClusteringS2S.json +48 -0
  22. mteb/descriptive_stats/Clustering/MLSUMClusteringP2P.json +2466 -2416
  23. mteb/descriptive_stats/Clustering/OpenTenderClusteringP2P.json +111 -0
  24. mteb/descriptive_stats/Clustering/OpenTenderClusteringS2S.json +111 -0
  25. mteb/descriptive_stats/Clustering/RedditClusteringP2P.json +1365 -1360
  26. mteb/descriptive_stats/Clustering/SNLClustering.json +378 -373
  27. mteb/descriptive_stats/Clustering/SwednClustering.json +28 -23
  28. mteb/descriptive_stats/Clustering/VABBClusteringP2P.json +60 -0
  29. mteb/descriptive_stats/Clustering/VABBClusteringS2S.json +60 -0
  30. mteb/descriptive_stats/Clustering/VGClustering.json +54 -49
  31. mteb/descriptive_stats/Image/Any2AnyMultilingualRetrieval/WITT2IRetrieval.json +324 -204
  32. mteb/descriptive_stats/Image/Any2AnyRetrieval/MemotionI2TRetrieval.json +28 -18
  33. mteb/descriptive_stats/Image/DocumentUnderstanding/JinaVDRAirbnbSyntheticRetrieval.json +334 -0
  34. mteb/descriptive_stats/Image/DocumentUnderstanding/JinaVDRGitHubReadmeRetrieval.json +544 -0
  35. mteb/descriptive_stats/Image/DocumentUnderstanding/JinaVDRTweetStockSyntheticsRetrieval.json +334 -0
  36. mteb/descriptive_stats/Image/DocumentUnderstanding/JinaVDRWikimediaCommonsDocumentsRetrieval.json +634 -0
  37. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore2ESGReportsRetrieval.json +154 -0
  38. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore2EconomicsReportsRetrieval.json +154 -0
  39. mteb/descriptive_stats/Image/ImageClassification/Imagenet1k.json +6039 -3007
  40. mteb/descriptive_stats/Image/ZeroShotClassification/Imagenet1kZeroShot.json +3024 -3010
  41. mteb/descriptive_stats/Image/ZeroShotClassification/PatchCamelyonZeroShot.json +30 -16
  42. mteb/descriptive_stats/MultilabelClassification/CovidDisinformationNLMultiLabelClassification.json +84 -0
  43. mteb/descriptive_stats/MultilabelClassification/VABBMultiLabelClassification.json +156 -0
  44. mteb/descriptive_stats/PairClassification/SICKNLPairClassification.json +35 -0
  45. mteb/descriptive_stats/PairClassification/XLWICNLPairClassification.json +35 -0
  46. mteb/descriptive_stats/Reranking/MIRACLReranking.json +555 -479
  47. mteb/descriptive_stats/Reranking/MindSmallReranking.json +29 -25
  48. mteb/descriptive_stats/Retrieval/AlloprofRetrieval.json +25 -26
  49. mteb/descriptive_stats/Retrieval/Code1Retrieval.json +30 -0
  50. mteb/descriptive_stats/Retrieval/DanFEVER.json +25 -26
  51. mteb/descriptive_stats/Retrieval/DutchNewsArticlesRetrieval.json +30 -0
  52. mteb/descriptive_stats/Retrieval/EnglishFinance1Retrieval.json +30 -0
  53. mteb/descriptive_stats/Retrieval/EnglishFinance2Retrieval.json +30 -0
  54. mteb/descriptive_stats/Retrieval/EnglishFinance3Retrieval.json +30 -0
  55. mteb/descriptive_stats/Retrieval/EnglishFinance4Retrieval.json +30 -0
  56. mteb/descriptive_stats/Retrieval/EnglishHealthcare1Retrieval.json +30 -0
  57. mteb/descriptive_stats/Retrieval/French1Retrieval.json +30 -0
  58. mteb/descriptive_stats/Retrieval/FrenchLegal1Retrieval.json +30 -0
  59. mteb/descriptive_stats/Retrieval/German1Retrieval.json +30 -0
  60. mteb/descriptive_stats/Retrieval/GermanHealthcare1Retrieval.json +30 -0
  61. mteb/descriptive_stats/Retrieval/GermanLegal1Retrieval.json +30 -0
  62. mteb/descriptive_stats/Retrieval/JapaneseCode1Retrieval.json +30 -0
  63. mteb/descriptive_stats/Retrieval/JapaneseLegal1Retrieval.json +30 -0
  64. mteb/descriptive_stats/Retrieval/LegalQANLRetrieval.json +30 -0
  65. mteb/descriptive_stats/Retrieval/MIRACLRetrieval.json +475 -494
  66. mteb/descriptive_stats/Retrieval/MSMARCO-Fa.json +25 -26
  67. mteb/descriptive_stats/Retrieval/MSMARCO.json +25 -84
  68. mteb/descriptive_stats/Retrieval/OpenTenderRetrieval.json +30 -0
  69. mteb/descriptive_stats/Retrieval/Touche2020.json +25 -26
  70. mteb/descriptive_stats/Retrieval/VABBRetrieval.json +30 -0
  71. mteb/descriptive_stats/Retrieval/bBSARDNLRetrieval.json +30 -0
  72. mteb/descriptive_stats/STS/SICK-NL-STS.json +28 -0
  73. mteb/descriptive_stats/Summarization/SummEval.json +27 -50
  74. mteb/descriptive_stats/Summarization/SummEvalFr.json +27 -50
  75. mteb/models/model_implementations/kalm_models.py +29 -0
  76. mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +1 -1
  77. mteb/tasks/classification/eng/financial_phrasebank_classification.py +0 -3
  78. mteb/tasks/classification/kor/kor_hate_classification.py +0 -12
  79. mteb/tasks/classification/nld/__init__.py +16 -0
  80. mteb/tasks/classification/nld/dutch_cola_classification.py +38 -0
  81. mteb/tasks/classification/nld/dutch_government_bias_classification.py +37 -0
  82. mteb/tasks/classification/nld/dutch_news_articles_classification.py +30 -0
  83. mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +36 -0
  84. mteb/tasks/classification/nld/iconclass_classification.py +41 -0
  85. mteb/tasks/classification/nld/open_tender_classification.py +38 -0
  86. mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +46 -0
  87. mteb/tasks/clustering/__init__.py +1 -0
  88. mteb/tasks/clustering/nld/__init__.py +17 -0
  89. mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +37 -0
  90. mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +37 -0
  91. mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +47 -0
  92. mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +51 -0
  93. mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +41 -0
  94. mteb/tasks/clustering/nld/vabb_clustering_p2p.py +51 -0
  95. mteb/tasks/clustering/nld/vabb_clustering_s2s.py +51 -0
  96. mteb/tasks/clustering/swe/swedn_clustering.py +2 -2
  97. mteb/tasks/multilabel_classification/__init__.py +1 -0
  98. mteb/tasks/multilabel_classification/nld/__init__.py +9 -0
  99. mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +88 -0
  100. mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +44 -0
  101. mteb/tasks/pair_classification/__init__.py +1 -0
  102. mteb/tasks/pair_classification/nld/__init__.py +7 -0
  103. mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +36 -0
  104. mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +41 -0
  105. mteb/tasks/retrieval/multilingual/vdr_multilingual_retrieval.py +1 -1
  106. mteb/tasks/retrieval/nld/__init__.py +10 -0
  107. mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +41 -0
  108. mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +30 -0
  109. mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +39 -0
  110. mteb/tasks/retrieval/nld/open_tender_retrieval.py +38 -0
  111. mteb/tasks/retrieval/nld/vabb_retrieval.py +41 -0
  112. mteb/tasks/sts/__init__.py +1 -0
  113. mteb/tasks/sts/nld/__init__.py +5 -0
  114. mteb/tasks/sts/nld/sick_nl_sts.py +41 -0
  115. {mteb-2.0.4.dist-info → mteb-2.1.0.dist-info}/METADATA +2 -204
  116. {mteb-2.0.4.dist-info → mteb-2.1.0.dist-info}/RECORD +120 -49
  117. {mteb-2.0.4.dist-info → mteb-2.1.0.dist-info}/WHEEL +0 -0
  118. {mteb-2.0.4.dist-info → mteb-2.1.0.dist-info}/entry_points.txt +0 -0
  119. {mteb-2.0.4.dist-info → mteb-2.1.0.dist-info}/licenses/LICENSE +0 -0
  120. {mteb-2.0.4.dist-info → mteb-2.1.0.dist-info}/top_level.txt +0 -0
@@ -1,31 +1,30 @@
1
1
  {
2
2
  "dev": {
3
3
  "num_samples": 8848803,
4
- "number_of_characters": 2707180637,
5
- "num_documents": 8841823,
6
- "min_document_length": 0,
7
- "average_document_length": 306.1560844409575,
8
- "max_document_length": 1617,
9
- "unique_documents": 8841823,
10
- "num_queries": 6980,
11
- "min_query_length": 7,
12
- "average_query_length": 29.044126074498568,
13
- "max_query_length": 158,
14
- "unique_queries": 6980,
15
- "none_queries": 0,
16
- "num_relevant_docs": 7437,
17
- "min_relevant_docs_per_query": 1,
18
- "average_relevant_docs_per_query": 1.0654727793696275,
19
- "max_relevant_docs_per_query": 4,
20
- "unique_relevant_docs": 7433,
21
- "num_instructions": null,
22
- "min_instruction_length": null,
23
- "average_instruction_length": null,
24
- "max_instruction_length": null,
25
- "unique_instructions": null,
26
- "num_top_ranked": null,
27
- "min_top_ranked_per_query": null,
28
- "average_top_ranked_per_query": null,
29
- "max_top_ranked_per_query": null
4
+ "number_of_characters": 2707180622,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 2706977894,
7
+ "min_text_length": 0,
8
+ "average_text_length": 306.15608274447476,
9
+ "max_text_length": 1617,
10
+ "unique_texts": 8827413
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 202728,
15
+ "min_text_length": 7,
16
+ "average_text_length": 29.044126074498568,
17
+ "max_text_length": 158,
18
+ "unique_texts": 6978
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 7437,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 1.0654727793696275,
25
+ "max_relevant_docs_per_query": 4,
26
+ "unique_relevant_docs": 7433
27
+ },
28
+ "top_ranked_statistics": null
30
29
  }
31
30
  }
@@ -1,89 +1,30 @@
1
1
  {
2
- "train": {
3
- "num_samples": 9344762,
4
- "number_of_characters": 2994608051,
5
- "num_documents": 8841823,
6
- "min_document_length": 4,
7
- "average_document_length": 336.79716603691344,
8
- "max_document_length": 1670,
9
- "unique_documents": 8841823,
10
- "num_queries": 502939,
11
- "min_query_length": 5,
12
- "average_query_length": 33.21898281898998,
13
- "max_query_length": 215,
14
- "unique_queries": 502939,
15
- "none_queries": 0,
16
- "num_relevant_docs": 532751,
17
- "min_relevant_docs_per_query": 1,
18
- "average_relevant_docs_per_query": 1.0592755781516248,
19
- "max_relevant_docs_per_query": 7,
20
- "unique_relevant_docs": 516472,
21
- "num_instructions": null,
22
- "min_instruction_length": null,
23
- "average_instruction_length": null,
24
- "max_instruction_length": null,
25
- "unique_instructions": null,
26
- "num_top_ranked": null,
27
- "min_top_ranked_per_query": null,
28
- "average_top_ranked_per_query": null,
29
- "max_top_ranked_per_query": null
30
- },
31
2
  "dev": {
32
3
  "num_samples": 8848803,
33
- "number_of_characters": 2978133099,
34
- "num_documents": 8841823,
35
- "min_document_length": 4,
36
- "average_document_length": 336.79716603691344,
37
- "max_document_length": 1670,
38
- "unique_documents": 8841823,
39
- "num_queries": 6980,
40
- "min_query_length": 9,
41
- "average_query_length": 33.2621776504298,
42
- "max_query_length": 186,
43
- "unique_queries": 6980,
44
- "none_queries": 0,
45
- "num_relevant_docs": 7437,
46
- "min_relevant_docs_per_query": 1,
47
- "average_relevant_docs_per_query": 1.0654727793696275,
48
- "max_relevant_docs_per_query": 4,
49
- "unique_relevant_docs": 7433,
50
- "num_instructions": null,
51
- "min_instruction_length": null,
52
- "average_instruction_length": null,
53
- "max_instruction_length": null,
54
- "unique_instructions": null,
55
- "num_top_ranked": null,
56
- "min_top_ranked_per_query": null,
57
- "average_top_ranked_per_query": null,
58
- "max_top_ranked_per_query": null
59
- },
60
- "test": {
61
- "num_samples": 8841866,
62
- "number_of_characters": 2977902337,
63
- "num_documents": 8841823,
64
- "min_document_length": 4,
65
- "average_document_length": 336.79716603691344,
66
- "max_document_length": 1670,
67
- "unique_documents": 8841823,
68
- "num_queries": 43,
69
- "min_query_length": 16,
70
- "average_query_length": 32.74418604651163,
71
- "max_query_length": 55,
72
- "unique_queries": 43,
73
- "none_queries": 0,
74
- "num_relevant_docs": 9260,
75
- "min_relevant_docs_per_query": 132,
76
- "average_relevant_docs_per_query": 95.3953488372093,
77
- "max_relevant_docs_per_query": 582,
78
- "unique_relevant_docs": 9139,
79
- "num_instructions": null,
80
- "min_instruction_length": null,
81
- "average_instruction_length": null,
82
- "max_instruction_length": null,
83
- "unique_instructions": null,
84
- "num_top_ranked": null,
85
- "min_top_ranked_per_query": null,
86
- "average_top_ranked_per_query": null,
87
- "max_top_ranked_per_query": null
4
+ "number_of_characters": 2969291276,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 2969059106,
7
+ "min_text_length": 3,
8
+ "average_text_length": 335.79716603691344,
9
+ "max_text_length": 1669,
10
+ "unique_texts": 8841661
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 232170,
15
+ "min_text_length": 9,
16
+ "average_text_length": 33.2621776504298,
17
+ "max_text_length": 186,
18
+ "unique_texts": 6980
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 7437,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 1.0654727793696275,
25
+ "max_relevant_docs_per_query": 4,
26
+ "unique_relevant_docs": 7433
27
+ },
28
+ "top_ranked_statistics": null
88
29
  }
89
30
  }
@@ -0,0 +1,30 @@
1
+ {
2
+ "test": {
3
+ "num_samples": 138633,
4
+ "number_of_characters": 59639635,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 59576581,
7
+ "min_text_length": 2,
8
+ "average_text_length": 432.86552643624714,
9
+ "max_text_length": 16782,
10
+ "unique_texts": 122413
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 63054,
15
+ "min_text_length": 9,
16
+ "average_text_length": 63.054,
17
+ "max_text_length": 286,
18
+ "unique_texts": 992
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 1000,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 1.0,
25
+ "max_relevant_docs_per_query": 1,
26
+ "unique_relevant_docs": 1000
27
+ },
28
+ "top_ranked_statistics": null
29
+ }
30
+ }
@@ -1,31 +1,30 @@
1
1
  {
2
2
  "test": {
3
3
  "num_samples": 382594,
4
- "number_of_characters": 658107591,
5
- "num_documents": 382545,
6
- "min_document_length": 3,
7
- "average_document_length": 1720.3347658445412,
8
- "max_document_length": 106072,
9
- "unique_documents": 382545,
10
- "num_queries": 49,
11
- "min_query_length": 16,
12
- "average_query_length": 43.42857142857143,
13
- "max_query_length": 83,
14
- "unique_queries": 49,
15
- "none_queries": 0,
16
- "num_relevant_docs": 2214,
17
- "min_relevant_docs_per_query": 40,
18
- "average_relevant_docs_per_query": 19.020408163265305,
19
- "max_relevant_docs_per_query": 52,
20
- "unique_relevant_docs": 2099,
21
- "num_instructions": null,
22
- "min_instruction_length": null,
23
- "average_instruction_length": null,
24
- "max_instruction_length": null,
25
- "unique_instructions": null,
26
- "num_top_ranked": null,
27
- "min_top_ranked_per_query": null,
28
- "average_top_ranked_per_query": null,
29
- "max_top_ranked_per_query": null
4
+ "number_of_characters": 658104319,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 658102191,
7
+ "min_text_length": 3,
8
+ "average_text_length": 1720.326212602439,
9
+ "max_text_length": 106072,
10
+ "unique_texts": 379559
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 2128,
15
+ "min_text_length": 16,
16
+ "average_text_length": 43.42857142857143,
17
+ "max_text_length": 83,
18
+ "unique_texts": 49
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 932,
23
+ "min_relevant_docs_per_query": 40,
24
+ "average_relevant_docs_per_query": 19.020408163265305,
25
+ "max_relevant_docs_per_query": 52,
26
+ "unique_relevant_docs": 2099
27
+ },
28
+ "top_ranked_statistics": null
30
29
  }
31
30
  }
@@ -0,0 +1,30 @@
1
+ {
2
+ "test": {
3
+ "num_samples": 10318,
4
+ "number_of_characters": 7839416,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 7765564,
7
+ "min_text_length": 9,
8
+ "average_text_length": 833.393861343636,
9
+ "max_text_length": 35146,
10
+ "unique_texts": 9123
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 73852,
15
+ "min_text_length": 7,
16
+ "average_text_length": 73.852,
17
+ "max_text_length": 258,
18
+ "unique_texts": 999
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 1000,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 1.0,
25
+ "max_relevant_docs_per_query": 1,
26
+ "unique_relevant_docs": 1000
27
+ },
28
+ "top_ranked_statistics": null
29
+ }
30
+ }
@@ -0,0 +1,30 @@
1
+ {
2
+ "test": {
3
+ "num_samples": 22637,
4
+ "number_of_characters": 21218611,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 21197901,
7
+ "min_text_length": 7,
8
+ "average_text_length": 945.7015837608744,
9
+ "max_text_length": 37834,
10
+ "unique_texts": 22415
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 20710,
15
+ "min_text_length": 22,
16
+ "average_text_length": 93.28828828828829,
17
+ "max_text_length": 250,
18
+ "unique_texts": 222
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 1059,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 4.77027027027027,
25
+ "max_relevant_docs_per_query": 57,
26
+ "unique_relevant_docs": 491
27
+ },
28
+ "top_ranked_statistics": null
29
+ }
30
+ }
@@ -0,0 +1,28 @@
1
+ {
2
+ "test": {
3
+ "num_samples": 4902,
4
+ "number_of_characters": 463327,
5
+ "unique_pairs": 4902,
6
+ "text1_statistics": {
7
+ "total_text_length": 233941,
8
+ "min_text_length": 10,
9
+ "average_text_length": 47.72358221134231,
10
+ "max_text_length": 158,
11
+ "unique_texts": 3378
12
+ },
13
+ "text2_statistics": {
14
+ "total_text_length": 229386,
15
+ "min_text_length": 10,
16
+ "average_text_length": 46.79436964504284,
17
+ "max_text_length": 158,
18
+ "unique_texts": 3327
19
+ },
20
+ "image1_statistics": null,
21
+ "image2_statistics": null,
22
+ "label_statistics": {
23
+ "min_score": 1.0,
24
+ "avg_score": 3.528012039368932,
25
+ "max_score": 5.0
26
+ }
27
+ }
28
+ }
@@ -1,55 +1,32 @@
1
1
  {
2
2
  "test": {
3
3
  "num_samples": 100,
4
- "number_of_characters": 212735,
5
- "min_text_length": 626,
6
- "avg_text_length": 2100.35,
7
- "max_text_length": 3153,
8
- "unique_texts": 100,
9
- "min_human_summaries_length": 11,
10
- "avg_human_summaries_length": 11.0,
11
- "max_human_summaries_length": 11,
12
- "unique_human_summaries": 1100,
13
- "min_machine_summaries_length": 16,
14
- "avg_machine_summaries_length": 16.0,
15
- "max_machine_summaries_length": 16,
16
- "unique_machine_summaries": 1548,
17
- "min_relevance": [
18
- 1.0,
19
- 1.3333333333333333,
20
- 3.6666666666666665,
21
- 2.3333333333333335,
22
- 3.6666666666666665,
23
- 3.0,
24
- 4.333333333333333,
25
- 4.0,
26
- 2.6666666666666665,
27
- 4.0,
28
- 2.0,
29
- 4.666666666666667,
30
- 4.333333333333333,
31
- 1.0,
32
- 2.0,
33
- 1.0
34
- ],
35
- "avg_relevance": 3.7770833333333336,
36
- "max_relevance": [
37
- 5.0,
38
- 4.666666666666667,
39
- 4.333333333333333,
40
- 2.6666666666666665,
41
- 4.666666666666667,
42
- 4.666666666666667,
43
- 4.666666666666667,
44
- 4.333333333333333,
45
- 4.0,
46
- 4.333333333333333,
47
- 4.666666666666667,
48
- 4.666666666666667,
49
- 4.333333333333333,
50
- 2.3333333333333335,
51
- 4.666666666666667,
52
- 4.666666666666667
53
- ]
4
+ "number_of_characters": 1007527,
5
+ "text_statistics": {
6
+ "total_text_length": 210035,
7
+ "min_text_length": 626,
8
+ "average_text_length": 2100.35,
9
+ "max_text_length": 3153,
10
+ "unique_texts": 100
11
+ },
12
+ "human_summaries_statistics": {
13
+ "total_text_length": 248982,
14
+ "min_text_length": 86,
15
+ "average_text_length": 226.34727272727272,
16
+ "max_text_length": 717,
17
+ "unique_texts": 1100
18
+ },
19
+ "machine_summaries_statistics": {
20
+ "total_text_length": 548510,
21
+ "min_text_length": 35,
22
+ "average_text_length": 342.81875,
23
+ "max_text_length": 718,
24
+ "unique_texts": 1548
25
+ },
26
+ "score_statistics": {
27
+ "min_score": 1.0,
28
+ "avg_score": 3.777083333333336,
29
+ "max_score": 5.0
30
+ }
54
31
  }
55
32
  }
@@ -1,55 +1,32 @@
1
1
  {
2
2
  "test": {
3
3
  "num_samples": 100,
4
- "number_of_characters": 242873,
5
- "min_text_length": 668,
6
- "avg_text_length": 2401.73,
7
- "max_text_length": 3699,
8
- "unique_texts": 100,
9
- "min_human_summaries_length": 11,
10
- "avg_human_summaries_length": 11.0,
11
- "max_human_summaries_length": 11,
12
- "unique_human_summaries": 1100,
13
- "min_machine_summaries_length": 16,
14
- "avg_machine_summaries_length": 16.0,
15
- "max_machine_summaries_length": 16,
16
- "unique_machine_summaries": 1540,
17
- "min_relevance": [
18
- 1.0,
19
- 1.333333333333333,
20
- 3.666666666666666,
21
- 2.333333333333333,
22
- 3.666666666666666,
23
- 3.0,
24
- 4.333333333333333,
25
- 4.0,
26
- 2.666666666666666,
27
- 4.0,
28
- 2.0,
29
- 4.666666666666667,
30
- 4.333333333333333,
31
- 1.0,
32
- 2.0,
33
- 1.0
34
- ],
35
- "avg_relevance": 3.7770833333333336,
36
- "max_relevance": [
37
- 5.0,
38
- 4.666666666666667,
39
- 4.333333333333333,
40
- 2.666666666666666,
41
- 4.666666666666667,
42
- 4.666666666666667,
43
- 4.666666666666667,
44
- 4.333333333333333,
45
- 4.0,
46
- 4.333333333333333,
47
- 4.666666666666667,
48
- 4.666666666666667,
49
- 4.333333333333333,
50
- 2.333333333333333,
51
- 4.666666666666667,
52
- 4.666666666666667
53
- ]
4
+ "number_of_characters": 1139767,
5
+ "text_statistics": {
6
+ "total_text_length": 240173,
7
+ "min_text_length": 668,
8
+ "average_text_length": 2401.73,
9
+ "max_text_length": 3699,
10
+ "unique_texts": 100
11
+ },
12
+ "human_summaries_statistics": {
13
+ "total_text_length": 284479,
14
+ "min_text_length": 76,
15
+ "average_text_length": 258.61727272727273,
16
+ "max_text_length": 815,
17
+ "unique_texts": 1100
18
+ },
19
+ "machine_summaries_statistics": {
20
+ "total_text_length": 615115,
21
+ "min_text_length": 0,
22
+ "average_text_length": 384.446875,
23
+ "max_text_length": 1079,
24
+ "unique_texts": 1540
25
+ },
26
+ "score_statistics": {
27
+ "min_score": 1.0,
28
+ "avg_score": 3.777083333333336,
29
+ "max_score": 5.0
30
+ }
54
31
  }
55
32
  }
@@ -766,3 +766,32 @@ HIT_TMG__KaLM_embedding_multilingual_mini_instruct_v2 = ModelMeta(
766
766
  superseded_by=None,
767
767
  citation=KALM_EMBEDDING_CITATION,
768
768
  )
769
+
770
+ KaLM_Embedding_KaLM_embedding_multilingual_mini_instruct_v2_5 = ModelMeta(
771
+ loader=InstructSentenceTransformerModel,
772
+ loader_kwargs=dict(
773
+ instruction_template=KaLM_INSTRUCTION,
774
+ max_seq_length=512,
775
+ apply_instruction_to_passages=False,
776
+ prompts_dict=KaLM_v2_task_prompts,
777
+ ),
778
+ name="KaLM-Embedding/KaLM-embedding-multilingual-mini-instruct-v2.5",
779
+ revision="6a4cfc1084cb459ebd4729b53a8656a61448c720",
780
+ release_date="2025-09-30",
781
+ languages=["eng-Latn", "zho-Hans"],
782
+ n_parameters=494032768,
783
+ memory_usage_mb=1885,
784
+ max_tokens=512,
785
+ embed_dim=896,
786
+ license="apache-2.0",
787
+ open_weights=True,
788
+ public_training_code=None,
789
+ public_training_data="https://huggingface.co/datasets/KaLM-Embedding/KaLM-embedding-finetuning-data",
790
+ framework=["PyTorch", "Sentence Transformers"],
791
+ reference="https://huggingface.co/KaLM-Embedding/KaLM-embedding-multilingual-mini-instruct-v2.5",
792
+ similarity_fn_name="cosine",
793
+ use_instructions=True,
794
+ training_datasets=kalm_v2_training_data,
795
+ adapted_from="HIT-TMG/KaLM-embedding-multilingual-mini-instruct-v2",
796
+ superseded_by=None,
797
+ )
@@ -21,7 +21,7 @@ class BUCCBitextMining(AbsTaskBitextMining):
21
21
  name="BUCC",
22
22
  dataset={
23
23
  "path": "mteb/BUCC",
24
- "revision": "39f20d5ac4a82e59dbcecaabdd599b82cbefa666",
24
+ "revision": "414572247440f0ccacf7eb0bb70a31533a0e5443",
25
25
  },
26
26
  description="BUCC bitext mining dataset",
27
27
  reference="https://comparable.limsi.fr/bucc2018/bucc2018-task.html",
@@ -36,9 +36,6 @@ class FinancialPhrasebankClassification(AbsTaskClassification):
36
36
  superseded_by="FinancialPhrasebankClassification.v2",
37
37
  )
38
38
 
39
- def dataset_transform(self):
40
- self.dataset = self.dataset.rename_column("sentence", "text")
41
-
42
39
 
43
40
  class FinancialPhrasebankClassificationV2(AbsTaskClassification):
44
41
  metadata = TaskMetadata(
@@ -44,18 +44,6 @@ class KorHateClassification(AbsTaskClassification):
44
44
  superseded_by="KorHateClassification.v2",
45
45
  )
46
46
 
47
- def dataset_transform(self):
48
- keep_cols = ["comments", "hate"]
49
- rename_dict = dict(zip(keep_cols, ["text", "label"]))
50
- remove_cols = [
51
- col for col in self.dataset["test"].column_names if col not in keep_cols
52
- ]
53
- self.dataset = self.dataset.rename_columns(rename_dict)
54
- self.dataset = self.dataset.remove_columns(remove_cols)
55
- self.dataset = self.stratified_subsampling(
56
- self.dataset, seed=self.seed, splits=["train"]
57
- )
58
-
59
47
 
60
48
  class KorHateClassificationV2(AbsTaskClassification):
61
49
  metadata = TaskMetadata(
@@ -2,8 +2,24 @@ from .dutch_book_review_sentiment_classification import (
2
2
  DutchBookReviewSentimentClassification,
3
3
  DutchBookReviewSentimentClassificationV2,
4
4
  )
5
+ from .dutch_cola_classification import DutchColaClassification
6
+ from .dutch_government_bias_classification import DutchGovernmentBiasClassification
7
+ from .dutch_news_articles_classification import DutchNewsArticlesClassification
8
+ from .dutch_sarcastic_headlines_classification import (
9
+ DutchSarcasticHeadlinesClassification,
10
+ )
11
+ from .iconclass_classification import IconclassClassification
12
+ from .open_tender_classification import OpenTenderClassification
13
+ from .vaccin_chat_nl_classification import VaccinChatNLClassification
5
14
 
6
15
  __all__ = [
7
16
  "DutchBookReviewSentimentClassification",
8
17
  "DutchBookReviewSentimentClassificationV2",
18
+ "DutchColaClassification",
19
+ "DutchGovernmentBiasClassification",
20
+ "DutchNewsArticlesClassification",
21
+ "DutchSarcasticHeadlinesClassification",
22
+ "IconclassClassification",
23
+ "OpenTenderClassification",
24
+ "VaccinChatNLClassification",
9
25
  ]