mosamatic2 2.0.24__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- models.py +259 -0
- mosamatic2/__init__.py +0 -0
- mosamatic2/app.py +32 -0
- mosamatic2/cli.py +50 -0
- mosamatic2/commands/__init__.py +0 -0
- mosamatic2/commands/boadockerpipeline.py +48 -0
- mosamatic2/commands/calculatemaskstatistics.py +59 -0
- mosamatic2/commands/calculatescores.py +73 -0
- mosamatic2/commands/createdicomsummary.py +61 -0
- mosamatic2/commands/createpngsfromsegmentations.py +65 -0
- mosamatic2/commands/defaultdockerpipeline.py +84 -0
- mosamatic2/commands/defaultpipeline.py +70 -0
- mosamatic2/commands/dicom2nifti.py +55 -0
- mosamatic2/commands/liveranalysispipeline.py +61 -0
- mosamatic2/commands/rescaledicomimages.py +54 -0
- mosamatic2/commands/segmentmusclefatl3tensorflow.py +55 -0
- mosamatic2/commands/selectslicefromscans.py +66 -0
- mosamatic2/commands/totalsegmentator.py +77 -0
- mosamatic2/constants.py +27 -0
- mosamatic2/core/__init__.py +0 -0
- mosamatic2/core/data/__init__.py +5 -0
- mosamatic2/core/data/dicomimage.py +27 -0
- mosamatic2/core/data/dicomimageseries.py +26 -0
- mosamatic2/core/data/dixonseries.py +22 -0
- mosamatic2/core/data/filedata.py +26 -0
- mosamatic2/core/data/multidicomimage.py +30 -0
- mosamatic2/core/data/multiniftiimage.py +26 -0
- mosamatic2/core/data/multinumpyimage.py +26 -0
- mosamatic2/core/data/niftiimage.py +13 -0
- mosamatic2/core/data/numpyimage.py +13 -0
- mosamatic2/core/managers/__init__.py +0 -0
- mosamatic2/core/managers/logmanager.py +45 -0
- mosamatic2/core/managers/logmanagerlistener.py +3 -0
- mosamatic2/core/pipelines/__init__.py +4 -0
- mosamatic2/core/pipelines/boadockerpipeline/__init__.py +0 -0
- mosamatic2/core/pipelines/boadockerpipeline/boadockerpipeline.py +70 -0
- mosamatic2/core/pipelines/defaultdockerpipeline/__init__.py +0 -0
- mosamatic2/core/pipelines/defaultdockerpipeline/defaultdockerpipeline.py +28 -0
- mosamatic2/core/pipelines/defaultpipeline/__init__.py +0 -0
- mosamatic2/core/pipelines/defaultpipeline/defaultpipeline.py +90 -0
- mosamatic2/core/pipelines/liveranalysispipeline/__init__.py +0 -0
- mosamatic2/core/pipelines/liveranalysispipeline/liveranalysispipeline.py +48 -0
- mosamatic2/core/pipelines/pipeline.py +14 -0
- mosamatic2/core/singleton.py +9 -0
- mosamatic2/core/tasks/__init__.py +13 -0
- mosamatic2/core/tasks/applythresholdtosegmentationstask/__init__.py +0 -0
- mosamatic2/core/tasks/applythresholdtosegmentationstask/applythresholdtosegmentationstask.py +117 -0
- mosamatic2/core/tasks/calculatemaskstatisticstask/__init__.py +0 -0
- mosamatic2/core/tasks/calculatemaskstatisticstask/calculatemaskstatisticstask.py +104 -0
- mosamatic2/core/tasks/calculatescorestask/__init__.py +0 -0
- mosamatic2/core/tasks/calculatescorestask/calculatescorestask.py +152 -0
- mosamatic2/core/tasks/createdicomsummarytask/__init__.py +0 -0
- mosamatic2/core/tasks/createdicomsummarytask/createdicomsummarytask.py +88 -0
- mosamatic2/core/tasks/createpngsfromsegmentationstask/__init__.py +0 -0
- mosamatic2/core/tasks/createpngsfromsegmentationstask/createpngsfromsegmentationstask.py +101 -0
- mosamatic2/core/tasks/dicom2niftitask/__init__.py +0 -0
- mosamatic2/core/tasks/dicom2niftitask/dicom2niftitask.py +45 -0
- mosamatic2/core/tasks/rescaledicomimagestask/__init__.py +0 -0
- mosamatic2/core/tasks/rescaledicomimagestask/rescaledicomimagestask.py +64 -0
- mosamatic2/core/tasks/segmentationnifti2numpytask/__init__.py +0 -0
- mosamatic2/core/tasks/segmentationnifti2numpytask/segmentationnifti2numpytask.py +57 -0
- mosamatic2/core/tasks/segmentationnumpy2niftitask/__init__.py +0 -0
- mosamatic2/core/tasks/segmentationnumpy2niftitask/segmentationnumpy2niftitask.py +86 -0
- mosamatic2/core/tasks/segmentmusclefatl3tensorflowtask/__init__.py +0 -0
- mosamatic2/core/tasks/segmentmusclefatl3tensorflowtask/paramloader.py +39 -0
- mosamatic2/core/tasks/segmentmusclefatl3tensorflowtask/segmentmusclefatl3tensorflowtask.py +122 -0
- mosamatic2/core/tasks/segmentmusclefatt4pytorchtask/__init__.py +0 -0
- mosamatic2/core/tasks/segmentmusclefatt4pytorchtask/paramloader.py +39 -0
- mosamatic2/core/tasks/segmentmusclefatt4pytorchtask/segmentmusclefatt4pytorchtask.py +128 -0
- mosamatic2/core/tasks/selectslicefromscanstask/__init__.py +0 -0
- mosamatic2/core/tasks/selectslicefromscanstask/selectslicefromscanstask.py +249 -0
- mosamatic2/core/tasks/task.py +50 -0
- mosamatic2/core/tasks/totalsegmentatortask/__init__.py +0 -0
- mosamatic2/core/tasks/totalsegmentatortask/totalsegmentatortask.py +75 -0
- mosamatic2/core/utils.py +405 -0
- mosamatic2/server.py +146 -0
- mosamatic2/ui/__init__.py +0 -0
- mosamatic2/ui/mainwindow.py +426 -0
- mosamatic2/ui/resources/VERSION +1 -0
- mosamatic2/ui/resources/icons/mosamatic2.icns +0 -0
- mosamatic2/ui/resources/icons/mosamatic2.ico +0 -0
- mosamatic2/ui/resources/icons/spinner.gif +0 -0
- mosamatic2/ui/resources/images/body-composition.jpg +0 -0
- mosamatic2/ui/settings.py +62 -0
- mosamatic2/ui/utils.py +36 -0
- mosamatic2/ui/widgets/__init__.py +0 -0
- mosamatic2/ui/widgets/dialogs/__init__.py +0 -0
- mosamatic2/ui/widgets/dialogs/dialog.py +16 -0
- mosamatic2/ui/widgets/dialogs/helpdialog.py +9 -0
- mosamatic2/ui/widgets/panels/__init__.py +0 -0
- mosamatic2/ui/widgets/panels/defaultpanel.py +31 -0
- mosamatic2/ui/widgets/panels/logpanel.py +65 -0
- mosamatic2/ui/widgets/panels/mainpanel.py +82 -0
- mosamatic2/ui/widgets/panels/pipelines/__init__.py +0 -0
- mosamatic2/ui/widgets/panels/pipelines/boadockerpipelinepanel.py +195 -0
- mosamatic2/ui/widgets/panels/pipelines/defaultdockerpipelinepanel.py +314 -0
- mosamatic2/ui/widgets/panels/pipelines/defaultpipelinepanel.py +302 -0
- mosamatic2/ui/widgets/panels/pipelines/liveranalysispipelinepanel.py +187 -0
- mosamatic2/ui/widgets/panels/pipelines/pipelinepanel.py +6 -0
- mosamatic2/ui/widgets/panels/settingspanel.py +16 -0
- mosamatic2/ui/widgets/panels/stackedpanel.py +22 -0
- mosamatic2/ui/widgets/panels/tasks/__init__.py +0 -0
- mosamatic2/ui/widgets/panels/tasks/applythresholdtosegmentationstaskpanel.py +271 -0
- mosamatic2/ui/widgets/panels/tasks/calculatemaskstatisticstaskpanel.py +215 -0
- mosamatic2/ui/widgets/panels/tasks/calculatescorestaskpanel.py +238 -0
- mosamatic2/ui/widgets/panels/tasks/createdicomsummarytaskpanel.py +206 -0
- mosamatic2/ui/widgets/panels/tasks/createpngsfromsegmentationstaskpanel.py +247 -0
- mosamatic2/ui/widgets/panels/tasks/dicom2niftitaskpanel.py +183 -0
- mosamatic2/ui/widgets/panels/tasks/rescaledicomimagestaskpanel.py +184 -0
- mosamatic2/ui/widgets/panels/tasks/segmentationnifti2numpytaskpanel.py +192 -0
- mosamatic2/ui/widgets/panels/tasks/segmentationnumpy2niftitaskpanel.py +213 -0
- mosamatic2/ui/widgets/panels/tasks/segmentmusclefatl3tensorflowtaskpanel.py +216 -0
- mosamatic2/ui/widgets/panels/tasks/segmentmusclefatt4pytorchtaskpanel.py +217 -0
- mosamatic2/ui/widgets/panels/tasks/selectslicefromscanstaskpanel.py +193 -0
- mosamatic2/ui/widgets/panels/tasks/taskpanel.py +6 -0
- mosamatic2/ui/widgets/panels/tasks/totalsegmentatortaskpanel.py +195 -0
- mosamatic2/ui/widgets/panels/visualizations/__init__.py +0 -0
- mosamatic2/ui/widgets/panels/visualizations/liversegmentvisualization/__init__.py +0 -0
- mosamatic2/ui/widgets/panels/visualizations/liversegmentvisualization/liversegmentpicker.py +96 -0
- mosamatic2/ui/widgets/panels/visualizations/liversegmentvisualization/liversegmentviewer.py +130 -0
- mosamatic2/ui/widgets/panels/visualizations/liversegmentvisualization/liversegmentvisualization.py +120 -0
- mosamatic2/ui/widgets/panels/visualizations/sliceselectionvisualization/__init__.py +0 -0
- mosamatic2/ui/widgets/panels/visualizations/sliceselectionvisualization/sliceselectionviewer.py +61 -0
- mosamatic2/ui/widgets/panels/visualizations/sliceselectionvisualization/sliceselectionvisualization.py +133 -0
- mosamatic2/ui/widgets/panels/visualizations/sliceselectionvisualization/slicetile.py +63 -0
- mosamatic2/ui/widgets/panels/visualizations/slicevisualization/__init__.py +0 -0
- mosamatic2/ui/widgets/panels/visualizations/slicevisualization/custominteractorstyle.py +80 -0
- mosamatic2/ui/widgets/panels/visualizations/slicevisualization/sliceviewer.py +116 -0
- mosamatic2/ui/widgets/panels/visualizations/slicevisualization/slicevisualization.py +141 -0
- mosamatic2/ui/widgets/panels/visualizations/visualization.py +6 -0
- mosamatic2/ui/widgets/splashscreen.py +101 -0
- mosamatic2/ui/worker.py +29 -0
- mosamatic2-2.0.24.dist-info/METADATA +43 -0
- mosamatic2-2.0.24.dist-info/RECORD +136 -0
- mosamatic2-2.0.24.dist-info/WHEEL +4 -0
- mosamatic2-2.0.24.dist-info/entry_points.txt +5 -0
|
@@ -0,0 +1,50 @@
|
|
|
1
|
+
import os
|
|
2
|
+
import shutil
|
|
3
|
+
from mosamatic2.core.managers.logmanager import LogManager
|
|
4
|
+
from mosamatic2.core.utils import create_name_with_timestamp, mosamatic_output_dir
|
|
5
|
+
|
|
6
|
+
LOG = LogManager()
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class Task:
|
|
10
|
+
INPUTS = []
|
|
11
|
+
PARAMS = []
|
|
12
|
+
OUTPUT = 'output'
|
|
13
|
+
|
|
14
|
+
def __init__(self, inputs, params, output, overwrite=True):
|
|
15
|
+
self._inputs = inputs
|
|
16
|
+
self._params = params
|
|
17
|
+
self._output = os.path.join(output, self.__class__.__name__.lower())
|
|
18
|
+
self._overwrite = overwrite
|
|
19
|
+
if self._overwrite and os.path.isdir(self._output):
|
|
20
|
+
shutil.rmtree(self._output)
|
|
21
|
+
os.makedirs(self._output, exist_ok=self._overwrite)
|
|
22
|
+
# Check that the inputs match specification and type
|
|
23
|
+
assert isinstance(self._inputs, dict)
|
|
24
|
+
assert len(self._inputs.keys()) == len(self.__class__.INPUTS)
|
|
25
|
+
for k, v in self._inputs.items():
|
|
26
|
+
assert k in self.__class__.INPUTS
|
|
27
|
+
assert isinstance(v, str)
|
|
28
|
+
# Check that param names match specification (if not None)
|
|
29
|
+
if self._params:
|
|
30
|
+
assert len(self._params.keys()) == len(self.__class__.PARAMS)
|
|
31
|
+
for k in self._params.keys():
|
|
32
|
+
assert k in self.__class__.PARAMS
|
|
33
|
+
|
|
34
|
+
def input(self, name):
|
|
35
|
+
return self._inputs[name]
|
|
36
|
+
|
|
37
|
+
def param(self, name):
|
|
38
|
+
return self._params[name]
|
|
39
|
+
|
|
40
|
+
def output(self):
|
|
41
|
+
return self._output
|
|
42
|
+
|
|
43
|
+
def overwrite(self):
|
|
44
|
+
return self._overwrite
|
|
45
|
+
|
|
46
|
+
def set_progress(self, step, nr_steps):
|
|
47
|
+
LOG.info(f'[{self.__class__.__name__}] step {step} from {nr_steps}')
|
|
48
|
+
|
|
49
|
+
def run(self):
|
|
50
|
+
raise NotImplementedError()
|
|
File without changes
|
|
@@ -0,0 +1,75 @@
|
|
|
1
|
+
import os
|
|
2
|
+
import shutil
|
|
3
|
+
import tempfile
|
|
4
|
+
from totalsegmentator.python_api import totalsegmentator
|
|
5
|
+
from mosamatic2.core.tasks.task import Task
|
|
6
|
+
from mosamatic2.core.managers.logmanager import LogManager
|
|
7
|
+
|
|
8
|
+
LOG = LogManager()
|
|
9
|
+
TOTAL_SEGMENTATOR_OUTPUT_DIR = os.path.join(tempfile.gettempdir(), 'total_segmentator_output')
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
class TotalSegmentatorTask(Task):
|
|
13
|
+
INPUTS = ['scans']
|
|
14
|
+
PARAMS = ['tasks', 'format']
|
|
15
|
+
|
|
16
|
+
def __init__(self, inputs, params, output, overwrite):
|
|
17
|
+
super(TotalSegmentatorTask, self).__init__(inputs, params, output, overwrite)
|
|
18
|
+
LOG.info(f'Using temporary output directory: {TOTAL_SEGMENTATOR_OUTPUT_DIR}')
|
|
19
|
+
|
|
20
|
+
def load_scan_dirs(self):
|
|
21
|
+
scan_dirs = []
|
|
22
|
+
for d in os.listdir(self.input('scans')):
|
|
23
|
+
scan_dir = os.path.join(self.input('scans'), d)
|
|
24
|
+
if os.path.isdir(scan_dir):
|
|
25
|
+
scan_dirs.append(scan_dir)
|
|
26
|
+
return scan_dirs
|
|
27
|
+
|
|
28
|
+
def load_scans(self):
|
|
29
|
+
scans = []
|
|
30
|
+
for f in os.listdir(self.input('scans')):
|
|
31
|
+
if f.endswith('.nii.gz'):
|
|
32
|
+
scan = os.path.join(self.input('scans'), f)
|
|
33
|
+
if os.path.isfile(scan):
|
|
34
|
+
scans.append(scan)
|
|
35
|
+
return scans
|
|
36
|
+
|
|
37
|
+
def extract_masks(self, scan_dir_or_file):
|
|
38
|
+
os.makedirs(TOTAL_SEGMENTATOR_OUTPUT_DIR, exist_ok=True)
|
|
39
|
+
tasks = self.param('tasks').split(",") if self.param('tasks') else []
|
|
40
|
+
for task in tasks:
|
|
41
|
+
LOG.info(f'Running task {task}...')
|
|
42
|
+
totalsegmentator(input=scan_dir_or_file, output=TOTAL_SEGMENTATOR_OUTPUT_DIR, task=task)
|
|
43
|
+
|
|
44
|
+
def delete_total_segmentator_output(self):
|
|
45
|
+
if os.path.exists(TOTAL_SEGMENTATOR_OUTPUT_DIR):
|
|
46
|
+
shutil.rmtree(TOTAL_SEGMENTATOR_OUTPUT_DIR)
|
|
47
|
+
|
|
48
|
+
def run(self):
|
|
49
|
+
if self.param('format') == 'dicom':
|
|
50
|
+
scan_dirs_or_files = self.load_scan_dirs()
|
|
51
|
+
elif self.param('format') == 'nifti':
|
|
52
|
+
scan_dirs_or_files = self.load_scans()
|
|
53
|
+
else:
|
|
54
|
+
LOG.error('Unknown format: {}'.format(self.param('format')))
|
|
55
|
+
return
|
|
56
|
+
nr_steps = len(scan_dirs_or_files)
|
|
57
|
+
for step in range(nr_steps):
|
|
58
|
+
scan_dir_or_file = scan_dirs_or_files[step]
|
|
59
|
+
scan_dir_or_file_name = os.path.split(scan_dir_or_file)[1]
|
|
60
|
+
if self.param('format') == 'nifti':
|
|
61
|
+
scan_dir_or_file_name = scan_dir_or_file_name[:-7]
|
|
62
|
+
try:
|
|
63
|
+
self.extract_masks(scan_dir_or_file)
|
|
64
|
+
except Exception as e:
|
|
65
|
+
LOG.error(f'{scan_dir_or_file}: Could not extract masks [{str(e)}]. Skipping scan...')
|
|
66
|
+
self.set_progress(step, nr_steps)
|
|
67
|
+
LOG.info(f'Copying temporary output to final output directory...')
|
|
68
|
+
for f in os.listdir(TOTAL_SEGMENTATOR_OUTPUT_DIR):
|
|
69
|
+
if f.endswith('.nii') or f.endswith('.nii.gz'):
|
|
70
|
+
f_path = os.path.join(TOTAL_SEGMENTATOR_OUTPUT_DIR, f)
|
|
71
|
+
target_file = os.path.join(self.output(), f'{scan_dir_or_file_name}_{f}')
|
|
72
|
+
shutil.copyfile(f_path, target_file)
|
|
73
|
+
LOG.info(f'Copied {f} to {target_file}')
|
|
74
|
+
LOG.info('Cleaning up Total Segmentator temporary output...')
|
|
75
|
+
self.delete_total_segmentator_output()
|
mosamatic2/core/utils.py
ADDED
|
@@ -0,0 +1,405 @@
|
|
|
1
|
+
import time
|
|
2
|
+
import os
|
|
3
|
+
import click
|
|
4
|
+
import textwrap
|
|
5
|
+
import math
|
|
6
|
+
import pendulum
|
|
7
|
+
import numpy as np
|
|
8
|
+
import nibabel as nb
|
|
9
|
+
import struct
|
|
10
|
+
import binascii
|
|
11
|
+
import pydicom
|
|
12
|
+
import warnings
|
|
13
|
+
from pathlib import Path
|
|
14
|
+
from pydicom.uid import (
|
|
15
|
+
ExplicitVRLittleEndian, ImplicitVRLittleEndian, ExplicitVRBigEndian
|
|
16
|
+
)
|
|
17
|
+
from PIL import Image
|
|
18
|
+
from mosamatic2.core.managers.logmanager import LogManager
|
|
19
|
+
|
|
20
|
+
warnings.filterwarnings("ignore", message="Invalid value for VR UI:", category=UserWarning)
|
|
21
|
+
|
|
22
|
+
MUSCLE, VAT, SAT = 1, 5, 7
|
|
23
|
+
LOG = LogManager()
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
def create_name_with_timestamp(prefix: str='') -> str:
|
|
27
|
+
tz = pendulum.local_timezone()
|
|
28
|
+
timestamp = pendulum.now(tz).strftime('%Y%m%d%H%M%S%f')[:17]
|
|
29
|
+
if prefix != '' and not prefix.endswith('-'):
|
|
30
|
+
prefix = prefix + '-'
|
|
31
|
+
name = f'{prefix}{timestamp}'
|
|
32
|
+
return name
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
def show_doc_command(cli_group: click.Group) -> click.Command:
|
|
36
|
+
@click.command(name="showdoc")
|
|
37
|
+
@click.argument("command_name", required=False)
|
|
38
|
+
def show_doc(command_name):
|
|
39
|
+
commands = cli_group.commands
|
|
40
|
+
if command_name:
|
|
41
|
+
cmd = commands.get(command_name)
|
|
42
|
+
if cmd and hasattr(cmd, 'callback') and cmd.callback.__doc__:
|
|
43
|
+
print()
|
|
44
|
+
print(textwrap.dedent(cmd.callback.__doc__).strip())
|
|
45
|
+
else:
|
|
46
|
+
click.echo(f'No docstring found for command: {command_name}')
|
|
47
|
+
else:
|
|
48
|
+
click.echo('Available commands with docstrings:')
|
|
49
|
+
for name, cmd in commands.items():
|
|
50
|
+
if hasattr(cmd, 'callback') and cmd.callback.__doc__:
|
|
51
|
+
click.echo(f" {name}")
|
|
52
|
+
click.echo('\nUse: `mosamatic show-doc <command>` to view a commands docstring')
|
|
53
|
+
return show_doc
|
|
54
|
+
|
|
55
|
+
|
|
56
|
+
def home_dir():
|
|
57
|
+
return Path.home()
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
def mosamatic_dir():
|
|
61
|
+
d = os.path.join(home_dir(), '.mosamatic2')
|
|
62
|
+
os.makedirs(d, exist_ok=True)
|
|
63
|
+
return d
|
|
64
|
+
|
|
65
|
+
|
|
66
|
+
def mosamatic_data_dir():
|
|
67
|
+
data_dir = os.path.join(mosamatic_dir(), 'data')
|
|
68
|
+
os.makedirs(data_dir, exist_ok=True)
|
|
69
|
+
return data_dir
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
def mosamatic_output_dir():
|
|
73
|
+
output_dir = os.path.join(mosamatic_data_dir(), 'output')
|
|
74
|
+
os.makedirs(output_dir, exist_ok=True)
|
|
75
|
+
return output_dir
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
def current_time_in_milliseconds():
|
|
79
|
+
return int(round(time.time() * 1000))
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
def current_time_in_seconds() -> int:
|
|
83
|
+
return int(round(current_time_in_milliseconds() / 1000.0))
|
|
84
|
+
|
|
85
|
+
|
|
86
|
+
def elapsed_time_in_milliseconds(start_time_in_milliseconds):
|
|
87
|
+
return current_time_in_milliseconds() - start_time_in_milliseconds
|
|
88
|
+
|
|
89
|
+
|
|
90
|
+
def elapsed_time_in_seconds(start_time_in_seconds):
|
|
91
|
+
return current_time_in_seconds() - start_time_in_seconds
|
|
92
|
+
|
|
93
|
+
|
|
94
|
+
def duration(seconds):
|
|
95
|
+
h = int(math.floor(seconds/3600.0))
|
|
96
|
+
remainder = seconds - h * 3600
|
|
97
|
+
m = int(math.floor(remainder/60.0))
|
|
98
|
+
remainder = remainder - m * 60
|
|
99
|
+
s = int(math.floor(remainder))
|
|
100
|
+
return '{} hours, {} minutes, {} seconds'.format(h, m, s)
|
|
101
|
+
|
|
102
|
+
|
|
103
|
+
def is_dicom(f):
|
|
104
|
+
try:
|
|
105
|
+
pydicom.dcmread(f, stop_before_pixels=True)
|
|
106
|
+
return True
|
|
107
|
+
except pydicom.errors.InvalidDicomError:
|
|
108
|
+
pass
|
|
109
|
+
return False
|
|
110
|
+
|
|
111
|
+
|
|
112
|
+
def load_dicom(f, stop_before_pixels=False):
|
|
113
|
+
try:
|
|
114
|
+
return pydicom.dcmread(f, stop_before_pixels=stop_before_pixels)
|
|
115
|
+
except pydicom.errors.InvalidDicomError:
|
|
116
|
+
try:
|
|
117
|
+
p = pydicom.dcmread(f, stop_before_pixels=stop_before_pixels, force=True)
|
|
118
|
+
if hasattr(p, 'SOPClassUID'):
|
|
119
|
+
if not hasattr(p.file_meta, 'TransferSyntaxUID'):
|
|
120
|
+
LOG.warning(f'DICOM file {f} does not have FileMetaData/TransferSyntaxUID, trying to fix...')
|
|
121
|
+
p.file_meta.TransferSyntaxUID = pydicom.uid.ImplicitVRLittleEndian
|
|
122
|
+
return p
|
|
123
|
+
except pydicom.errors.InvalidDicomError:
|
|
124
|
+
pass
|
|
125
|
+
return None
|
|
126
|
+
|
|
127
|
+
|
|
128
|
+
def is_jpeg2000_compressed(p):
|
|
129
|
+
if hasattr(p.file_meta, 'TransferSyntaxUID'):
|
|
130
|
+
return p.file_meta.TransferSyntaxUID not in [ExplicitVRLittleEndian, ImplicitVRLittleEndian, ExplicitVRBigEndian]
|
|
131
|
+
return False
|
|
132
|
+
|
|
133
|
+
|
|
134
|
+
def is_nifti(f):
|
|
135
|
+
return f.endswith('.nii') or f.endswith('.nii.gz')
|
|
136
|
+
|
|
137
|
+
|
|
138
|
+
def load_nifti(f):
|
|
139
|
+
if is_nifti(f):
|
|
140
|
+
return nb.load(f)
|
|
141
|
+
return None
|
|
142
|
+
|
|
143
|
+
|
|
144
|
+
def is_numpy_array(value):
|
|
145
|
+
return isinstance(value, np.array)
|
|
146
|
+
|
|
147
|
+
|
|
148
|
+
def is_numpy(f):
|
|
149
|
+
try:
|
|
150
|
+
np.load(f)
|
|
151
|
+
return True
|
|
152
|
+
except:
|
|
153
|
+
return False
|
|
154
|
+
|
|
155
|
+
|
|
156
|
+
def load_numpy_array(f):
|
|
157
|
+
if is_numpy(f):
|
|
158
|
+
return np.load(f)
|
|
159
|
+
return None
|
|
160
|
+
|
|
161
|
+
|
|
162
|
+
def get_pixels_from_tag_file(tag_file_path):
|
|
163
|
+
f = open(tag_file_path, 'rb')
|
|
164
|
+
f.seek(0)
|
|
165
|
+
byte = f.read(1)
|
|
166
|
+
# Make sure to check the byte-value in Python 3!!
|
|
167
|
+
while byte != b'':
|
|
168
|
+
byte_hex = binascii.hexlify(byte)
|
|
169
|
+
if byte_hex == b'0c':
|
|
170
|
+
break
|
|
171
|
+
byte = f.read(1)
|
|
172
|
+
values = []
|
|
173
|
+
f.read(1)
|
|
174
|
+
while byte != b'':
|
|
175
|
+
v = struct.unpack('b', byte)
|
|
176
|
+
values.append(v)
|
|
177
|
+
byte = f.read(1)
|
|
178
|
+
values = np.asarray(values)
|
|
179
|
+
values = values.astype(np.uint16)
|
|
180
|
+
return values
|
|
181
|
+
|
|
182
|
+
|
|
183
|
+
def get_rescale_params(p):
|
|
184
|
+
rescale_slope = getattr(p, 'RescaleSlope', None)
|
|
185
|
+
rescale_intercept = getattr(p, 'RescaleIntercept', None)
|
|
186
|
+
if rescale_slope is not None and rescale_intercept is not None:
|
|
187
|
+
return rescale_slope, rescale_intercept
|
|
188
|
+
# Try Enhanced DICOM structure
|
|
189
|
+
if 'SharedFunctionalGroupsSequence' in p:
|
|
190
|
+
fg = p.SharedFunctionalGroupsSequence[0]
|
|
191
|
+
if 'PixelValueTransformationSequence' in fg:
|
|
192
|
+
pvt = fg.PixelValueTransformationSequence[0]
|
|
193
|
+
rescale_slope = pvt.get('RescaleSlope', 1)
|
|
194
|
+
rescale_intercept = pvt.get('RescaleIntercept', 0)
|
|
195
|
+
return rescale_slope, rescale_intercept
|
|
196
|
+
return 1, 0
|
|
197
|
+
|
|
198
|
+
|
|
199
|
+
def get_pixels_from_dicom_object(p, normalize=True):
|
|
200
|
+
pixels = p.pixel_array
|
|
201
|
+
if not normalize:
|
|
202
|
+
return pixels
|
|
203
|
+
if normalize is True: # Map pixel values back to original HU values
|
|
204
|
+
rescale_slope, rescale_intercept = get_rescale_params(p)
|
|
205
|
+
return rescale_slope * pixels + rescale_intercept
|
|
206
|
+
if isinstance(normalize, int):
|
|
207
|
+
return (pixels + np.min(pixels)) / (np.max(pixels) - np.min(pixels)) * normalize
|
|
208
|
+
if isinstance(normalize, list):
|
|
209
|
+
return (pixels + np.min(pixels)) / (np.max(pixels) - np.min(pixels)) * normalize[1] + normalize[0]
|
|
210
|
+
return pixels
|
|
211
|
+
|
|
212
|
+
|
|
213
|
+
def convert_labels_to_157(label_image: np.array) -> np.array:
|
|
214
|
+
label_image157 = np.copy(label_image)
|
|
215
|
+
label_image157[label_image157 == 1] = 1
|
|
216
|
+
label_image157[label_image157 == 2] = 5
|
|
217
|
+
label_image157[label_image157 == 3] = 7
|
|
218
|
+
return label_image157
|
|
219
|
+
|
|
220
|
+
|
|
221
|
+
def normalize_between(img: np.array, min_bound: int, max_bound: int) -> np.array:
|
|
222
|
+
img = (img - min_bound) / (max_bound - min_bound)
|
|
223
|
+
# img[img > 1] = 1
|
|
224
|
+
img[img < 0] = 0
|
|
225
|
+
img[img > 1] = 0
|
|
226
|
+
c = (img - np.min(img))
|
|
227
|
+
d = (np.max(img) - np.min(img))
|
|
228
|
+
img = np.divide(c, d, np.zeros_like(c), where=d != 0)
|
|
229
|
+
return img
|
|
230
|
+
|
|
231
|
+
|
|
232
|
+
def apply_window_center_and_width(image: np.array, center: int, width: int) -> np.array:
|
|
233
|
+
image_min = center - width // 2
|
|
234
|
+
image_max = center + width // 2
|
|
235
|
+
windowed_image = np.clip(image, image_min, image_max)
|
|
236
|
+
windowed_image = ((windowed_image - image_min) / (image_max - image_min)) * 255.0
|
|
237
|
+
return windowed_image.astype(np.uint8)
|
|
238
|
+
|
|
239
|
+
|
|
240
|
+
def calculate_area(labels: np.array, label, pixel_spacing) -> float:
|
|
241
|
+
mask = np.copy(labels)
|
|
242
|
+
mask[mask != label] = 0
|
|
243
|
+
mask[mask == label] = 1
|
|
244
|
+
area = np.sum(mask) * (pixel_spacing[0] * pixel_spacing[1]) / 100.0
|
|
245
|
+
return area
|
|
246
|
+
|
|
247
|
+
|
|
248
|
+
def calculate_index(area: float, height: float) -> float:
|
|
249
|
+
return area / (height * height)
|
|
250
|
+
|
|
251
|
+
|
|
252
|
+
def calculate_mean_radiation_attenuation(image: np.array, labels: np.array, label: int) -> float:
|
|
253
|
+
mask = np.copy(labels)
|
|
254
|
+
mask[mask != label] = 0
|
|
255
|
+
mask[mask == label] = 1
|
|
256
|
+
subtracted = image * mask
|
|
257
|
+
mask_sum = np.sum(mask)
|
|
258
|
+
if mask_sum > 0.0:
|
|
259
|
+
mean_radiation_attenuation = np.sum(subtracted) / np.sum(mask)
|
|
260
|
+
else:
|
|
261
|
+
# print('Sum of mask pixels is zero, return zero radiation attenuation')
|
|
262
|
+
mean_radiation_attenuation = 0.0
|
|
263
|
+
return mean_radiation_attenuation
|
|
264
|
+
|
|
265
|
+
|
|
266
|
+
def calculate_lama_percentage(image: np.ndarray, labels: np.ndarray, label: int, threshold: float = 30.0) -> float:
|
|
267
|
+
roi = (labels == label)
|
|
268
|
+
n_roi = int(np.count_nonzero(roi))
|
|
269
|
+
if n_roi == 0:
|
|
270
|
+
return 0.0
|
|
271
|
+
lama = roi & (image < threshold)
|
|
272
|
+
lama_pct = (np.count_nonzero(lama) / n_roi) * 100.0
|
|
273
|
+
return int(lama_pct)
|
|
274
|
+
|
|
275
|
+
|
|
276
|
+
def calculate_dice_score(ground_truth: np.array, prediction: np.array, label: int) -> float:
|
|
277
|
+
numerator = prediction[ground_truth == label]
|
|
278
|
+
numerator[numerator != label] = 0
|
|
279
|
+
n = ground_truth[prediction == label]
|
|
280
|
+
n[n != label] = 0
|
|
281
|
+
if np.sum(numerator) != np.sum(n):
|
|
282
|
+
raise RuntimeError('Mismatch in Dice score calculation!')
|
|
283
|
+
denominator = (np.sum(prediction[prediction == label]) + np.sum(ground_truth[ground_truth == label]))
|
|
284
|
+
dice_score = np.sum(numerator) * 2.0 / denominator
|
|
285
|
+
return dice_score
|
|
286
|
+
|
|
287
|
+
|
|
288
|
+
def convert_dicom_to_numpy_array(dicom_file_path: str, window_level: int=50, window_width: int=400, normalize=True) -> np.array:
|
|
289
|
+
p = pydicom.dcmread(dicom_file_path)
|
|
290
|
+
pixels = p.pixel_array
|
|
291
|
+
pixels = pixels.reshape(p.Rows, p.Columns)
|
|
292
|
+
if normalize:
|
|
293
|
+
b = p.RescaleIntercept
|
|
294
|
+
m = p.RescaleSlope
|
|
295
|
+
pixels = m * pixels + b
|
|
296
|
+
pixels = apply_window_center_and_width(pixels, window_level, window_width)
|
|
297
|
+
return pixels
|
|
298
|
+
|
|
299
|
+
|
|
300
|
+
def convert_dicom_to_png_image(dicom_file_path: str, output_dir_path: str, window_level: int=50, window_width: int=400, normalize=True) -> str:
|
|
301
|
+
array = convert_dicom_to_numpy_array(dicom_file_path, window_level, window_width, normalize)
|
|
302
|
+
convert_numpy_array_to_png_image(
|
|
303
|
+
array,
|
|
304
|
+
output_dir_path,
|
|
305
|
+
None,
|
|
306
|
+
os.path.split(dicom_file_path)[1] + '.png',
|
|
307
|
+
10, 10,
|
|
308
|
+
)
|
|
309
|
+
|
|
310
|
+
|
|
311
|
+
class ColorMap:
|
|
312
|
+
def __init__(self, name: str) -> None:
|
|
313
|
+
self._name = name
|
|
314
|
+
self._values = []
|
|
315
|
+
|
|
316
|
+
def name(self) -> str:
|
|
317
|
+
return self._name
|
|
318
|
+
|
|
319
|
+
def values(self):
|
|
320
|
+
return self._values
|
|
321
|
+
|
|
322
|
+
|
|
323
|
+
class GrayScaleColorMap(ColorMap):
|
|
324
|
+
def __init__(self) -> None:
|
|
325
|
+
super(GrayScaleColorMap, self).__init__(name='GrayScaleColorMap')
|
|
326
|
+
# Implement your own gray scale map or let NumPy do this more efficiently?
|
|
327
|
+
pass
|
|
328
|
+
|
|
329
|
+
class AlbertaColorMap(ColorMap):
|
|
330
|
+
def __init__(self) -> None:
|
|
331
|
+
super(AlbertaColorMap, self).__init__(name='AlbertaColorMap')
|
|
332
|
+
for i in range(256):
|
|
333
|
+
if i == 1: # muscle
|
|
334
|
+
self.values().append([255, 0, 0])
|
|
335
|
+
elif i == 2: # inter-muscular adipose tissue
|
|
336
|
+
self.values().append([0, 255, 0])
|
|
337
|
+
elif i == 5: # visceral adipose tissue
|
|
338
|
+
self.values().append([255, 255, 0])
|
|
339
|
+
elif i == 7: # subcutaneous adipose tissue
|
|
340
|
+
self.values().append([0, 255, 255])
|
|
341
|
+
elif i == 12: # unknown
|
|
342
|
+
self.values().append([0, 0, 255])
|
|
343
|
+
else:
|
|
344
|
+
self.values().append([0, 0, 0])
|
|
345
|
+
|
|
346
|
+
|
|
347
|
+
def apply_color_map(pixels: np.array, color_map: ColorMap) -> np.array:
|
|
348
|
+
pixels_new = np.zeros((*pixels.shape, 3), dtype=np.uint8)
|
|
349
|
+
np.take(color_map.values(), pixels, axis=0, out=pixels_new)
|
|
350
|
+
return pixels_new
|
|
351
|
+
|
|
352
|
+
|
|
353
|
+
def convert_numpy_array_to_png_image(
|
|
354
|
+
numpy_array_file_path_or_object: str, output_dir_path: str, color_map: ColorMap=None, png_file_name: str=None, fig_width: int=10, fig_height: int=10) -> str:
|
|
355
|
+
if isinstance(numpy_array_file_path_or_object, str):
|
|
356
|
+
numpy_array = np.load(numpy_array_file_path_or_object)
|
|
357
|
+
else:
|
|
358
|
+
numpy_array = numpy_array_file_path_or_object
|
|
359
|
+
if not png_file_name:
|
|
360
|
+
raise RuntimeError('PNG file name required for NumPy array object')
|
|
361
|
+
if color_map:
|
|
362
|
+
numpy_array = apply_color_map(pixels=numpy_array, color_map=color_map)
|
|
363
|
+
image = Image.fromarray(numpy_array)
|
|
364
|
+
if not png_file_name:
|
|
365
|
+
numpy_array_file_name = os.path.split(numpy_array_file_path_or_object)[1]
|
|
366
|
+
png_file_name = numpy_array_file_name + '.png'
|
|
367
|
+
elif not png_file_name.endswith('.png'):
|
|
368
|
+
png_file_name += '.png'
|
|
369
|
+
png_file_path = os.path.join(output_dir_path, png_file_name)
|
|
370
|
+
image.save(png_file_path)
|
|
371
|
+
return png_file_path
|
|
372
|
+
|
|
373
|
+
|
|
374
|
+
def convert_muscle_mask_to_myosteatosis_map(hu: np.array, mask: np.array, output_dir: str, png_file_name: str, hu_low: int = 30, hu_high: int = 200, alpha: float = 1.0) -> str:
|
|
375
|
+
muscle_mask = (mask == 1)
|
|
376
|
+
red = muscle_mask & (hu >= hu_low) & (hu <= hu_high)
|
|
377
|
+
yellow = muscle_mask & (hu < hu_low)
|
|
378
|
+
overlay = np.zeros((*hu.shape, 4), dtype=np.float32)
|
|
379
|
+
overlay[..., 3] = 1.0
|
|
380
|
+
overlay[red] = (1.0, 0.0, 0.0, alpha)
|
|
381
|
+
overlay[yellow] = (1.0, 1.0, 0.0, alpha)
|
|
382
|
+
overlay_u8 = (np.clip(overlay, 0.0, 1.0) * 255).astype(np.uint8)
|
|
383
|
+
png_file_path = os.path.join(output_dir, png_file_name)
|
|
384
|
+
# image = Image.fromarray(overlay)
|
|
385
|
+
image = Image.fromarray(overlay_u8, mode="RGBA")
|
|
386
|
+
image.save(png_file_path)
|
|
387
|
+
return overlay
|
|
388
|
+
|
|
389
|
+
|
|
390
|
+
def is_docker_running():
|
|
391
|
+
import docker
|
|
392
|
+
try:
|
|
393
|
+
client = docker.from_env()
|
|
394
|
+
client.ping()
|
|
395
|
+
return True
|
|
396
|
+
except Exception:
|
|
397
|
+
return False
|
|
398
|
+
|
|
399
|
+
|
|
400
|
+
def is_path_docker_compatible(path):
|
|
401
|
+
return not ' ' in path
|
|
402
|
+
|
|
403
|
+
|
|
404
|
+
def to_unix_path(path):
|
|
405
|
+
return path.replace("\\", "/").replace(" ", "\\ ")
|
mosamatic2/server.py
ADDED
|
@@ -0,0 +1,146 @@
|
|
|
1
|
+
import argparse
|
|
2
|
+
import mosamatic2.constants as constants
|
|
3
|
+
from flask import Flask, request
|
|
4
|
+
from mosamatic2.core.tasks import RescaleDicomImagesTask
|
|
5
|
+
from mosamatic2.core.tasks import SegmentMuscleFatL3TensorFlowTask
|
|
6
|
+
from mosamatic2.core.tasks import CalculateScoresTask
|
|
7
|
+
from mosamatic2.core.tasks import CreatePngsFromSegmentationsTask
|
|
8
|
+
from mosamatic2.core.tasks import Dicom2NiftiTask
|
|
9
|
+
from mosamatic2.core.tasks import SelectSliceFromScansTask
|
|
10
|
+
from mosamatic2.core.tasks import CreateDicomSummaryTask
|
|
11
|
+
|
|
12
|
+
app = Flask(__name__)
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
@app.route('/test')
|
|
16
|
+
def run_tests():
|
|
17
|
+
return 'PASSED'
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
@app.route('/rescaledicomimages')
|
|
21
|
+
def run_rescaledicomimages():
|
|
22
|
+
images = request.args.get('images')
|
|
23
|
+
target_size = request.args.get('target_size', default=512, type=int)
|
|
24
|
+
output = request.args.get('output')
|
|
25
|
+
overwrite = request.args.get('overwrite', default=True, type=bool)
|
|
26
|
+
task = RescaleDicomImagesTask(
|
|
27
|
+
inputs={'images': images},
|
|
28
|
+
params={'target_size': target_size},
|
|
29
|
+
output=output,
|
|
30
|
+
overwrite=overwrite,
|
|
31
|
+
)
|
|
32
|
+
task.run()
|
|
33
|
+
return 'PASSED'
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
@app.route('/segmentmusclefatl3tensorflow')
|
|
37
|
+
def run_segmentmusclefatl3tensorflow():
|
|
38
|
+
images = request.args.get('images')
|
|
39
|
+
model_files = request.args.get('model_files')
|
|
40
|
+
output = request.args.get('output')
|
|
41
|
+
overwrite = request.args.get('overwrite', default=True, type=bool)
|
|
42
|
+
task = SegmentMuscleFatL3TensorFlowTask(
|
|
43
|
+
inputs={
|
|
44
|
+
'images': images,
|
|
45
|
+
'model_files': model_files,
|
|
46
|
+
},
|
|
47
|
+
params={'model_version': 1.0},
|
|
48
|
+
output=output,
|
|
49
|
+
overwrite=overwrite,
|
|
50
|
+
)
|
|
51
|
+
task.run()
|
|
52
|
+
return 'PASSED'
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
@app.route('/calculatescores')
|
|
56
|
+
def run_calculatescores():
|
|
57
|
+
images = request.args.get('images')
|
|
58
|
+
segmentations = request.args.get('segmentations')
|
|
59
|
+
file_type = request.args.get('file_type', default='npy', type=str)
|
|
60
|
+
output = request.args.get('output')
|
|
61
|
+
overwrite = request.args.get('overwrite', default=True, type=bool)
|
|
62
|
+
task = CalculateScoresTask(
|
|
63
|
+
inputs={
|
|
64
|
+
'images': images,
|
|
65
|
+
'segmentations': segmentations,
|
|
66
|
+
},
|
|
67
|
+
params={'file_type': file_type},
|
|
68
|
+
output=output,
|
|
69
|
+
overwrite=overwrite,
|
|
70
|
+
)
|
|
71
|
+
task.run()
|
|
72
|
+
return 'PASSED'
|
|
73
|
+
|
|
74
|
+
|
|
75
|
+
@app.route('/createpngsfromsegmentations')
|
|
76
|
+
def run_createpngsfromsegmentations():
|
|
77
|
+
segmentations = request.args.get('segmentations')
|
|
78
|
+
fig_width = request.args.get('fig_width', default=10, type=int)
|
|
79
|
+
fig_height = request.args.get('fig_height', default=10, type=int)
|
|
80
|
+
output = request.args.get('output')
|
|
81
|
+
overwrite = request.args.get('overwrite', default=True, type=bool)
|
|
82
|
+
task = CreatePngsFromSegmentationsTask(
|
|
83
|
+
inputs={'segmentations': segmentations},
|
|
84
|
+
params={
|
|
85
|
+
'fig_width': fig_width,
|
|
86
|
+
'fig_height': fig_height,
|
|
87
|
+
},
|
|
88
|
+
output=output,
|
|
89
|
+
overwrite=overwrite,
|
|
90
|
+
)
|
|
91
|
+
task.run()
|
|
92
|
+
return 'PASSED'
|
|
93
|
+
|
|
94
|
+
|
|
95
|
+
@app.route('/dicom2nifti')
|
|
96
|
+
def run_dicom2nifti():
|
|
97
|
+
images = request.args.get('images')
|
|
98
|
+
output = request.args.get('output')
|
|
99
|
+
overwrite = request.args.get('overwrite', default=True, type=bool)
|
|
100
|
+
task = Dicom2NiftiTask(
|
|
101
|
+
inputs={'images': images},
|
|
102
|
+
params=None,
|
|
103
|
+
output=output,
|
|
104
|
+
overwrite=overwrite,
|
|
105
|
+
)
|
|
106
|
+
task.run()
|
|
107
|
+
return 'PASSED'
|
|
108
|
+
|
|
109
|
+
|
|
110
|
+
@app.route('/selectslicefromscans')
|
|
111
|
+
def run_selectslicefromscans():
|
|
112
|
+
scans = request.args.get('scans')
|
|
113
|
+
vertebra = request.args.get('vertebra')
|
|
114
|
+
output = request.args.get('output')
|
|
115
|
+
overwrite = request.args.get('overwrite', default=True, type=bool)
|
|
116
|
+
task = SelectSliceFromScansTask(
|
|
117
|
+
inputs={'scans': scans},
|
|
118
|
+
params={'vertebra': vertebra},
|
|
119
|
+
output=output,
|
|
120
|
+
overwrite=overwrite,
|
|
121
|
+
)
|
|
122
|
+
task.run()
|
|
123
|
+
return 'PASSED'
|
|
124
|
+
|
|
125
|
+
|
|
126
|
+
@app.route('/createdicomsummary')
|
|
127
|
+
def run_createdicomsummary():
|
|
128
|
+
directory = request.args.get('directory')
|
|
129
|
+
output = request.args.get('output')
|
|
130
|
+
overwrite = request.args.get('overwrite', default=True, type=bool)
|
|
131
|
+
task = CreateDicomSummaryTask(
|
|
132
|
+
inputs={'directory': directory},
|
|
133
|
+
params=None,
|
|
134
|
+
output=output,
|
|
135
|
+
overwrite=overwrite,
|
|
136
|
+
)
|
|
137
|
+
task.run()
|
|
138
|
+
return 'PASSED'
|
|
139
|
+
|
|
140
|
+
|
|
141
|
+
def main():
|
|
142
|
+
parser = argparse.ArgumentParser()
|
|
143
|
+
parser.add_argument('--port', type=int, default=constants.MOSAMATIC2_SERVER_PORT)
|
|
144
|
+
parser.add_argument('--debug', type=bool, default=constants.MOSAMATIC2_SERVER_DEBUG)
|
|
145
|
+
args = parser.parse_args()
|
|
146
|
+
app.run(host='0.0.0.0', port=args.port, debug=args.debug)
|
|
File without changes
|