monai-weekly 1.5.dev2519__py3-none-any.whl → 1.5.dev2520__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
monai/__init__.py CHANGED
@@ -136,4 +136,4 @@ except BaseException:
136
136
 
137
137
  if MONAIEnvVars.debug():
138
138
  raise
139
- __commit_id__ = "f97a0e9bc7787df261284db2cdeffa2e8d631512"
139
+ __commit_id__ = "707b23054025a26271e6ace9e9477801a71d8e0a"
monai/_version.py CHANGED
@@ -8,11 +8,11 @@ import json
8
8
 
9
9
  version_json = '''
10
10
  {
11
- "date": "2025-05-11T02:34:08+0000",
11
+ "date": "2025-05-18T02:35:03+0000",
12
12
  "dirty": false,
13
13
  "error": null,
14
- "full-revisionid": "552815d9e48a40cf72c7c718034df7984f5d14dd",
15
- "version": "1.5.dev2519"
14
+ "full-revisionid": "cc43efa2f524c91686c29a51b04e31e47206dec8",
15
+ "version": "1.5.dev2520"
16
16
  }
17
17
  ''' # END VERSION_JSON
18
18
 
monai/bundle/scripts.py CHANGED
@@ -702,8 +702,6 @@ def load(
702
702
  3. If `load_ts_module` is `True`, return a triple that include a TorchScript module,
703
703
  the corresponding metadata dict, and extra files dict.
704
704
  please check `monai.data.load_net_with_metadata` for more details.
705
- 4. If `return_state_dict` is True, return model weights, only used for compatibility
706
- when `model` and `net_name` are all `None`.
707
705
 
708
706
  """
709
707
  bundle_dir_ = _process_bundle_dir(bundle_dir)
@@ -153,9 +153,9 @@ class Encoder(nn.Module):
153
153
  channels: sequence of block output channels.
154
154
  out_channels: number of channels in the bottom layer (latent space) of the autoencoder.
155
155
  num_res_blocks: number of residual blocks (see _ResBlock) per level.
156
- norm_num_groups: number of groups for the GroupNorm layers, num_channels must be divisible by this number.
156
+ norm_num_groups: number of groups for the GroupNorm layers, channels must be divisible by this number.
157
157
  norm_eps: epsilon for the normalization.
158
- attention_levels: indicate which level from num_channels contain an attention block.
158
+ attention_levels: indicate which level from channels contain an attention block.
159
159
  with_nonlocal_attn: if True use non-local attention block.
160
160
  include_fc: whether to include the final linear layer. Default to True.
161
161
  use_combined_linear: whether to use a single linear layer for qkv projection, default to False.
@@ -299,9 +299,9 @@ class Decoder(nn.Module):
299
299
  in_channels: number of channels in the bottom layer (latent space) of the autoencoder.
300
300
  out_channels: number of output channels.
301
301
  num_res_blocks: number of residual blocks (see _ResBlock) per level.
302
- norm_num_groups: number of groups for the GroupNorm layers, num_channels must be divisible by this number.
302
+ norm_num_groups: number of groups for the GroupNorm layers, channels must be divisible by this number.
303
303
  norm_eps: epsilon for the normalization.
304
- attention_levels: indicate which level from num_channels contain an attention block.
304
+ attention_levels: indicate which level from channels contain an attention block.
305
305
  with_nonlocal_attn: if True use non-local attention block.
306
306
  use_convtranspose: if True, use ConvTranspose to upsample feature maps in decoder.
307
307
  include_fc: whether to include the final linear layer. Default to True.
@@ -483,7 +483,7 @@ class AutoencoderKL(nn.Module):
483
483
  channels: number of output channels for each block.
484
484
  attention_levels: sequence of levels to add attention.
485
485
  latent_channels: latent embedding dimension.
486
- norm_num_groups: number of groups for the GroupNorm layers, num_channels must be divisible by this number.
486
+ norm_num_groups: number of groups for the GroupNorm layers, channels must be divisible by this number.
487
487
  norm_eps: epsilon for the normalization.
488
488
  with_encoder_nonlocal_attn: if True use non-local attention block in the encoder.
489
489
  with_decoder_nonlocal_attn: if True use non-local attention block in the decoder.
@@ -518,10 +518,10 @@ class AutoencoderKL(nn.Module):
518
518
 
519
519
  # All number of channels should be multiple of num_groups
520
520
  if any((out_channel % norm_num_groups) != 0 for out_channel in channels):
521
- raise ValueError("AutoencoderKL expects all num_channels being multiple of norm_num_groups")
521
+ raise ValueError("AutoencoderKL expects all channels being multiple of norm_num_groups")
522
522
 
523
523
  if len(channels) != len(attention_levels):
524
- raise ValueError("AutoencoderKL expects num_channels being same size of attention_levels")
524
+ raise ValueError("AutoencoderKL expects channels being same size of attention_levels")
525
525
 
526
526
  if isinstance(num_res_blocks, int):
527
527
  num_res_blocks = ensure_tuple_rep(num_res_blocks, len(channels))
@@ -529,7 +529,7 @@ class AutoencoderKL(nn.Module):
529
529
  if len(num_res_blocks) != len(channels):
530
530
  raise ValueError(
531
531
  "`num_res_blocks` should be a single integer or a tuple of integers with the same length as "
532
- "`num_channels`."
532
+ "`channels`."
533
533
  )
534
534
 
535
535
  self.encoder: nn.Module = Encoder(
@@ -80,7 +80,7 @@ class OcclusionSensitivity:
80
80
  n_batch: int = 16,
81
81
  verbose: bool = True,
82
82
  mode: str | float | Callable = "gaussian",
83
- overlap: float = 0.25,
83
+ overlap: float = 0.6,
84
84
  activate: bool | Callable = True,
85
85
  ) -> None:
86
86
  """
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: monai-weekly
3
- Version: 1.5.dev2519
3
+ Version: 1.5.dev2520
4
4
  Summary: AI Toolkit for Healthcare Imaging
5
5
  Home-page: https://monai.io/
6
6
  Author: MONAI Consortium
@@ -1,5 +1,5 @@
1
- monai/__init__.py,sha256=6Lqce9ju_1prrRexTvxrqDOAXR4V_2jIexYWftm4WI0,4095
2
- monai/_version.py,sha256=MEanOs38grhINGP6ufrVEYiEk-QFqmAz6U2O5UwqGRg,503
1
+ monai/__init__.py,sha256=kZDFttD2rvFD_euw09ICobt_wX4jw1k0qDTs3kCJyDE,4095
2
+ monai/_version.py,sha256=sWFMjgtn66w242ewwqrmMrt1OTynXCSfg5N75J91qqc,503
3
3
  monai/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
4
  monai/_extensions/__init__.py,sha256=NEBPreRhQ8H9gVvgrLr_y52_TmqB96u_u4VQmeNT93I,642
5
5
  monai/_extensions/loader.py,sha256=7SiKw36q-nOzH8CRbBurFrz7GM40GCu7rc93Tm8XpnI,3643
@@ -115,7 +115,7 @@ monai/bundle/config_item.py,sha256=rMjXSGkjJZdi04BwSHwCcIwzIb_TflmC3xDhC3SVJRs,1
115
115
  monai/bundle/config_parser.py,sha256=cGyEn-cqNk0rEEZ1Qiv6UydmIDvtWZcMVljyfVm5i50,23025
116
116
  monai/bundle/properties.py,sha256=iN3K4FVmN9ny1Hw9p5j7_ULcCdSD8PmrR7qXxbNz49k,11582
117
117
  monai/bundle/reference_resolver.py,sha256=GXCMK4iogxxE6VocsmAbUrcXosmC5arnjeG9zYhHKpg,16748
118
- monai/bundle/scripts.py,sha256=G6otT4PLWeWJ0P1Nk8-IwdYejMNakWiC3mFZ6qoNEfc,89709
118
+ monai/bundle/scripts.py,sha256=ZFNlQf2R2XOyRnZciuxsYlx_-GKmVQvnnOGKbL16OPM,89560
119
119
  monai/bundle/utils.py,sha256=t-22uFvLn7Yy-dr1v1U33peNOxgAmU4TJiGAbsBrUKs,10108
120
120
  monai/bundle/workflows.py,sha256=6OUyC0a_hsG5yGe-uVvFNeHzjf4W86NHu-XNGuNkdZo,33179
121
121
  monai/config/__init__.py,sha256=CN28CfTdsp301gv8YXfVvkbztCfbAqrLKrJi_C8oP9s,1048
@@ -298,7 +298,7 @@ monai/networks/nets/__init__.py,sha256=QS_r_mjmymo3YX6DnWftREug1zVRUV56b2xjj5rvW
298
298
  monai/networks/nets/ahnet.py,sha256=RT-loCa5Z_3I2DWB8lmRkhxGXSsnMVBCEDpwo68-YB4,21570
299
299
  monai/networks/nets/attentionunet.py,sha256=lqsrzpy0sRuuFjAtKUUJ0hT3lGF9skpepWXLG0JBo-k,9427
300
300
  monai/networks/nets/autoencoder.py,sha256=QuLdDfDwhefIqA2n8XfmFyi5T8enP6O4PETdBKmFMKc,12586
301
- monai/networks/nets/autoencoderkl.py,sha256=TowI-ayLEvrOiBjGZeQ0MbXrxFnLEKj5FBqTB55ggVE,28598
301
+ monai/networks/nets/autoencoderkl.py,sha256=FWOMTdbRNPeJVxgEF6Kq5lbiazrTwSzSw_jpghF-lqg,28566
302
302
  monai/networks/nets/basic_unet.py,sha256=K76Q-WXuCPGNf8X9qa1wwtiv1gzwlERrL6BKqKcpzlQ,10951
303
303
  monai/networks/nets/basic_unetplusplus.py,sha256=M2sSCgWvqgpiRq1tpR164udnbN1WkO1a81PmgCfV5lU,7961
304
304
  monai/networks/nets/cell_sam_wrapper.py,sha256=88bzdzzw_1_wncYdxt2EAtUN7c0EPdzNaLp1lW1I__s,3326
@@ -423,10 +423,10 @@ monai/visualize/__init__.py,sha256=p7dv9-hRa9vAhlpHyk86yap9HgeDeJRO3pXmFhDx8Mc,1
423
423
  monai/visualize/class_activation_maps.py,sha256=w4BpnriGPBtspqjICrwakvxeWkhK2E05fTbqfzlmPFE,16122
424
424
  monai/visualize/gradient_based.py,sha256=oXqMxqIClVlrgloZwgdTUl4pWllsoS0ysbjuvAbu-Kg,6278
425
425
  monai/visualize/img2tensorboard.py,sha256=n4ztSa5BQAUxSTGvi2tp45v-F7-RNgSlbsdy-9YGL78,9228
426
- monai/visualize/occlusion_sensitivity.py,sha256=OQHEJLyIhB8zWqQsfKaX-1kvCjWFVYtLfS4dFC0nKFI,18160
426
+ monai/visualize/occlusion_sensitivity.py,sha256=0SwhLO7ePDfIXJj67_UmXDZLxXItMeM-uNrPaCE0xXg,18159
427
427
  monai/visualize/utils.py,sha256=B-MhTVs7sQbIqYS3yPnpBwPw2K82rE2PBtGIfpwZtWM,9894
428
428
  monai/visualize/visualizer.py,sha256=qckyaMZCbezYUwE20k5yc-Pb7UozVavMDbrmyQwfYHY,1377
429
- monai_weekly-1.5.dev2519.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
429
+ monai_weekly-1.5.dev2520.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
430
430
  tests/apps/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
431
431
  tests/apps/test_auto3dseg_bundlegen.py,sha256=FpTJo9Lfe8vdhGuWeZ9y1BQmqYwTt-s8mDVtoLGAz_I,5594
432
432
  tests/apps/test_check_hash.py,sha256=MuZslW2DDCxHKEo6-PiL7hnbxGuZRRYf6HOh3ZQv1qQ,1761
@@ -508,7 +508,7 @@ tests/apps/vista3d/test_vista3d_sampler.py,sha256=-luQCe3Hhle2PC9AkFCUgK8gozOD0O
508
508
  tests/apps/vista3d/test_vista3d_transforms.py,sha256=nAPiDBNWeXLoW7ax3HHL63t5jqzQ3HFa-6wTvdyqVJk,3280
509
509
  tests/bundle/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
510
510
  tests/bundle/test_bundle_ckpt_export.py,sha256=VnpigCoBAAc2lo0rWOpVMg0IYGB6vbHXL8xLtB1Pkio,4622
511
- tests/bundle/test_bundle_download.py,sha256=QaQOde6MCpUeHhoYNTd1GjDQmT0j01kTMw53qocOzxQ,20695
511
+ tests/bundle/test_bundle_download.py,sha256=snf7bfFbiLaQoXOC9nR3w7RVYQv1t2l1qMjSlzyIBDE,20213
512
512
  tests/bundle/test_bundle_get_data.py,sha256=lQh321mev_7fsLXRg0Tq5uEjuQILethDHRKzB6VV0o4,3667
513
513
  tests/bundle/test_bundle_push_to_hf_hub.py,sha256=Zjl6xDwRKgkS6jvO5dzMBaTLEd4EXyMXp0_wzDNSY3g,1740
514
514
  tests/bundle/test_bundle_trt_export.py,sha256=png-2SGjBSt46LXSz-PLprOXwJ0WkC_3YLR3Ibk_WBc,6344
@@ -1189,7 +1189,7 @@ tests/visualize/test_vis_gradcam.py,sha256=WpA-pvTB75eZs7JoIc5qyvOV9PwgkzWI8-Vow
1189
1189
  tests/visualize/utils/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
1190
1190
  tests/visualize/utils/test_blend_images.py,sha256=RVs2p_8RWQDfhLHDNNtZaMig27v8o0km7XxNa-zWjKE,2274
1191
1191
  tests/visualize/utils/test_matshow3d.py,sha256=wXYj77L5Jvnp0f6DvL1rsi_-YlCxS0HJ9hiPmrbpuP8,5021
1192
- monai_weekly-1.5.dev2519.dist-info/METADATA,sha256=qit8fwiG7yXW-iXJqSdNUo3ghhoQqkFfx2lN1erfdLI,12033
1193
- monai_weekly-1.5.dev2519.dist-info/WHEEL,sha256=DnLRTWE75wApRYVsjgc6wsVswC54sMSJhAEd4xhDpBk,91
1194
- monai_weekly-1.5.dev2519.dist-info/top_level.txt,sha256=hn2Y6P9xBf2R8faMeVMHhPMvrdDKxMsIOwMDYI0yTjs,12
1195
- monai_weekly-1.5.dev2519.dist-info/RECORD,,
1192
+ monai_weekly-1.5.dev2520.dist-info/METADATA,sha256=cEQRrwHZy0OXogNJ_cv8V4R0rgImFPY_Cqbs3ysjtvQ,12033
1193
+ monai_weekly-1.5.dev2520.dist-info/WHEEL,sha256=Nw36Djuh_5VDukK0H78QzOX-_FQEo6V37m3nkm96gtU,91
1194
+ monai_weekly-1.5.dev2520.dist-info/top_level.txt,sha256=hn2Y6P9xBf2R8faMeVMHhPMvrdDKxMsIOwMDYI0yTjs,12
1195
+ monai_weekly-1.5.dev2520.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (80.4.0)
2
+ Generator: setuptools (80.7.1)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -268,11 +268,10 @@ class TestLoad(unittest.TestCase):
268
268
  @skip_if_quick
269
269
  def test_load_weights(self, bundle_files, bundle_name, repo, device, model_file):
270
270
  with skip_if_downloading_fails():
271
- # download bundle, and load weights from the downloaded path
272
271
  with tempfile.TemporaryDirectory() as tempdir:
273
272
  bundle_root = os.path.join(tempdir, bundle_name)
274
273
  # load weights
275
- weights = load(
274
+ model_1 = load(
276
275
  name=bundle_name,
277
276
  model_file=model_file,
278
277
  bundle_dir=tempdir,
@@ -280,7 +279,6 @@ class TestLoad(unittest.TestCase):
280
279
  source="github",
281
280
  progress=False,
282
281
  device=device,
283
- return_state_dict=True,
284
282
  )
285
283
  # prepare network
286
284
  with open(os.path.join(bundle_root, bundle_files[2])) as f:
@@ -289,7 +287,7 @@ class TestLoad(unittest.TestCase):
289
287
  del net_args["_target_"]
290
288
  model = getattr(nets, model_name)(**net_args)
291
289
  model.to(device)
292
- model.load_state_dict(weights)
290
+ model.load_state_dict(model_1)
293
291
  model.eval()
294
292
 
295
293
  # prepare data and test
@@ -313,13 +311,11 @@ class TestLoad(unittest.TestCase):
313
311
  progress=False,
314
312
  device=device,
315
313
  source="github",
316
- return_state_dict=False,
317
314
  )
318
315
  model_2.eval()
319
316
  output_2 = model_2.forward(input_tensor)
320
317
  assert_allclose(output_2, expected_output, atol=1e-4, rtol=1e-4, type_test=False)
321
318
 
322
- # test compatibility with return_state_dict=True.
323
319
  model_3 = load(
324
320
  name=bundle_name,
325
321
  model_file=model_file,
@@ -328,7 +324,6 @@ class TestLoad(unittest.TestCase):
328
324
  device=device,
329
325
  net_name=model_name,
330
326
  source="github",
331
- return_state_dict=False,
332
327
  **net_args,
333
328
  )
334
329
  model_3.eval()
@@ -343,14 +338,7 @@ class TestLoad(unittest.TestCase):
343
338
  # download bundle, and load weights from the downloaded path
344
339
  with tempfile.TemporaryDirectory() as tempdir:
345
340
  # load weights
346
- model = load(
347
- name=bundle_name,
348
- bundle_dir=tempdir,
349
- source="monaihosting",
350
- progress=False,
351
- device=device,
352
- return_state_dict=False,
353
- )
341
+ model = load(name=bundle_name, bundle_dir=tempdir, source="monaihosting", progress=False, device=device)
354
342
 
355
343
  # prepare data and test
356
344
  input_tensor = torch.rand(1, 1, 96, 96, 96).to(device)
@@ -371,7 +359,6 @@ class TestLoad(unittest.TestCase):
371
359
  source="monaihosting",
372
360
  progress=False,
373
361
  device=device,
374
- return_state_dict=False,
375
362
  net_override=net_override,
376
363
  )
377
364