monai-weekly 1.5.dev2509__py3-none-any.whl → 1.5.dev2511__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- monai/__init__.py +1 -1
- monai/_version.py +3 -3
- monai/apps/deepedit/interaction.py +1 -1
- monai/apps/deepgrow/interaction.py +1 -1
- monai/apps/detection/networks/retinanet_detector.py +1 -1
- monai/apps/detection/networks/retinanet_network.py +5 -5
- monai/apps/detection/utils/box_coder.py +2 -2
- monai/apps/generation/maisi/networks/autoencoderkl_maisi.py +4 -0
- monai/apps/mmars/mmars.py +1 -1
- monai/apps/reconstruction/networks/blocks/varnetblock.py +1 -1
- monai/bundle/scripts.py +3 -4
- monai/data/dataset.py +2 -9
- monai/data/utils.py +1 -1
- monai/data/video_dataset.py +1 -1
- monai/engines/evaluator.py +11 -16
- monai/engines/trainer.py +11 -17
- monai/engines/utils.py +1 -1
- monai/engines/workflow.py +2 -2
- monai/fl/client/monai_algo.py +1 -1
- monai/handlers/checkpoint_loader.py +1 -1
- monai/inferers/inferer.py +33 -13
- monai/inferers/merger.py +16 -13
- monai/losses/perceptual.py +1 -1
- monai/losses/sure_loss.py +1 -1
- monai/networks/blocks/crossattention.py +1 -6
- monai/networks/blocks/feature_pyramid_network.py +4 -2
- monai/networks/blocks/selfattention.py +1 -6
- monai/networks/blocks/upsample.py +3 -11
- monai/networks/layers/vector_quantizer.py +2 -2
- monai/networks/nets/hovernet.py +5 -4
- monai/networks/nets/resnet.py +2 -2
- monai/networks/nets/senet.py +1 -1
- monai/networks/nets/swin_unetr.py +46 -49
- monai/networks/nets/transchex.py +3 -2
- monai/networks/nets/vista3d.py +7 -7
- monai/networks/schedulers/__init__.py +1 -0
- monai/networks/schedulers/rectified_flow.py +322 -0
- monai/networks/utils.py +5 -4
- monai/transforms/intensity/array.py +1 -1
- monai/transforms/spatial/array.py +6 -6
- monai/utils/misc.py +1 -1
- monai/utils/state_cacher.py +1 -1
- {monai_weekly-1.5.dev2509.dist-info → monai_weekly-1.5.dev2511.dist-info}/METADATA +4 -3
- {monai_weekly-1.5.dev2509.dist-info → monai_weekly-1.5.dev2511.dist-info}/RECORD +66 -64
- {monai_weekly-1.5.dev2509.dist-info → monai_weekly-1.5.dev2511.dist-info}/WHEEL +1 -1
- tests/bundle/test_bundle_download.py +16 -6
- tests/config/test_cv2_dist.py +1 -2
- tests/inferers/test_controlnet_inferers.py +96 -32
- tests/inferers/test_diffusion_inferer.py +99 -1
- tests/inferers/test_latent_diffusion_inferer.py +217 -211
- tests/integration/test_integration_bundle_run.py +2 -4
- tests/integration/test_integration_classification_2d.py +1 -1
- tests/integration/test_integration_fast_train.py +2 -2
- tests/integration/test_integration_segmentation_3d.py +1 -1
- tests/metrics/test_compute_multiscalessim_metric.py +3 -3
- tests/metrics/test_surface_dice.py +3 -3
- tests/networks/nets/test_autoencoderkl.py +1 -1
- tests/networks/nets/test_controlnet.py +1 -1
- tests/networks/nets/test_diffusion_model_unet.py +1 -1
- tests/networks/nets/test_network_consistency.py +1 -1
- tests/networks/nets/test_swin_unetr.py +1 -1
- tests/networks/nets/test_transformer.py +1 -1
- tests/networks/schedulers/test_scheduler_rflow.py +105 -0
- tests/networks/test_save_state.py +1 -1
- {monai_weekly-1.5.dev2509.dist-info → monai_weekly-1.5.dev2511.dist-info}/LICENSE +0 -0
- {monai_weekly-1.5.dev2509.dist-info → monai_weekly-1.5.dev2511.dist-info}/top_level.txt +0 -0
@@ -128,7 +128,7 @@ class TestSWINUNETR(unittest.TestCase):
|
|
128
128
|
data_spec["url"], weight_path, hash_val=data_spec["hash_val"], hash_type=data_spec["hash_type"]
|
129
129
|
)
|
130
130
|
|
131
|
-
ssl_weight = torch.load(weight_path)["model"]
|
131
|
+
ssl_weight = torch.load(weight_path, weights_only=True)["model"]
|
132
132
|
net = SwinUNETR(**input_param)
|
133
133
|
dst_dict, loaded, not_loaded = copy_model_state(net, ssl_weight, filter_func=filter_swinunetr)
|
134
134
|
assert_allclose(dst_dict[key][:8], value, atol=1e-4, rtol=1e-4, type_test=False)
|
@@ -101,7 +101,7 @@ class TestDecoderOnlyTransformer(unittest.TestCase):
|
|
101
101
|
weight_path = os.path.join(tmpdir, filename)
|
102
102
|
download_url(url=url, filepath=weight_path, hash_val=hash_val, hash_type=hash_type)
|
103
103
|
|
104
|
-
net.load_old_state_dict(torch.load(weight_path), verbose=False)
|
104
|
+
net.load_old_state_dict(torch.load(weight_path, weights_only=True), verbose=False)
|
105
105
|
|
106
106
|
|
107
107
|
if __name__ == "__main__":
|
@@ -0,0 +1,105 @@
|
|
1
|
+
# Copyright (c) MONAI Consortium
|
2
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
3
|
+
# you may not use this file except in compliance with the License.
|
4
|
+
# You may obtain a copy of the License at
|
5
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
6
|
+
# Unless required by applicable law or agreed to in writing, software
|
7
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
8
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
9
|
+
# See the License for the specific language governing permissions and
|
10
|
+
# limitations under the License.
|
11
|
+
|
12
|
+
from __future__ import annotations
|
13
|
+
|
14
|
+
import unittest
|
15
|
+
|
16
|
+
import torch
|
17
|
+
from parameterized import parameterized
|
18
|
+
|
19
|
+
from monai.networks.schedulers import RFlowScheduler
|
20
|
+
from tests.test_utils import assert_allclose
|
21
|
+
|
22
|
+
TEST_2D_CASE = []
|
23
|
+
for sample_method in ["uniform", "logit-normal"]:
|
24
|
+
TEST_2D_CASE.append(
|
25
|
+
[{"sample_method": sample_method, "use_timestep_transform": False}, (2, 6, 16, 16), (2, 6, 16, 16)]
|
26
|
+
)
|
27
|
+
|
28
|
+
for sample_method in ["uniform", "logit-normal"]:
|
29
|
+
TEST_2D_CASE.append(
|
30
|
+
[
|
31
|
+
{"sample_method": sample_method, "use_timestep_transform": True, "spatial_dim": 2},
|
32
|
+
(2, 6, 16, 16),
|
33
|
+
(2, 6, 16, 16),
|
34
|
+
]
|
35
|
+
)
|
36
|
+
|
37
|
+
|
38
|
+
TEST_3D_CASE = []
|
39
|
+
for sample_method in ["uniform", "logit-normal"]:
|
40
|
+
TEST_3D_CASE.append(
|
41
|
+
[{"sample_method": sample_method, "use_timestep_transform": False}, (2, 6, 16, 16, 16), (2, 6, 16, 16, 16)]
|
42
|
+
)
|
43
|
+
|
44
|
+
for sample_method in ["uniform", "logit-normal"]:
|
45
|
+
TEST_3D_CASE.append(
|
46
|
+
[
|
47
|
+
{"sample_method": sample_method, "use_timestep_transform": True, "spatial_dim": 3},
|
48
|
+
(2, 6, 16, 16, 16),
|
49
|
+
(2, 6, 16, 16, 16),
|
50
|
+
]
|
51
|
+
)
|
52
|
+
|
53
|
+
TEST_CASES = TEST_2D_CASE + TEST_3D_CASE
|
54
|
+
|
55
|
+
TEST_FULl_LOOP = [
|
56
|
+
[{"sample_method": "uniform"}, (1, 1, 2, 2), torch.Tensor([[[[-0.786166, -0.057519], [2.442662, -0.407664]]]])]
|
57
|
+
]
|
58
|
+
|
59
|
+
|
60
|
+
class TestRFlowScheduler(unittest.TestCase):
|
61
|
+
@parameterized.expand(TEST_CASES)
|
62
|
+
def test_add_noise(self, input_param, input_shape, expected_shape):
|
63
|
+
scheduler = RFlowScheduler(**input_param)
|
64
|
+
original_sample = torch.zeros(input_shape)
|
65
|
+
timesteps = scheduler.sample_timesteps(original_sample)
|
66
|
+
noise = torch.randn_like(original_sample)
|
67
|
+
timesteps = torch.randint(0, scheduler.num_train_timesteps, (original_sample.shape[0],)).long()
|
68
|
+
noisy = scheduler.add_noise(original_samples=original_sample, noise=noise, timesteps=timesteps)
|
69
|
+
self.assertEqual(noisy.shape, expected_shape)
|
70
|
+
|
71
|
+
@parameterized.expand(TEST_CASES)
|
72
|
+
def test_step_shape(self, input_param, input_shape, expected_shape):
|
73
|
+
scheduler = RFlowScheduler(**input_param)
|
74
|
+
model_output = torch.randn(input_shape)
|
75
|
+
sample = torch.randn(input_shape)
|
76
|
+
scheduler.set_timesteps(num_inference_steps=100, input_img_size_numel=torch.numel(sample[0, 0, ...]))
|
77
|
+
output_step = scheduler.step(model_output=model_output, timestep=500, sample=sample)
|
78
|
+
self.assertEqual(output_step[0].shape, expected_shape)
|
79
|
+
self.assertEqual(output_step[1].shape, expected_shape)
|
80
|
+
|
81
|
+
@parameterized.expand(TEST_FULl_LOOP)
|
82
|
+
def test_full_timestep_loop(self, input_param, input_shape, expected_output):
|
83
|
+
scheduler = RFlowScheduler(**input_param)
|
84
|
+
torch.manual_seed(42)
|
85
|
+
model_output = torch.randn(input_shape)
|
86
|
+
sample = torch.randn(input_shape)
|
87
|
+
scheduler.set_timesteps(50, input_img_size_numel=torch.numel(sample[0, 0, ...]))
|
88
|
+
for t in range(50):
|
89
|
+
sample, _ = scheduler.step(model_output=model_output, timestep=t, sample=sample)
|
90
|
+
assert_allclose(sample, expected_output, rtol=1e-3, atol=1e-3)
|
91
|
+
|
92
|
+
def test_set_timesteps(self):
|
93
|
+
scheduler = RFlowScheduler(num_train_timesteps=1000)
|
94
|
+
scheduler.set_timesteps(num_inference_steps=100, input_img_size_numel=16 * 16 * 16)
|
95
|
+
self.assertEqual(scheduler.num_inference_steps, 100)
|
96
|
+
self.assertEqual(len(scheduler.timesteps), 100)
|
97
|
+
|
98
|
+
def test_set_timesteps_with_num_inference_steps_bigger_than_num_train_timesteps(self):
|
99
|
+
scheduler = RFlowScheduler(num_train_timesteps=1000)
|
100
|
+
with self.assertRaises(ValueError):
|
101
|
+
scheduler.set_timesteps(num_inference_steps=2000, input_img_size_numel=16 * 16 * 16)
|
102
|
+
|
103
|
+
|
104
|
+
if __name__ == "__main__":
|
105
|
+
unittest.main()
|
@@ -64,7 +64,7 @@ class TestSaveState(unittest.TestCase):
|
|
64
64
|
if kwargs is None:
|
65
65
|
kwargs = {}
|
66
66
|
save_state(src=src, path=path, create_dir=create_dir, atomic=atomic, func=func, **kwargs)
|
67
|
-
ckpt = dict(torch.load(path))
|
67
|
+
ckpt = dict(torch.load(path, weights_only=True))
|
68
68
|
for k in ckpt.keys():
|
69
69
|
self.assertIn(k, expected_keys)
|
70
70
|
|
File without changes
|
File without changes
|