monai-weekly 1.5.dev2509__py3-none-any.whl → 1.5.dev2511__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (66) hide show
  1. monai/__init__.py +1 -1
  2. monai/_version.py +3 -3
  3. monai/apps/deepedit/interaction.py +1 -1
  4. monai/apps/deepgrow/interaction.py +1 -1
  5. monai/apps/detection/networks/retinanet_detector.py +1 -1
  6. monai/apps/detection/networks/retinanet_network.py +5 -5
  7. monai/apps/detection/utils/box_coder.py +2 -2
  8. monai/apps/generation/maisi/networks/autoencoderkl_maisi.py +4 -0
  9. monai/apps/mmars/mmars.py +1 -1
  10. monai/apps/reconstruction/networks/blocks/varnetblock.py +1 -1
  11. monai/bundle/scripts.py +3 -4
  12. monai/data/dataset.py +2 -9
  13. monai/data/utils.py +1 -1
  14. monai/data/video_dataset.py +1 -1
  15. monai/engines/evaluator.py +11 -16
  16. monai/engines/trainer.py +11 -17
  17. monai/engines/utils.py +1 -1
  18. monai/engines/workflow.py +2 -2
  19. monai/fl/client/monai_algo.py +1 -1
  20. monai/handlers/checkpoint_loader.py +1 -1
  21. monai/inferers/inferer.py +33 -13
  22. monai/inferers/merger.py +16 -13
  23. monai/losses/perceptual.py +1 -1
  24. monai/losses/sure_loss.py +1 -1
  25. monai/networks/blocks/crossattention.py +1 -6
  26. monai/networks/blocks/feature_pyramid_network.py +4 -2
  27. monai/networks/blocks/selfattention.py +1 -6
  28. monai/networks/blocks/upsample.py +3 -11
  29. monai/networks/layers/vector_quantizer.py +2 -2
  30. monai/networks/nets/hovernet.py +5 -4
  31. monai/networks/nets/resnet.py +2 -2
  32. monai/networks/nets/senet.py +1 -1
  33. monai/networks/nets/swin_unetr.py +46 -49
  34. monai/networks/nets/transchex.py +3 -2
  35. monai/networks/nets/vista3d.py +7 -7
  36. monai/networks/schedulers/__init__.py +1 -0
  37. monai/networks/schedulers/rectified_flow.py +322 -0
  38. monai/networks/utils.py +5 -4
  39. monai/transforms/intensity/array.py +1 -1
  40. monai/transforms/spatial/array.py +6 -6
  41. monai/utils/misc.py +1 -1
  42. monai/utils/state_cacher.py +1 -1
  43. {monai_weekly-1.5.dev2509.dist-info → monai_weekly-1.5.dev2511.dist-info}/METADATA +4 -3
  44. {monai_weekly-1.5.dev2509.dist-info → monai_weekly-1.5.dev2511.dist-info}/RECORD +66 -64
  45. {monai_weekly-1.5.dev2509.dist-info → monai_weekly-1.5.dev2511.dist-info}/WHEEL +1 -1
  46. tests/bundle/test_bundle_download.py +16 -6
  47. tests/config/test_cv2_dist.py +1 -2
  48. tests/inferers/test_controlnet_inferers.py +96 -32
  49. tests/inferers/test_diffusion_inferer.py +99 -1
  50. tests/inferers/test_latent_diffusion_inferer.py +217 -211
  51. tests/integration/test_integration_bundle_run.py +2 -4
  52. tests/integration/test_integration_classification_2d.py +1 -1
  53. tests/integration/test_integration_fast_train.py +2 -2
  54. tests/integration/test_integration_segmentation_3d.py +1 -1
  55. tests/metrics/test_compute_multiscalessim_metric.py +3 -3
  56. tests/metrics/test_surface_dice.py +3 -3
  57. tests/networks/nets/test_autoencoderkl.py +1 -1
  58. tests/networks/nets/test_controlnet.py +1 -1
  59. tests/networks/nets/test_diffusion_model_unet.py +1 -1
  60. tests/networks/nets/test_network_consistency.py +1 -1
  61. tests/networks/nets/test_swin_unetr.py +1 -1
  62. tests/networks/nets/test_transformer.py +1 -1
  63. tests/networks/schedulers/test_scheduler_rflow.py +105 -0
  64. tests/networks/test_save_state.py +1 -1
  65. {monai_weekly-1.5.dev2509.dist-info → monai_weekly-1.5.dev2511.dist-info}/LICENSE +0 -0
  66. {monai_weekly-1.5.dev2509.dist-info → monai_weekly-1.5.dev2511.dist-info}/top_level.txt +0 -0
monai/networks/utils.py CHANGED
@@ -22,7 +22,7 @@ from collections import OrderedDict
22
22
  from collections.abc import Callable, Mapping, Sequence
23
23
  from contextlib import contextmanager
24
24
  from copy import deepcopy
25
- from typing import Any
25
+ from typing import Any, Iterable
26
26
 
27
27
  import numpy as np
28
28
  import torch
@@ -1238,7 +1238,7 @@ class CastToFloat(torch.nn.Module):
1238
1238
 
1239
1239
  def forward(self, x):
1240
1240
  dtype = x.dtype
1241
- with torch.amp.autocast("cuda", enabled=False):
1241
+ with torch.autocast("cuda", enabled=False):
1242
1242
  ret = self.mod.forward(x.to(torch.float32)).to(dtype)
1243
1243
  return ret
1244
1244
 
@@ -1255,7 +1255,7 @@ class CastToFloatAll(torch.nn.Module):
1255
1255
 
1256
1256
  def forward(self, *args):
1257
1257
  from_dtype = args[0].dtype
1258
- with torch.amp.autocast("cuda", enabled=False):
1258
+ with torch.autocast("cuda", enabled=False):
1259
1259
  ret = self.mod.forward(*cast_all(args, from_dtype=from_dtype, to_dtype=torch.float32))
1260
1260
  return cast_all(ret, from_dtype=torch.float32, to_dtype=from_dtype)
1261
1261
 
@@ -1291,7 +1291,8 @@ def simple_replace(base_t: type[nn.Module], dest_t: type[nn.Module]) -> Callable
1291
1291
  def expansion_fn(mod: nn.Module) -> nn.Module | None:
1292
1292
  if not isinstance(mod, base_t):
1293
1293
  return None
1294
- args = [getattr(mod, name, None) for name in mod.__constants__]
1294
+ constants: Iterable = mod.__constants__ # type: ignore[assignment]
1295
+ args = [getattr(mod, name, None) for name in constants]
1295
1296
  out = dest_t(*args)
1296
1297
  return out
1297
1298
 
@@ -1856,7 +1856,7 @@ class RandHistogramShift(RandomizableTransform):
1856
1856
  indices = ns.searchsorted(xp.reshape(-1), x.reshape(-1)) - 1
1857
1857
  indices = ns.clip(indices, 0, len(m) - 1)
1858
1858
 
1859
- f = (m[indices] * x.reshape(-1) + b[indices]).reshape(x.shape)
1859
+ f: NdarrayOrTensor = (m[indices] * x.reshape(-1) + b[indices]).reshape(x.shape)
1860
1860
  f[x < xp[0]] = fp[0]
1861
1861
  f[x > xp[-1]] = fp[-1]
1862
1862
  return f
@@ -1758,13 +1758,13 @@ class AffineGrid(LazyTransform):
1758
1758
  if self.affine is None:
1759
1759
  affine = torch.eye(spatial_dims + 1, device=_device)
1760
1760
  if self.rotate_params:
1761
- affine @= create_rotate(spatial_dims, self.rotate_params, device=_device, backend=_b)
1761
+ affine @= create_rotate(spatial_dims, self.rotate_params, device=_device, backend=_b) # type: ignore[assignment]
1762
1762
  if self.shear_params:
1763
- affine @= create_shear(spatial_dims, self.shear_params, device=_device, backend=_b)
1763
+ affine @= create_shear(spatial_dims, self.shear_params, device=_device, backend=_b) # type: ignore[assignment]
1764
1764
  if self.translate_params:
1765
- affine @= create_translate(spatial_dims, self.translate_params, device=_device, backend=_b)
1765
+ affine @= create_translate(spatial_dims, self.translate_params, device=_device, backend=_b) # type: ignore[assignment]
1766
1766
  if self.scale_params:
1767
- affine @= create_scale(spatial_dims, self.scale_params, device=_device, backend=_b)
1767
+ affine @= create_scale(spatial_dims, self.scale_params, device=_device, backend=_b) # type: ignore[assignment]
1768
1768
  else:
1769
1769
  affine = self.affine # type: ignore
1770
1770
  affine = to_affine_nd(spatial_dims, affine)
@@ -1780,7 +1780,7 @@ class AffineGrid(LazyTransform):
1780
1780
  grid_ = ((affine @ sc) @ grid_.view((grid_.shape[0], -1))).view([-1] + list(grid_.shape[1:]))
1781
1781
  else:
1782
1782
  grid_ = (affine @ grid_.view((grid_.shape[0], -1))).view([-1] + list(grid_.shape[1:]))
1783
- return grid_, affine
1783
+ return grid_, affine # type: ignore[return-value]
1784
1784
 
1785
1785
 
1786
1786
  class RandAffineGrid(Randomizable, LazyTransform):
@@ -3257,7 +3257,7 @@ class GridPatch(Transform, MultiSampleTrait):
3257
3257
  tuple[NdarrayOrTensor, numpy.ndarray]: tuple of filtered patches and locations.
3258
3258
  """
3259
3259
  n_dims = len(image_np.shape)
3260
- idx = argwhere(image_np.sum(tuple(range(1, n_dims))) < self.threshold).reshape(-1)
3260
+ idx = argwhere(image_np.sum(tuple(range(1, n_dims))) < self.threshold).reshape(-1) # type: ignore[operator]
3261
3261
  idx_np = convert_data_type(idx, np.ndarray)[0]
3262
3262
  return image_np[idx], locations[idx_np]
3263
3263
 
monai/utils/misc.py CHANGED
@@ -546,7 +546,7 @@ class MONAIEnvVars:
546
546
 
547
547
  @staticmethod
548
548
  def algo_hash() -> str | None:
549
- return os.environ.get("MONAI_ALGO_HASH", "e4cf5a1")
549
+ return os.environ.get("MONAI_ALGO_HASH", "c970bdf")
550
550
 
551
551
  @staticmethod
552
552
  def trace_transform() -> str | None:
@@ -124,7 +124,7 @@ class StateCacher:
124
124
  fn = self.cached[key]["obj"] # pytype: disable=attribute-error
125
125
  if not os.path.exists(fn): # pytype: disable=wrong-arg-types
126
126
  raise RuntimeError(f"Failed to load state in {fn}. File doesn't exist anymore.")
127
- data_obj = torch.load(fn, map_location=lambda storage, location: storage)
127
+ data_obj = torch.load(fn, map_location=lambda storage, location: storage, weights_only=False)
128
128
  # copy back to device if necessary
129
129
  if "device" in self.cached[key]:
130
130
  data_obj = data_obj.to(self.cached[key]["device"])
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: monai-weekly
3
- Version: 1.5.dev2509
3
+ Version: 1.5.dev2511
4
4
  Summary: AI Toolkit for Healthcare Imaging
5
5
  Home-page: https://monai.io/
6
6
  Author: MONAI Consortium
@@ -29,8 +29,9 @@ Classifier: Typing :: Typed
29
29
  Requires-Python: >=3.9
30
30
  Description-Content-Type: text/markdown; charset=UTF-8
31
31
  License-File: LICENSE
32
- Requires-Dist: torch>=1.13.1
33
- Requires-Dist: numpy<2.0,>=1.24
32
+ Requires-Dist: torch>=2.3.0; sys_platform != "win32"
33
+ Requires-Dist: torch>=2.4.1; sys_platform == "win32"
34
+ Requires-Dist: numpy<3.0,>=1.24
34
35
  Provides-Extra: all
35
36
  Requires-Dist: nibabel; extra == "all"
36
37
  Requires-Dist: ninja; extra == "all"
@@ -1,5 +1,5 @@
1
- monai/__init__.py,sha256=2QSN66gMNzIDVAeBWVrsS3xgXmpc90Ksxr0j3D3KLiQ,4095
2
- monai/_version.py,sha256=3pISgTcfhG3j_LA8zhH9EcyDi6PgzKxbNALoD_5HCps,503
1
+ monai/__init__.py,sha256=fnGV8I63_2ZDjUJguv4MIFw1U9IR2N6Y09ZWn4tRbZY,4095
2
+ monai/_version.py,sha256=vuxb7QhJeI5JKiKSbZNMJDItG7-knm3jNnxT04rJ6Xc,503
3
3
  monai/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
4
  monai/_extensions/__init__.py,sha256=NEBPreRhQ8H9gVvgrLr_y52_TmqB96u_u4VQmeNT93I,642
5
5
  monai/_extensions/loader.py,sha256=7SiKw36q-nOzH8CRbBurFrz7GM40GCu7rc93Tm8XpnI,3643
@@ -21,19 +21,19 @@ monai/apps/auto3dseg/hpo_gen.py,sha256=VMfN0M5Z8Mq3Epu4fgOD5N6X-BY2PARIC69wW2t5E
21
21
  monai/apps/auto3dseg/transforms.py,sha256=V57mf8dTVBjiTfcgnMMdtMLmAzpnNrcl1ae5cYPjjlI,3856
22
22
  monai/apps/auto3dseg/utils.py,sha256=7DPJbsL9YbhRdMZ6dEvCA_t_uLSSz7-WZSU2pMY4_qo,3138
23
23
  monai/apps/deepedit/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
24
- monai/apps/deepedit/interaction.py,sha256=h9zTmhHAmwndR315RknqXtLWYqyYGvdcmjP6EpRrzHg,4501
24
+ monai/apps/deepedit/interaction.py,sha256=jY_uxPhgaYpMggMKqgMJNc-GWxswRKwaKoUtf3B7TFE,4498
25
25
  monai/apps/deepedit/transforms.py,sha256=Udj35m10Irek5Gtqo6Hgv6Lt7S6jSo-z0NuyVbs800o,38108
26
26
  monai/apps/deepgrow/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
27
27
  monai/apps/deepgrow/dataset.py,sha256=W0wv1QujA4sZgrAcBS64dl3OBbDBM2cF4RK0fDCQnRU,10054
28
- monai/apps/deepgrow/interaction.py,sha256=-smtOl93i_SDEo_Yo8DE5U3FnDrUcdJWeP14nCq5GS4,3748
28
+ monai/apps/deepgrow/interaction.py,sha256=Und57h06LSZ9W7CAWh7evPU7l97XZIB5KuEMvVCvMtM,3745
29
29
  monai/apps/deepgrow/transforms.py,sha256=RmKMoN4sqhT84ognTJt55t6UtkL_OpkzRcP5VPseSss,43349
30
30
  monai/apps/detection/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
31
31
  monai/apps/detection/metrics/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
32
32
  monai/apps/detection/metrics/coco.py,sha256=bpF6hAAMKsBNLfat-Fzh0CR-0swDsAAVcwTaZ-lo1_g,26618
33
33
  monai/apps/detection/metrics/matching.py,sha256=GF4wgH5Let7GwW1SGwzfzz5BRnCVEhDe7_KR7zpLr44,17161
34
34
  monai/apps/detection/networks/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
35
- monai/apps/detection/networks/retinanet_detector.py,sha256=-EcGvDJK13o7qqx6bUHtxEniIdCXriIzwty1o5pmG90,53640
36
- monai/apps/detection/networks/retinanet_network.py,sha256=Xbx1WeGWHkQC7VJUAgYD3GjGizehF8_wWntjdFYySD4,19038
35
+ monai/apps/detection/networks/retinanet_detector.py,sha256=8PriT0FTy9Dyt8hw1iaPxpKC7A81PMecJj02F4ndzag,53659
36
+ monai/apps/detection/networks/retinanet_network.py,sha256=nIIPRReN_4Q0-zvj53o6KFciPEIibbWDpKwbATH9nHc,19170
37
37
  monai/apps/detection/transforms/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
38
38
  monai/apps/detection/transforms/array.py,sha256=CHc-zl7IPlKYPBVR88zVT6_eBFElPihtkfO9oo2Bsak,24546
39
39
  monai/apps/detection/transforms/box_ops.py,sha256=3RFK8zNH8ufpHT_aB5xFR2wXrQauBQEWQyxNojl1mSY,18035
@@ -41,7 +41,7 @@ monai/apps/detection/transforms/dictionary.py,sha256=OGEYrq2F8gFjYRYv7ZdlWFM6yYR
41
41
  monai/apps/detection/utils/ATSS_matcher.py,sha256=aajY2UJ-Ot9L5KDwORFOCuMsTQEU02BZ9-tNMfIYH98,13532
42
42
  monai/apps/detection/utils/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
43
43
  monai/apps/detection/utils/anchor_utils.py,sha256=coSzVq5ictzWL4XqwtlLTKlzdel6cfHFLbvM6zOiq8M,18718
44
- monai/apps/detection/utils/box_coder.py,sha256=81Qe8wf6IRb4kJgcS957yWdOpY_G8nUdyIFPXxpMQvk,11120
44
+ monai/apps/detection/utils/box_coder.py,sha256=VSbqcNOgH153-3br7kmYpUlcaoE_D4vtFoDjG98hNzE,11174
45
45
  monai/apps/detection/utils/box_selector.py,sha256=uXI0YrhugYR68xYshRs5JpPTT1nL3QMMS1nJ_RpddVo,9031
46
46
  monai/apps/detection/utils/detector_utils.py,sha256=pU7bOzH-ay9Lnzu1aHCrIwlaGVf5xj13E7Somx_vFnk,10306
47
47
  monai/apps/detection/utils/hard_negative_sampler.py,sha256=PywdXkFIAdudmp3W8JWM_CcLC3BKWQh5x1y0tuuokcg,13890
@@ -49,11 +49,11 @@ monai/apps/detection/utils/predict_utils.py,sha256=6j7U-7pLtbmgE6SXKR_MVImc67-M8
49
49
  monai/apps/generation/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
50
50
  monai/apps/generation/maisi/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
51
51
  monai/apps/generation/maisi/networks/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
52
- monai/apps/generation/maisi/networks/autoencoderkl_maisi.py,sha256=FxHsB7W1I11Npdyg4gN1k3QIc0tcq3FMLI0TDjI4mgg,36704
52
+ monai/apps/generation/maisi/networks/autoencoderkl_maisi.py,sha256=ClSQuCZAkQhXGLgZ2WEPLg7anSFHnT9v19JDKXyqYPo,36812
53
53
  monai/apps/generation/maisi/networks/controlnet_maisi.py,sha256=0K2uyMfvc1-2cFCoNDngeMbzcPpvFR1JZ0fqF9pj8r4,7707
54
54
  monai/apps/generation/maisi/networks/diffusion_model_unet_maisi.py,sha256=XFOiy6GngXC_OKM1dUiel_gp71yUFWgPErYdgrVLQAU,19072
55
55
  monai/apps/mmars/__init__.py,sha256=BolpgEi9jNBgrOQd3Kwp-9QQLeWQwQtlN_MJkK1eu5s,726
56
- monai/apps/mmars/mmars.py,sha256=AYsx5FDmJ0dT0hAkWGYhM470aPIG23PYloHihDZfOKE,13115
56
+ monai/apps/mmars/mmars.py,sha256=24JylLuw-qTDsTnTK4Y5kAbF_nWdivrSRS8EMGy69oQ,13134
57
57
  monai/apps/mmars/model_desc.py,sha256=k7WSMRuyQN8xPax8aUmGKiTNZmcVatdqPYCgxDih-x4,9996
58
58
  monai/apps/nnunet/__init__.py,sha256=gyqmg1fxPf3RF6LL25gnpMTfNS14uxweuJ93e4UzjB8,745
59
59
  monai/apps/nnunet/__main__.py,sha256=qrloBLymK98OPcaBKocrlF8io2h4mUuXJPFVLZT-XDo,832
@@ -86,7 +86,7 @@ monai/apps/reconstruction/fastmri_reader.py,sha256=CbAWHN9-b8TFgIpsu1UmS0zHZg3lv
86
86
  monai/apps/reconstruction/mri_utils.py,sha256=WEentr9IfCdTRcRELYkIgRx2oCaIoc1JEVE1FJfQlqQ,2000
87
87
  monai/apps/reconstruction/networks/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
88
88
  monai/apps/reconstruction/networks/blocks/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
89
- monai/apps/reconstruction/networks/blocks/varnetblock.py,sha256=wloM8wy_DbFCuCDrK68q5tH4DPMve7raPnZWPmDgrCk,4167
89
+ monai/apps/reconstruction/networks/blocks/varnetblock.py,sha256=l6Ug_0FQWuwBSoA_rgjjHdaCr8kV2hQm33TzrCDp-dk,4183
90
90
  monai/apps/reconstruction/networks/nets/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
91
91
  monai/apps/reconstruction/networks/nets/coil_sensitivity_model.py,sha256=ZSmyW4FzN-tFvbbchSUma7VGzCiEZJXN65nXdcFbJzk,6215
92
92
  monai/apps/reconstruction/networks/nets/complex_unet.py,sha256=FMm7DTOCJRb80tRWlqBPzpNkdUwRo7tlbvsrHX53HW4,4775
@@ -114,7 +114,7 @@ monai/bundle/config_item.py,sha256=rMjXSGkjJZdi04BwSHwCcIwzIb_TflmC3xDhC3SVJRs,1
114
114
  monai/bundle/config_parser.py,sha256=cGyEn-cqNk0rEEZ1Qiv6UydmIDvtWZcMVljyfVm5i50,23025
115
115
  monai/bundle/properties.py,sha256=iN3K4FVmN9ny1Hw9p5j7_ULcCdSD8PmrR7qXxbNz49k,11582
116
116
  monai/bundle/reference_resolver.py,sha256=GXCMK4iogxxE6VocsmAbUrcXosmC5arnjeG9zYhHKpg,16748
117
- monai/bundle/scripts.py,sha256=p7wlT0BplTIdW4DbxRPotf_tLsgddvtklW1kcAEPBZQ,91016
117
+ monai/bundle/scripts.py,sha256=VE3hIAcPfncbT1MGyLk0by1ZtA9jit6Hc7djrUUKUX8,91018
118
118
  monai/bundle/utils.py,sha256=t-22uFvLn7Yy-dr1v1U33peNOxgAmU4TJiGAbsBrUKs,10108
119
119
  monai/bundle/workflows.py,sha256=CuhmFq1AWsN3ATiYJCSakPOxrOdGutl6vkpo9sxe8gU,34369
120
120
  monai/config/__init__.py,sha256=CN28CfTdsp301gv8YXfVvkbztCfbAqrLKrJi_C8oP9s,1048
@@ -124,7 +124,7 @@ monai/data/__init__.py,sha256=loDwAMF14hb4HS04SwukoIchIfU6iGY-xPrJVGyVwBo,5167
124
124
  monai/data/box_utils.py,sha256=YbG6lOoYwUGmwcNmoKzq2xnNTbYA4LMkHmfsqteopCg,50102
125
125
  monai/data/csv_saver.py,sha256=fcZF4kBNQnDFwQjV9TS4zjq_zqsv_u3QldxRprMC7zI,4952
126
126
  monai/data/dataloader.py,sha256=GC1x8aZJaidXN8zaA-Vl6iEHlTP4ocjIvRhCv74elkQ,4459
127
- monai/data/dataset.py,sha256=iVDyCv7t2VG55CVp6hUOhg4eZcEc8bZBHRJX14VW2YI,79067
127
+ monai/data/dataset.py,sha256=ysGlfrVmiXM6O42s-CcewNo_EqZ29uZ1M_sS_rgo1EQ,78731
128
128
  monai/data/dataset_summary.py,sha256=5DkrzlNb3lw58j6lMR7aAGZH1YIw6b1UFQjkbourxt0,10243
129
129
  monai/data/decathlon_datalist.py,sha256=3z7p-PqEdj41MlkRFmc-Q1HNxI0D6Tgi4fmD3p1oq_E,10310
130
130
  monai/data/fft_utils.py,sha256=in9Zu8hC4oSVzuA-Zl236X6EkvgFka0RXdOxgvdGkv0,4448
@@ -143,26 +143,26 @@ monai/data/test_time_augmentation.py,sha256=KgIcPDwF_KelBCX118J5gx13sefGaDgQFUDg
143
143
  monai/data/thread_buffer.py,sha256=FtJlRwLHQzU9sf3XJk4G7b_-uKXaRQHAOMauc-zWN2Q,8840
144
144
  monai/data/torchscript_utils.py,sha256=KoJinpJiNepP6i-1DDy3-8m1Qg1bPfAZTScmXr0LT6g,5502
145
145
  monai/data/ultrasound_confidence_map.py,sha256=pEAp4lr-s00_T9d4IEYSJ5B9VQwf_T7BS9GBx8jw_Sg,14464
146
- monai/data/utils.py,sha256=80SjoKYSoyIBz2AZm0F8jHELfBxCanlK6CR6NJ_xiaw,66422
147
- monai/data/video_dataset.py,sha256=mMTZCkgAx_BBoF4HHWcmEuT9zoNoUVPFtPeYYt76t-A,9075
146
+ monai/data/utils.py,sha256=rZ-61OUVeMr37vsxVTMoQBw15-cLNJQP5szFQSZlS_Q,66448
147
+ monai/data/video_dataset.py,sha256=pUZhaYqSUfacOCAs53UnNXWH2oO99cK8q-7jqujeyqU,9105
148
148
  monai/data/wsi_datasets.py,sha256=Mih4G_rzTQC0Ts8TobnNNXoyCxOAhy0rFqpREDAENWc,18659
149
149
  monai/data/wsi_reader.py,sha256=yVbgl44bS9xF0wsr_ZeLwaljMlTOrtjVTpYKykydEMU,49508
150
150
  monai/engines/__init__.py,sha256=oV0zH5n8qPdCCNZCqLqN4Z7iqADouDtZmtswWQoZWOk,1094
151
- monai/engines/evaluator.py,sha256=d0V4Ko1mcVsr9PtOhhtJYy4SVtrXuKdZ9yWM9mCYpAA,26961
152
- monai/engines/trainer.py,sha256=CmCw0C20A1EUgmpBt_eGHp9ObIJO5shqF7bQGJVskc0,38448
153
- monai/engines/utils.py,sha256=YGaa1Gk2b3bBtodbToGaSOD-s9X7wMgfgESOozZCLrM,15632
154
- monai/engines/workflow.py,sha256=FXZt8wN8m2U7wmXwoI0t1ILeieqsHtPwt5P8cMX71_A,15495
151
+ monai/engines/evaluator.py,sha256=GM1E023FSbNw7ieSXKXjfOU8hYF4XjrjsBQwsZQ7bRU,26673
152
+ monai/engines/trainer.py,sha256=V9wRSJL8FVXv5gJufFFBdz23zexSzzdQPyGOs0IrNoU,38129
153
+ monai/engines/utils.py,sha256=Lj76ai4jrf3TsCUng3U4I5Pa97skbw2jMNE_Ssyru50,15658
154
+ monai/engines/workflow.py,sha256=pvMT-dANo_Lf4NsKyzLup2s3VbmKSYEUt4q2Pzfp3Ow,15483
155
155
  monai/fl/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
156
156
  monai/fl/client/__init__.py,sha256=Wnkcf-Guhi-d29eAH0p51jz1Tn9WSVM4UUGbbb9SAqQ,725
157
157
  monai/fl/client/client_algo.py,sha256=vetQbSNmuvJRBEcu0AKM96gKYbkSXlu4HSriqK7wiiU,5098
158
- monai/fl/client/monai_algo.py,sha256=XLanS6pYuCXdb6b019hiOPjlvIVqupBEvACC_R8jMto,34061
158
+ monai/fl/client/monai_algo.py,sha256=Kk1psjpmB5J_KcQz3ieXXYy-MUTHXuJ1ZGmZyuhLbXI,34080
159
159
  monai/fl/utils/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
160
160
  monai/fl/utils/constants.py,sha256=OjMAE17niYqQh7nz45SC6CXvkMa4-XZsIuoHUHqP7W0,1784
161
161
  monai/fl/utils/exchange_object.py,sha256=q41trOwBdog_g3k_Eh2EFnLufHJ1mj7nGyQ-ShuW5Mo,3527
162
162
  monai/fl/utils/filters.py,sha256=InXplYes52JJqtsNbePAPPAYS8am_uRO7UkBHyYyJCo,1633
163
163
  monai/handlers/__init__.py,sha256=m6SDdtXAZ4ONLCCYrSgONuPaJOz7lewOAzOvZ3J9r14,2442
164
164
  monai/handlers/average_precision.py,sha256=FkIUP2mKqGvybnc_HxuuOdqPeq06wnZP_vwb8K-IhUg,2753
165
- monai/handlers/checkpoint_loader.py,sha256=Y0qNBq5b-GJ-XOJNjuslegCpIGPZYOdNs3PxzNYCCm8,7432
165
+ monai/handlers/checkpoint_loader.py,sha256=kbnfhwEgdnOJFjKQCuHlwJllckC1xWkhj-cwXDyDmkU,7452
166
166
  monai/handlers/checkpoint_saver.py,sha256=z_w5HtNSeRM3QwHQIgQKqVodSYNy8dhL8KTBUzHuF0g,16047
167
167
  monai/handlers/classification_saver.py,sha256=CNzdU9GrKj8KEC42jaBy2rEgpd3mqgz-YZg4dr61Jyg,7605
168
168
  monai/handlers/clearml_handlers.py,sha256=bMVhGUlUlilTJfkwb4YHEgrGBOUnveObfHgqzDy3SVw,7545
@@ -195,8 +195,8 @@ monai/handlers/trt_handler.py,sha256=uWFdgC8QKRkcNwWfKIbQMdK6-MX_1ON0mKabeIn1ltI
195
195
  monai/handlers/utils.py,sha256=Ib1u-PLrtIkiLqTfREnrCWpN4af1btdNzkyMZuuuYyU,10239
196
196
  monai/handlers/validation_handler.py,sha256=NZO21c6zzXbmAgJZHkkdoZQSQIHwuxh94QD3PLUldGU,3674
197
197
  monai/inferers/__init__.py,sha256=K74t_RCeUPdEZvHzIPzVAwZ9DtmouLqhb3qDEmFBWs4,1107
198
- monai/inferers/inferer.py,sha256=_VPnBIErwYzbrJIA9eMMalSso1pSsc_8cONVUUvPJOw,93549
199
- monai/inferers/merger.py,sha256=dZm-FVyXPlFb59q4DG52mbtPm8Iy4cNFWv3un0Z8k0M,16262
198
+ monai/inferers/inferer.py,sha256=rgAI5qnLpszoXiSj3HCaqYiMAxymvqYO0Ltujq_lJUo,94617
199
+ monai/inferers/merger.py,sha256=JxSLdlXTKW1xug11UWQNi6dNtpqVRbGCLc-ifj06g8U,16613
200
200
  monai/inferers/splitter.py,sha256=_hTnFdvDNRckkA7ZGQehVsNZw83oXoGFWyk5VXNqgJg,21149
201
201
  monai/inferers/utils.py,sha256=dvZBCAjaPa8xXcJuXRzNQ-fBzteauzkKbxE5YZdGBGY,20374
202
202
  monai/losses/__init__.py,sha256=igy7BjoQzM3McmJPD2tmeiW2ljSXfB2HBdc4YiDzYEg,1778
@@ -213,11 +213,11 @@ monai/losses/hausdorff_loss.py,sha256=XhOGtYxs-BYRN0NDXX3J3_79so5jEzh9wB8EBm5NoL
213
213
  monai/losses/image_dissimilarity.py,sha256=fIIY1zyxfxl-hKi797xpyDDknUGkdLWGJDBwK3IvJ18,15460
214
214
  monai/losses/multi_scale.py,sha256=7hL4clBLa3f0tz9-74brq5XOFChrpyd_h9cHQKPnseQ,3636
215
215
  monai/losses/nacl_loss.py,sha256=IP4Y2qKcPNn60rgA3zUSvjqnvCiIsbvmwm25ao9appg,5052
216
- monai/losses/perceptual.py,sha256=_UQs6dUIsfff-sXx_Kvg3GcY6YN_2rhpSpt5b8idP58,19468
216
+ monai/losses/perceptual.py,sha256=rPylPBQHmwan87JUawKSRwWn10cIb24xvx5qjXZkUIo,19487
217
217
  monai/losses/spatial_mask.py,sha256=rPyW8fJPSdqHUS7YB7m30Sq4G-YYpobO_fvKsFSAFQ0,2955
218
218
  monai/losses/spectral_loss.py,sha256=PqmZdmJOAzaarW0bzBu8SeL9sOy3XQhul7pnLY4Ih-I,3368
219
219
  monai/losses/ssim_loss.py,sha256=v8LaVXtBzpTey80CBtsWTs5qWw7fiJwYAXqXcCgo5kA,5058
220
- monai/losses/sure_loss.py,sha256=PDDNNeZm8SLPRCDUPbc8o4--ribHnY4nbo8y55nRo0w,8179
220
+ monai/losses/sure_loss.py,sha256=QrXCmy7YwASZNufroDTjiZo8w5FahVd07asDeTd6r3s,8195
221
221
  monai/losses/tversky.py,sha256=uLuqCvsac8OabTJzKQEzAfAvlwrflYCh0s76rgbcVJ0,6955
222
222
  monai/losses/unified_focal_loss.py,sha256=rCj8IpueYH_UMrOUXU0tjbXIN4Uix3bGnRZQtRvl7Sg,10224
223
223
  monai/losses/utils.py,sha256=wrpKcEO0XhbFOHz_jJRqeAeIgpMiMxmepnRf31_DNRU,2786
@@ -245,7 +245,7 @@ monai/metrics/utils.py,sha256=eQ9QGGvuNmYFrgtVFNiA44pBhaHLCkmpyeK2FcK_2Pc,46941
245
245
  monai/metrics/wrapper.py,sha256=c1zg-xcypQyZ840TEuhhLgr4sClYMWTxlv1OieJTtvE,11781
246
246
  monai/networks/__init__.py,sha256=ZzU2Qo8gDXNiRBF0JapIo3xlecZHjXsJuarF0IKVKKY,1086
247
247
  monai/networks/trt_compiler.py,sha256=IFfsM1qFZvmCUBbEvbHnZe6_zmMcXghkpkzmP43dZbk,27535
248
- monai/networks/utils.py,sha256=clziHCw8idcUvey0UmNrzCD8_luImyGvZb8TDkLq4ZQ,56302
248
+ monai/networks/utils.py,sha256=8kxdwqV_nxGgwjF7lt_9tsJhesCjnE1eSCvQWzqr5RQ,56372
249
249
  monai/networks/blocks/__init__.py,sha256=xf-4SLQjL3bU7T_vCnAIbeBzz0Ys2rrtlegJM5bej-Q,2355
250
250
  monai/networks/blocks/acti_norm.py,sha256=bVGXbTZ_ssRvmED5R7LOQ7jj4V6WbVFl8JMO-4iZ2Dk,4275
251
251
  monai/networks/blocks/activation.py,sha256=S5k3zcP2PsHBkeIxgWgNg8ppW80tTResVP2j9ZsvTFw,5839
@@ -254,14 +254,14 @@ monai/networks/blocks/attention_utils.py,sha256=UAlttLpn8vJCIiYyWXEUF-NzVTQBOK-a
254
254
  monai/networks/blocks/backbone_fpn_utils.py,sha256=mdXFwtnRgwuaisTlY-c7OkY1ZZBY3I82dAjpXFAZFbg,7488
255
255
  monai/networks/blocks/convolutions.py,sha256=gRmbYfy3IR4taiXuxeH5KGOFjP55FoVWfP4e1L6ai0s,11686
256
256
  monai/networks/blocks/crf.py,sha256=gHyRgBWD9DmmbCJnXwsMa6WN7N9fDLuT_SwH8MnHhXE,5009
257
- monai/networks/blocks/crossattention.py,sha256=U6_rp9FRod5_1sAj5GBN4MMovTXQcfjlosW1vMV3UWA,8639
257
+ monai/networks/blocks/crossattention.py,sha256=8rb1n41NRGjMHDegWXm9jlBHTaXFxEqgNLN8xsxXQzI,8348
258
258
  monai/networks/blocks/denseblock.py,sha256=hs1rcBp95euZT5ULjgefPApZH75-hqSaVKKNtHdGt10,4747
259
259
  monai/networks/blocks/dints_block.py,sha256=-JWz4-nnAjrOxU2oJ86-qN8Krb8FayKS8Zpbp1wLXzc,9255
260
260
  monai/networks/blocks/downsample.py,sha256=18cwYXL5H3DC5Yq12cdqTIijDJfMCE2YNHlPetFB6UY,2413
261
261
  monai/networks/blocks/dynunet_block.py,sha256=kg8NNTL4nBqsy6gBcxmS5ZCPxlhWM_iB0ByyTQ4AfPs,11063
262
262
  monai/networks/blocks/encoder.py,sha256=NwH5VSQLwamJqrSbZSdQqMwZCk80CPbSpMGEE0r0Cwo,3669
263
263
  monai/networks/blocks/fcn.py,sha256=mnCMrxhUdj2yZ0DPIj0Xf9OKVdv-qhG1BpnAg5j7q6c,9024
264
- monai/networks/blocks/feature_pyramid_network.py,sha256=_DeAy_lNnPqjNiJLcopjqe_PHVThACctrgbXmSSB3Jw,10554
264
+ monai/networks/blocks/feature_pyramid_network.py,sha256=zHMXB_hl92kmuJIe0rTvQlzQn1W77WTQZ7XaoivktEw,10631
265
265
  monai/networks/blocks/fft_utils_t.py,sha256=8bOvhLgP5nDLz8QwzD4XnRaxE9-tGba2-b_QDK8IWSs,8263
266
266
  monai/networks/blocks/localnet_block.py,sha256=b2-ZZvkMPphHJZYTbwEZDhqA-mMBSFM5WQOoohk_6W4,11456
267
267
  monai/networks/blocks/mednext_block.py,sha256=GKaFkRvmho79yxwfYyeSaJtHFtk185dY0tA4_rPnsQA,10487
@@ -271,14 +271,14 @@ monai/networks/blocks/pos_embed_utils.py,sha256=alvCh5x_OF2lv8fO6vvhAwkQJHV7TJT6
271
271
  monai/networks/blocks/regunet_block.py,sha256=1FLIwVBtk66II6xQ7Q4LMY8DP0rMmeftN7HuaEgnf3A,8825
272
272
  monai/networks/blocks/rel_pos_embedding.py,sha256=wuTJsk_NHSDX-3V0X9ctF99WIh2-SHLDbQxzrG7tz_4,2208
273
273
  monai/networks/blocks/segresnet_block.py,sha256=dREFa0CWuSWlSOm53fT7vZz6UC2J_7JAEaeHB9rYjAk,3339
274
- monai/networks/blocks/selfattention.py,sha256=fZGtQwtSvU5aoQ4DWnUbR4DWUA-oEa6L6x3BkHkCUVI,9844
274
+ monai/networks/blocks/selfattention.py,sha256=oH4rOT_OpalGeZOTIanBWWJ88RjriQ9W629tZ6-W-iE,9553
275
275
  monai/networks/blocks/spade_norm.py,sha256=Kq2ImmCQBaFURMnOTj08aphgGkF3ghDm19kXpPRq91c,3654
276
276
  monai/networks/blocks/spatialattention.py,sha256=HhoOnp0YfygOZne8jZjxQezRXIwQg1kfs-Cdo0ruxhw,3442
277
277
  monai/networks/blocks/squeeze_and_excitation.py,sha256=y2kXgoSFxywu-KCGYbI_d-NCCAEbuKAIY5gSqO_T7TI,12752
278
278
  monai/networks/blocks/text_embedding.py,sha256=HIlCTQCSyOEXnqo1l9TOC05duCoeWd9Kb4Oc0gvLZKw,3814
279
279
  monai/networks/blocks/transformerblock.py,sha256=dGqVoLoQuRjIO1mi5FpTNUZ0nrgvOVqksfQK6oZdhZc,3957
280
280
  monai/networks/blocks/unetr_block.py,sha256=d_rqE76OFfd3QRcHuor5Zei2pOrupoleBWu3eYUup0c,9049
281
- monai/networks/blocks/upsample.py,sha256=CeqqKx31gNw1CT3xz6UpU0fOjgW-7ZWxCRAOH4qAcxs,14024
281
+ monai/networks/blocks/upsample.py,sha256=WZXqstlYSYQ3BlA-QXS94z7olM1wEXoCZh12cDOm8_U,13523
282
282
  monai/networks/blocks/warp.py,sha256=XVFZKZR0kBhEtU5-xQsaqL06a-pAI7JJVupQCD2X4e8,7255
283
283
  monai/networks/layers/__init__.py,sha256=eSiNtHu0EZ1A8fw_lPTi_4szdRMsgZlZhtL6TR7fUnc,1689
284
284
  monai/networks/layers/conjugate_gradient.py,sha256=kCAwjtX_j5wrgR8x52WdGl4yCwZmcnUFONnM00G1sWU,3717
@@ -290,7 +290,7 @@ monai/networks/layers/gmm.py,sha256=Aq-YCHgUalgOZQ0x5mwYKJe1G7aiCiJybdkPTiiT120,
290
290
  monai/networks/layers/simplelayers.py,sha256=bX7JnDJJRqTla9siNuJ2YAKV2VcH0gCJNRE5hmrQn24,27967
291
291
  monai/networks/layers/spatial_transforms.py,sha256=fz2t7-ibijNLqTYpAn4ZgdXtzBSIyWlaF35mQtqWRY4,25581
292
292
  monai/networks/layers/utils.py,sha256=k_2xVO8BTEMMVJtemUyKBWw4_5xtqd6OOTOG8qld8To,4916
293
- monai/networks/layers/vector_quantizer.py,sha256=0PCcaH5_uaxFORHgEetQKazq74jgOVmvQJ3h4Ywat6Y,10058
293
+ monai/networks/layers/vector_quantizer.py,sha256=N1WrUjlGsYc3GYF-aJyvf9XIF7xfnSGYYoD3fyAji9c,10056
294
294
  monai/networks/layers/weight_init.py,sha256=ehwI5F7jm_lmDkK4qVL7ocIzCEPx5UPgLaURcsfMNwk,2253
295
295
  monai/networks/nets/__init__.py,sha256=QS_r_mjmymo3YX6DnWftREug1zVRUV56b2xjj5rvWDU,4209
296
296
  monai/networks/nets/ahnet.py,sha256=RT-loCa5Z_3I2DWB8lmRkhxGXSsnMVBCEDpwo68-YB4,21570
@@ -312,7 +312,7 @@ monai/networks/nets/flexible_unet.py,sha256=VN3cJQPMmY--TpZkuDwEWonPgJc4R3JKBwJC
312
312
  monai/networks/nets/fullyconnectednet.py,sha256=j5uo68qnYSxgH_sEMRh7s3QGNKFaJAIxmx8OixEv2Ig,7212
313
313
  monai/networks/nets/generator.py,sha256=q20EAl9N7Q56t78JiZaUEkPhYWyD02oqO0yekJCd9x0,6581
314
314
  monai/networks/nets/highresnet.py,sha256=1Mx8lR5K4sRXGWjspDAHaKq0WrX9Q7qz8CcBCKZxIXk,8883
315
- monai/networks/nets/hovernet.py,sha256=gQDeDGqCwjJACTPmQLAx9nPRBO_D65F-scx15w3Ho_Q,28645
315
+ monai/networks/nets/hovernet.py,sha256=CeksvFWFsIcV70q-JS1QneuMf7vKR8aH1LBz7yaSswA,28734
316
316
  monai/networks/nets/masked_autoencoder_vit.py,sha256=U2DmyKOP-GqFfzbpyMwCoGfcBvMHYeua5G2ZpwqzKpw,9610
317
317
  monai/networks/nets/mednext.py,sha256=svsIk0dH7MdNI8Fr7eP2YM8j1IBJ2paF7m_2VWpLOZ4,13258
318
318
  monai/networks/nets/milmodel.py,sha256=aUDgYJG0kS3p4nBW_dF7b4cWwuC31w3KIzmUzXA08HE,9813
@@ -321,30 +321,31 @@ monai/networks/nets/patchgan_discriminator.py,sha256=yTT0on0lzlDwSu4B9McMqdxqu5x
321
321
  monai/networks/nets/quicknat.py,sha256=ko1BO9l4i4BVYG5V4ohkwUEyoRrPPPzmqNqnFhLTZ0k,20463
322
322
  monai/networks/nets/regressor.py,sha256=6Nz5yJuQDJJOr5R0rhot_mHu7_MDCA4ybV48wS1HS1M,6482
323
323
  monai/networks/nets/regunet.py,sha256=-A6ygR7lVyAflFyqWkVVOsY94uMXWol1f2xr_HmsU1c,18664
324
- monai/networks/nets/resnet.py,sha256=oo1MCA9hccBVwDcMrZNpVmbDSRn3dOEkrn3DbKW2WZk,28141
324
+ monai/networks/nets/resnet.py,sha256=owsWu9lK26ijhRHDCLEBLf03t681TyehVCflcPqGIec,28179
325
325
  monai/networks/nets/segresnet.py,sha256=xNkSIvdk7kAyc3eVn-U_gGj8MoGVc5nklFKc_fkgOUs,13994
326
326
  monai/networks/nets/segresnet_ds.py,sha256=XFF7HKMt9Wbfc9fZSgfjVdfYQcP0d19ygp3VT7OHzJg,20644
327
- monai/networks/nets/senet.py,sha256=gulqPMYmSABbMbN39NElGzSU1TKGviJas7EPTBaZ60A,19289
327
+ monai/networks/nets/senet.py,sha256=yLhP9gDPoa-h9UwJZJm5qxPdPvF9calY95lButXJESs,19308
328
328
  monai/networks/nets/spade_autoencoderkl.py,sha256=-b2Sbl4jPpwo3ukTgsTcON26cSTB35K9sy1S9DKlZz0,19566
329
329
  monai/networks/nets/spade_diffusion_model_unet.py,sha256=zYsXhkHNpHWWyal5ljAMxOICJ1loYQQMAOuzWzdLBCM,39007
330
330
  monai/networks/nets/spade_network.py,sha256=GguYucjIRyT_rZa9DrvUmv00FtqXHZtY1VfJM9Rygns,16479
331
- monai/networks/nets/swin_unetr.py,sha256=aY1GBvV8iPTvcwVDoDvvElbfDNlR_q9uk9_hjFr-0kM,45541
331
+ monai/networks/nets/swin_unetr.py,sha256=cPbA_M_BmPa4ziA6lHZrLW1zOBI4HH7eLxKaOCbCbgM,45677
332
332
  monai/networks/nets/torchvision_fc.py,sha256=3g5PD7C1MSkQ8xndhnVd0b3aN8zfshT8uiFS0OHyQaY,6309
333
- monai/networks/nets/transchex.py,sha256=uA_RfTDfPhwA1ecAPZ9EDnMyJKn2tUMLEWdyB_rU2v0,15726
333
+ monai/networks/nets/transchex.py,sha256=5b8luTeajjbl3P560Y5xpwblT3j1-0ghuhmQbkIat0U,15822
334
334
  monai/networks/nets/transformer.py,sha256=-nzl20Z5xdtn7xChOd_cRbbPVoPIFGVfTQw3fIEGMuE,6395
335
335
  monai/networks/nets/unet.py,sha256=t2an-NZ8QRpWal6uh1WpxG1tbekKRDgQtpT7YeXWFvY,13543
336
336
  monai/networks/nets/unetr.py,sha256=G67kjiBMz13MzP4eV8XK-GydSogMwgXaBMFDShF5sB8,8252
337
337
  monai/networks/nets/varautoencoder.py,sha256=Pd9BdXW1iVjmAVCZIc2ElGtSDAWRBaLwEKxLDicyxZI,6282
338
- monai/networks/nets/vista3d.py,sha256=jsQfEl_EzEmj0LCo8rs9wK9oOqN8Udisn5xZXAu6mRg,43314
338
+ monai/networks/nets/vista3d.py,sha256=sm8h9qlmz7D08PWo1zd7Wu8pXqGV9WR1OEBb1O6-qUc,43496
339
339
  monai/networks/nets/vit.py,sha256=yEzFFQln5ieknnF8A1_ecB_c0SuOBBnrXPesm_kzVts,5934
340
340
  monai/networks/nets/vitautoenc.py,sha256=vfQBWjTb0k7EY4uC76rmuOCIUUgeBvf_EIXBofCzVHQ,5740
341
341
  monai/networks/nets/vnet.py,sha256=zaJi5kSiTLAuFHThSZfhJvHP6zKh3oBWsTWG-328O_g,10820
342
342
  monai/networks/nets/voxelmorph.py,sha256=Q5VQFLLKSFqhsG0Z8_72ZGfK1nA4kdCfFnGbqI6Eofg,20665
343
343
  monai/networks/nets/vqvae.py,sha256=Zf9fTL_rluhuJhH6gTNB6iiKRfwBxfuuyhCdU9TLmAk,18417
344
- monai/networks/schedulers/__init__.py,sha256=rPmrNvnt8Bh9D2omPMgDiGVuT1XVJlgtlWIlqA_sjb4,755
344
+ monai/networks/schedulers/__init__.py,sha256=Jic-Ln0liMjDVQ1KAv9Z1fsoxGZXuBKxqBeWJthgwHY,798
345
345
  monai/networks/schedulers/ddim.py,sha256=MygHvgLB_NL9488DhHsE_g-EvV6DlDPtiBROpnCvDHc,14380
346
346
  monai/networks/schedulers/ddpm.py,sha256=LPqmlNJex32QrqcVb5s7XCNKVlFPsd_05-IJHpUJZPI,11387
347
347
  monai/networks/schedulers/pndm.py,sha256=9Qe8NOw_tvlpCBK7yvkmyriyGfIO5RRDV8ZKPh85cQY,14472
348
+ monai/networks/schedulers/rectified_flow.py,sha256=n0Pi03Z8GJBZVf9G5YUQ-uc9dZSGK4ra2SnMc4sI0GE,13757
348
349
  monai/networks/schedulers/scheduler.py,sha256=X5eu5AmtNiads9cgaFy5r7BdlKYASSICyGSyF-fk6x8,9206
349
350
  monai/optimizers/__init__.py,sha256=XUL7o9vSL7bZImpxVZqcc1c8MwUMrOZL4nJ-mjAA7yM,796
350
351
  monai/optimizers/lr_finder.py,sha256=tbVi6qd-LLI6pENM9cDUv-Hh1HqziO3Wb9aI6JoaPng,21992
@@ -369,7 +370,7 @@ monai/transforms/croppad/batch.py,sha256=5ukcYk3VCDpk62AL5Q_jTqpXmSNTlw0UCUhDeAB
369
370
  monai/transforms/croppad/dictionary.py,sha256=WOzj_PjmoB3zLEmtQlafb9-PWgXd-s5K7Z5Doc8Adns,60746
370
371
  monai/transforms/croppad/functional.py,sha256=iroD0XBaMG1Mox6-EotIh2nAUxJPrpIyUrHopc83Sug,12640
371
372
  monai/transforms/intensity/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
372
- monai/transforms/intensity/array.py,sha256=CF3lVbcI4D-YmhifxGj1Mf32TwW4alK1WYBzFiejWbo,121791
373
+ monai/transforms/intensity/array.py,sha256=jVHHMvmUTYrqIp6i_MhvLt_-fup_Bl770RRV7cald3g,121808
373
374
  monai/transforms/intensity/dictionary.py,sha256=MEeMKQckn6X-cEk51Z2YTGjt89RohBzFfO_jU3D06wk,85086
374
375
  monai/transforms/io/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
375
376
  monai/transforms/io/array.py,sha256=370Cxm6XBfJ8V0yMB3qZrG9dp3jrU_A5_IcvVjrekWo,27480
@@ -394,7 +395,7 @@ monai/transforms/smooth_field/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6F
394
395
  monai/transforms/smooth_field/array.py,sha256=Pz4ErmcfVTRZpBe4_IAXTWHlGSmRfExegNKYyrSVwsE,17856
395
396
  monai/transforms/smooth_field/dictionary.py,sha256=iU4V2VjSy2H1K03KgumMUr3cyZVWEJS0W-tgc6SZtP4,11194
396
397
  monai/transforms/spatial/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
397
- monai/transforms/spatial/array.py,sha256=5EKivdPYCP4i4qYUlkK1RpYQFzaU_baYyzgubid3jtM,184936
398
+ monai/transforms/spatial/array.py,sha256=fEmwe1O1f0eTh_32OhkPfQQfafK2v-MwFA4G9dSdAxo,185104
398
399
  monai/transforms/spatial/dictionary.py,sha256=t0SvEDSVNFUEw2fK66OVF20sqSzCNxil17HmvsMFBt8,133752
399
400
  monai/transforms/spatial/functional.py,sha256=IwS0witCqbGkyuxzu_R4Ztp90S0pg9hY1irG7feXqig,33886
400
401
  monai/transforms/utility/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
@@ -407,12 +408,12 @@ monai/utils/deprecate_utils.py,sha256=gKeEV4MsI51qeQ5gci2me_C-0e-tDwa3VZzd3XPQqL
407
408
  monai/utils/dist.py,sha256=7brB42CvdS8Jvr8Y7hfqov1uk6NNnYea9dYfgMYy0BY,8578
408
409
  monai/utils/enums.py,sha256=jXtLaNDxG3BRBgLG2t13_S_G4iVWYHZO_GztykAtmXg,19594
409
410
  monai/utils/jupyter_utils.py,sha256=BYtj80LWQAYg5RWPj5g4j2AMCzLECvAcnZdXns0Ruw8,15651
410
- monai/utils/misc.py,sha256=R-sCS5u7SA8hX6e7x6WSc8FgLcNpqKFRRDMWxUd2wCo,31759
411
+ monai/utils/misc.py,sha256=j1w0AcuAAW_4MGuxiohi1pYsHfZpsZq5wLAz_kQKzD4,31759
411
412
  monai/utils/module.py,sha256=R37PpCNCcHQvjjZFbNjNyzWb3FURaKLxQucjhzQk0eU,26087
412
413
  monai/utils/nvtx.py,sha256=i9JBxR1uhW1ZCgLPLlTx8b907QlXkFzJyTBLMlFjhtU,6876
413
414
  monai/utils/ordering.py,sha256=0nlA5b5QpVCHbtiCbTC-YsqjTmjm0bub0IeJhGFBOes,8270
414
415
  monai/utils/profiling.py,sha256=V2_cSHgrcmVF48_G3nUi2-O6fnXsS89nSlb8jj58YLo,15937
415
- monai/utils/state_cacher.py,sha256=SCs0TWud_lR8fvDhZ0POaXLGLo1J3NALWkg0ODOwT7k,5982
416
+ monai/utils/state_cacher.py,sha256=M4fxe4aqOS6GTYt2nCiZIx1HRYmEtlWpXWbGcriwvuU,6002
416
417
  monai/utils/tf32.py,sha256=FA_Upq2evvWGl2UYdrEsd7GoIsIEsLyPfP9oD_su9Go,2643
417
418
  monai/utils/type_conversion.py,sha256=fj1mUWf-5WBv9m-fpe8gjcGljGBGSA8-RppBpKD_wv0,21754
418
419
  monai/visualize/__init__.py,sha256=p7dv9-hRa9vAhlpHyk86yap9HgeDeJRO3pXmFhDx8Mc,1038
@@ -503,7 +504,7 @@ tests/apps/vista3d/test_vista3d_sampler.py,sha256=-luQCe3Hhle2PC9AkFCUgK8gozOD0O
503
504
  tests/apps/vista3d/test_vista3d_transforms.py,sha256=nAPiDBNWeXLoW7ax3HHL63t5jqzQ3HFa-6wTvdyqVJk,3280
504
505
  tests/bundle/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
505
506
  tests/bundle/test_bundle_ckpt_export.py,sha256=VnpigCoBAAc2lo0rWOpVMg0IYGB6vbHXL8xLtB1Pkio,4622
506
- tests/bundle/test_bundle_download.py,sha256=4wpnCXNYTwTHWNjuSZqnXpVzadxNRabmFaFM3LZ_TJU,20072
507
+ tests/bundle/test_bundle_download.py,sha256=sM6bIaCjIdDbHWpMigYx4T7qFLXSeexnRpGubUKbx9U,20404
507
508
  tests/bundle/test_bundle_get_data.py,sha256=lQh321mev_7fsLXRg0Tq5uEjuQILethDHRKzB6VV0o4,3667
508
509
  tests/bundle/test_bundle_push_to_hf_hub.py,sha256=Zjl6xDwRKgkS6jvO5dzMBaTLEd4EXyMXp0_wzDNSY3g,1740
509
510
  tests/bundle/test_bundle_trt_export.py,sha256=png-2SGjBSt46LXSz-PLprOXwJ0WkC_3YLR3Ibk_WBc,6344
@@ -516,7 +517,7 @@ tests/bundle/test_config_item.py,sha256=tM6gNRE7q_jywig7OcHu2R4qrQySYRhx9PAqhoI7
516
517
  tests/bundle/test_config_parser.py,sha256=tP45BGOkt1uAkgMTCjnEP9tXyJVJjwI57DM-QM8iGg4,16131
517
518
  tests/bundle/test_reference_resolver.py,sha256=3skwzGtooAHi81KRrso9Bwv4fx4ddAPoSDA2MTWBsOg,4284
518
519
  tests/config/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
519
- tests/config/test_cv2_dist.py,sha256=mJKLdvfAS5DoanEaapDr3PIkAtuX4dLGzsMfvWSFQdU,1989
520
+ tests/config/test_cv2_dist.py,sha256=e8DCBCWHhLIhZQneEchwYPSavxsOEjTsoUxt9uT5Kps,1953
520
521
  tests/engines/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
521
522
  tests/engines/test_ensemble_evaluator.py,sha256=28hQGMswONlZSFT9dKN7kDnoBnRWiotDIJCNPp0irIc,3147
522
523
  tests/engines/test_prepare_batch_default.py,sha256=W0S-BXwoDbI_Tzjj7N0yEWX34TZfkI0f3MTnEfRLmqE,2814
@@ -570,9 +571,9 @@ tests/handlers/test_trt_compile.py,sha256=p8Gr2CJmBo6gG8w7bGlAO--nDHtQvy9Ld3jtua
570
571
  tests/handlers/test_write_metrics_reports.py,sha256=oKGYR1plj1hSAu-ntbxkw_TD4O5hKPwVH_BS3MdHIbs,3027
571
572
  tests/inferers/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
572
573
  tests/inferers/test_avg_merger.py,sha256=lMR2PcNGFD6sfF6CjJTkahrAiMA5m5LUs5A11P6h8n0,5952
573
- tests/inferers/test_controlnet_inferers.py,sha256=sWs5vkZHa-D0V3tWJ6149Z-RNq0for_XngDYxZRl_Ao,50285
574
- tests/inferers/test_diffusion_inferer.py,sha256=1O2V_bEmifOZ4RvpbZgYUCooiJ97T73avaBuMJPpBs0,9992
575
- tests/inferers/test_latent_diffusion_inferer.py,sha256=atJjmfVznUq8z9EjohFIMyA0Q1XT1Ly0Zepf_1xPz5I,32274
574
+ tests/inferers/test_controlnet_inferers.py,sha256=pGseHgnfMH-UOoAoUsKXdqka-IZc8X83ThauSanH--o,52825
575
+ tests/inferers/test_diffusion_inferer.py,sha256=U6zNPnem9_cY9bDxMh6L2hThsmla7sDq9ivWQEyqNAk,14613
576
+ tests/inferers/test_latent_diffusion_inferer.py,sha256=4cnS77I5YpFX1wKcTrlPfKVP3g6UHOkbuADgiXrScks,33544
576
577
  tests/inferers/test_patch_inferer.py,sha256=LkYXWVn71vWinP-OJsIvq3FPH3jr36T7nKRIH5PzaqY,9878
577
578
  tests/inferers/test_saliency_inferer.py,sha256=7miHRbA4yb_WGcxql6za9uXXoZlql_7y23f7IzsyIps,1949
578
579
  tests/inferers/test_slice_inferer.py,sha256=kzaJjjTnf2rAiR75l8A_J-Kie4NaLj2bogi-aJ5L5mk,1897
@@ -587,14 +588,14 @@ tests/integration/test_deepedit_interaction.py,sha256=tmryp1cP_QlI_tgguZybRZc7-F
587
588
  tests/integration/test_downsample_block.py,sha256=qvqSeTwFQHwiJ0y8uwWE8U_9ffhltJ_4U5Zg5rBnQ6M,1794
588
589
  tests/integration/test_hovernet_nuclear_type_post_processingd.py,sha256=yTRmYdQBXEMMmXJjPDBPMxPSkLWj2U3bdRhaAfDXrpE,2661
589
590
  tests/integration/test_integration_autorunner.py,sha256=tDK1XkMZp4hehfuzMr2LQIgavP36L_vkFcOcI1Z68Lk,7571
590
- tests/integration/test_integration_bundle_run.py,sha256=nl7R3kesgBIYkiI5ZqvUrz08Tdv_HBOT4-hEywZWRp0,10770
591
- tests/integration/test_integration_classification_2d.py,sha256=kiOI3LCOBVNg5JNaKrTl7f1kGyMZVq-J_--LafmSrSY,11354
591
+ tests/integration/test_integration_bundle_run.py,sha256=uO87WnnG3EYnAxhudpfHy7fyxHNNzifFTw2rrMm_6XU,10734
592
+ tests/integration/test_integration_classification_2d.py,sha256=psUvLWNtndkPkgc14YCKqvVQJ9oS1EBdxpg3dOqoF7E,11373
592
593
  tests/integration/test_integration_determinism.py,sha256=AiSBXHcPwDtKRbt_lejI-IDDkYtDWccMkNVoHuyrtU0,3172
593
- tests/integration/test_integration_fast_train.py,sha256=Q351H8MFHc3HJscfowIoY5CGnhNKNzzRVFvxnag1wYg,9742
594
+ tests/integration/test_integration_fast_train.py,sha256=WxEIJV52F0Cf2wmGlIQDiVs1m2QZrvxmta_UAsa0OCI,9736
594
595
  tests/integration/test_integration_gpu_customization.py,sha256=z-w6iBaY72LEi8TBVxZuzvsEBgBecZAP2YPwl6KFUhA,5547
595
596
  tests/integration/test_integration_lazy_samples.py,sha256=d_4GNy_ixiizvehIYJBht4dQropRsqQy7rJOpW7OkZ8,9198
596
597
  tests/integration/test_integration_nnunetv2_runner.py,sha256=KgyAI0Irl93KDLZyo8fGZjEL8dS5UXPKQz_osRfhtSU,4332
597
- tests/integration/test_integration_segmentation_3d.py,sha256=pl5FLQQ-vGtsd2ulfg2OCNz2KvoJ8inH_KqTcFBgBtM,13210
598
+ tests/integration/test_integration_segmentation_3d.py,sha256=TSV8tdiloK4_E03DgM1SqJxMo4fcH-Ta1NutG-3cPFc,13229
598
599
  tests/integration/test_integration_sliding_window.py,sha256=N0CYquebXk8N3KiPcGWbD9KAf5UHuXx2pqAZY5PQVSE,3769
599
600
  tests/integration/test_integration_stn.py,sha256=1bwzCn8X-1xjV-SGalOtlpRPLFnYpDGO_kxoWSe-itY,4946
600
601
  tests/integration/test_integration_unet_2d.py,sha256=rMOCG7eYt3jrCjG5HXCfTdF-XnCvyO1X631H7l-F1w4,2376
@@ -657,7 +658,7 @@ tests/metrics/test_compute_generalized_dice.py,sha256=m5468hRvCYdfEF4B459e2LW3gD
657
658
  tests/metrics/test_compute_meandice.py,sha256=kC7JEqHUe54GrPxypoEjlmUZtxVZxjbhfRWEsZPP7CY,11381
658
659
  tests/metrics/test_compute_meaniou.py,sha256=hphLbY6S-DA3CQiKOug-DblzqwPK0F7aF3Pujz6H0vk,8020
659
660
  tests/metrics/test_compute_mmd_metric.py,sha256=9rwvmZaj4wQKLY3xfuF85gFvZrnyWSXXDd6m7zy63sg,2025
660
- tests/metrics/test_compute_multiscalessim_metric.py,sha256=5Eqj84tm_pRoP_kpYE8sEOc_rz-fntV01t-3OXbOoNA,3086
661
+ tests/metrics/test_compute_multiscalessim_metric.py,sha256=bLL6eNE_bhL4tL4EJO5XcaGurbE5utemc4b6PmJ766k,3080
661
662
  tests/metrics/test_compute_panoptic_quality.py,sha256=DvHzBiaWmDEze3QONzJqxXhTgDv9Q-3_mKqaApaGMvk,5087
662
663
  tests/metrics/test_compute_regression_metrics.py,sha256=zEDCcnV-E4VXwyqAFfsbdYIYbtCXADEv0ipvp9ky81A,8135
663
664
  tests/metrics/test_compute_roc_auc.py,sha256=9pupbW1aLvCtpRZ0qhfPpBYZPqu3pT2Xiucou5j9GOA,4579
@@ -670,14 +671,14 @@ tests/metrics/test_label_quality_score.py,sha256=AT7A8cfr0wsrAZ-li2cAWNiO2SS0BIr
670
671
  tests/metrics/test_loss_metric.py,sha256=S0ZEGdKRg4df5vcXqxNj0XVelml_ogdNCaS8E82Okl8,2106
671
672
  tests/metrics/test_metrics_reloaded.py,sha256=U8KRl3B369npmcFgzcSxXi4bDotVDR9o9ubOM5iJ598,4654
672
673
  tests/metrics/test_ssim_metric.py,sha256=DHPWky52kWVdCHXmoEFkKMlyWMm4XOqXQLNzv0sg4Lc,2896
673
- tests/metrics/test_surface_dice.py,sha256=CGCQt-ydMzaT2q1fFnzpKb6E-TPydym4vE_kdpeWYyE,21769
674
+ tests/metrics/test_surface_dice.py,sha256=tsHUP91hn2jw_KGZp8QePFQ8os-9ixypgJ-1fbdi43o,21760
674
675
  tests/metrics/test_surface_distance.py,sha256=gkW0dai3vHjXubLNBilqFnV5Up-abSMgQ53v0iCTVeE,6237
675
676
  tests/networks/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
676
677
  tests/networks/test_bundle_onnx_export.py,sha256=_lEnAJhq7D2IOuVEdgBVsA8vySgs34FkfMrvNsCLfUg,2853
677
678
  tests/networks/test_convert_to_onnx.py,sha256=h1Sjb0SZmiwwbx0_PrzeFDOE3-JRSp18qDS6G_PdD6g,3673
678
679
  tests/networks/test_convert_to_torchscript.py,sha256=NhrJMCfQtC0sftrhDjL28omS7VKzg_niRK0KtY5Mr_A,1636
679
680
  tests/networks/test_convert_to_trt.py,sha256=5TkuUvCPgW5mAvYUysRRrSjtSbDoDDAoJb2kJtuXOVk,2656
680
- tests/networks/test_save_state.py,sha256=_glX4irpJVqk2jnOJaVqYxsOQNX3oCauxlEXe2ly8Cg,2354
681
+ tests/networks/test_save_state.py,sha256=OnUJEX6vqWoIAIEvVXHbAL4Yrv1GeY0YHw2DposmS3k,2373
681
682
  tests/networks/test_to_onehot.py,sha256=QlT6RkkG7CJeh0gppSohl4kb0bmhISdx_19IybYES0Q,2224
682
683
  tests/networks/test_varnet.py,sha256=-9Ew5epHVvRLc34VCFwKNpsKKoAdudpBRlqDAShpIio,2800
683
684
  tests/networks/blocks/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
@@ -745,15 +746,15 @@ tests/networks/nets/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZL
745
746
  tests/networks/nets/test_ahnet.py,sha256=1pLU9g1dAYByA14r46CgcEj4Bs_nGkuCESojA4b3ghQ,8348
746
747
  tests/networks/nets/test_attentionunet.py,sha256=AUdp94j6un9sg35Q0GPNINo4HhXizUT8QBJDKTqK1pA,3376
747
748
  tests/networks/nets/test_autoencoder.py,sha256=LrYSDtlFUyNe23JT6sULuAr-3cDukqTPEJ7KbNU_2Q4,2964
748
- tests/networks/nets/test_autoencoderkl.py,sha256=c6kGqB9f8AL-PjnumisDSg0gEGauRu9ceO4SzWV4rY0,12152
749
+ tests/networks/nets/test_autoencoderkl.py,sha256=cohtIQshgBPaUwjVozxbSFRi60N2wK_cCkVJJcd4YTU,12171
749
750
  tests/networks/nets/test_basic_unet.py,sha256=3261vqW_CjwDKi4lEGQ-KoMfcszWzo_01EDvYh0bKz8,3337
750
751
  tests/networks/nets/test_basic_unetplusplus.py,sha256=2skwJyzZ34N_iCCmU-waKUZFojfS1GsY08NT8PJrvcU,3712
751
752
  tests/networks/nets/test_bundle_init_bundle.py,sha256=hQGXchLGk6wvT1rUirRS7ToPDSBAvK7FvsnaNNe8NHw,1934
752
753
  tests/networks/nets/test_cell_sam_wrapper.py,sha256=4tW0tcxtpdWgPQ_boVW_68-SMatcJ8-OA6vy4ebXIR0,2215
753
- tests/networks/nets/test_controlnet.py,sha256=JZvfEV9akiPcmFklWBi9GHKlc3EkCVS1cZy0KGuojI8,7354
754
+ tests/networks/nets/test_controlnet.py,sha256=opJhley8-CAFko3uOQGI0IFETwsjt17wXalGJS9O5oU,7373
754
755
  tests/networks/nets/test_daf3d.py,sha256=Ko58wtl8im1makMEHPDIMWyJV5aOoRaGDPMUlL0vM9s,2331
755
756
  tests/networks/nets/test_densenet.py,sha256=t5QsIN_hiirm9p3zEEGvgN928N0WN14bjbWD4B9M6pU,4439
756
- tests/networks/nets/test_diffusion_model_unet.py,sha256=H0qWcxgCNOcmjUWWlwwZFuYsmwSm_dz339EjTMMfogI,18912
757
+ tests/networks/nets/test_diffusion_model_unet.py,sha256=mCgCdT-j42pnnoTb-Tyy9yCEiwYaV5K0nygxXwgWf-0,18931
757
758
  tests/networks/nets/test_dints_network.py,sha256=pdoK8663ga8UgafbavWy14XdCwzaYrbU90eerleAHT8,5785
758
759
  tests/networks/nets/test_discriminator.py,sha256=gsw3qCTCHzjPoX_ylhYbhQ-tNY5emg2xUJLeweZV-2I,1916
759
760
  tests/networks/nets/test_dynunet.py,sha256=bdpTk0O-4ionxgFZgfjhvP-R6XEGGYQDihst6H79pHw,7406
@@ -767,7 +768,7 @@ tests/networks/nets/test_hovernet.py,sha256=Ad6z1k5Ef-Xms14TFeF14LnyTv4_lxOJWZtH
767
768
  tests/networks/nets/test_mednext.py,sha256=RxcZeKErrp7yrtU2rYU8yo0_jlbqa-_ZXDx0xqDfBLI,4715
768
769
  tests/networks/nets/test_milmodel.py,sha256=3n1vZs7YXGuSxH_x3vtk3HwElzz85pBrAUQjhQ_K06E,3233
769
770
  tests/networks/nets/test_net_adapter.py,sha256=r-VQTK18Tx1km8_mVNENaVKmLbbZ_Zax07ZNUo1GZAA,2641
770
- tests/networks/nets/test_network_consistency.py,sha256=2QRjf5n6_OdGD8pgUqrDB-Bk_d8RsOQSc_VsMJzTCrs,2867
771
+ tests/networks/nets/test_network_consistency.py,sha256=OuEsjkCzQEIxQ9CNJxNXqI8KrW4XNALQRvKeNDOAPvU,2886
771
772
  tests/networks/nets/test_patch_gan_dicriminator.py,sha256=5qhzL55pid_9ShuALPzvW21eZtdlpKupw8hdu1N4sVE,5266
772
773
  tests/networks/nets/test_quicknat.py,sha256=iuJRChBt6OoOvBGUe2bZ5wvcx0AfId4gZJ7K12SP7w8,2601
773
774
  tests/networks/nets/test_resnet.py,sha256=nIx9ZrHWN36iiGP9KffiEdJ5kLctySh5_zdAddl9gTc,10475
@@ -777,10 +778,10 @@ tests/networks/nets/test_senet.py,sha256=V9HyDyYMR2r2F6FzZUl6INDipH5mk-IrExkkeZw
777
778
  tests/networks/nets/test_spade_autoencoderkl.py,sha256=vU9j-flnprLJT-VctKuiLK1KyKw1UrAO87mpddE0sNs,9289
778
779
  tests/networks/nets/test_spade_diffusion_model_unet.py,sha256=LEN1PAGid0DMdP2NySi94RrlE8FgomJ9ZV3YRe0ubaE,18347
779
780
  tests/networks/nets/test_spade_vaegan.py,sha256=ur1SPoXEmpr_8KwVS6-E_1tIPMBKpNqsvHJ7z5-obzA,5632
780
- tests/networks/nets/test_swin_unetr.py,sha256=HpRTEoeErZrzMAPSH8_RLfXfQvn25SflOXQGhuC7Vpg,5671
781
+ tests/networks/nets/test_swin_unetr.py,sha256=gj1Jqg8xTBYdCZWCR4Y9_ZlGNNYVTkCPmB2sdF2xIDM,5690
781
782
  tests/networks/nets/test_torchvision_fc_model.py,sha256=oNb-PaOhIAjOrpnsXApC2hKSUK6lMutIEinMrCOKQoA,6397
782
783
  tests/networks/nets/test_transchex.py,sha256=vUUsCd_CJrW_q0jcaGQegBoanJQVoufrs_EP3MC46Xo,3220
783
- tests/networks/nets/test_transformer.py,sha256=_Aw-bQXIO-t_myfHwt6FmPeHMKUi99CgkJePVcUcvZ8,4199
784
+ tests/networks/nets/test_transformer.py,sha256=rsGjemv0JV9SMTTWiZ8Sz_w5t5Rkz15b2rjJit4R2XA,4218
784
785
  tests/networks/nets/test_unet.py,sha256=wXwaXkufYDjFXzQ-AygbePAwigZLLaY58sGygizF3Q4,5801
785
786
  tests/networks/nets/test_unetr.py,sha256=3_V4VWfsQVB22-T8XTSRra3Her2XrLx5gzIRHis2zPs,5325
786
787
  tests/networks/nets/test_varautoencoder.py,sha256=wk9ra-X0ri03ZZ_YyoyhPb90z6WpiOcTi1SztLl3ytg,3547
@@ -801,6 +802,7 @@ tests/networks/schedulers/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr
801
802
  tests/networks/schedulers/test_scheduler_ddim.py,sha256=0JnqgUAgA9W3H3QTNaRxAPvUmsrJKpZm6QX7tp71lxE,3540
802
803
  tests/networks/schedulers/test_scheduler_ddpm.py,sha256=MizmzprAO5dBIeaFX8jlYrZmF0VK444lK9gq1X3Wxk4,4577
803
804
  tests/networks/schedulers/test_scheduler_pndm.py,sha256=f_TDa2yUkFCWq9OAhYyXvQ-zUoZMJaqYxulOYnqQIAg,4612
805
+ tests/networks/schedulers/test_scheduler_rflow.py,sha256=IxkbVUHdBQ3p_RS1-83VFBg3b4hMdeDIDAMk28kX8lE,4339
804
806
  tests/networks/utils/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
805
807
  tests/networks/utils/test_copy_model_state.py,sha256=SI0dlUkA0rdZVFvi5acr0nve002oIiftWIPWkqLQH2Q,6764
806
808
  tests/networks/utils/test_eval_mode.py,sha256=HQqgC4COr5fAsBo2Z-DCjnOfx6WLxXlPywlGMnQY7_0,1086
@@ -1178,8 +1180,8 @@ tests/visualize/test_vis_gradcam.py,sha256=WpA-pvTB75eZs7JoIc5qyvOV9PwgkzWI8-Vow
1178
1180
  tests/visualize/utils/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
1179
1181
  tests/visualize/utils/test_blend_images.py,sha256=RVs2p_8RWQDfhLHDNNtZaMig27v8o0km7XxNa-zWjKE,2274
1180
1182
  tests/visualize/utils/test_matshow3d.py,sha256=wXYj77L5Jvnp0f6DvL1rsi_-YlCxS0HJ9hiPmrbpuP8,5021
1181
- monai_weekly-1.5.dev2509.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
1182
- monai_weekly-1.5.dev2509.dist-info/METADATA,sha256=h7L3w9XhzSfoxC5yRoqgKS_NeECPEORKyEX4E1WS6Vc,11909
1183
- monai_weekly-1.5.dev2509.dist-info/WHEEL,sha256=jB7zZ3N9hIM9adW7qlTAyycLYW9npaWKLRzaoVcLKcM,91
1184
- monai_weekly-1.5.dev2509.dist-info/top_level.txt,sha256=hn2Y6P9xBf2R8faMeVMHhPMvrdDKxMsIOwMDYI0yTjs,12
1185
- monai_weekly-1.5.dev2509.dist-info/RECORD,,
1183
+ monai_weekly-1.5.dev2511.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
1184
+ monai_weekly-1.5.dev2511.dist-info/METADATA,sha256=kCgsN9iKyvPUdX4ymb4dANgTBXyEtc9PxfAIQnU-MIA,11986
1185
+ monai_weekly-1.5.dev2511.dist-info/WHEEL,sha256=52BFRY2Up02UkjOa29eZOS2VxUrpPORXg1pkohGGUS8,91
1186
+ monai_weekly-1.5.dev2511.dist-info/top_level.txt,sha256=hn2Y6P9xBf2R8faMeVMHhPMvrdDKxMsIOwMDYI0yTjs,12
1187
+ monai_weekly-1.5.dev2511.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.8.2)
2
+ Generator: setuptools (76.0.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5