monai-weekly 1.5.dev2507__py3-none-any.whl → 1.5.dev2509__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- monai/__init__.py +1 -1
- monai/_version.py +3 -3
- monai/bundle/scripts.py +39 -16
- monai/handlers/__init__.py +1 -0
- monai/handlers/average_precision.py +53 -0
- monai/inferers/inferer.py +39 -18
- monai/metrics/__init__.py +1 -0
- monai/metrics/average_precision.py +187 -0
- monai/transforms/utility/array.py +2 -12
- monai/transforms/utils_pytorch_numpy_unification.py +2 -4
- monai/utils/enums.py +3 -2
- monai/utils/module.py +6 -6
- {monai_weekly-1.5.dev2507.dist-info → monai_weekly-1.5.dev2509.dist-info}/METADATA +20 -16
- {monai_weekly-1.5.dev2507.dist-info → monai_weekly-1.5.dev2509.dist-info}/RECORD +24 -20
- {monai_weekly-1.5.dev2507.dist-info → monai_weekly-1.5.dev2509.dist-info}/WHEEL +1 -1
- tests/bundle/test_bundle_trt_export.py +2 -2
- tests/handlers/test_handler_average_precision.py +79 -0
- tests/inferers/test_controlnet_inferers.py +89 -2
- tests/inferers/test_latent_diffusion_inferer.py +61 -1
- tests/metrics/test_compute_average_precision.py +162 -0
- tests/networks/test_convert_to_onnx.py +1 -1
- tests/transforms/test_gibbs_noise.py +3 -5
- {monai_weekly-1.5.dev2507.dist-info → monai_weekly-1.5.dev2509.dist-info}/LICENSE +0 -0
- {monai_weekly-1.5.dev2507.dist-info → monai_weekly-1.5.dev2509.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,162 @@
|
|
1
|
+
# Copyright (c) MONAI Consortium
|
2
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
3
|
+
# you may not use this file except in compliance with the License.
|
4
|
+
# You may obtain a copy of the License at
|
5
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
6
|
+
# Unless required by applicable law or agreed to in writing, software
|
7
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
8
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
9
|
+
# See the License for the specific language governing permissions and
|
10
|
+
# limitations under the License.
|
11
|
+
|
12
|
+
from __future__ import annotations
|
13
|
+
|
14
|
+
import unittest
|
15
|
+
|
16
|
+
import numpy as np
|
17
|
+
import torch
|
18
|
+
from parameterized import parameterized
|
19
|
+
|
20
|
+
from monai.data import decollate_batch
|
21
|
+
from monai.metrics import AveragePrecisionMetric, compute_average_precision
|
22
|
+
from monai.transforms import Activations, AsDiscrete, Compose, ToTensor
|
23
|
+
|
24
|
+
_device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
25
|
+
TEST_CASE_1 = [
|
26
|
+
torch.tensor([[0.1, 0.9], [0.3, 1.4], [0.2, 0.1], [0.1, 0.5]], device=_device),
|
27
|
+
torch.tensor([[0], [0], [1], [1]], device=_device),
|
28
|
+
True,
|
29
|
+
2,
|
30
|
+
"macro",
|
31
|
+
0.41667,
|
32
|
+
]
|
33
|
+
|
34
|
+
TEST_CASE_2 = [
|
35
|
+
torch.tensor([[0.1, 0.9], [0.3, 1.4], [0.2, 0.1], [0.1, 0.5]], device=_device),
|
36
|
+
torch.tensor([[1], [1], [0], [0]], device=_device),
|
37
|
+
True,
|
38
|
+
2,
|
39
|
+
"micro",
|
40
|
+
0.85417,
|
41
|
+
]
|
42
|
+
|
43
|
+
TEST_CASE_3 = [
|
44
|
+
torch.tensor([[0.1, 0.9], [0.3, 1.4], [0.2, 0.1], [0.1, 0.5]], device=_device),
|
45
|
+
torch.tensor([[0], [1], [0], [1]], device=_device),
|
46
|
+
True,
|
47
|
+
2,
|
48
|
+
"macro",
|
49
|
+
0.83333,
|
50
|
+
]
|
51
|
+
|
52
|
+
TEST_CASE_4 = [
|
53
|
+
torch.tensor([[0.5], [0.5], [0.2], [8.3]]),
|
54
|
+
torch.tensor([[0], [1], [0], [1]]),
|
55
|
+
False,
|
56
|
+
None,
|
57
|
+
"macro",
|
58
|
+
0.83333,
|
59
|
+
]
|
60
|
+
|
61
|
+
TEST_CASE_5 = [torch.tensor([[0.5], [0.5], [0.2], [8.3]]), torch.tensor([0, 1, 0, 1]), False, None, "macro", 0.83333]
|
62
|
+
|
63
|
+
TEST_CASE_6 = [torch.tensor([0.5, 0.5, 0.2, 8.3]), torch.tensor([0, 1, 0, 1]), False, None, "macro", 0.83333]
|
64
|
+
|
65
|
+
TEST_CASE_7 = [
|
66
|
+
torch.tensor([[0.1, 0.9], [0.3, 1.4], [0.2, 0.1], [0.1, 0.5]]),
|
67
|
+
torch.tensor([[0], [1], [0], [1]]),
|
68
|
+
True,
|
69
|
+
2,
|
70
|
+
"none",
|
71
|
+
[0.83333, 0.83333],
|
72
|
+
]
|
73
|
+
|
74
|
+
TEST_CASE_8 = [
|
75
|
+
torch.tensor([[0.1, 0.9], [0.3, 1.4], [0.2, 0.1], [0.1, 0.5], [0.1, 0.5]]),
|
76
|
+
torch.tensor([[1, 0], [0, 1], [0, 0], [1, 1], [0, 1]]),
|
77
|
+
True,
|
78
|
+
None,
|
79
|
+
"weighted",
|
80
|
+
0.66667,
|
81
|
+
]
|
82
|
+
|
83
|
+
TEST_CASE_9 = [
|
84
|
+
torch.tensor([[0.1, 0.9], [0.3, 1.4], [0.2, 0.1], [0.1, 0.5], [0.1, 0.5]]),
|
85
|
+
torch.tensor([[1, 0], [0, 1], [0, 0], [1, 1], [0, 1]]),
|
86
|
+
True,
|
87
|
+
None,
|
88
|
+
"micro",
|
89
|
+
0.71111,
|
90
|
+
]
|
91
|
+
|
92
|
+
TEST_CASE_10 = [
|
93
|
+
torch.tensor([[0.1, 0.9], [0.3, 1.4], [0.2, 0.1], [0.1, 0.5]]),
|
94
|
+
torch.tensor([[0], [0], [0], [0]]),
|
95
|
+
True,
|
96
|
+
2,
|
97
|
+
"macro",
|
98
|
+
float("nan"),
|
99
|
+
]
|
100
|
+
|
101
|
+
TEST_CASE_11 = [
|
102
|
+
torch.tensor([[0.1, 0.9], [0.3, 1.4], [0.2, 0.1], [0.1, 0.5]]),
|
103
|
+
torch.tensor([[1], [1], [1], [1]]),
|
104
|
+
True,
|
105
|
+
2,
|
106
|
+
"macro",
|
107
|
+
float("nan"),
|
108
|
+
]
|
109
|
+
|
110
|
+
TEST_CASE_12 = [
|
111
|
+
torch.tensor([[0.1, 0.9], [0.3, 1.4], [0.2, 0.1], [0.1, 0.5]]),
|
112
|
+
torch.tensor([[0, 0], [1, 1], [2, 2], [3, 3]]),
|
113
|
+
True,
|
114
|
+
None,
|
115
|
+
"macro",
|
116
|
+
float("nan"),
|
117
|
+
]
|
118
|
+
|
119
|
+
ALL_TESTS = [
|
120
|
+
TEST_CASE_1,
|
121
|
+
TEST_CASE_2,
|
122
|
+
TEST_CASE_3,
|
123
|
+
TEST_CASE_4,
|
124
|
+
TEST_CASE_5,
|
125
|
+
TEST_CASE_6,
|
126
|
+
TEST_CASE_7,
|
127
|
+
TEST_CASE_8,
|
128
|
+
TEST_CASE_9,
|
129
|
+
TEST_CASE_10,
|
130
|
+
TEST_CASE_11,
|
131
|
+
TEST_CASE_12,
|
132
|
+
]
|
133
|
+
|
134
|
+
|
135
|
+
class TestComputeAveragePrecision(unittest.TestCase):
|
136
|
+
|
137
|
+
@parameterized.expand(ALL_TESTS)
|
138
|
+
def test_value(self, y_pred, y, softmax, to_onehot, average, expected_value):
|
139
|
+
y_pred_trans = Compose([ToTensor(), Activations(softmax=softmax)])
|
140
|
+
y_trans = Compose([ToTensor(), AsDiscrete(to_onehot=to_onehot)])
|
141
|
+
y_pred = torch.stack([y_pred_trans(i) for i in decollate_batch(y_pred)], dim=0)
|
142
|
+
y = torch.stack([y_trans(i) for i in decollate_batch(y)], dim=0)
|
143
|
+
result = compute_average_precision(y_pred=y_pred, y=y, average=average)
|
144
|
+
np.testing.assert_allclose(expected_value, result, rtol=1e-5)
|
145
|
+
|
146
|
+
@parameterized.expand(ALL_TESTS)
|
147
|
+
def test_class_value(self, y_pred, y, softmax, to_onehot, average, expected_value):
|
148
|
+
y_pred_trans = Compose([ToTensor(), Activations(softmax=softmax)])
|
149
|
+
y_trans = Compose([ToTensor(), AsDiscrete(to_onehot=to_onehot)])
|
150
|
+
y_pred = [y_pred_trans(i) for i in decollate_batch(y_pred)]
|
151
|
+
y = [y_trans(i) for i in decollate_batch(y)]
|
152
|
+
metric = AveragePrecisionMetric(average=average)
|
153
|
+
metric(y_pred=y_pred, y=y)
|
154
|
+
result = metric.aggregate()
|
155
|
+
np.testing.assert_allclose(expected_value, result, rtol=1e-5)
|
156
|
+
result = metric.aggregate(average=average) # test optional argument
|
157
|
+
metric.reset()
|
158
|
+
np.testing.assert_allclose(expected_value, result, rtol=1e-5)
|
159
|
+
|
160
|
+
|
161
|
+
if __name__ == "__main__":
|
162
|
+
unittest.main()
|
@@ -64,7 +64,7 @@ class TestConvertToOnnx(unittest.TestCase):
|
|
64
64
|
rtol=rtol,
|
65
65
|
atol=atol,
|
66
66
|
)
|
67
|
-
|
67
|
+
self.assertTrue(isinstance(onnx_model, onnx.ModelProto))
|
68
68
|
|
69
69
|
@parameterized.expand(TESTS_ORT)
|
70
70
|
@SkipIfBeforePyTorchVersion((1, 12))
|
@@ -21,14 +21,12 @@ from monai.data.synthetic import create_test_image_2d, create_test_image_3d
|
|
21
21
|
from monai.transforms import GibbsNoise
|
22
22
|
from monai.utils.misc import set_determinism
|
23
23
|
from monai.utils.module import optional_import
|
24
|
-
from tests.test_utils import TEST_NDARRAYS, assert_allclose
|
24
|
+
from tests.test_utils import TEST_NDARRAYS, assert_allclose, dict_product
|
25
25
|
|
26
26
|
_, has_torch_fft = optional_import("torch.fft", name="fftshift")
|
27
27
|
|
28
|
-
|
29
|
-
|
30
|
-
for input_type in TEST_NDARRAYS if has_torch_fft else [np.array]:
|
31
|
-
TEST_CASES.append((shape, input_type))
|
28
|
+
params = {"shape": ((128, 64), (64, 48, 80)), "input_type": TEST_NDARRAYS if has_torch_fft else [np.array]}
|
29
|
+
TEST_CASES = list(dict_product(format="list", **params))
|
32
30
|
|
33
31
|
|
34
32
|
class TestGibbsNoise(unittest.TestCase):
|
File without changes
|
File without changes
|