monai-weekly 1.5.dev2507__py3-none-any.whl → 1.5.dev2509__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- monai/__init__.py +1 -1
- monai/_version.py +3 -3
- monai/bundle/scripts.py +39 -16
- monai/handlers/__init__.py +1 -0
- monai/handlers/average_precision.py +53 -0
- monai/inferers/inferer.py +39 -18
- monai/metrics/__init__.py +1 -0
- monai/metrics/average_precision.py +187 -0
- monai/transforms/utility/array.py +2 -12
- monai/transforms/utils_pytorch_numpy_unification.py +2 -4
- monai/utils/enums.py +3 -2
- monai/utils/module.py +6 -6
- {monai_weekly-1.5.dev2507.dist-info → monai_weekly-1.5.dev2509.dist-info}/METADATA +20 -16
- {monai_weekly-1.5.dev2507.dist-info → monai_weekly-1.5.dev2509.dist-info}/RECORD +24 -20
- {monai_weekly-1.5.dev2507.dist-info → monai_weekly-1.5.dev2509.dist-info}/WHEEL +1 -1
- tests/bundle/test_bundle_trt_export.py +2 -2
- tests/handlers/test_handler_average_precision.py +79 -0
- tests/inferers/test_controlnet_inferers.py +89 -2
- tests/inferers/test_latent_diffusion_inferer.py +61 -1
- tests/metrics/test_compute_average_precision.py +162 -0
- tests/networks/test_convert_to_onnx.py +1 -1
- tests/transforms/test_gibbs_noise.py +3 -5
- {monai_weekly-1.5.dev2507.dist-info → monai_weekly-1.5.dev2509.dist-info}/LICENSE +0 -0
- {monai_weekly-1.5.dev2507.dist-info → monai_weekly-1.5.dev2509.dist-info}/top_level.txt +0 -0
monai/__init__.py
CHANGED
monai/_version.py
CHANGED
@@ -8,11 +8,11 @@ import json
|
|
8
8
|
|
9
9
|
version_json = '''
|
10
10
|
{
|
11
|
-
"date": "2025-
|
11
|
+
"date": "2025-03-02T02:29:03+0000",
|
12
12
|
"dirty": false,
|
13
13
|
"error": null,
|
14
|
-
"full-revisionid": "
|
15
|
-
"version": "1.5.
|
14
|
+
"full-revisionid": "5f85a7bfd54b91be03213999a7c177bfe2d583b2",
|
15
|
+
"version": "1.5.dev2509"
|
16
16
|
}
|
17
17
|
''' # END VERSION_JSON
|
18
18
|
|
monai/bundle/scripts.py
CHANGED
@@ -15,6 +15,7 @@ import ast
|
|
15
15
|
import json
|
16
16
|
import os
|
17
17
|
import re
|
18
|
+
import urllib
|
18
19
|
import warnings
|
19
20
|
import zipfile
|
20
21
|
from collections.abc import Mapping, Sequence
|
@@ -58,7 +59,7 @@ from monai.utils import (
|
|
58
59
|
validate, _ = optional_import("jsonschema", name="validate")
|
59
60
|
ValidationError, _ = optional_import("jsonschema.exceptions", name="ValidationError")
|
60
61
|
Checkpoint, has_ignite = optional_import("ignite.handlers", IgniteInfo.OPT_IMPORT_VERSION, min_version, "Checkpoint")
|
61
|
-
|
62
|
+
requests, has_requests = optional_import("requests")
|
62
63
|
onnx, _ = optional_import("onnx")
|
63
64
|
huggingface_hub, _ = optional_import("huggingface_hub")
|
64
65
|
|
@@ -206,6 +207,16 @@ def _download_from_monaihosting(download_path: Path, filename: str, version: str
|
|
206
207
|
extractall(filepath=filepath, output_dir=download_path, has_base=True)
|
207
208
|
|
208
209
|
|
210
|
+
def _download_from_bundle_info(download_path: Path, filename: str, version: str, progress: bool) -> None:
|
211
|
+
bundle_info = get_bundle_info(bundle_name=filename, version=version)
|
212
|
+
if not bundle_info:
|
213
|
+
raise ValueError(f"Bundle info not found for {filename} v{version}.")
|
214
|
+
url = bundle_info["browser_download_url"]
|
215
|
+
filepath = download_path / f"{filename}_v{version}.zip"
|
216
|
+
download_url(url=url, filepath=filepath, hash_val=None, progress=progress)
|
217
|
+
extractall(filepath=filepath, output_dir=download_path, has_base=True)
|
218
|
+
|
219
|
+
|
209
220
|
def _add_ngc_prefix(name: str, prefix: str = "monai_") -> str:
|
210
221
|
if name.startswith(prefix):
|
211
222
|
return name
|
@@ -222,7 +233,7 @@ def _get_all_download_files(request_url: str, headers: dict | None = None) -> li
|
|
222
233
|
if not has_requests:
|
223
234
|
raise ValueError("requests package is required, please install it.")
|
224
235
|
headers = {} if headers is None else headers
|
225
|
-
response =
|
236
|
+
response = requests.get(request_url, headers=headers)
|
226
237
|
response.raise_for_status()
|
227
238
|
model_info = json.loads(response.text)
|
228
239
|
|
@@ -266,7 +277,7 @@ def _download_from_ngc_private(
|
|
266
277
|
request_url = _get_ngc_private_bundle_url(model_name=filename, version=version, repo=repo)
|
267
278
|
if has_requests:
|
268
279
|
headers = {} if headers is None else headers
|
269
|
-
response =
|
280
|
+
response = requests.get(request_url, headers=headers)
|
270
281
|
response.raise_for_status()
|
271
282
|
else:
|
272
283
|
raise ValueError("NGC API requires requests package. Please install it.")
|
@@ -289,7 +300,7 @@ def _get_ngc_token(api_key, retry=0):
|
|
289
300
|
url = "https://authn.nvidia.com/token?service=ngc"
|
290
301
|
headers = {"Accept": "application/json", "Authorization": "ApiKey " + api_key}
|
291
302
|
if has_requests:
|
292
|
-
response =
|
303
|
+
response = requests.get(url, headers=headers)
|
293
304
|
if not response.ok:
|
294
305
|
# retry 3 times, if failed, raise an error.
|
295
306
|
if retry < 3:
|
@@ -303,14 +314,17 @@ def _get_ngc_token(api_key, retry=0):
|
|
303
314
|
|
304
315
|
def _get_latest_bundle_version_monaihosting(name):
|
305
316
|
full_url = f"{MONAI_HOSTING_BASE_URL}/{name.lower()}"
|
306
|
-
requests_get, has_requests = optional_import("requests", name="get")
|
307
317
|
if has_requests:
|
308
|
-
resp =
|
309
|
-
|
310
|
-
|
311
|
-
|
312
|
-
|
313
|
-
|
318
|
+
resp = requests.get(full_url)
|
319
|
+
try:
|
320
|
+
resp.raise_for_status()
|
321
|
+
model_info = json.loads(resp.text)
|
322
|
+
return model_info["model"]["latestVersionIdStr"]
|
323
|
+
except requests.exceptions.HTTPError:
|
324
|
+
# for monaihosting bundles, if cannot find the version, get from model zoo model_info.json
|
325
|
+
return get_bundle_versions(name)["latest_version"]
|
326
|
+
|
327
|
+
raise ValueError("NGC API requires requests package. Please install it.")
|
314
328
|
|
315
329
|
|
316
330
|
def _examine_monai_version(monai_version: str) -> tuple[bool, str]:
|
@@ -388,14 +402,14 @@ def _get_latest_bundle_version_ngc(name: str, repo: str | None = None, headers:
|
|
388
402
|
version_header = {"Accept-Encoding": "gzip, deflate"} # Excluding 'zstd' to fit NGC requirements
|
389
403
|
if headers:
|
390
404
|
version_header.update(headers)
|
391
|
-
resp =
|
405
|
+
resp = requests.get(version_endpoint, headers=version_header)
|
392
406
|
resp.raise_for_status()
|
393
407
|
model_info = json.loads(resp.text)
|
394
408
|
latest_versions = _list_latest_versions(model_info)
|
395
409
|
|
396
410
|
for version in latest_versions:
|
397
411
|
file_endpoint = base_url + f"/{name.lower()}/versions/{version}/files/configs/metadata.json"
|
398
|
-
resp =
|
412
|
+
resp = requests.get(file_endpoint, headers=headers)
|
399
413
|
metadata = json.loads(resp.text)
|
400
414
|
resp.raise_for_status()
|
401
415
|
# if the package version is not available or the model is compatible with the package version
|
@@ -585,7 +599,16 @@ def download(
|
|
585
599
|
name_ver = "_v".join([name_, version_]) if version_ is not None else name_
|
586
600
|
_download_from_github(repo=repo_, download_path=bundle_dir_, filename=name_ver, progress=progress_)
|
587
601
|
elif source_ == "monaihosting":
|
588
|
-
|
602
|
+
try:
|
603
|
+
_download_from_monaihosting(
|
604
|
+
download_path=bundle_dir_, filename=name_, version=version_, progress=progress_
|
605
|
+
)
|
606
|
+
except urllib.error.HTTPError:
|
607
|
+
# for monaihosting bundles, if cannot download from default host, download according to bundle_info
|
608
|
+
_download_from_bundle_info(
|
609
|
+
download_path=bundle_dir_, filename=name_, version=version_, progress=progress_
|
610
|
+
)
|
611
|
+
|
589
612
|
elif source_ == "ngc":
|
590
613
|
_download_from_ngc(
|
591
614
|
download_path=bundle_dir_,
|
@@ -792,9 +815,9 @@ def _get_all_bundles_info(
|
|
792
815
|
|
793
816
|
if auth_token is not None:
|
794
817
|
headers = {"Authorization": f"Bearer {auth_token}"}
|
795
|
-
resp =
|
818
|
+
resp = requests.get(request_url, headers=headers)
|
796
819
|
else:
|
797
|
-
resp =
|
820
|
+
resp = requests.get(request_url)
|
798
821
|
resp.raise_for_status()
|
799
822
|
else:
|
800
823
|
raise ValueError("requests package is required, please install it.")
|
monai/handlers/__init__.py
CHANGED
@@ -0,0 +1,53 @@
|
|
1
|
+
# Copyright (c) MONAI Consortium
|
2
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
3
|
+
# you may not use this file except in compliance with the License.
|
4
|
+
# You may obtain a copy of the License at
|
5
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
6
|
+
# Unless required by applicable law or agreed to in writing, software
|
7
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
8
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
9
|
+
# See the License for the specific language governing permissions and
|
10
|
+
# limitations under the License.
|
11
|
+
|
12
|
+
from __future__ import annotations
|
13
|
+
|
14
|
+
from collections.abc import Callable
|
15
|
+
|
16
|
+
from monai.handlers.ignite_metric import IgniteMetricHandler
|
17
|
+
from monai.metrics import AveragePrecisionMetric
|
18
|
+
from monai.utils import Average
|
19
|
+
|
20
|
+
|
21
|
+
class AveragePrecision(IgniteMetricHandler):
|
22
|
+
"""
|
23
|
+
Computes Average Precision (AP).
|
24
|
+
accumulating predictions and the ground-truth during an epoch and applying `compute_average_precision`.
|
25
|
+
|
26
|
+
Args:
|
27
|
+
average: {``"macro"``, ``"weighted"``, ``"micro"``, ``"none"``}
|
28
|
+
Type of averaging performed if not binary classification. Defaults to ``"macro"``.
|
29
|
+
|
30
|
+
- ``"macro"``: calculate metrics for each label, and find their unweighted mean.
|
31
|
+
This does not take label imbalance into account.
|
32
|
+
- ``"weighted"``: calculate metrics for each label, and find their average,
|
33
|
+
weighted by support (the number of true instances for each label).
|
34
|
+
- ``"micro"``: calculate metrics globally by considering each element of the label
|
35
|
+
indicator matrix as a label.
|
36
|
+
- ``"none"``: the scores for each class are returned.
|
37
|
+
|
38
|
+
output_transform: callable to extract `y_pred` and `y` from `ignite.engine.state.output` then
|
39
|
+
construct `(y_pred, y)` pair, where `y_pred` and `y` can be `batch-first` Tensors or
|
40
|
+
lists of `channel-first` Tensors. the form of `(y_pred, y)` is required by the `update()`.
|
41
|
+
`engine.state` and `output_transform` inherit from the ignite concept:
|
42
|
+
https://pytorch.org/ignite/concepts.html#state, explanation and usage example are in the tutorial:
|
43
|
+
https://github.com/Project-MONAI/tutorials/blob/master/modules/batch_output_transform.ipynb.
|
44
|
+
|
45
|
+
Note:
|
46
|
+
Average Precision expects y to be comprised of 0's and 1's.
|
47
|
+
y_pred must either be probability estimates or confidence values.
|
48
|
+
|
49
|
+
"""
|
50
|
+
|
51
|
+
def __init__(self, average: Average | str = Average.MACRO, output_transform: Callable = lambda x: x) -> None:
|
52
|
+
metric_fn = AveragePrecisionMetric(average=Average(average))
|
53
|
+
super().__init__(metric_fn=metric_fn, output_transform=output_transform, save_details=False)
|
monai/inferers/inferer.py
CHANGED
@@ -1202,15 +1202,16 @@ class LatentDiffusionInferer(DiffusionInferer):
|
|
1202
1202
|
|
1203
1203
|
if self.autoencoder_latent_shape is not None:
|
1204
1204
|
latent = torch.stack([self.autoencoder_resizer(i) for i in decollate_batch(latent)], 0)
|
1205
|
-
|
1206
|
-
|
1207
|
-
|
1205
|
+
if save_intermediates:
|
1206
|
+
latent_intermediates = [
|
1207
|
+
torch.stack([self.autoencoder_resizer(i) for i in decollate_batch(l)], 0)
|
1208
|
+
for l in latent_intermediates
|
1209
|
+
]
|
1208
1210
|
|
1209
1211
|
decode = autoencoder_model.decode_stage_2_outputs
|
1210
1212
|
if isinstance(autoencoder_model, SPADEAutoencoderKL):
|
1211
1213
|
decode = partial(autoencoder_model.decode_stage_2_outputs, seg=seg)
|
1212
1214
|
image = decode(latent / self.scale_factor)
|
1213
|
-
|
1214
1215
|
if save_intermediates:
|
1215
1216
|
intermediates = []
|
1216
1217
|
for latent_intermediate in latent_intermediates:
|
@@ -1333,13 +1334,15 @@ class ControlNetDiffusionInferer(DiffusionInferer):
|
|
1333
1334
|
raise NotImplementedError(f"{mode} condition is not supported")
|
1334
1335
|
|
1335
1336
|
noisy_image = self.scheduler.add_noise(original_samples=inputs, noise=noise, timesteps=timesteps)
|
1336
|
-
|
1337
|
-
x=noisy_image, timesteps=timesteps, controlnet_cond=cn_cond
|
1338
|
-
)
|
1337
|
+
|
1339
1338
|
if mode == "concat" and condition is not None:
|
1340
1339
|
noisy_image = torch.cat([noisy_image, condition], dim=1)
|
1341
1340
|
condition = None
|
1342
1341
|
|
1342
|
+
down_block_res_samples, mid_block_res_sample = controlnet(
|
1343
|
+
x=noisy_image, timesteps=timesteps, controlnet_cond=cn_cond, context=condition
|
1344
|
+
)
|
1345
|
+
|
1343
1346
|
diffuse = diffusion_model
|
1344
1347
|
if isinstance(diffusion_model, SPADEDiffusionModelUNet):
|
1345
1348
|
diffuse = partial(diffusion_model, seg=seg)
|
@@ -1395,17 +1398,21 @@ class ControlNetDiffusionInferer(DiffusionInferer):
|
|
1395
1398
|
progress_bar = iter(scheduler.timesteps)
|
1396
1399
|
intermediates = []
|
1397
1400
|
for t in progress_bar:
|
1398
|
-
# 1. ControlNet forward
|
1399
|
-
down_block_res_samples, mid_block_res_sample = controlnet(
|
1400
|
-
x=image, timesteps=torch.Tensor((t,)).to(input_noise.device), controlnet_cond=cn_cond
|
1401
|
-
)
|
1402
|
-
# 2. predict noise model_output
|
1403
1401
|
diffuse = diffusion_model
|
1404
1402
|
if isinstance(diffusion_model, SPADEDiffusionModelUNet):
|
1405
1403
|
diffuse = partial(diffusion_model, seg=seg)
|
1406
1404
|
|
1407
1405
|
if mode == "concat" and conditioning is not None:
|
1406
|
+
# 1. Conditioning
|
1408
1407
|
model_input = torch.cat([image, conditioning], dim=1)
|
1408
|
+
# 2. ControlNet forward
|
1409
|
+
down_block_res_samples, mid_block_res_sample = controlnet(
|
1410
|
+
x=model_input,
|
1411
|
+
timesteps=torch.Tensor((t,)).to(input_noise.device),
|
1412
|
+
controlnet_cond=cn_cond,
|
1413
|
+
context=None,
|
1414
|
+
)
|
1415
|
+
# 3. predict noise model_output
|
1409
1416
|
model_output = diffuse(
|
1410
1417
|
model_input,
|
1411
1418
|
timesteps=torch.Tensor((t,)).to(input_noise.device),
|
@@ -1414,6 +1421,12 @@ class ControlNetDiffusionInferer(DiffusionInferer):
|
|
1414
1421
|
mid_block_additional_residual=mid_block_res_sample,
|
1415
1422
|
)
|
1416
1423
|
else:
|
1424
|
+
down_block_res_samples, mid_block_res_sample = controlnet(
|
1425
|
+
x=image,
|
1426
|
+
timesteps=torch.Tensor((t,)).to(input_noise.device),
|
1427
|
+
controlnet_cond=cn_cond,
|
1428
|
+
context=conditioning,
|
1429
|
+
)
|
1417
1430
|
model_output = diffuse(
|
1418
1431
|
image,
|
1419
1432
|
timesteps=torch.Tensor((t,)).to(input_noise.device),
|
@@ -1484,9 +1497,6 @@ class ControlNetDiffusionInferer(DiffusionInferer):
|
|
1484
1497
|
for t in progress_bar:
|
1485
1498
|
timesteps = torch.full(inputs.shape[:1], t, device=inputs.device).long()
|
1486
1499
|
noisy_image = self.scheduler.add_noise(original_samples=inputs, noise=noise, timesteps=timesteps)
|
1487
|
-
down_block_res_samples, mid_block_res_sample = controlnet(
|
1488
|
-
x=noisy_image, timesteps=torch.Tensor((t,)).to(inputs.device), controlnet_cond=cn_cond
|
1489
|
-
)
|
1490
1500
|
|
1491
1501
|
diffuse = diffusion_model
|
1492
1502
|
if isinstance(diffusion_model, SPADEDiffusionModelUNet):
|
@@ -1494,6 +1504,9 @@ class ControlNetDiffusionInferer(DiffusionInferer):
|
|
1494
1504
|
|
1495
1505
|
if mode == "concat" and conditioning is not None:
|
1496
1506
|
noisy_image = torch.cat([noisy_image, conditioning], dim=1)
|
1507
|
+
down_block_res_samples, mid_block_res_sample = controlnet(
|
1508
|
+
x=noisy_image, timesteps=torch.Tensor((t,)).to(inputs.device), controlnet_cond=cn_cond, context=None
|
1509
|
+
)
|
1497
1510
|
model_output = diffuse(
|
1498
1511
|
noisy_image,
|
1499
1512
|
timesteps=timesteps,
|
@@ -1502,6 +1515,12 @@ class ControlNetDiffusionInferer(DiffusionInferer):
|
|
1502
1515
|
mid_block_additional_residual=mid_block_res_sample,
|
1503
1516
|
)
|
1504
1517
|
else:
|
1518
|
+
down_block_res_samples, mid_block_res_sample = controlnet(
|
1519
|
+
x=noisy_image,
|
1520
|
+
timesteps=torch.Tensor((t,)).to(inputs.device),
|
1521
|
+
controlnet_cond=cn_cond,
|
1522
|
+
context=conditioning,
|
1523
|
+
)
|
1505
1524
|
model_output = diffuse(
|
1506
1525
|
x=noisy_image,
|
1507
1526
|
timesteps=timesteps,
|
@@ -1727,9 +1746,11 @@ class ControlNetLatentDiffusionInferer(ControlNetDiffusionInferer):
|
|
1727
1746
|
|
1728
1747
|
if self.autoencoder_latent_shape is not None:
|
1729
1748
|
latent = torch.stack([self.autoencoder_resizer(i) for i in decollate_batch(latent)], 0)
|
1730
|
-
|
1731
|
-
|
1732
|
-
|
1749
|
+
if save_intermediates:
|
1750
|
+
latent_intermediates = [
|
1751
|
+
torch.stack([self.autoencoder_resizer(i) for i in decollate_batch(l)], 0)
|
1752
|
+
for l in latent_intermediates
|
1753
|
+
]
|
1733
1754
|
|
1734
1755
|
decode = autoencoder_model.decode_stage_2_outputs
|
1735
1756
|
if isinstance(autoencoder_model, SPADEAutoencoderKL):
|
monai/metrics/__init__.py
CHANGED
@@ -12,6 +12,7 @@
|
|
12
12
|
from __future__ import annotations
|
13
13
|
|
14
14
|
from .active_learning_metrics import LabelQualityScore, VarianceMetric, compute_variance, label_quality_score
|
15
|
+
from .average_precision import AveragePrecisionMetric, compute_average_precision
|
15
16
|
from .confusion_matrix import ConfusionMatrixMetric, compute_confusion_matrix_metric, get_confusion_matrix
|
16
17
|
from .cumulative_average import CumulativeAverage
|
17
18
|
from .f_beta_score import FBetaScore
|
@@ -0,0 +1,187 @@
|
|
1
|
+
# Copyright (c) MONAI Consortium
|
2
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
3
|
+
# you may not use this file except in compliance with the License.
|
4
|
+
# You may obtain a copy of the License at
|
5
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
6
|
+
# Unless required by applicable law or agreed to in writing, software
|
7
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
8
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
9
|
+
# See the License for the specific language governing permissions and
|
10
|
+
# limitations under the License.
|
11
|
+
|
12
|
+
from __future__ import annotations
|
13
|
+
|
14
|
+
import warnings
|
15
|
+
from typing import TYPE_CHECKING, cast
|
16
|
+
|
17
|
+
import numpy as np
|
18
|
+
|
19
|
+
if TYPE_CHECKING:
|
20
|
+
import numpy.typing as npt
|
21
|
+
|
22
|
+
import torch
|
23
|
+
|
24
|
+
from monai.utils import Average, look_up_option
|
25
|
+
|
26
|
+
from .metric import CumulativeIterationMetric
|
27
|
+
|
28
|
+
|
29
|
+
class AveragePrecisionMetric(CumulativeIterationMetric):
|
30
|
+
"""
|
31
|
+
Computes Average Precision (AP). AP is a useful metric to evaluate a classifier when the classes are
|
32
|
+
imbalanced. It can take values between 0.0 and 1.0, 1.0 being the best possible score.
|
33
|
+
It summarizes a Precision-Recall curve as the weighted mean of precisions achieved at each
|
34
|
+
threshold, with the increase in recall from the previous threshold used as the weight:
|
35
|
+
|
36
|
+
.. math::
|
37
|
+
\\text{AP} = \\sum_n (R_n - R_{n-1}) P_n
|
38
|
+
:label: ap
|
39
|
+
|
40
|
+
where :math:`P_n` and :math:`R_n` are the precision and recall at the :math:`n^{th}` threshold.
|
41
|
+
|
42
|
+
Referring to: `sklearn.metrics.average_precision_score
|
43
|
+
<https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score>`_.
|
44
|
+
|
45
|
+
The input `y_pred` and `y` can be a list of `channel-first` Tensor or a `batch-first` Tensor.
|
46
|
+
|
47
|
+
Example of the typical execution steps of this metric class follows :py:class:`monai.metrics.metric.Cumulative`.
|
48
|
+
|
49
|
+
Args:
|
50
|
+
average: {``"macro"``, ``"weighted"``, ``"micro"``, ``"none"``}
|
51
|
+
Type of averaging performed if not binary classification.
|
52
|
+
Defaults to ``"macro"``.
|
53
|
+
|
54
|
+
- ``"macro"``: calculate metrics for each label, and find their unweighted mean.
|
55
|
+
This does not take label imbalance into account.
|
56
|
+
- ``"weighted"``: calculate metrics for each label, and find their average,
|
57
|
+
weighted by support (the number of true instances for each label).
|
58
|
+
- ``"micro"``: calculate metrics globally by considering each element of the label
|
59
|
+
indicator matrix as a label.
|
60
|
+
- ``"none"``: the scores for each class are returned.
|
61
|
+
|
62
|
+
"""
|
63
|
+
|
64
|
+
def __init__(self, average: Average | str = Average.MACRO) -> None:
|
65
|
+
super().__init__()
|
66
|
+
self.average = average
|
67
|
+
|
68
|
+
def _compute_tensor(self, y_pred: torch.Tensor, y: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]: # type: ignore[override]
|
69
|
+
return y_pred, y
|
70
|
+
|
71
|
+
def aggregate(self, average: Average | str | None = None) -> np.ndarray | float | npt.ArrayLike:
|
72
|
+
"""
|
73
|
+
Typically `y_pred` and `y` are stored in the cumulative buffers at each iteration,
|
74
|
+
This function reads the buffers and computes the Average Precision.
|
75
|
+
|
76
|
+
Args:
|
77
|
+
average: {``"macro"``, ``"weighted"``, ``"micro"``, ``"none"``}
|
78
|
+
Type of averaging performed if not binary classification. Defaults to `self.average`.
|
79
|
+
|
80
|
+
"""
|
81
|
+
y_pred, y = self.get_buffer()
|
82
|
+
# compute final value and do metric reduction
|
83
|
+
if not isinstance(y_pred, torch.Tensor) or not isinstance(y, torch.Tensor):
|
84
|
+
raise ValueError("y_pred and y must be PyTorch Tensor.")
|
85
|
+
|
86
|
+
return compute_average_precision(y_pred=y_pred, y=y, average=average or self.average)
|
87
|
+
|
88
|
+
|
89
|
+
def _calculate(y_pred: torch.Tensor, y: torch.Tensor) -> float:
|
90
|
+
if not (y.ndimension() == y_pred.ndimension() == 1 and len(y) == len(y_pred)):
|
91
|
+
raise AssertionError("y and y_pred must be 1 dimension data with same length.")
|
92
|
+
y_unique = y.unique()
|
93
|
+
if len(y_unique) == 1:
|
94
|
+
warnings.warn(f"y values can not be all {y_unique.item()}, skip AP computation and return `Nan`.")
|
95
|
+
return float("nan")
|
96
|
+
if not y_unique.equal(torch.tensor([0, 1], dtype=y.dtype, device=y.device)):
|
97
|
+
warnings.warn(f"y values must be 0 or 1, but in {y_unique.tolist()}, skip AP computation and return `Nan`.")
|
98
|
+
return float("nan")
|
99
|
+
|
100
|
+
n = len(y)
|
101
|
+
indices = y_pred.argsort(descending=True)
|
102
|
+
y = y[indices].cpu().numpy() # type: ignore[assignment]
|
103
|
+
y_pred = y_pred[indices].cpu().numpy() # type: ignore[assignment]
|
104
|
+
npos = ap = tmp_pos = 0.0
|
105
|
+
|
106
|
+
for i in range(n):
|
107
|
+
y_i = cast(float, y[i])
|
108
|
+
if i + 1 < n and y_pred[i] == y_pred[i + 1]:
|
109
|
+
tmp_pos += y_i
|
110
|
+
else:
|
111
|
+
tmp_pos += y_i
|
112
|
+
npos += tmp_pos
|
113
|
+
ap += tmp_pos * npos / (i + 1)
|
114
|
+
tmp_pos = 0
|
115
|
+
|
116
|
+
return ap / npos
|
117
|
+
|
118
|
+
|
119
|
+
def compute_average_precision(
|
120
|
+
y_pred: torch.Tensor, y: torch.Tensor, average: Average | str = Average.MACRO
|
121
|
+
) -> np.ndarray | float | npt.ArrayLike:
|
122
|
+
"""Computes Average Precision (AP). AP is a useful metric to evaluate a classifier when the classes are
|
123
|
+
imbalanced. It summarizes a Precision-Recall according to equation :eq:`ap`.
|
124
|
+
Referring to: `sklearn.metrics.average_precision_score
|
125
|
+
<https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score>`_.
|
126
|
+
|
127
|
+
Args:
|
128
|
+
y_pred: input data to compute, typical classification model output.
|
129
|
+
the first dim must be batch, if multi-classes, it must be in One-Hot format.
|
130
|
+
for example: shape `[16]` or `[16, 1]` for a binary data, shape `[16, 2]` for 2 classes data.
|
131
|
+
y: ground truth to compute AP metric, the first dim must be batch.
|
132
|
+
if multi-classes, it must be in One-Hot format.
|
133
|
+
for example: shape `[16]` or `[16, 1]` for a binary data, shape `[16, 2]` for 2 classes data.
|
134
|
+
average: {``"macro"``, ``"weighted"``, ``"micro"``, ``"none"``}
|
135
|
+
Type of averaging performed if not binary classification.
|
136
|
+
Defaults to ``"macro"``.
|
137
|
+
|
138
|
+
- ``"macro"``: calculate metrics for each label, and find their unweighted mean.
|
139
|
+
This does not take label imbalance into account.
|
140
|
+
- ``"weighted"``: calculate metrics for each label, and find their average,
|
141
|
+
weighted by support (the number of true instances for each label).
|
142
|
+
- ``"micro"``: calculate metrics globally by considering each element of the label
|
143
|
+
indicator matrix as a label.
|
144
|
+
- ``"none"``: the scores for each class are returned.
|
145
|
+
|
146
|
+
Raises:
|
147
|
+
ValueError: When ``y_pred`` dimension is not one of [1, 2].
|
148
|
+
ValueError: When ``y`` dimension is not one of [1, 2].
|
149
|
+
ValueError: When ``average`` is not one of ["macro", "weighted", "micro", "none"].
|
150
|
+
|
151
|
+
Note:
|
152
|
+
Average Precision expects y to be comprised of 0's and 1's. `y_pred` must be either prob. estimates or confidence values.
|
153
|
+
|
154
|
+
"""
|
155
|
+
y_pred_ndim = y_pred.ndimension()
|
156
|
+
y_ndim = y.ndimension()
|
157
|
+
if y_pred_ndim not in (1, 2):
|
158
|
+
raise ValueError(
|
159
|
+
f"Predictions should be of shape (batch_size, num_classes) or (batch_size, ), got {y_pred.shape}."
|
160
|
+
)
|
161
|
+
if y_ndim not in (1, 2):
|
162
|
+
raise ValueError(f"Targets should be of shape (batch_size, num_classes) or (batch_size, ), got {y.shape}.")
|
163
|
+
if y_pred_ndim == 2 and y_pred.shape[1] == 1:
|
164
|
+
y_pred = y_pred.squeeze(dim=-1)
|
165
|
+
y_pred_ndim = 1
|
166
|
+
if y_ndim == 2 and y.shape[1] == 1:
|
167
|
+
y = y.squeeze(dim=-1)
|
168
|
+
|
169
|
+
if y_pred_ndim == 1:
|
170
|
+
return _calculate(y_pred, y)
|
171
|
+
|
172
|
+
if y.shape != y_pred.shape:
|
173
|
+
raise ValueError(f"data shapes of y_pred and y do not match, got {y_pred.shape} and {y.shape}.")
|
174
|
+
|
175
|
+
average = look_up_option(average, Average)
|
176
|
+
if average == Average.MICRO:
|
177
|
+
return _calculate(y_pred.flatten(), y.flatten())
|
178
|
+
y, y_pred = y.transpose(0, 1), y_pred.transpose(0, 1)
|
179
|
+
ap_values = [_calculate(y_pred_, y_) for y_pred_, y_ in zip(y_pred, y)]
|
180
|
+
if average == Average.NONE:
|
181
|
+
return ap_values
|
182
|
+
if average == Average.MACRO:
|
183
|
+
return np.mean(ap_values)
|
184
|
+
if average == Average.WEIGHTED:
|
185
|
+
weights = [sum(y_) for y_ in y]
|
186
|
+
return np.average(ap_values, weights=weights) # type: ignore[no-any-return]
|
187
|
+
raise ValueError(f'Unsupported average: {average}, available options are ["macro", "weighted", "micro", "none"].')
|
@@ -66,7 +66,6 @@ from monai.utils import (
|
|
66
66
|
optional_import,
|
67
67
|
)
|
68
68
|
from monai.utils.enums import TransformBackends
|
69
|
-
from monai.utils.misc import is_module_ver_at_least
|
70
69
|
from monai.utils.type_conversion import convert_to_dst_type, get_dtype_string, get_equivalent_dtype
|
71
70
|
|
72
71
|
PILImageImage, has_pil = optional_import("PIL.Image", name="Image")
|
@@ -939,19 +938,10 @@ class LabelToMask(Transform):
|
|
939
938
|
data = img[[*select_labels]]
|
940
939
|
else:
|
941
940
|
where: Callable = np.where if isinstance(img, np.ndarray) else torch.where # type: ignore
|
942
|
-
|
943
|
-
data = where(in1d(img, select_labels), True, False).reshape(img.shape)
|
944
|
-
# pre pytorch 1.8.0, need to use 1/0 instead of True/False
|
945
|
-
else:
|
946
|
-
data = where(
|
947
|
-
in1d(img, select_labels), torch.tensor(1, device=img.device), torch.tensor(0, device=img.device)
|
948
|
-
).reshape(img.shape)
|
941
|
+
data = where(in1d(img, select_labels), True, False).reshape(img.shape)
|
949
942
|
|
950
943
|
if merge_channels or self.merge_channels:
|
951
|
-
|
952
|
-
return data.any(0)[None]
|
953
|
-
# pre pytorch 1.8.0 compatibility
|
954
|
-
return data.to(torch.uint8).any(0)[None].to(bool) # type: ignore
|
944
|
+
return data.any(0)[None]
|
955
945
|
|
956
946
|
return data
|
957
947
|
|
@@ -18,7 +18,6 @@ import numpy as np
|
|
18
18
|
import torch
|
19
19
|
|
20
20
|
from monai.config.type_definitions import NdarrayOrTensor, NdarrayTensor
|
21
|
-
from monai.utils.misc import is_module_ver_at_least
|
22
21
|
from monai.utils.type_conversion import convert_data_type, convert_to_dst_type
|
23
22
|
|
24
23
|
__all__ = [
|
@@ -215,10 +214,9 @@ def floor_divide(a: NdarrayOrTensor, b) -> NdarrayOrTensor:
|
|
215
214
|
Element-wise floor division between two arrays/tensors.
|
216
215
|
"""
|
217
216
|
if isinstance(a, torch.Tensor):
|
218
|
-
if is_module_ver_at_least(torch, (1, 8, 0)):
|
219
|
-
return torch.div(a, b, rounding_mode="floor")
|
220
217
|
return torch.floor_divide(a, b)
|
221
|
-
|
218
|
+
else:
|
219
|
+
return np.floor_divide(a, b)
|
222
220
|
|
223
221
|
|
224
222
|
def unravel_index(idx, shape) -> NdarrayOrTensor:
|
monai/utils/enums.py
CHANGED
@@ -213,7 +213,8 @@ class GridSamplePadMode(StrEnum):
|
|
213
213
|
|
214
214
|
class Average(StrEnum):
|
215
215
|
"""
|
216
|
-
See also: :py:class:`monai.metrics.rocauc.compute_roc_auc`
|
216
|
+
See also: :py:class:`monai.metrics.rocauc.compute_roc_auc` or
|
217
|
+
:py:class:`monai.metrics.average_precision.compute_average_precision`
|
217
218
|
"""
|
218
219
|
|
219
220
|
MACRO = "macro"
|
@@ -335,7 +336,7 @@ class CommonKeys(StrEnum):
|
|
335
336
|
`LABEL` is the training or evaluation label of segmentation or classification task.
|
336
337
|
`PRED` is the prediction data of model output.
|
337
338
|
`LOSS` is the loss value of current iteration.
|
338
|
-
`
|
339
|
+
`METADATA` is some useful information during training or evaluation, like loss value, etc.
|
339
340
|
|
340
341
|
"""
|
341
342
|
|
monai/utils/module.py
CHANGED
@@ -540,11 +540,11 @@ def version_leq(lhs: str, rhs: str) -> bool:
|
|
540
540
|
"""
|
541
541
|
|
542
542
|
lhs, rhs = str(lhs), str(rhs)
|
543
|
-
pkging, has_ver = optional_import("packaging.
|
543
|
+
pkging, has_ver = optional_import("packaging.version")
|
544
544
|
if has_ver:
|
545
545
|
try:
|
546
|
-
return cast(bool, pkging.
|
547
|
-
except pkging.
|
546
|
+
return cast(bool, pkging.Version(lhs) <= pkging.Version(rhs))
|
547
|
+
except pkging.InvalidVersion:
|
548
548
|
return True
|
549
549
|
|
550
550
|
lhs_, rhs_ = parse_version_strs(lhs, rhs)
|
@@ -567,12 +567,12 @@ def version_geq(lhs: str, rhs: str) -> bool:
|
|
567
567
|
|
568
568
|
"""
|
569
569
|
lhs, rhs = str(lhs), str(rhs)
|
570
|
-
pkging, has_ver = optional_import("packaging.
|
570
|
+
pkging, has_ver = optional_import("packaging.version")
|
571
571
|
|
572
572
|
if has_ver:
|
573
573
|
try:
|
574
|
-
return cast(bool, pkging.
|
575
|
-
except pkging.
|
574
|
+
return cast(bool, pkging.Version(lhs) >= pkging.Version(rhs))
|
575
|
+
except pkging.InvalidVersion:
|
576
576
|
return True
|
577
577
|
|
578
578
|
lhs_, rhs_ = parse_version_strs(lhs, rhs)
|