monai-weekly 1.4.dev2437__py3-none-any.whl → 1.4.dev2438__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
monai/__init__.py CHANGED
@@ -135,4 +135,4 @@ except BaseException:
135
135
 
136
136
  if MONAIEnvVars.debug():
137
137
  raise
138
- __commit_id__ = "64eee8cb9cfad9ef5bd3eaf597fef0fbe85144b4"
138
+ __commit_id__ = "fa1c1af79ef5387434f2a76744f75b5aaca09f0b"
monai/_version.py CHANGED
@@ -8,11 +8,11 @@ import json
8
8
 
9
9
  version_json = '''
10
10
  {
11
- "date": "2024-09-15T02:27:58+0000",
11
+ "date": "2024-09-22T02:28:25+0000",
12
12
  "dirty": false,
13
13
  "error": null,
14
- "full-revisionid": "1d72a6bbc4db84d507147fb422f9f54a939640b5",
15
- "version": "1.4.dev2437"
14
+ "full-revisionid": "d85038e6acf92febeacfc53463a7e70e35d82670",
15
+ "version": "1.4.dev2438"
16
16
  }
17
17
  ''' # END VERSION_JSON
18
18
 
monai/bundle/workflows.py CHANGED
@@ -26,7 +26,7 @@ from monai.bundle.config_parser import ConfigParser
26
26
  from monai.bundle.properties import InferProperties, MetaProperties, TrainProperties
27
27
  from monai.bundle.utils import DEFAULT_EXP_MGMT_SETTINGS, EXPR_KEY, ID_REF_KEY, ID_SEP_KEY
28
28
  from monai.config import PathLike
29
- from monai.utils import BundleProperty, BundlePropertyConfig, deprecated_arg, deprecated_arg_default, ensure_tuple
29
+ from monai.utils import BundleProperty, BundlePropertyConfig, deprecated_arg, ensure_tuple
30
30
 
31
31
  __all__ = ["BundleWorkflow", "ConfigWorkflow"]
32
32
 
@@ -43,7 +43,7 @@ class BundleWorkflow(ABC):
43
43
  workflow_type: specifies the workflow type: "train" or "training" for a training workflow,
44
44
  or "infer", "inference", "eval", "evaluation" for a inference workflow,
45
45
  other unsupported string will raise a ValueError.
46
- default to `None` for common workflow.
46
+ default to `train` for train workflow.
47
47
  workflow: specifies the workflow type: "train" or "training" for a training workflow,
48
48
  or "infer", "inference", "eval", "evaluation" for a inference workflow,
49
49
  other unsupported string will raise a ValueError.
@@ -274,7 +274,6 @@ class ConfigWorkflow(BundleWorkflow):
274
274
  new_name="workflow_type",
275
275
  msg_suffix="please use `workflow_type` instead.",
276
276
  )
277
- @deprecated_arg_default("workflow_type", None, "train", since="1.2", replaced="1.4")
278
277
  def __init__(
279
278
  self,
280
279
  config_file: str | Sequence[str],
@@ -284,7 +283,7 @@ class ConfigWorkflow(BundleWorkflow):
284
283
  run_id: str = "run",
285
284
  final_id: str = "finalize",
286
285
  tracking: str | dict | None = None,
287
- workflow_type: str | None = None,
286
+ workflow_type: str | None = "train",
288
287
  workflow: str | None = None,
289
288
  properties_path: PathLike | None = None,
290
289
  **override: Any,
@@ -1359,7 +1359,7 @@ class NrrdReader(ImageReader):
1359
1359
  x, y = direction.shape
1360
1360
  affine_diam = min(x, y) + 1
1361
1361
  affine: np.ndarray = np.eye(affine_diam)
1362
- affine[:x, :y] = direction
1362
+ affine[:x, :y] = direction.T
1363
1363
  affine[: (affine_diam - 1), -1] = origin # len origin is always affine_diam - 1
1364
1364
  return affine
1365
1365
 
@@ -20,7 +20,7 @@ from .decollate_batch import DecollateBatch
20
20
  from .earlystop_handler import EarlyStopHandler
21
21
  from .garbage_collector import GarbageCollector
22
22
  from .hausdorff_distance import HausdorffDistance
23
- from .ignite_metric import IgniteMetric, IgniteMetricHandler
23
+ from .ignite_metric import IgniteMetricHandler
24
24
  from .logfile_handler import LogfileHandler
25
25
  from .lr_schedule_handler import LrScheduleHandler
26
26
  from .mean_dice import MeanDice
@@ -20,7 +20,7 @@ from torch.nn.modules.loss import _Loss
20
20
 
21
21
  from monai.config import IgniteInfo
22
22
  from monai.metrics import CumulativeIterationMetric, LossMetric
23
- from monai.utils import MetricReduction, deprecated, min_version, optional_import
23
+ from monai.utils import MetricReduction, min_version, optional_import
24
24
 
25
25
  idist, _ = optional_import("ignite", IgniteInfo.OPT_IMPORT_VERSION, min_version, "distributed")
26
26
 
@@ -153,25 +153,3 @@ class IgniteMetricHandler(Metric):
153
153
  self._name = name
154
154
  if self.save_details and not hasattr(engine.state, "metric_details"):
155
155
  engine.state.metric_details = {} # type: ignore
156
-
157
-
158
- @deprecated(since="1.2", removed="1.4", msg_suffix="Use IgniteMetricHandler instead of IgniteMetric.")
159
- class IgniteMetric(IgniteMetricHandler):
160
-
161
- def __init__(
162
- self,
163
- metric_fn: CumulativeIterationMetric | None = None,
164
- loss_fn: _Loss | None = None,
165
- output_transform: Callable = lambda x: x,
166
- save_details: bool = True,
167
- reduction: MetricReduction | str = MetricReduction.MEAN,
168
- get_not_nans: bool = False,
169
- ) -> None:
170
- super().__init__(
171
- metric_fn=metric_fn,
172
- loss_fn=loss_fn,
173
- output_transform=output_transform,
174
- save_details=save_details,
175
- reduction=reduction,
176
- get_not_nans=get_not_nans,
177
- )
monai/losses/dice.py CHANGED
@@ -24,7 +24,7 @@ from torch.nn.modules.loss import _Loss
24
24
  from monai.losses.focal_loss import FocalLoss
25
25
  from monai.losses.spatial_mask import MaskedLoss
26
26
  from monai.networks import one_hot
27
- from monai.utils import DiceCEReduction, LossReduction, Weight, deprecated_arg, look_up_option, pytorch_after
27
+ from monai.utils import DiceCEReduction, LossReduction, Weight, look_up_option, pytorch_after
28
28
 
29
29
 
30
30
  class DiceLoss(_Loss):
@@ -646,9 +646,6 @@ class DiceCELoss(_Loss):
646
646
 
647
647
  """
648
648
 
649
- @deprecated_arg(
650
- "ce_weight", since="1.2", removed="1.4", new_name="weight", msg_suffix="please use `weight` instead."
651
- )
652
649
  def __init__(
653
650
  self,
654
651
  include_background: bool = True,
@@ -662,7 +659,6 @@ class DiceCELoss(_Loss):
662
659
  smooth_nr: float = 1e-5,
663
660
  smooth_dr: float = 1e-5,
664
661
  batch: bool = False,
665
- ce_weight: torch.Tensor | None = None,
666
662
  weight: torch.Tensor | None = None,
667
663
  lambda_dice: float = 1.0,
668
664
  lambda_ce: float = 1.0,
@@ -712,7 +708,6 @@ class DiceCELoss(_Loss):
712
708
  """
713
709
  super().__init__()
714
710
  reduction = look_up_option(reduction, DiceCEReduction).value
715
- weight = ce_weight if ce_weight is not None else weight
716
711
  dice_weight: torch.Tensor | None
717
712
  if weight is not None and not include_background:
718
713
  dice_weight = weight[1:]
@@ -825,9 +820,6 @@ class DiceFocalLoss(_Loss):
825
820
 
826
821
  """
827
822
 
828
- @deprecated_arg(
829
- "focal_weight", since="1.2", removed="1.4", new_name="weight", msg_suffix="please use `weight` instead."
830
- )
831
823
  def __init__(
832
824
  self,
833
825
  include_background: bool = True,
@@ -842,7 +834,6 @@ class DiceFocalLoss(_Loss):
842
834
  smooth_dr: float = 1e-5,
843
835
  batch: bool = False,
844
836
  gamma: float = 2.0,
845
- focal_weight: Sequence[float] | float | int | torch.Tensor | None = None,
846
837
  weight: Sequence[float] | float | int | torch.Tensor | None = None,
847
838
  lambda_dice: float = 1.0,
848
839
  lambda_focal: float = 1.0,
@@ -885,7 +876,6 @@ class DiceFocalLoss(_Loss):
885
876
  [0, 1]. Defaults to None.
886
877
  """
887
878
  super().__init__()
888
- weight = focal_weight if focal_weight is not None else weight
889
879
  self.dice = DiceLoss(
890
880
  include_background=include_background,
891
881
  to_onehot_y=False,
@@ -994,9 +984,6 @@ class GeneralizedDiceFocalLoss(_Loss):
994
984
  ValueError: if either `lambda_gdl` or `lambda_focal` is less than 0.
995
985
  """
996
986
 
997
- @deprecated_arg(
998
- "focal_weight", since="1.2", removed="1.4", new_name="weight", msg_suffix="please use `weight` instead."
999
- )
1000
987
  def __init__(
1001
988
  self,
1002
989
  include_background: bool = True,
@@ -1010,7 +997,6 @@ class GeneralizedDiceFocalLoss(_Loss):
1010
997
  smooth_dr: float = 1e-5,
1011
998
  batch: bool = False,
1012
999
  gamma: float = 2.0,
1013
- focal_weight: Sequence[float] | float | int | torch.Tensor | None = None,
1014
1000
  weight: Sequence[float] | float | int | torch.Tensor | None = None,
1015
1001
  lambda_gdl: float = 1.0,
1016
1002
  lambda_focal: float = 1.0,
@@ -1028,7 +1014,6 @@ class GeneralizedDiceFocalLoss(_Loss):
1028
1014
  smooth_dr=smooth_dr,
1029
1015
  batch=batch,
1030
1016
  )
1031
- weight = focal_weight if focal_weight is not None else weight
1032
1017
  self.focal = FocalLoss(
1033
1018
  include_background=include_background,
1034
1019
  to_onehot_y=to_onehot_y,
@@ -21,7 +21,7 @@ from torch.nn import LayerNorm
21
21
 
22
22
  from monai.networks.blocks.pos_embed_utils import build_sincos_position_embedding
23
23
  from monai.networks.layers import Conv, trunc_normal_
24
- from monai.utils import deprecated_arg, ensure_tuple_rep, optional_import
24
+ from monai.utils import ensure_tuple_rep, optional_import
25
25
  from monai.utils.module import look_up_option
26
26
 
27
27
  Rearrange, _ = optional_import("einops.layers.torch", name="Rearrange")
@@ -42,9 +42,6 @@ class PatchEmbeddingBlock(nn.Module):
42
42
 
43
43
  """
44
44
 
45
- @deprecated_arg(
46
- name="pos_embed", since="1.2", removed="1.4", new_name="proj_type", msg_suffix="please use `proj_type` instead."
47
- )
48
45
  def __init__(
49
46
  self,
50
47
  in_channels: int,
@@ -52,7 +49,6 @@ class PatchEmbeddingBlock(nn.Module):
52
49
  patch_size: Sequence[int] | int,
53
50
  hidden_size: int,
54
51
  num_heads: int,
55
- pos_embed: str = "conv",
56
52
  proj_type: str = "conv",
57
53
  pos_embed_type: str = "learnable",
58
54
  dropout_rate: float = 0.0,
@@ -69,8 +65,6 @@ class PatchEmbeddingBlock(nn.Module):
69
65
  pos_embed_type: position embedding layer type.
70
66
  dropout_rate: fraction of the input units to drop.
71
67
  spatial_dims: number of spatial dimensions.
72
- .. deprecated:: 1.4
73
- ``pos_embed`` is deprecated in favor of ``proj_type``.
74
68
  """
75
69
 
76
70
  super().__init__()
@@ -18,7 +18,7 @@ import torch.nn as nn
18
18
  from monai.networks.blocks.dynunet_block import UnetOutBlock
19
19
  from monai.networks.blocks.unetr_block import UnetrBasicBlock, UnetrPrUpBlock, UnetrUpBlock
20
20
  from monai.networks.nets.vit import ViT
21
- from monai.utils import deprecated_arg, ensure_tuple_rep
21
+ from monai.utils import ensure_tuple_rep
22
22
 
23
23
 
24
24
  class UNETR(nn.Module):
@@ -27,9 +27,6 @@ class UNETR(nn.Module):
27
27
  UNETR: Transformers for 3D Medical Image Segmentation <https://arxiv.org/abs/2103.10504>"
28
28
  """
29
29
 
30
- @deprecated_arg(
31
- name="pos_embed", since="1.2", removed="1.4", new_name="proj_type", msg_suffix="please use `proj_type` instead."
32
- )
33
30
  def __init__(
34
31
  self,
35
32
  in_channels: int,
@@ -39,7 +36,6 @@ class UNETR(nn.Module):
39
36
  hidden_size: int = 768,
40
37
  mlp_dim: int = 3072,
41
38
  num_heads: int = 12,
42
- pos_embed: str = "conv",
43
39
  proj_type: str = "conv",
44
40
  norm_name: tuple | str = "instance",
45
41
  conv_block: bool = True,
@@ -67,9 +63,6 @@ class UNETR(nn.Module):
67
63
  qkv_bias: apply the bias term for the qkv linear layer in self attention block. Defaults to False.
68
64
  save_attn: to make accessible the attention in self attention block. Defaults to False.
69
65
 
70
- .. deprecated:: 1.4
71
- ``pos_embed`` is deprecated in favor of ``proj_type``.
72
-
73
66
  Examples::
74
67
 
75
68
  # for single channel input 4-channel output with image size of (96,96,96), feature size of 32 and batch norm
@@ -18,7 +18,6 @@ import torch.nn as nn
18
18
 
19
19
  from monai.networks.blocks.patchembedding import PatchEmbeddingBlock
20
20
  from monai.networks.blocks.transformerblock import TransformerBlock
21
- from monai.utils import deprecated_arg
22
21
 
23
22
  __all__ = ["ViT"]
24
23
 
@@ -31,9 +30,6 @@ class ViT(nn.Module):
31
30
  ViT supports Torchscript but only works for Pytorch after 1.8.
32
31
  """
33
32
 
34
- @deprecated_arg(
35
- name="pos_embed", since="1.2", removed="1.4", new_name="proj_type", msg_suffix="please use `proj_type` instead."
36
- )
37
33
  def __init__(
38
34
  self,
39
35
  in_channels: int,
@@ -43,7 +39,6 @@ class ViT(nn.Module):
43
39
  mlp_dim: int = 3072,
44
40
  num_layers: int = 12,
45
41
  num_heads: int = 12,
46
- pos_embed: str = "conv",
47
42
  proj_type: str = "conv",
48
43
  pos_embed_type: str = "learnable",
49
44
  classification: bool = False,
@@ -75,9 +70,6 @@ class ViT(nn.Module):
75
70
  qkv_bias (bool, optional): apply bias to the qkv linear layer in self attention block. Defaults to False.
76
71
  save_attn (bool, optional): to make accessible the attention in self attention block. Defaults to False.
77
72
 
78
- .. deprecated:: 1.4
79
- ``pos_embed`` is deprecated in favor of ``proj_type``.
80
-
81
73
  Examples::
82
74
 
83
75
  # for single channel input with image size of (96,96,96), conv position embedding and segmentation backbone
@@ -20,7 +20,7 @@ import torch.nn as nn
20
20
  from monai.networks.blocks.patchembedding import PatchEmbeddingBlock
21
21
  from monai.networks.blocks.transformerblock import TransformerBlock
22
22
  from monai.networks.layers import Conv
23
- from monai.utils import deprecated_arg, ensure_tuple_rep, is_sqrt
23
+ from monai.utils import ensure_tuple_rep, is_sqrt
24
24
 
25
25
  __all__ = ["ViTAutoEnc"]
26
26
 
@@ -33,9 +33,6 @@ class ViTAutoEnc(nn.Module):
33
33
  Modified to also give same dimension outputs as the input size of the image
34
34
  """
35
35
 
36
- @deprecated_arg(
37
- name="pos_embed", since="1.2", removed="1.4", new_name="proj_type", msg_suffix="please use `proj_type` instead."
38
- )
39
36
  def __init__(
40
37
  self,
41
38
  in_channels: int,
@@ -47,7 +44,6 @@ class ViTAutoEnc(nn.Module):
47
44
  mlp_dim: int = 3072,
48
45
  num_layers: int = 12,
49
46
  num_heads: int = 12,
50
- pos_embed: str = "conv",
51
47
  proj_type: str = "conv",
52
48
  dropout_rate: float = 0.0,
53
49
  spatial_dims: int = 3,
@@ -71,9 +67,6 @@ class ViTAutoEnc(nn.Module):
71
67
  qkv_bias: apply bias to the qkv linear layer in self attention block. Defaults to False.
72
68
  save_attn: to make accessible the attention in self attention block. Defaults to False. Defaults to False.
73
69
 
74
- .. deprecated:: 1.4
75
- ``pos_embed`` is deprecated in favor of ``proj_type``.
76
-
77
70
  Examples::
78
71
 
79
72
  # for single channel input with image size of (96,96,96), conv position embedding and segmentation backbone
monai/transforms/utils.py CHANGED
@@ -582,7 +582,8 @@ def weighted_patch_samples(
582
582
  if not v[-1] or not isfinite(v[-1]) or v[-1] < 0: # uniform sampling
583
583
  idx = r_state.randint(0, len(v), size=n_samples)
584
584
  else:
585
- r, *_ = convert_to_dst_type(r_state.random(n_samples), v)
585
+ r_samples = r_state.random(n_samples)
586
+ r, *_ = convert_to_dst_type(r_samples, v, dtype=r_samples.dtype)
586
587
  idx = searchsorted(v, r * v[-1], right=True) # type: ignore
587
588
  idx, *_ = convert_to_dst_type(idx, v, dtype=torch.int) # type: ignore
588
589
  # compensate 'valid' mode
monai/utils/enums.py CHANGED
@@ -16,7 +16,6 @@ from enum import Enum
16
16
  from typing import TYPE_CHECKING
17
17
 
18
18
  from monai.config import IgniteInfo
19
- from monai.utils import deprecated
20
19
  from monai.utils.module import min_version, optional_import
21
20
 
22
21
  __all__ = [
@@ -56,7 +55,6 @@ __all__ = [
56
55
  "DataStatsKeys",
57
56
  "ImageStatsKeys",
58
57
  "LabelStatsKeys",
59
- "AlgoEnsembleKeys",
60
58
  "HoVerNetMode",
61
59
  "HoVerNetBranch",
62
60
  "LazyAttr",
@@ -615,17 +613,6 @@ class LabelStatsKeys(StrEnum):
615
613
  LABEL_NCOMP = "ncomponents"
616
614
 
617
615
 
618
- @deprecated(since="1.2", removed="1.4", msg_suffix="please use `AlgoKeys` instead.")
619
- class AlgoEnsembleKeys(StrEnum):
620
- """
621
- Default keys for Mixed Ensemble
622
- """
623
-
624
- ID = "identifier"
625
- ALGO = "infer_algo"
626
- SCORE = "best_metric"
627
-
628
-
629
616
  class HoVerNetMode(StrEnum):
630
617
  """
631
618
  Modes for HoVerNet model:
monai/utils/misc.py CHANGED
@@ -887,7 +887,7 @@ def run_cmd(cmd_list: list[str], **kwargs: Any) -> subprocess.CompletedProcess:
887
887
  if kwargs.pop("run_cmd_verbose", False):
888
888
  import monai
889
889
 
890
- monai.apps.utils.get_logger("run_cmd").info(f"{cmd_list}")
890
+ monai.apps.utils.get_logger("run_cmd").info(f"{cmd_list}") # type: ignore[attr-defined]
891
891
  try:
892
892
  return subprocess.run(cmd_list, **kwargs)
893
893
  except subprocess.CalledProcessError as e:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: monai-weekly
3
- Version: 1.4.dev2437
3
+ Version: 1.4.dev2438
4
4
  Summary: AI Toolkit for Healthcare Imaging
5
5
  Home-page: https://monai.io/
6
6
  Author: MONAI Consortium
@@ -1,5 +1,5 @@
1
- monai/__init__.py,sha256=ybAA90_dwrruvsd8OCJFen2t9_jJcojSRt1i7gauQrM,4094
2
- monai/_version.py,sha256=BwqSNIsNCtbzDntVuSj-HLo8AH_S4RPdX7rKN4KVN2s,503
1
+ monai/__init__.py,sha256=8SyVLxNLbvurLsxXUK-wSKytGGNZrzTgC8QVsNQYUaA,4094
2
+ monai/_version.py,sha256=DOjRq6mAZ9-Ezg5HevnMM9q7qXuf64gVF9leE3bi8Vc,503
3
3
  monai/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
4
  monai/_extensions/__init__.py,sha256=NEBPreRhQ8H9gVvgrLr_y52_TmqB96u_u4VQmeNT93I,642
5
5
  monai/_extensions/loader.py,sha256=7SiKw36q-nOzH8CRbBurFrz7GM40GCu7rc93Tm8XpnI,3643
@@ -116,7 +116,7 @@ monai/bundle/properties.py,sha256=iN3K4FVmN9ny1Hw9p5j7_ULcCdSD8PmrR7qXxbNz49k,11
116
116
  monai/bundle/reference_resolver.py,sha256=aBw3ML7B_YsiFUNl_mcRYPry1UbrEIK0R39A0zFw8kI,16463
117
117
  monai/bundle/scripts.py,sha256=-_mYM017PEkSG0UjSwcSMi6nTAo2YzLvEn5FK5p37pU,89132
118
118
  monai/bundle/utils.py,sha256=t-22uFvLn7Yy-dr1v1U33peNOxgAmU4TJiGAbsBrUKs,10108
119
- monai/bundle/workflows.py,sha256=VMuBTkk6DGsnGRLFzNfVUzgy8UqUReluUlIPUaxODPQ,24765
119
+ monai/bundle/workflows.py,sha256=KADIppCZY6jCDvyCH2PmJm0Q-6xwCnB7x7KjFfRP8LY,24655
120
120
  monai/config/__init__.py,sha256=CN28CfTdsp301gv8YXfVvkbztCfbAqrLKrJi_C8oP9s,1048
121
121
  monai/config/deviceconfig.py,sha256=3EU1Zi6yD_bxEAeHfzjbslEjq6vOvxNG6o9dxKUiEvc,10315
122
122
  monai/config/type_definitions.py,sha256=0fAuI-_uX2Ac_33bgDVXKmBSl-fJNFcsOqBqYV16fhk,3485
@@ -131,7 +131,7 @@ monai/data/fft_utils.py,sha256=in9Zu8hC4oSVzuA-Zl236X6EkvgFka0RXdOxgvdGkv0,4448
131
131
  monai/data/folder_layout.py,sha256=IsHW1-Bkupn_T8r6MgFTIJQh5HwCg0xQwOKmgBtl0gE,6344
132
132
  monai/data/grid_dataset.py,sha256=O0gHf3BgrisH1erOMZNSpoIut92mydnNpzGYWnBKg4U,19483
133
133
  monai/data/image_dataset.py,sha256=OhNJ3awauWtqsDhefIGDw3UYGF3RoleeNUPdJOKg3kI,7008
134
- monai/data/image_reader.py,sha256=KZCnJU1_192hMaZtlrIZKMHI-Ua7DlzSApMQOLvixXA,61774
134
+ monai/data/image_reader.py,sha256=XDkYVWQN_eHoMI1iFFWN8ICI0x9AxKSc8bGSavHskfs,61776
135
135
  monai/data/image_writer.py,sha256=rH6vboPFkX4ziN3lnrmK6AzAOQYI9tEiOJb7Al2tj-8,39856
136
136
  monai/data/iterable_dataset.py,sha256=A0L5jaxwnfgProBj96tlT160esI21yutnTf3a4c29Ms,13100
137
137
  monai/data/itk_torch_bridge.py,sha256=3th-B3tJuJE22JFfOUgGeTMOPh1czJEiSccFyn_Ob0w,14461
@@ -160,7 +160,7 @@ monai/fl/utils/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,57
160
160
  monai/fl/utils/constants.py,sha256=OjMAE17niYqQh7nz45SC6CXvkMa4-XZsIuoHUHqP7W0,1784
161
161
  monai/fl/utils/exchange_object.py,sha256=q41trOwBdog_g3k_Eh2EFnLufHJ1mj7nGyQ-ShuW5Mo,3527
162
162
  monai/fl/utils/filters.py,sha256=InXplYes52JJqtsNbePAPPAYS8am_uRO7UkBHyYyJCo,1633
163
- monai/handlers/__init__.py,sha256=DDEga7fRfhZTn7T7ZDjK1XI6zcDsziTJLpM50wqwacY,2408
163
+ monai/handlers/__init__.py,sha256=laEkiuP-ew7UzuG89135uJvC73ocVbT0nQ_3xMLEhKc,2394
164
164
  monai/handlers/checkpoint_loader.py,sha256=d01Ab5RIMuP372M1rwarKpdhcIG01Vv7Z630iwb4PlY,7456
165
165
  monai/handlers/checkpoint_saver.py,sha256=NJljfsP_RbmeQvbI9g0B0hsPcV14vW37cljGRzLlXCY,16071
166
166
  monai/handlers/classification_saver.py,sha256=ujCzHyEN5lH-ZY_M5cN-J6s_JxByLkujxcTz2ZVxHow,7606
@@ -170,7 +170,7 @@ monai/handlers/decollate_batch.py,sha256=96TBuau203bHRT1fuunRIxExd6vBIfVeM_1Ubzc
170
170
  monai/handlers/earlystop_handler.py,sha256=_Up0WwJ-WoKBpWeNVbLfm5sjPydQ64-zzE7ChVAAE4Y,5334
171
171
  monai/handlers/garbage_collector.py,sha256=6mG5eLi6Nm5PnuWyO7ka-t92Nw5RTSH0omSEqrmupVk,3645
172
172
  monai/handlers/hausdorff_distance.py,sha256=i-I2EWZrCpkojPR5EmqWCOiDCszujoe5RCZ4xUDajcc,3594
173
- monai/handlers/ignite_metric.py,sha256=nuXkHBEaR0ABkBMRcl0_3xcDNbCabTQXr7_GB5ZkKwE,7461
173
+ monai/handlers/ignite_metric.py,sha256=A5p0_CVGN4fG3PZ4N0LHBVnSDMrG-pgUsn3-TXBxz0M,6715
174
174
  monai/handlers/logfile_handler.py,sha256=9iUroCpfaP_YJu5mGHJ6CW53DoiYZ7F_XjhZwXw4a84,3931
175
175
  monai/handlers/lr_schedule_handler.py,sha256=jj-ukoR3p-m0LVs-AzPqn2On8GIj70PSIPNp9t-iiQY,3575
176
176
  monai/handlers/mean_dice.py,sha256=aJmL9IEEJtWs65Et3HCe7S0JIe7J6z-Nc0BEQESy9sY,3785
@@ -204,7 +204,7 @@ monai/losses/barlow_twins.py,sha256=prDdaY0vXAXMuVDmc9Tv6svRZzNwKA0LdsmRaUmusiI,
204
204
  monai/losses/cldice.py,sha256=NeUVJuFjowlH90MSLtq8HJzhzLVwal_G7gaOyc1_5OY,6328
205
205
  monai/losses/contrastive.py,sha256=-SCvgQOA1JADQaFl7S4wEoIFtNd4uFkfTPlkMkky_LQ,3261
206
206
  monai/losses/deform.py,sha256=mBOvFgKyW1qw9267AZCd0h_xi10xvy_ybYfhzQzl5rI,9701
207
- monai/losses/dice.py,sha256=U0zSZzy_6Yf8xiuon6usR6M175-pq-ivRBESxIR41Ds,52323
207
+ monai/losses/dice.py,sha256=S4JKPybHN82JY26qIwqJTJovT3YHWbVQOwKB30bLViY,51475
208
208
  monai/losses/ds_loss.py,sha256=ts92Rc_YAkfb5WUUWxRTecpY32lVwC20pu7u-dJCgyY,3854
209
209
  monai/losses/focal_loss.py,sha256=OhAtxzAwZ1CoNGH1S2dQbG7iDyowYUqv64KXi0GgMhk,11772
210
210
  monai/losses/giou_loss.py,sha256=Mogq6fR0tO__Xj0Ul388QMEx03XrSS-Ue96i9ahY-uo,2795
@@ -262,7 +262,7 @@ monai/networks/blocks/feature_pyramid_network.py,sha256=_DeAy_lNnPqjNiJLcopjqe_P
262
262
  monai/networks/blocks/fft_utils_t.py,sha256=8bOvhLgP5nDLz8QwzD4XnRaxE9-tGba2-b_QDK8IWSs,8263
263
263
  monai/networks/blocks/localnet_block.py,sha256=b2-ZZvkMPphHJZYTbwEZDhqA-mMBSFM5WQOoohk_6W4,11456
264
264
  monai/networks/blocks/mlp.py,sha256=qw_jgyrYwoQ5WYBM1rtSSaO4C837ZbctoRKhh_BQQFI,3341
265
- monai/networks/blocks/patchembedding.py,sha256=yjbZg4WIuUpyQSD_r_ZBrZqs60lGZMXVK18oHVhR9Tw,9248
265
+ monai/networks/blocks/patchembedding.py,sha256=tp0coxpi70LcUk03HbnygFeCxcBv5bNHJbw1crIG_Js,8956
266
266
  monai/networks/blocks/pos_embed_utils.py,sha256=vFEQqxZ6UAmjcy_icFDL9EwjRHYXuIbWr1chWUJqO7g,4070
267
267
  monai/networks/blocks/regunet_block.py,sha256=1FLIwVBtk66II6xQ7Q4LMY8DP0rMmeftN7HuaEgnf3A,8825
268
268
  monai/networks/blocks/rel_pos_embedding.py,sha256=wuTJsk_NHSDX-3V0X9ctF99WIh2-SHLDbQxzrG7tz_4,2208
@@ -327,11 +327,11 @@ monai/networks/nets/torchvision_fc.py,sha256=3g5PD7C1MSkQ8xndhnVd0b3aN8zfshT8uiF
327
327
  monai/networks/nets/transchex.py,sha256=uA_RfTDfPhwA1ecAPZ9EDnMyJKn2tUMLEWdyB_rU2v0,15726
328
328
  monai/networks/nets/transformer.py,sha256=-nzl20Z5xdtn7xChOd_cRbbPVoPIFGVfTQw3fIEGMuE,6395
329
329
  monai/networks/nets/unet.py,sha256=riKWB8iEEgO4CIiVTOo532726HWWBfuBcIHeoLvvN0w,13627
330
- monai/networks/nets/unetr.py,sha256=wQC3mpn_jEcZb0RXef0ueTe4WGjmnZqQVKKdnemFjnc,8545
330
+ monai/networks/nets/unetr.py,sha256=G67kjiBMz13MzP4eV8XK-GydSogMwgXaBMFDShF5sB8,8252
331
331
  monai/networks/nets/varautoencoder.py,sha256=Pd9BdXW1iVjmAVCZIc2ElGtSDAWRBaLwEKxLDicyxZI,6282
332
332
  monai/networks/nets/vista3d.py,sha256=vFpCG53JDCvgK-fz7VPZvo6-mv8Mp5AgBZu2QVu0ggM,43326
333
- monai/networks/nets/vit.py,sha256=SJ5MCJcVAQ2iTqkc1-AFF7oBgCkE7xcNr_ziGc8n_t8,6250
334
- monai/networks/nets/vitautoenc.py,sha256=tTX-JHNl2H4y9e5Wk9rrtR6i_ebJHq90O61DnbBFhek,6033
333
+ monai/networks/nets/vit.py,sha256=yEzFFQln5ieknnF8A1_ecB_c0SuOBBnrXPesm_kzVts,5934
334
+ monai/networks/nets/vitautoenc.py,sha256=vfQBWjTb0k7EY4uC76rmuOCIUUgeBvf_EIXBofCzVHQ,5740
335
335
  monai/networks/nets/vnet.py,sha256=zaJi5kSiTLAuFHThSZfhJvHP6zKh3oBWsTWG-328O_g,10820
336
336
  monai/networks/nets/voxelmorph.py,sha256=M6jzGn09wmTd54NeacHLWElug-Iu0ajPS_HtUaLyzDY,20811
337
337
  monai/networks/nets/vqvae.py,sha256=Zf9fTL_rluhuJhH6gTNB6iiKRfwBxfuuyhCdU9TLmAk,18417
@@ -353,7 +353,7 @@ monai/transforms/inverse_batch_transform.py,sha256=fMbukZq2P99BhqqMuWZFJ9uboZ5dN
353
353
  monai/transforms/nvtx.py,sha256=1EKEXZIhTUFKoIrJmd_fevwrHwo731dVFUFJQFiOk3w,3386
354
354
  monai/transforms/traits.py,sha256=F8kmhnekTyaAdo8wIFjO3-uqpVtmFym3mNxbYbyvkFI,3563
355
355
  monai/transforms/transform.py,sha256=DqWyfuI-FDBxjqern33R6Ia1iAfHb3Kh56u-__tp1Kw,21614
356
- monai/transforms/utils.py,sha256=rqGsrUhmBDYDox5J-6UVBeVOxDwQyJ6huv58VYXc9iU,106449
356
+ monai/transforms/utils.py,sha256=SnTiyd-3Q5cNGDzATKTXIJpIeWmCg3LqBxWnyKUxk-8,106502
357
357
  monai/transforms/utils_create_transform_ims.py,sha256=QEJVHsCZX7ZxsBArk6NjgCzSZuuokf8l1uFqiUZBBys,31155
358
358
  monai/transforms/utils_morphological_ops.py,sha256=abaFYSvCfH4k7jk3R_YLtUxgwRYgsz6zj6sOEGM1K5w,6758
359
359
  monai/transforms/utils_pytorch_numpy_unification.py,sha256=PvNO1QeBLTcpLhvuO25ctGr2nIM4B0sTRvnA5TpxJ4Q,18855
@@ -400,9 +400,9 @@ monai/utils/component_store.py,sha256=VMF7CtPu5Wi_eX_qFtm9iWo5kvoWFuCUIxdRzk90zZ
400
400
  monai/utils/decorators.py,sha256=YRK5iEMdbc2INrWnBNDSMTaHge_0ezRf2b9yJGL-opg,3129
401
401
  monai/utils/deprecate_utils.py,sha256=gKeEV4MsI51qeQ5gci2me_C-0e-tDwa3VZzd3XPQqLk,14759
402
402
  monai/utils/dist.py,sha256=mVaKlBTQJdWAG910sh5pGLEbb_KhRAXV5cPz7amH88Y,8639
403
- monai/utils/enums.py,sha256=f__RhrrG4cxxzmICHnmM9riiCvsmUIIk9fYN12Q33lE,19700
403
+ monai/utils/enums.py,sha256=oMD_OBMj4qu8ZEIvxAm4B1iWA4c9M0a-PXfocPXzAVA,19396
404
404
  monai/utils/jupyter_utils.py,sha256=QqcKhJxzEf6YwM8Ik_HvfVDr7gNfrfzCXdzd2urEH8M,15651
405
- monai/utils/misc.py,sha256=GJIDxr42juFjnzUTvLtYndcpBQ-EDz6EVXIc7anBoNo,31380
405
+ monai/utils/misc.py,sha256=4KCY-Kmlzjup3KE2bgJsjIItKdDMxXwA0_rH1ghHONE,31410
406
406
  monai/utils/module.py,sha256=D9KWFrZ8sS2LrGaLzHnw9MMEbrPI9pHHfHc0XrTLob0,25105
407
407
  monai/utils/nvtx.py,sha256=i9JBxR1uhW1ZCgLPLlTx8b907QlXkFzJyTBLMlFjhtU,6876
408
408
  monai/utils/ordering.py,sha256=0nlA5b5QpVCHbtiCbTC-YsqjTmjm0bub0IeJhGFBOes,8270
@@ -417,8 +417,8 @@ monai/visualize/img2tensorboard.py,sha256=NnMcyfIFqX-jD7TBO3Rn02zt5uug79d_7pIIaV
417
417
  monai/visualize/occlusion_sensitivity.py,sha256=OQHEJLyIhB8zWqQsfKaX-1kvCjWFVYtLfS4dFC0nKFI,18160
418
418
  monai/visualize/utils.py,sha256=B-MhTVs7sQbIqYS3yPnpBwPw2K82rE2PBtGIfpwZtWM,9894
419
419
  monai/visualize/visualizer.py,sha256=qckyaMZCbezYUwE20k5yc-Pb7UozVavMDbrmyQwfYHY,1377
420
- monai_weekly-1.4.dev2437.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
421
- monai_weekly-1.4.dev2437.dist-info/METADATA,sha256=L7Wtqqc-Ha8EEDgmNpo8WygmcjWBMWNziqmd4cfZf1o,11172
422
- monai_weekly-1.4.dev2437.dist-info/WHEEL,sha256=cVxcB9AmuTcXqmwrtPhNK88dr7IR_b6qagTj0UvIEbY,91
423
- monai_weekly-1.4.dev2437.dist-info/top_level.txt,sha256=UaNwRzLGORdus41Ip446s3bBfViLkdkDsXDo34J2P44,6
424
- monai_weekly-1.4.dev2437.dist-info/RECORD,,
420
+ monai_weekly-1.4.dev2438.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
421
+ monai_weekly-1.4.dev2438.dist-info/METADATA,sha256=y4j28vIjH3nwPzk_yuZk4NPU0YfPdNBmyzCRuarcmvg,11172
422
+ monai_weekly-1.4.dev2438.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
423
+ monai_weekly-1.4.dev2438.dist-info/top_level.txt,sha256=UaNwRzLGORdus41Ip446s3bBfViLkdkDsXDo34J2P44,6
424
+ monai_weekly-1.4.dev2438.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (74.1.2)
2
+ Generator: setuptools (75.1.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5