monai-weekly 1.4.dev2437__py3-none-any.whl → 1.4.dev2438__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- monai/__init__.py +1 -1
- monai/_version.py +3 -3
- monai/bundle/workflows.py +3 -4
- monai/data/image_reader.py +1 -1
- monai/handlers/__init__.py +1 -1
- monai/handlers/ignite_metric.py +1 -23
- monai/losses/dice.py +1 -16
- monai/networks/blocks/patchembedding.py +1 -7
- monai/networks/nets/unetr.py +1 -8
- monai/networks/nets/vit.py +0 -8
- monai/networks/nets/vitautoenc.py +1 -8
- monai/transforms/utils.py +2 -1
- monai/utils/enums.py +0 -13
- monai/utils/misc.py +1 -1
- {monai_weekly-1.4.dev2437.dist-info → monai_weekly-1.4.dev2438.dist-info}/METADATA +1 -1
- {monai_weekly-1.4.dev2437.dist-info → monai_weekly-1.4.dev2438.dist-info}/RECORD +19 -19
- {monai_weekly-1.4.dev2437.dist-info → monai_weekly-1.4.dev2438.dist-info}/WHEEL +1 -1
- {monai_weekly-1.4.dev2437.dist-info → monai_weekly-1.4.dev2438.dist-info}/LICENSE +0 -0
- {monai_weekly-1.4.dev2437.dist-info → monai_weekly-1.4.dev2438.dist-info}/top_level.txt +0 -0
monai/__init__.py
CHANGED
monai/_version.py
CHANGED
@@ -8,11 +8,11 @@ import json
|
|
8
8
|
|
9
9
|
version_json = '''
|
10
10
|
{
|
11
|
-
"date": "2024-09-
|
11
|
+
"date": "2024-09-22T02:28:25+0000",
|
12
12
|
"dirty": false,
|
13
13
|
"error": null,
|
14
|
-
"full-revisionid": "
|
15
|
-
"version": "1.4.
|
14
|
+
"full-revisionid": "d85038e6acf92febeacfc53463a7e70e35d82670",
|
15
|
+
"version": "1.4.dev2438"
|
16
16
|
}
|
17
17
|
''' # END VERSION_JSON
|
18
18
|
|
monai/bundle/workflows.py
CHANGED
@@ -26,7 +26,7 @@ from monai.bundle.config_parser import ConfigParser
|
|
26
26
|
from monai.bundle.properties import InferProperties, MetaProperties, TrainProperties
|
27
27
|
from monai.bundle.utils import DEFAULT_EXP_MGMT_SETTINGS, EXPR_KEY, ID_REF_KEY, ID_SEP_KEY
|
28
28
|
from monai.config import PathLike
|
29
|
-
from monai.utils import BundleProperty, BundlePropertyConfig, deprecated_arg,
|
29
|
+
from monai.utils import BundleProperty, BundlePropertyConfig, deprecated_arg, ensure_tuple
|
30
30
|
|
31
31
|
__all__ = ["BundleWorkflow", "ConfigWorkflow"]
|
32
32
|
|
@@ -43,7 +43,7 @@ class BundleWorkflow(ABC):
|
|
43
43
|
workflow_type: specifies the workflow type: "train" or "training" for a training workflow,
|
44
44
|
or "infer", "inference", "eval", "evaluation" for a inference workflow,
|
45
45
|
other unsupported string will raise a ValueError.
|
46
|
-
default to `
|
46
|
+
default to `train` for train workflow.
|
47
47
|
workflow: specifies the workflow type: "train" or "training" for a training workflow,
|
48
48
|
or "infer", "inference", "eval", "evaluation" for a inference workflow,
|
49
49
|
other unsupported string will raise a ValueError.
|
@@ -274,7 +274,6 @@ class ConfigWorkflow(BundleWorkflow):
|
|
274
274
|
new_name="workflow_type",
|
275
275
|
msg_suffix="please use `workflow_type` instead.",
|
276
276
|
)
|
277
|
-
@deprecated_arg_default("workflow_type", None, "train", since="1.2", replaced="1.4")
|
278
277
|
def __init__(
|
279
278
|
self,
|
280
279
|
config_file: str | Sequence[str],
|
@@ -284,7 +283,7 @@ class ConfigWorkflow(BundleWorkflow):
|
|
284
283
|
run_id: str = "run",
|
285
284
|
final_id: str = "finalize",
|
286
285
|
tracking: str | dict | None = None,
|
287
|
-
workflow_type: str | None =
|
286
|
+
workflow_type: str | None = "train",
|
288
287
|
workflow: str | None = None,
|
289
288
|
properties_path: PathLike | None = None,
|
290
289
|
**override: Any,
|
monai/data/image_reader.py
CHANGED
@@ -1359,7 +1359,7 @@ class NrrdReader(ImageReader):
|
|
1359
1359
|
x, y = direction.shape
|
1360
1360
|
affine_diam = min(x, y) + 1
|
1361
1361
|
affine: np.ndarray = np.eye(affine_diam)
|
1362
|
-
affine[:x, :y] = direction
|
1362
|
+
affine[:x, :y] = direction.T
|
1363
1363
|
affine[: (affine_diam - 1), -1] = origin # len origin is always affine_diam - 1
|
1364
1364
|
return affine
|
1365
1365
|
|
monai/handlers/__init__.py
CHANGED
@@ -20,7 +20,7 @@ from .decollate_batch import DecollateBatch
|
|
20
20
|
from .earlystop_handler import EarlyStopHandler
|
21
21
|
from .garbage_collector import GarbageCollector
|
22
22
|
from .hausdorff_distance import HausdorffDistance
|
23
|
-
from .ignite_metric import
|
23
|
+
from .ignite_metric import IgniteMetricHandler
|
24
24
|
from .logfile_handler import LogfileHandler
|
25
25
|
from .lr_schedule_handler import LrScheduleHandler
|
26
26
|
from .mean_dice import MeanDice
|
monai/handlers/ignite_metric.py
CHANGED
@@ -20,7 +20,7 @@ from torch.nn.modules.loss import _Loss
|
|
20
20
|
|
21
21
|
from monai.config import IgniteInfo
|
22
22
|
from monai.metrics import CumulativeIterationMetric, LossMetric
|
23
|
-
from monai.utils import MetricReduction,
|
23
|
+
from monai.utils import MetricReduction, min_version, optional_import
|
24
24
|
|
25
25
|
idist, _ = optional_import("ignite", IgniteInfo.OPT_IMPORT_VERSION, min_version, "distributed")
|
26
26
|
|
@@ -153,25 +153,3 @@ class IgniteMetricHandler(Metric):
|
|
153
153
|
self._name = name
|
154
154
|
if self.save_details and not hasattr(engine.state, "metric_details"):
|
155
155
|
engine.state.metric_details = {} # type: ignore
|
156
|
-
|
157
|
-
|
158
|
-
@deprecated(since="1.2", removed="1.4", msg_suffix="Use IgniteMetricHandler instead of IgniteMetric.")
|
159
|
-
class IgniteMetric(IgniteMetricHandler):
|
160
|
-
|
161
|
-
def __init__(
|
162
|
-
self,
|
163
|
-
metric_fn: CumulativeIterationMetric | None = None,
|
164
|
-
loss_fn: _Loss | None = None,
|
165
|
-
output_transform: Callable = lambda x: x,
|
166
|
-
save_details: bool = True,
|
167
|
-
reduction: MetricReduction | str = MetricReduction.MEAN,
|
168
|
-
get_not_nans: bool = False,
|
169
|
-
) -> None:
|
170
|
-
super().__init__(
|
171
|
-
metric_fn=metric_fn,
|
172
|
-
loss_fn=loss_fn,
|
173
|
-
output_transform=output_transform,
|
174
|
-
save_details=save_details,
|
175
|
-
reduction=reduction,
|
176
|
-
get_not_nans=get_not_nans,
|
177
|
-
)
|
monai/losses/dice.py
CHANGED
@@ -24,7 +24,7 @@ from torch.nn.modules.loss import _Loss
|
|
24
24
|
from monai.losses.focal_loss import FocalLoss
|
25
25
|
from monai.losses.spatial_mask import MaskedLoss
|
26
26
|
from monai.networks import one_hot
|
27
|
-
from monai.utils import DiceCEReduction, LossReduction, Weight,
|
27
|
+
from monai.utils import DiceCEReduction, LossReduction, Weight, look_up_option, pytorch_after
|
28
28
|
|
29
29
|
|
30
30
|
class DiceLoss(_Loss):
|
@@ -646,9 +646,6 @@ class DiceCELoss(_Loss):
|
|
646
646
|
|
647
647
|
"""
|
648
648
|
|
649
|
-
@deprecated_arg(
|
650
|
-
"ce_weight", since="1.2", removed="1.4", new_name="weight", msg_suffix="please use `weight` instead."
|
651
|
-
)
|
652
649
|
def __init__(
|
653
650
|
self,
|
654
651
|
include_background: bool = True,
|
@@ -662,7 +659,6 @@ class DiceCELoss(_Loss):
|
|
662
659
|
smooth_nr: float = 1e-5,
|
663
660
|
smooth_dr: float = 1e-5,
|
664
661
|
batch: bool = False,
|
665
|
-
ce_weight: torch.Tensor | None = None,
|
666
662
|
weight: torch.Tensor | None = None,
|
667
663
|
lambda_dice: float = 1.0,
|
668
664
|
lambda_ce: float = 1.0,
|
@@ -712,7 +708,6 @@ class DiceCELoss(_Loss):
|
|
712
708
|
"""
|
713
709
|
super().__init__()
|
714
710
|
reduction = look_up_option(reduction, DiceCEReduction).value
|
715
|
-
weight = ce_weight if ce_weight is not None else weight
|
716
711
|
dice_weight: torch.Tensor | None
|
717
712
|
if weight is not None and not include_background:
|
718
713
|
dice_weight = weight[1:]
|
@@ -825,9 +820,6 @@ class DiceFocalLoss(_Loss):
|
|
825
820
|
|
826
821
|
"""
|
827
822
|
|
828
|
-
@deprecated_arg(
|
829
|
-
"focal_weight", since="1.2", removed="1.4", new_name="weight", msg_suffix="please use `weight` instead."
|
830
|
-
)
|
831
823
|
def __init__(
|
832
824
|
self,
|
833
825
|
include_background: bool = True,
|
@@ -842,7 +834,6 @@ class DiceFocalLoss(_Loss):
|
|
842
834
|
smooth_dr: float = 1e-5,
|
843
835
|
batch: bool = False,
|
844
836
|
gamma: float = 2.0,
|
845
|
-
focal_weight: Sequence[float] | float | int | torch.Tensor | None = None,
|
846
837
|
weight: Sequence[float] | float | int | torch.Tensor | None = None,
|
847
838
|
lambda_dice: float = 1.0,
|
848
839
|
lambda_focal: float = 1.0,
|
@@ -885,7 +876,6 @@ class DiceFocalLoss(_Loss):
|
|
885
876
|
[0, 1]. Defaults to None.
|
886
877
|
"""
|
887
878
|
super().__init__()
|
888
|
-
weight = focal_weight if focal_weight is not None else weight
|
889
879
|
self.dice = DiceLoss(
|
890
880
|
include_background=include_background,
|
891
881
|
to_onehot_y=False,
|
@@ -994,9 +984,6 @@ class GeneralizedDiceFocalLoss(_Loss):
|
|
994
984
|
ValueError: if either `lambda_gdl` or `lambda_focal` is less than 0.
|
995
985
|
"""
|
996
986
|
|
997
|
-
@deprecated_arg(
|
998
|
-
"focal_weight", since="1.2", removed="1.4", new_name="weight", msg_suffix="please use `weight` instead."
|
999
|
-
)
|
1000
987
|
def __init__(
|
1001
988
|
self,
|
1002
989
|
include_background: bool = True,
|
@@ -1010,7 +997,6 @@ class GeneralizedDiceFocalLoss(_Loss):
|
|
1010
997
|
smooth_dr: float = 1e-5,
|
1011
998
|
batch: bool = False,
|
1012
999
|
gamma: float = 2.0,
|
1013
|
-
focal_weight: Sequence[float] | float | int | torch.Tensor | None = None,
|
1014
1000
|
weight: Sequence[float] | float | int | torch.Tensor | None = None,
|
1015
1001
|
lambda_gdl: float = 1.0,
|
1016
1002
|
lambda_focal: float = 1.0,
|
@@ -1028,7 +1014,6 @@ class GeneralizedDiceFocalLoss(_Loss):
|
|
1028
1014
|
smooth_dr=smooth_dr,
|
1029
1015
|
batch=batch,
|
1030
1016
|
)
|
1031
|
-
weight = focal_weight if focal_weight is not None else weight
|
1032
1017
|
self.focal = FocalLoss(
|
1033
1018
|
include_background=include_background,
|
1034
1019
|
to_onehot_y=to_onehot_y,
|
@@ -21,7 +21,7 @@ from torch.nn import LayerNorm
|
|
21
21
|
|
22
22
|
from monai.networks.blocks.pos_embed_utils import build_sincos_position_embedding
|
23
23
|
from monai.networks.layers import Conv, trunc_normal_
|
24
|
-
from monai.utils import
|
24
|
+
from monai.utils import ensure_tuple_rep, optional_import
|
25
25
|
from monai.utils.module import look_up_option
|
26
26
|
|
27
27
|
Rearrange, _ = optional_import("einops.layers.torch", name="Rearrange")
|
@@ -42,9 +42,6 @@ class PatchEmbeddingBlock(nn.Module):
|
|
42
42
|
|
43
43
|
"""
|
44
44
|
|
45
|
-
@deprecated_arg(
|
46
|
-
name="pos_embed", since="1.2", removed="1.4", new_name="proj_type", msg_suffix="please use `proj_type` instead."
|
47
|
-
)
|
48
45
|
def __init__(
|
49
46
|
self,
|
50
47
|
in_channels: int,
|
@@ -52,7 +49,6 @@ class PatchEmbeddingBlock(nn.Module):
|
|
52
49
|
patch_size: Sequence[int] | int,
|
53
50
|
hidden_size: int,
|
54
51
|
num_heads: int,
|
55
|
-
pos_embed: str = "conv",
|
56
52
|
proj_type: str = "conv",
|
57
53
|
pos_embed_type: str = "learnable",
|
58
54
|
dropout_rate: float = 0.0,
|
@@ -69,8 +65,6 @@ class PatchEmbeddingBlock(nn.Module):
|
|
69
65
|
pos_embed_type: position embedding layer type.
|
70
66
|
dropout_rate: fraction of the input units to drop.
|
71
67
|
spatial_dims: number of spatial dimensions.
|
72
|
-
.. deprecated:: 1.4
|
73
|
-
``pos_embed`` is deprecated in favor of ``proj_type``.
|
74
68
|
"""
|
75
69
|
|
76
70
|
super().__init__()
|
monai/networks/nets/unetr.py
CHANGED
@@ -18,7 +18,7 @@ import torch.nn as nn
|
|
18
18
|
from monai.networks.blocks.dynunet_block import UnetOutBlock
|
19
19
|
from monai.networks.blocks.unetr_block import UnetrBasicBlock, UnetrPrUpBlock, UnetrUpBlock
|
20
20
|
from monai.networks.nets.vit import ViT
|
21
|
-
from monai.utils import
|
21
|
+
from monai.utils import ensure_tuple_rep
|
22
22
|
|
23
23
|
|
24
24
|
class UNETR(nn.Module):
|
@@ -27,9 +27,6 @@ class UNETR(nn.Module):
|
|
27
27
|
UNETR: Transformers for 3D Medical Image Segmentation <https://arxiv.org/abs/2103.10504>"
|
28
28
|
"""
|
29
29
|
|
30
|
-
@deprecated_arg(
|
31
|
-
name="pos_embed", since="1.2", removed="1.4", new_name="proj_type", msg_suffix="please use `proj_type` instead."
|
32
|
-
)
|
33
30
|
def __init__(
|
34
31
|
self,
|
35
32
|
in_channels: int,
|
@@ -39,7 +36,6 @@ class UNETR(nn.Module):
|
|
39
36
|
hidden_size: int = 768,
|
40
37
|
mlp_dim: int = 3072,
|
41
38
|
num_heads: int = 12,
|
42
|
-
pos_embed: str = "conv",
|
43
39
|
proj_type: str = "conv",
|
44
40
|
norm_name: tuple | str = "instance",
|
45
41
|
conv_block: bool = True,
|
@@ -67,9 +63,6 @@ class UNETR(nn.Module):
|
|
67
63
|
qkv_bias: apply the bias term for the qkv linear layer in self attention block. Defaults to False.
|
68
64
|
save_attn: to make accessible the attention in self attention block. Defaults to False.
|
69
65
|
|
70
|
-
.. deprecated:: 1.4
|
71
|
-
``pos_embed`` is deprecated in favor of ``proj_type``.
|
72
|
-
|
73
66
|
Examples::
|
74
67
|
|
75
68
|
# for single channel input 4-channel output with image size of (96,96,96), feature size of 32 and batch norm
|
monai/networks/nets/vit.py
CHANGED
@@ -18,7 +18,6 @@ import torch.nn as nn
|
|
18
18
|
|
19
19
|
from monai.networks.blocks.patchembedding import PatchEmbeddingBlock
|
20
20
|
from monai.networks.blocks.transformerblock import TransformerBlock
|
21
|
-
from monai.utils import deprecated_arg
|
22
21
|
|
23
22
|
__all__ = ["ViT"]
|
24
23
|
|
@@ -31,9 +30,6 @@ class ViT(nn.Module):
|
|
31
30
|
ViT supports Torchscript but only works for Pytorch after 1.8.
|
32
31
|
"""
|
33
32
|
|
34
|
-
@deprecated_arg(
|
35
|
-
name="pos_embed", since="1.2", removed="1.4", new_name="proj_type", msg_suffix="please use `proj_type` instead."
|
36
|
-
)
|
37
33
|
def __init__(
|
38
34
|
self,
|
39
35
|
in_channels: int,
|
@@ -43,7 +39,6 @@ class ViT(nn.Module):
|
|
43
39
|
mlp_dim: int = 3072,
|
44
40
|
num_layers: int = 12,
|
45
41
|
num_heads: int = 12,
|
46
|
-
pos_embed: str = "conv",
|
47
42
|
proj_type: str = "conv",
|
48
43
|
pos_embed_type: str = "learnable",
|
49
44
|
classification: bool = False,
|
@@ -75,9 +70,6 @@ class ViT(nn.Module):
|
|
75
70
|
qkv_bias (bool, optional): apply bias to the qkv linear layer in self attention block. Defaults to False.
|
76
71
|
save_attn (bool, optional): to make accessible the attention in self attention block. Defaults to False.
|
77
72
|
|
78
|
-
.. deprecated:: 1.4
|
79
|
-
``pos_embed`` is deprecated in favor of ``proj_type``.
|
80
|
-
|
81
73
|
Examples::
|
82
74
|
|
83
75
|
# for single channel input with image size of (96,96,96), conv position embedding and segmentation backbone
|
@@ -20,7 +20,7 @@ import torch.nn as nn
|
|
20
20
|
from monai.networks.blocks.patchembedding import PatchEmbeddingBlock
|
21
21
|
from monai.networks.blocks.transformerblock import TransformerBlock
|
22
22
|
from monai.networks.layers import Conv
|
23
|
-
from monai.utils import
|
23
|
+
from monai.utils import ensure_tuple_rep, is_sqrt
|
24
24
|
|
25
25
|
__all__ = ["ViTAutoEnc"]
|
26
26
|
|
@@ -33,9 +33,6 @@ class ViTAutoEnc(nn.Module):
|
|
33
33
|
Modified to also give same dimension outputs as the input size of the image
|
34
34
|
"""
|
35
35
|
|
36
|
-
@deprecated_arg(
|
37
|
-
name="pos_embed", since="1.2", removed="1.4", new_name="proj_type", msg_suffix="please use `proj_type` instead."
|
38
|
-
)
|
39
36
|
def __init__(
|
40
37
|
self,
|
41
38
|
in_channels: int,
|
@@ -47,7 +44,6 @@ class ViTAutoEnc(nn.Module):
|
|
47
44
|
mlp_dim: int = 3072,
|
48
45
|
num_layers: int = 12,
|
49
46
|
num_heads: int = 12,
|
50
|
-
pos_embed: str = "conv",
|
51
47
|
proj_type: str = "conv",
|
52
48
|
dropout_rate: float = 0.0,
|
53
49
|
spatial_dims: int = 3,
|
@@ -71,9 +67,6 @@ class ViTAutoEnc(nn.Module):
|
|
71
67
|
qkv_bias: apply bias to the qkv linear layer in self attention block. Defaults to False.
|
72
68
|
save_attn: to make accessible the attention in self attention block. Defaults to False. Defaults to False.
|
73
69
|
|
74
|
-
.. deprecated:: 1.4
|
75
|
-
``pos_embed`` is deprecated in favor of ``proj_type``.
|
76
|
-
|
77
70
|
Examples::
|
78
71
|
|
79
72
|
# for single channel input with image size of (96,96,96), conv position embedding and segmentation backbone
|
monai/transforms/utils.py
CHANGED
@@ -582,7 +582,8 @@ def weighted_patch_samples(
|
|
582
582
|
if not v[-1] or not isfinite(v[-1]) or v[-1] < 0: # uniform sampling
|
583
583
|
idx = r_state.randint(0, len(v), size=n_samples)
|
584
584
|
else:
|
585
|
-
|
585
|
+
r_samples = r_state.random(n_samples)
|
586
|
+
r, *_ = convert_to_dst_type(r_samples, v, dtype=r_samples.dtype)
|
586
587
|
idx = searchsorted(v, r * v[-1], right=True) # type: ignore
|
587
588
|
idx, *_ = convert_to_dst_type(idx, v, dtype=torch.int) # type: ignore
|
588
589
|
# compensate 'valid' mode
|
monai/utils/enums.py
CHANGED
@@ -16,7 +16,6 @@ from enum import Enum
|
|
16
16
|
from typing import TYPE_CHECKING
|
17
17
|
|
18
18
|
from monai.config import IgniteInfo
|
19
|
-
from monai.utils import deprecated
|
20
19
|
from monai.utils.module import min_version, optional_import
|
21
20
|
|
22
21
|
__all__ = [
|
@@ -56,7 +55,6 @@ __all__ = [
|
|
56
55
|
"DataStatsKeys",
|
57
56
|
"ImageStatsKeys",
|
58
57
|
"LabelStatsKeys",
|
59
|
-
"AlgoEnsembleKeys",
|
60
58
|
"HoVerNetMode",
|
61
59
|
"HoVerNetBranch",
|
62
60
|
"LazyAttr",
|
@@ -615,17 +613,6 @@ class LabelStatsKeys(StrEnum):
|
|
615
613
|
LABEL_NCOMP = "ncomponents"
|
616
614
|
|
617
615
|
|
618
|
-
@deprecated(since="1.2", removed="1.4", msg_suffix="please use `AlgoKeys` instead.")
|
619
|
-
class AlgoEnsembleKeys(StrEnum):
|
620
|
-
"""
|
621
|
-
Default keys for Mixed Ensemble
|
622
|
-
"""
|
623
|
-
|
624
|
-
ID = "identifier"
|
625
|
-
ALGO = "infer_algo"
|
626
|
-
SCORE = "best_metric"
|
627
|
-
|
628
|
-
|
629
616
|
class HoVerNetMode(StrEnum):
|
630
617
|
"""
|
631
618
|
Modes for HoVerNet model:
|
monai/utils/misc.py
CHANGED
@@ -887,7 +887,7 @@ def run_cmd(cmd_list: list[str], **kwargs: Any) -> subprocess.CompletedProcess:
|
|
887
887
|
if kwargs.pop("run_cmd_verbose", False):
|
888
888
|
import monai
|
889
889
|
|
890
|
-
monai.apps.utils.get_logger("run_cmd").info(f"{cmd_list}")
|
890
|
+
monai.apps.utils.get_logger("run_cmd").info(f"{cmd_list}") # type: ignore[attr-defined]
|
891
891
|
try:
|
892
892
|
return subprocess.run(cmd_list, **kwargs)
|
893
893
|
except subprocess.CalledProcessError as e:
|
@@ -1,5 +1,5 @@
|
|
1
|
-
monai/__init__.py,sha256=
|
2
|
-
monai/_version.py,sha256=
|
1
|
+
monai/__init__.py,sha256=8SyVLxNLbvurLsxXUK-wSKytGGNZrzTgC8QVsNQYUaA,4094
|
2
|
+
monai/_version.py,sha256=DOjRq6mAZ9-Ezg5HevnMM9q7qXuf64gVF9leE3bi8Vc,503
|
3
3
|
monai/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
4
4
|
monai/_extensions/__init__.py,sha256=NEBPreRhQ8H9gVvgrLr_y52_TmqB96u_u4VQmeNT93I,642
|
5
5
|
monai/_extensions/loader.py,sha256=7SiKw36q-nOzH8CRbBurFrz7GM40GCu7rc93Tm8XpnI,3643
|
@@ -116,7 +116,7 @@ monai/bundle/properties.py,sha256=iN3K4FVmN9ny1Hw9p5j7_ULcCdSD8PmrR7qXxbNz49k,11
|
|
116
116
|
monai/bundle/reference_resolver.py,sha256=aBw3ML7B_YsiFUNl_mcRYPry1UbrEIK0R39A0zFw8kI,16463
|
117
117
|
monai/bundle/scripts.py,sha256=-_mYM017PEkSG0UjSwcSMi6nTAo2YzLvEn5FK5p37pU,89132
|
118
118
|
monai/bundle/utils.py,sha256=t-22uFvLn7Yy-dr1v1U33peNOxgAmU4TJiGAbsBrUKs,10108
|
119
|
-
monai/bundle/workflows.py,sha256=
|
119
|
+
monai/bundle/workflows.py,sha256=KADIppCZY6jCDvyCH2PmJm0Q-6xwCnB7x7KjFfRP8LY,24655
|
120
120
|
monai/config/__init__.py,sha256=CN28CfTdsp301gv8YXfVvkbztCfbAqrLKrJi_C8oP9s,1048
|
121
121
|
monai/config/deviceconfig.py,sha256=3EU1Zi6yD_bxEAeHfzjbslEjq6vOvxNG6o9dxKUiEvc,10315
|
122
122
|
monai/config/type_definitions.py,sha256=0fAuI-_uX2Ac_33bgDVXKmBSl-fJNFcsOqBqYV16fhk,3485
|
@@ -131,7 +131,7 @@ monai/data/fft_utils.py,sha256=in9Zu8hC4oSVzuA-Zl236X6EkvgFka0RXdOxgvdGkv0,4448
|
|
131
131
|
monai/data/folder_layout.py,sha256=IsHW1-Bkupn_T8r6MgFTIJQh5HwCg0xQwOKmgBtl0gE,6344
|
132
132
|
monai/data/grid_dataset.py,sha256=O0gHf3BgrisH1erOMZNSpoIut92mydnNpzGYWnBKg4U,19483
|
133
133
|
monai/data/image_dataset.py,sha256=OhNJ3awauWtqsDhefIGDw3UYGF3RoleeNUPdJOKg3kI,7008
|
134
|
-
monai/data/image_reader.py,sha256=
|
134
|
+
monai/data/image_reader.py,sha256=XDkYVWQN_eHoMI1iFFWN8ICI0x9AxKSc8bGSavHskfs,61776
|
135
135
|
monai/data/image_writer.py,sha256=rH6vboPFkX4ziN3lnrmK6AzAOQYI9tEiOJb7Al2tj-8,39856
|
136
136
|
monai/data/iterable_dataset.py,sha256=A0L5jaxwnfgProBj96tlT160esI21yutnTf3a4c29Ms,13100
|
137
137
|
monai/data/itk_torch_bridge.py,sha256=3th-B3tJuJE22JFfOUgGeTMOPh1czJEiSccFyn_Ob0w,14461
|
@@ -160,7 +160,7 @@ monai/fl/utils/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,57
|
|
160
160
|
monai/fl/utils/constants.py,sha256=OjMAE17niYqQh7nz45SC6CXvkMa4-XZsIuoHUHqP7W0,1784
|
161
161
|
monai/fl/utils/exchange_object.py,sha256=q41trOwBdog_g3k_Eh2EFnLufHJ1mj7nGyQ-ShuW5Mo,3527
|
162
162
|
monai/fl/utils/filters.py,sha256=InXplYes52JJqtsNbePAPPAYS8am_uRO7UkBHyYyJCo,1633
|
163
|
-
monai/handlers/__init__.py,sha256=
|
163
|
+
monai/handlers/__init__.py,sha256=laEkiuP-ew7UzuG89135uJvC73ocVbT0nQ_3xMLEhKc,2394
|
164
164
|
monai/handlers/checkpoint_loader.py,sha256=d01Ab5RIMuP372M1rwarKpdhcIG01Vv7Z630iwb4PlY,7456
|
165
165
|
monai/handlers/checkpoint_saver.py,sha256=NJljfsP_RbmeQvbI9g0B0hsPcV14vW37cljGRzLlXCY,16071
|
166
166
|
monai/handlers/classification_saver.py,sha256=ujCzHyEN5lH-ZY_M5cN-J6s_JxByLkujxcTz2ZVxHow,7606
|
@@ -170,7 +170,7 @@ monai/handlers/decollate_batch.py,sha256=96TBuau203bHRT1fuunRIxExd6vBIfVeM_1Ubzc
|
|
170
170
|
monai/handlers/earlystop_handler.py,sha256=_Up0WwJ-WoKBpWeNVbLfm5sjPydQ64-zzE7ChVAAE4Y,5334
|
171
171
|
monai/handlers/garbage_collector.py,sha256=6mG5eLi6Nm5PnuWyO7ka-t92Nw5RTSH0omSEqrmupVk,3645
|
172
172
|
monai/handlers/hausdorff_distance.py,sha256=i-I2EWZrCpkojPR5EmqWCOiDCszujoe5RCZ4xUDajcc,3594
|
173
|
-
monai/handlers/ignite_metric.py,sha256=
|
173
|
+
monai/handlers/ignite_metric.py,sha256=A5p0_CVGN4fG3PZ4N0LHBVnSDMrG-pgUsn3-TXBxz0M,6715
|
174
174
|
monai/handlers/logfile_handler.py,sha256=9iUroCpfaP_YJu5mGHJ6CW53DoiYZ7F_XjhZwXw4a84,3931
|
175
175
|
monai/handlers/lr_schedule_handler.py,sha256=jj-ukoR3p-m0LVs-AzPqn2On8GIj70PSIPNp9t-iiQY,3575
|
176
176
|
monai/handlers/mean_dice.py,sha256=aJmL9IEEJtWs65Et3HCe7S0JIe7J6z-Nc0BEQESy9sY,3785
|
@@ -204,7 +204,7 @@ monai/losses/barlow_twins.py,sha256=prDdaY0vXAXMuVDmc9Tv6svRZzNwKA0LdsmRaUmusiI,
|
|
204
204
|
monai/losses/cldice.py,sha256=NeUVJuFjowlH90MSLtq8HJzhzLVwal_G7gaOyc1_5OY,6328
|
205
205
|
monai/losses/contrastive.py,sha256=-SCvgQOA1JADQaFl7S4wEoIFtNd4uFkfTPlkMkky_LQ,3261
|
206
206
|
monai/losses/deform.py,sha256=mBOvFgKyW1qw9267AZCd0h_xi10xvy_ybYfhzQzl5rI,9701
|
207
|
-
monai/losses/dice.py,sha256=
|
207
|
+
monai/losses/dice.py,sha256=S4JKPybHN82JY26qIwqJTJovT3YHWbVQOwKB30bLViY,51475
|
208
208
|
monai/losses/ds_loss.py,sha256=ts92Rc_YAkfb5WUUWxRTecpY32lVwC20pu7u-dJCgyY,3854
|
209
209
|
monai/losses/focal_loss.py,sha256=OhAtxzAwZ1CoNGH1S2dQbG7iDyowYUqv64KXi0GgMhk,11772
|
210
210
|
monai/losses/giou_loss.py,sha256=Mogq6fR0tO__Xj0Ul388QMEx03XrSS-Ue96i9ahY-uo,2795
|
@@ -262,7 +262,7 @@ monai/networks/blocks/feature_pyramid_network.py,sha256=_DeAy_lNnPqjNiJLcopjqe_P
|
|
262
262
|
monai/networks/blocks/fft_utils_t.py,sha256=8bOvhLgP5nDLz8QwzD4XnRaxE9-tGba2-b_QDK8IWSs,8263
|
263
263
|
monai/networks/blocks/localnet_block.py,sha256=b2-ZZvkMPphHJZYTbwEZDhqA-mMBSFM5WQOoohk_6W4,11456
|
264
264
|
monai/networks/blocks/mlp.py,sha256=qw_jgyrYwoQ5WYBM1rtSSaO4C837ZbctoRKhh_BQQFI,3341
|
265
|
-
monai/networks/blocks/patchembedding.py,sha256=
|
265
|
+
monai/networks/blocks/patchembedding.py,sha256=tp0coxpi70LcUk03HbnygFeCxcBv5bNHJbw1crIG_Js,8956
|
266
266
|
monai/networks/blocks/pos_embed_utils.py,sha256=vFEQqxZ6UAmjcy_icFDL9EwjRHYXuIbWr1chWUJqO7g,4070
|
267
267
|
monai/networks/blocks/regunet_block.py,sha256=1FLIwVBtk66II6xQ7Q4LMY8DP0rMmeftN7HuaEgnf3A,8825
|
268
268
|
monai/networks/blocks/rel_pos_embedding.py,sha256=wuTJsk_NHSDX-3V0X9ctF99WIh2-SHLDbQxzrG7tz_4,2208
|
@@ -327,11 +327,11 @@ monai/networks/nets/torchvision_fc.py,sha256=3g5PD7C1MSkQ8xndhnVd0b3aN8zfshT8uiF
|
|
327
327
|
monai/networks/nets/transchex.py,sha256=uA_RfTDfPhwA1ecAPZ9EDnMyJKn2tUMLEWdyB_rU2v0,15726
|
328
328
|
monai/networks/nets/transformer.py,sha256=-nzl20Z5xdtn7xChOd_cRbbPVoPIFGVfTQw3fIEGMuE,6395
|
329
329
|
monai/networks/nets/unet.py,sha256=riKWB8iEEgO4CIiVTOo532726HWWBfuBcIHeoLvvN0w,13627
|
330
|
-
monai/networks/nets/unetr.py,sha256=
|
330
|
+
monai/networks/nets/unetr.py,sha256=G67kjiBMz13MzP4eV8XK-GydSogMwgXaBMFDShF5sB8,8252
|
331
331
|
monai/networks/nets/varautoencoder.py,sha256=Pd9BdXW1iVjmAVCZIc2ElGtSDAWRBaLwEKxLDicyxZI,6282
|
332
332
|
monai/networks/nets/vista3d.py,sha256=vFpCG53JDCvgK-fz7VPZvo6-mv8Mp5AgBZu2QVu0ggM,43326
|
333
|
-
monai/networks/nets/vit.py,sha256=
|
334
|
-
monai/networks/nets/vitautoenc.py,sha256=
|
333
|
+
monai/networks/nets/vit.py,sha256=yEzFFQln5ieknnF8A1_ecB_c0SuOBBnrXPesm_kzVts,5934
|
334
|
+
monai/networks/nets/vitautoenc.py,sha256=vfQBWjTb0k7EY4uC76rmuOCIUUgeBvf_EIXBofCzVHQ,5740
|
335
335
|
monai/networks/nets/vnet.py,sha256=zaJi5kSiTLAuFHThSZfhJvHP6zKh3oBWsTWG-328O_g,10820
|
336
336
|
monai/networks/nets/voxelmorph.py,sha256=M6jzGn09wmTd54NeacHLWElug-Iu0ajPS_HtUaLyzDY,20811
|
337
337
|
monai/networks/nets/vqvae.py,sha256=Zf9fTL_rluhuJhH6gTNB6iiKRfwBxfuuyhCdU9TLmAk,18417
|
@@ -353,7 +353,7 @@ monai/transforms/inverse_batch_transform.py,sha256=fMbukZq2P99BhqqMuWZFJ9uboZ5dN
|
|
353
353
|
monai/transforms/nvtx.py,sha256=1EKEXZIhTUFKoIrJmd_fevwrHwo731dVFUFJQFiOk3w,3386
|
354
354
|
monai/transforms/traits.py,sha256=F8kmhnekTyaAdo8wIFjO3-uqpVtmFym3mNxbYbyvkFI,3563
|
355
355
|
monai/transforms/transform.py,sha256=DqWyfuI-FDBxjqern33R6Ia1iAfHb3Kh56u-__tp1Kw,21614
|
356
|
-
monai/transforms/utils.py,sha256=
|
356
|
+
monai/transforms/utils.py,sha256=SnTiyd-3Q5cNGDzATKTXIJpIeWmCg3LqBxWnyKUxk-8,106502
|
357
357
|
monai/transforms/utils_create_transform_ims.py,sha256=QEJVHsCZX7ZxsBArk6NjgCzSZuuokf8l1uFqiUZBBys,31155
|
358
358
|
monai/transforms/utils_morphological_ops.py,sha256=abaFYSvCfH4k7jk3R_YLtUxgwRYgsz6zj6sOEGM1K5w,6758
|
359
359
|
monai/transforms/utils_pytorch_numpy_unification.py,sha256=PvNO1QeBLTcpLhvuO25ctGr2nIM4B0sTRvnA5TpxJ4Q,18855
|
@@ -400,9 +400,9 @@ monai/utils/component_store.py,sha256=VMF7CtPu5Wi_eX_qFtm9iWo5kvoWFuCUIxdRzk90zZ
|
|
400
400
|
monai/utils/decorators.py,sha256=YRK5iEMdbc2INrWnBNDSMTaHge_0ezRf2b9yJGL-opg,3129
|
401
401
|
monai/utils/deprecate_utils.py,sha256=gKeEV4MsI51qeQ5gci2me_C-0e-tDwa3VZzd3XPQqLk,14759
|
402
402
|
monai/utils/dist.py,sha256=mVaKlBTQJdWAG910sh5pGLEbb_KhRAXV5cPz7amH88Y,8639
|
403
|
-
monai/utils/enums.py,sha256=
|
403
|
+
monai/utils/enums.py,sha256=oMD_OBMj4qu8ZEIvxAm4B1iWA4c9M0a-PXfocPXzAVA,19396
|
404
404
|
monai/utils/jupyter_utils.py,sha256=QqcKhJxzEf6YwM8Ik_HvfVDr7gNfrfzCXdzd2urEH8M,15651
|
405
|
-
monai/utils/misc.py,sha256=
|
405
|
+
monai/utils/misc.py,sha256=4KCY-Kmlzjup3KE2bgJsjIItKdDMxXwA0_rH1ghHONE,31410
|
406
406
|
monai/utils/module.py,sha256=D9KWFrZ8sS2LrGaLzHnw9MMEbrPI9pHHfHc0XrTLob0,25105
|
407
407
|
monai/utils/nvtx.py,sha256=i9JBxR1uhW1ZCgLPLlTx8b907QlXkFzJyTBLMlFjhtU,6876
|
408
408
|
monai/utils/ordering.py,sha256=0nlA5b5QpVCHbtiCbTC-YsqjTmjm0bub0IeJhGFBOes,8270
|
@@ -417,8 +417,8 @@ monai/visualize/img2tensorboard.py,sha256=NnMcyfIFqX-jD7TBO3Rn02zt5uug79d_7pIIaV
|
|
417
417
|
monai/visualize/occlusion_sensitivity.py,sha256=OQHEJLyIhB8zWqQsfKaX-1kvCjWFVYtLfS4dFC0nKFI,18160
|
418
418
|
monai/visualize/utils.py,sha256=B-MhTVs7sQbIqYS3yPnpBwPw2K82rE2PBtGIfpwZtWM,9894
|
419
419
|
monai/visualize/visualizer.py,sha256=qckyaMZCbezYUwE20k5yc-Pb7UozVavMDbrmyQwfYHY,1377
|
420
|
-
monai_weekly-1.4.
|
421
|
-
monai_weekly-1.4.
|
422
|
-
monai_weekly-1.4.
|
423
|
-
monai_weekly-1.4.
|
424
|
-
monai_weekly-1.4.
|
420
|
+
monai_weekly-1.4.dev2438.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
421
|
+
monai_weekly-1.4.dev2438.dist-info/METADATA,sha256=y4j28vIjH3nwPzk_yuZk4NPU0YfPdNBmyzCRuarcmvg,11172
|
422
|
+
monai_weekly-1.4.dev2438.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
|
423
|
+
monai_weekly-1.4.dev2438.dist-info/top_level.txt,sha256=UaNwRzLGORdus41Ip446s3bBfViLkdkDsXDo34J2P44,6
|
424
|
+
monai_weekly-1.4.dev2438.dist-info/RECORD,,
|
File without changes
|
File without changes
|