monai-weekly 1.4.dev2428__py3-none-any.whl → 1.4.dev2430__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (71) hide show
  1. monai/__init__.py +1 -1
  2. monai/_version.py +3 -3
  3. monai/apps/auto3dseg/hpo_gen.py +1 -1
  4. monai/apps/detection/utils/anchor_utils.py +2 -2
  5. monai/apps/pathology/transforms/post/array.py +7 -4
  6. monai/auto3dseg/analyzer.py +1 -1
  7. monai/bundle/scripts.py +204 -22
  8. monai/bundle/utils.py +1 -0
  9. monai/data/dataset_summary.py +1 -0
  10. monai/data/meta_tensor.py +2 -2
  11. monai/data/test_time_augmentation.py +2 -0
  12. monai/data/utils.py +9 -6
  13. monai/data/wsi_reader.py +2 -2
  14. monai/engines/__init__.py +3 -1
  15. monai/engines/trainer.py +281 -2
  16. monai/engines/utils.py +76 -1
  17. monai/handlers/mlflow_handler.py +21 -4
  18. monai/inferers/__init__.py +5 -0
  19. monai/inferers/inferer.py +1279 -1
  20. monai/metrics/cumulative_average.py +2 -0
  21. monai/metrics/panoptic_quality.py +1 -1
  22. monai/metrics/rocauc.py +2 -2
  23. monai/networks/blocks/__init__.py +3 -0
  24. monai/networks/blocks/attention_utils.py +128 -0
  25. monai/networks/blocks/crossattention.py +168 -0
  26. monai/networks/blocks/rel_pos_embedding.py +56 -0
  27. monai/networks/blocks/selfattention.py +74 -5
  28. monai/networks/blocks/spade_norm.py +95 -0
  29. monai/networks/blocks/spatialattention.py +82 -0
  30. monai/networks/blocks/transformerblock.py +25 -4
  31. monai/networks/blocks/upsample.py +22 -10
  32. monai/networks/layers/__init__.py +2 -1
  33. monai/networks/layers/factories.py +12 -1
  34. monai/networks/layers/simplelayers.py +1 -1
  35. monai/networks/layers/utils.py +14 -1
  36. monai/networks/layers/vector_quantizer.py +233 -0
  37. monai/networks/nets/__init__.py +9 -0
  38. monai/networks/nets/autoencoderkl.py +702 -0
  39. monai/networks/nets/controlnet.py +465 -0
  40. monai/networks/nets/diffusion_model_unet.py +1913 -0
  41. monai/networks/nets/patchgan_discriminator.py +230 -0
  42. monai/networks/nets/quicknat.py +8 -6
  43. monai/networks/nets/resnet.py +3 -4
  44. monai/networks/nets/spade_autoencoderkl.py +480 -0
  45. monai/networks/nets/spade_diffusion_model_unet.py +934 -0
  46. monai/networks/nets/spade_network.py +435 -0
  47. monai/networks/nets/swin_unetr.py +4 -3
  48. monai/networks/nets/transformer.py +157 -0
  49. monai/networks/nets/vqvae.py +472 -0
  50. monai/networks/schedulers/__init__.py +17 -0
  51. monai/networks/schedulers/ddim.py +294 -0
  52. monai/networks/schedulers/ddpm.py +250 -0
  53. monai/networks/schedulers/pndm.py +316 -0
  54. monai/networks/schedulers/scheduler.py +205 -0
  55. monai/networks/utils.py +22 -0
  56. monai/transforms/croppad/array.py +8 -8
  57. monai/transforms/croppad/dictionary.py +4 -4
  58. monai/transforms/croppad/functional.py +1 -1
  59. monai/transforms/regularization/array.py +4 -0
  60. monai/transforms/spatial/array.py +1 -1
  61. monai/transforms/utils_create_transform_ims.py +2 -4
  62. monai/utils/__init__.py +1 -0
  63. monai/utils/misc.py +5 -4
  64. monai/utils/ordering.py +207 -0
  65. monai/visualize/class_activation_maps.py +5 -5
  66. monai/visualize/img2tensorboard.py +3 -1
  67. {monai_weekly-1.4.dev2428.dist-info → monai_weekly-1.4.dev2430.dist-info}/METADATA +1 -1
  68. {monai_weekly-1.4.dev2428.dist-info → monai_weekly-1.4.dev2430.dist-info}/RECORD +71 -50
  69. {monai_weekly-1.4.dev2428.dist-info → monai_weekly-1.4.dev2430.dist-info}/WHEEL +1 -1
  70. {monai_weekly-1.4.dev2428.dist-info → monai_weekly-1.4.dev2430.dist-info}/LICENSE +0 -0
  71. {monai_weekly-1.4.dev2428.dist-info → monai_weekly-1.4.dev2430.dist-info}/top_level.txt +0 -0
monai/engines/trainer.py CHANGED
@@ -24,7 +24,7 @@ from monai.engines.utils import IterationEvents, default_make_latent, default_me
24
24
  from monai.engines.workflow import Workflow
25
25
  from monai.inferers import Inferer, SimpleInferer
26
26
  from monai.transforms import Transform
27
- from monai.utils import GanKeys, min_version, optional_import
27
+ from monai.utils import AdversarialIterationEvents, AdversarialKeys, GanKeys, min_version, optional_import
28
28
  from monai.utils.enums import CommonKeys as Keys
29
29
  from monai.utils.enums import EngineStatsKeys as ESKeys
30
30
  from monai.utils.module import pytorch_after
@@ -37,7 +37,7 @@ else:
37
37
  Metric, _ = optional_import("ignite.metrics", IgniteInfo.OPT_IMPORT_VERSION, min_version, "Metric")
38
38
  EventEnum, _ = optional_import("ignite.engine", IgniteInfo.OPT_IMPORT_VERSION, min_version, "EventEnum")
39
39
 
40
- __all__ = ["Trainer", "SupervisedTrainer", "GanTrainer"]
40
+ __all__ = ["Trainer", "SupervisedTrainer", "GanTrainer", "AdversarialTrainer"]
41
41
 
42
42
 
43
43
  class Trainer(Workflow):
@@ -471,3 +471,282 @@ class GanTrainer(Trainer):
471
471
  GanKeys.GLOSS: g_loss.item(),
472
472
  GanKeys.DLOSS: d_total_loss.item(),
473
473
  }
474
+
475
+
476
+ class AdversarialTrainer(Trainer):
477
+ """
478
+ Standard supervised training workflow for adversarial loss enabled neural networks.
479
+
480
+ Args:
481
+ device: an object representing the device on which to run.
482
+ max_epochs: the total epoch number for engine to run.
483
+ train_data_loader: Core ignite engines uses `DataLoader` for training loop batchdata.
484
+ g_network: ''generator'' (G) network architecture.
485
+ g_optimizer: G optimizer function.
486
+ g_loss_function: G loss function for adversarial training.
487
+ recon_loss_function: G loss function for reconstructions.
488
+ d_network: discriminator (D) network architecture.
489
+ d_optimizer: D optimizer function.
490
+ d_loss_function: D loss function for adversarial training..
491
+ epoch_length: number of iterations for one epoch, default to `len(train_data_loader)`.
492
+ non_blocking: if True and this copy is between CPU and GPU, the copy may occur asynchronously with respect to
493
+ the host. For other cases, this argument has no effect.
494
+ prepare_batch: function to parse image and label for current iteration.
495
+ iteration_update: the callable function for every iteration, expect to accept `engine` and `batchdata` as input
496
+ parameters. if not provided, use `self._iteration()` instead.
497
+ g_inferer: inference method to execute G model forward. Defaults to ``SimpleInferer()``.
498
+ d_inferer: inference method to execute D model forward. Defaults to ``SimpleInferer()``.
499
+ postprocessing: execute additional transformation for the model output data. Typically, several Tensor based
500
+ transforms composed by `Compose`. Defaults to None
501
+ key_train_metric: compute metric when every iteration completed, and save average value to engine.state.metrics
502
+ when epoch completed. key_train_metric is the main metric to compare and save the checkpoint into files.
503
+ additional_metrics: more Ignite metrics that also attach to Ignite Engine.
504
+ metric_cmp_fn: function to compare current key metric with previous best key metric value, it must accept 2 args
505
+ (current_metric, previous_best) and return a bool result: if `True`, will update 'best_metric` and
506
+ `best_metric_epoch` with current metric and epoch, default to `greater than`.
507
+ train_handlers: every handler is a set of Ignite Event-Handlers, must have `attach` function, like:
508
+ CheckpointHandler, StatsHandler, etc.
509
+ amp: whether to enable auto-mixed-precision training, default is False.
510
+ event_names: additional custom ignite events that will register to the engine.
511
+ new events can be a list of str or `ignite.engine.events.EventEnum`.
512
+ event_to_attr: a dictionary to map an event to a state attribute, then add to `engine.state`.
513
+ for more details, check: https://pytorch.org/ignite/generated/ignite.engine.engine.Engine.html
514
+ #ignite.engine.engine.Engine.register_events.
515
+ decollate: whether to decollate the batch-first data to a list of data after model computation, recommend
516
+ `decollate=True` when `postprocessing` uses components from `monai.transforms`. default to `True`.
517
+ optim_set_to_none: when calling `optimizer.zero_grad()`, instead of setting to zero, set the grads to None.
518
+ more details: https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html.
519
+ to_kwargs: dict of other args for `prepare_batch` API when converting the input data, except for
520
+ `device`, `non_blocking`.
521
+ amp_kwargs: dict of the args for `torch.cuda.amp.autocast()` API, for more details:
522
+ https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.autocast.
523
+ """
524
+
525
+ def __init__(
526
+ self,
527
+ device: torch.device | str,
528
+ max_epochs: int,
529
+ train_data_loader: Iterable | DataLoader,
530
+ g_network: torch.nn.Module,
531
+ g_optimizer: Optimizer,
532
+ g_loss_function: Callable,
533
+ recon_loss_function: Callable,
534
+ d_network: torch.nn.Module,
535
+ d_optimizer: Optimizer,
536
+ d_loss_function: Callable,
537
+ epoch_length: int | None = None,
538
+ non_blocking: bool = False,
539
+ prepare_batch: Callable = default_prepare_batch,
540
+ iteration_update: Callable | None = None,
541
+ g_inferer: Inferer | None = None,
542
+ d_inferer: Inferer | None = None,
543
+ postprocessing: Transform | None = None,
544
+ key_train_metric: dict[str, Metric] | None = None,
545
+ additional_metrics: dict[str, Metric] | None = None,
546
+ metric_cmp_fn: Callable = default_metric_cmp_fn,
547
+ train_handlers: Sequence | None = None,
548
+ amp: bool = False,
549
+ event_names: list[str | EventEnum | type[EventEnum]] | None = None,
550
+ event_to_attr: dict | None = None,
551
+ decollate: bool = True,
552
+ optim_set_to_none: bool = False,
553
+ to_kwargs: dict | None = None,
554
+ amp_kwargs: dict | None = None,
555
+ ):
556
+ super().__init__(
557
+ device=device,
558
+ max_epochs=max_epochs,
559
+ data_loader=train_data_loader,
560
+ epoch_length=epoch_length,
561
+ non_blocking=non_blocking,
562
+ prepare_batch=prepare_batch,
563
+ iteration_update=iteration_update,
564
+ postprocessing=postprocessing,
565
+ key_metric=key_train_metric,
566
+ additional_metrics=additional_metrics,
567
+ metric_cmp_fn=metric_cmp_fn,
568
+ handlers=train_handlers,
569
+ amp=amp,
570
+ event_names=event_names,
571
+ event_to_attr=event_to_attr,
572
+ decollate=decollate,
573
+ to_kwargs=to_kwargs,
574
+ amp_kwargs=amp_kwargs,
575
+ )
576
+
577
+ self.register_events(*AdversarialIterationEvents)
578
+
579
+ self.state.g_network = g_network
580
+ self.state.g_optimizer = g_optimizer
581
+ self.state.g_loss_function = g_loss_function
582
+ self.state.recon_loss_function = recon_loss_function
583
+
584
+ self.state.d_network = d_network
585
+ self.state.d_optimizer = d_optimizer
586
+ self.state.d_loss_function = d_loss_function
587
+
588
+ self.g_inferer = SimpleInferer() if g_inferer is None else g_inferer
589
+ self.d_inferer = SimpleInferer() if d_inferer is None else d_inferer
590
+
591
+ self.state.g_scaler = torch.cuda.amp.GradScaler() if self.amp else None
592
+ self.state.d_scaler = torch.cuda.amp.GradScaler() if self.amp else None
593
+
594
+ self.optim_set_to_none = optim_set_to_none
595
+ self._complete_state_dict_user_keys()
596
+
597
+ def _complete_state_dict_user_keys(self) -> None:
598
+ """
599
+ This method appends to the _state_dict_user_keys AdversarialTrainer's elements that are required for
600
+ checkpoint saving.
601
+
602
+ Follows the example found at:
603
+ https://pytorch.org/ignite/generated/ignite.engine.engine.Engine.html#ignite.engine.engine.Engine.state_dict
604
+ """
605
+ self._state_dict_user_keys.extend(
606
+ ["g_network", "g_optimizer", "d_network", "d_optimizer", "g_scaler", "d_scaler"]
607
+ )
608
+
609
+ g_loss_state_dict = getattr(self.state.g_loss_function, "state_dict", None)
610
+ if callable(g_loss_state_dict):
611
+ self._state_dict_user_keys.append("g_loss_function")
612
+
613
+ d_loss_state_dict = getattr(self.state.d_loss_function, "state_dict", None)
614
+ if callable(d_loss_state_dict):
615
+ self._state_dict_user_keys.append("d_loss_function")
616
+
617
+ recon_loss_state_dict = getattr(self.state.recon_loss_function, "state_dict", None)
618
+ if callable(recon_loss_state_dict):
619
+ self._state_dict_user_keys.append("recon_loss_function")
620
+
621
+ def _iteration(
622
+ self, engine: AdversarialTrainer, batchdata: dict[str, torch.Tensor]
623
+ ) -> dict[str, torch.Tensor | int | float | bool]:
624
+ """
625
+ Callback function for the Adversarial Training processing logic of 1 iteration in Ignite Engine.
626
+ Return below items in a dictionary:
627
+ - IMAGE: image Tensor data for model input, already moved to device.
628
+ - LABEL: label Tensor data corresponding to the image, already moved to device. In case of Unsupervised
629
+ Learning this is equal to IMAGE.
630
+ - PRED: prediction result of model.
631
+ - LOSS: loss value computed by loss functions of the generator (reconstruction and adversarial summed up).
632
+ - AdversarialKeys.REALS: real images from the batch. Are the same as IMAGE.
633
+ - AdversarialKeys.FAKES: fake images generated by the generator. Are the same as PRED.
634
+ - AdversarialKeys.REAL_LOGITS: logits of the discriminator for the real images.
635
+ - AdversarialKeys.FAKE_LOGITS: logits of the discriminator for the fake images.
636
+ - AdversarialKeys.RECONSTRUCTION_LOSS: loss value computed by the reconstruction loss function.
637
+ - AdversarialKeys.GENERATOR_LOSS: loss value computed by the generator loss function. It is the
638
+ discriminator loss for the fake images. That is backpropagated through the generator only.
639
+ - AdversarialKeys.DISCRIMINATOR_LOSS: loss value computed by the discriminator loss function. It is the
640
+ discriminator loss for the real images and the fake images. That is backpropagated through the
641
+ discriminator only.
642
+
643
+ Args:
644
+ engine: `AdversarialTrainer` to execute operation for an iteration.
645
+ batchdata: input data for this iteration, usually can be dictionary or tuple of Tensor data.
646
+
647
+ Raises:
648
+ ValueError: must provide batch data for current iteration.
649
+
650
+ """
651
+
652
+ if batchdata is None:
653
+ raise ValueError("Must provide batch data for current iteration.")
654
+ batch = engine.prepare_batch(batchdata, engine.state.device, engine.non_blocking, **engine.to_kwargs)
655
+
656
+ if len(batch) == 2:
657
+ inputs, targets = batch
658
+ args: tuple = ()
659
+ kwargs: dict = {}
660
+ else:
661
+ inputs, targets, args, kwargs = batch
662
+
663
+ engine.state.output = {Keys.IMAGE: inputs, Keys.LABEL: targets, AdversarialKeys.REALS: inputs}
664
+
665
+ def _compute_generator_loss() -> None:
666
+ engine.state.output[AdversarialKeys.FAKES] = engine.g_inferer(
667
+ inputs, engine.state.g_network, *args, **kwargs
668
+ )
669
+ engine.state.output[Keys.PRED] = engine.state.output[AdversarialKeys.FAKES]
670
+ engine.fire_event(AdversarialIterationEvents.GENERATOR_FORWARD_COMPLETED)
671
+
672
+ engine.state.output[AdversarialKeys.FAKE_LOGITS] = engine.d_inferer(
673
+ engine.state.output[AdversarialKeys.FAKES].float().contiguous(), engine.state.d_network, *args, **kwargs
674
+ )
675
+ engine.fire_event(AdversarialIterationEvents.GENERATOR_DISCRIMINATOR_FORWARD_COMPLETED)
676
+
677
+ engine.state.output[AdversarialKeys.RECONSTRUCTION_LOSS] = engine.state.recon_loss_function(
678
+ engine.state.output[AdversarialKeys.FAKES], targets
679
+ ).mean()
680
+ engine.fire_event(AdversarialIterationEvents.RECONSTRUCTION_LOSS_COMPLETED)
681
+
682
+ engine.state.output[AdversarialKeys.GENERATOR_LOSS] = engine.state.g_loss_function(
683
+ engine.state.output[AdversarialKeys.FAKE_LOGITS]
684
+ ).mean()
685
+ engine.fire_event(AdversarialIterationEvents.GENERATOR_LOSS_COMPLETED)
686
+
687
+ # Train Generator
688
+ engine.state.g_network.train()
689
+ engine.state.g_optimizer.zero_grad(set_to_none=engine.optim_set_to_none)
690
+
691
+ if engine.amp and engine.state.g_scaler is not None:
692
+ with torch.cuda.amp.autocast(**engine.amp_kwargs):
693
+ _compute_generator_loss()
694
+
695
+ engine.state.output[Keys.LOSS] = (
696
+ engine.state.output[AdversarialKeys.RECONSTRUCTION_LOSS]
697
+ + engine.state.output[AdversarialKeys.GENERATOR_LOSS]
698
+ )
699
+ engine.state.g_scaler.scale(engine.state.output[Keys.LOSS]).backward()
700
+ engine.fire_event(AdversarialIterationEvents.GENERATOR_BACKWARD_COMPLETED)
701
+ engine.state.g_scaler.step(engine.state.g_optimizer)
702
+ engine.state.g_scaler.update()
703
+ else:
704
+ _compute_generator_loss()
705
+ (
706
+ engine.state.output[AdversarialKeys.RECONSTRUCTION_LOSS]
707
+ + engine.state.output[AdversarialKeys.GENERATOR_LOSS]
708
+ ).backward()
709
+ engine.fire_event(AdversarialIterationEvents.GENERATOR_BACKWARD_COMPLETED)
710
+ engine.state.g_optimizer.step()
711
+ engine.fire_event(AdversarialIterationEvents.GENERATOR_MODEL_COMPLETED)
712
+
713
+ def _compute_discriminator_loss() -> None:
714
+ engine.state.output[AdversarialKeys.REAL_LOGITS] = engine.d_inferer(
715
+ engine.state.output[AdversarialKeys.REALS].contiguous().detach(),
716
+ engine.state.d_network,
717
+ *args,
718
+ **kwargs,
719
+ )
720
+ engine.fire_event(AdversarialIterationEvents.DISCRIMINATOR_REALS_FORWARD_COMPLETED)
721
+
722
+ engine.state.output[AdversarialKeys.FAKE_LOGITS] = engine.d_inferer(
723
+ engine.state.output[AdversarialKeys.FAKES].contiguous().detach(),
724
+ engine.state.d_network,
725
+ *args,
726
+ **kwargs,
727
+ )
728
+ engine.fire_event(AdversarialIterationEvents.DISCRIMINATOR_FAKES_FORWARD_COMPLETED)
729
+
730
+ engine.state.output[AdversarialKeys.DISCRIMINATOR_LOSS] = engine.state.d_loss_function(
731
+ engine.state.output[AdversarialKeys.REAL_LOGITS], engine.state.output[AdversarialKeys.FAKE_LOGITS]
732
+ ).mean()
733
+ engine.fire_event(AdversarialIterationEvents.DISCRIMINATOR_LOSS_COMPLETED)
734
+
735
+ # Train Discriminator
736
+ engine.state.d_network.train()
737
+ engine.state.d_network.zero_grad(set_to_none=engine.optim_set_to_none)
738
+
739
+ if engine.amp and engine.state.d_scaler is not None:
740
+ with torch.cuda.amp.autocast(**engine.amp_kwargs):
741
+ _compute_discriminator_loss()
742
+
743
+ engine.state.d_scaler.scale(engine.state.output[AdversarialKeys.DISCRIMINATOR_LOSS]).backward()
744
+ engine.fire_event(AdversarialIterationEvents.DISCRIMINATOR_BACKWARD_COMPLETED)
745
+ engine.state.d_scaler.step(engine.state.d_optimizer)
746
+ engine.state.d_scaler.update()
747
+ else:
748
+ _compute_discriminator_loss()
749
+ engine.state.output[AdversarialKeys.DISCRIMINATOR_LOSS].backward()
750
+ engine.state.d_optimizer.step()
751
+
752
+ return engine.state.output
monai/engines/utils.py CHANGED
@@ -13,9 +13,10 @@ from __future__ import annotations
13
13
 
14
14
  from abc import ABC, abstractmethod
15
15
  from collections.abc import Callable, Sequence
16
- from typing import TYPE_CHECKING, Any, cast
16
+ from typing import TYPE_CHECKING, Any, Mapping, cast
17
17
 
18
18
  import torch
19
+ import torch.nn as nn
19
20
 
20
21
  from monai.config import IgniteInfo
21
22
  from monai.transforms import apply_transform
@@ -36,6 +37,8 @@ __all__ = [
36
37
  "PrepareBatch",
37
38
  "PrepareBatchDefault",
38
39
  "PrepareBatchExtraInput",
40
+ "DiffusionPrepareBatch",
41
+ "VPredictionPrepareBatch",
39
42
  "default_make_latent",
40
43
  "engine_apply_transform",
41
44
  "default_metric_cmp_fn",
@@ -238,6 +241,78 @@ class PrepareBatchExtraInput(PrepareBatch):
238
241
  return cast(torch.Tensor, image), cast(torch.Tensor, label), tuple(args_), kwargs_
239
242
 
240
243
 
244
+ class DiffusionPrepareBatch(PrepareBatch):
245
+ """
246
+ This class is used as a callable for the `prepare_batch` parameter of engine classes for diffusion training.
247
+
248
+ Assuming a supervised training process, it will generate a noise field using `get_noise` for an input image, and
249
+ return the image and noise field as the image/target pair plus the noise field the kwargs under the key "noise".
250
+ This assumes the inferer being used in conjunction with this class expects a "noise" parameter to be provided.
251
+
252
+ If the `condition_name` is provided, this must refer to a key in the input dictionary containing the condition
253
+ field to be passed to the inferer. This will appear in the keyword arguments under the key "condition".
254
+
255
+ """
256
+
257
+ def __init__(self, num_train_timesteps: int, condition_name: str | None = None) -> None:
258
+ self.condition_name = condition_name
259
+ self.num_train_timesteps = num_train_timesteps
260
+
261
+ def get_noise(self, images: torch.Tensor) -> torch.Tensor:
262
+ """Returns the noise tensor for input tensor `images`, override this for different noise distributions."""
263
+ return torch.randn_like(images)
264
+
265
+ def get_timesteps(self, images: torch.Tensor) -> torch.Tensor:
266
+ """Get a timestep, by default this is a random integer between 0 and `self.num_train_timesteps`."""
267
+ return torch.randint(0, self.num_train_timesteps, (images.shape[0],), device=images.device).long()
268
+
269
+ def get_target(self, images: torch.Tensor, noise: torch.Tensor, timesteps: torch.Tensor) -> torch.Tensor:
270
+ """Return the target for the loss function, this is the `noise` value by default."""
271
+ return noise
272
+
273
+ def __call__(
274
+ self,
275
+ batchdata: dict[str, torch.Tensor],
276
+ device: str | torch.device | None = None,
277
+ non_blocking: bool = False,
278
+ **kwargs: Any,
279
+ ) -> tuple[torch.Tensor, torch.Tensor, tuple, dict]:
280
+ images, _ = default_prepare_batch(batchdata, device, non_blocking, **kwargs)
281
+ noise = self.get_noise(images).to(device, non_blocking=non_blocking, **kwargs)
282
+ timesteps = self.get_timesteps(images).to(device, non_blocking=non_blocking, **kwargs)
283
+
284
+ target = self.get_target(images, noise, timesteps).to(device, non_blocking=non_blocking, **kwargs)
285
+ infer_kwargs = {"noise": noise, "timesteps": timesteps}
286
+
287
+ if self.condition_name is not None and isinstance(batchdata, Mapping):
288
+ infer_kwargs["condition"] = batchdata[self.condition_name].to(device, non_blocking=non_blocking, **kwargs)
289
+
290
+ # return input, target, arguments, and keyword arguments where noise is the target and also a keyword value
291
+ return images, target, (), infer_kwargs
292
+
293
+
294
+ class VPredictionPrepareBatch(DiffusionPrepareBatch):
295
+ """
296
+ This class is used as a callable for the `prepare_batch` parameter of engine classes for diffusion training.
297
+
298
+ Assuming a supervised training process, it will generate a noise field using `get_noise` for an input image, and
299
+ from this compute the velocity using the provided scheduler. This value is used as the target in place of the
300
+ noise field itself although the noise is field is in the kwargs under the key "noise". This assumes the inferer
301
+ being used in conjunction with this class expects a "noise" parameter to be provided.
302
+
303
+ If the `condition_name` is provided, this must refer to a key in the input dictionary containing the condition
304
+ field to be passed to the inferer. This will appear in the keyword arguments under the key "condition".
305
+
306
+ """
307
+
308
+ def __init__(self, scheduler: nn.Module, num_train_timesteps: int, condition_name: str | None = None) -> None:
309
+ super().__init__(num_train_timesteps=num_train_timesteps, condition_name=condition_name)
310
+ self.scheduler = scheduler
311
+
312
+ def get_target(self, images, noise, timesteps):
313
+ return self.scheduler.get_velocity(images, noise, timesteps)
314
+
315
+
241
316
  def default_make_latent(
242
317
  num_latents: int,
243
318
  latent_size: int,
@@ -21,6 +21,7 @@ from typing import TYPE_CHECKING, Any
21
21
  import torch
22
22
  from torch.utils.data import Dataset
23
23
 
24
+ from monai.apps.utils import get_logger
24
25
  from monai.config import IgniteInfo
25
26
  from monai.utils import CommonKeys, ensure_tuple, min_version, optional_import
26
27
 
@@ -29,6 +30,9 @@ mlflow, _ = optional_import("mlflow", descriptor="Please install mlflow before u
29
30
  mlflow.entities, _ = optional_import(
30
31
  "mlflow.entities", descriptor="Please install mlflow.entities before using MLFlowHandler."
31
32
  )
33
+ MlflowException, _ = optional_import(
34
+ "mlflow.exceptions", name="MlflowException", descriptor="Please install mlflow before using MLFlowHandler."
35
+ )
32
36
  pandas, _ = optional_import("pandas", descriptor="Please install pandas for recording the dataset.")
33
37
  tqdm, _ = optional_import("tqdm", "4.47.0", min_version, "tqdm")
34
38
 
@@ -41,6 +45,8 @@ else:
41
45
 
42
46
  DEFAULT_TAG = "Loss"
43
47
 
48
+ logger = get_logger(module_name=__name__)
49
+
44
50
 
45
51
  class MLFlowHandler:
46
52
  """
@@ -236,10 +242,21 @@ class MLFlowHandler:
236
242
  def _set_experiment(self):
237
243
  experiment = self.experiment
238
244
  if not experiment:
239
- experiment = self.client.get_experiment_by_name(self.experiment_name)
240
- if not experiment:
241
- experiment_id = self.client.create_experiment(self.experiment_name)
242
- experiment = self.client.get_experiment(experiment_id)
245
+ for _retry_time in range(3):
246
+ try:
247
+ experiment = self.client.get_experiment_by_name(self.experiment_name)
248
+ if not experiment:
249
+ experiment_id = self.client.create_experiment(self.experiment_name)
250
+ experiment = self.client.get_experiment(experiment_id)
251
+ break
252
+ except MlflowException as e:
253
+ if "RESOURCE_ALREADY_EXISTS" in str(e):
254
+ logger.warning("Experiment already exists; delaying before retrying.")
255
+ time.sleep(1)
256
+ if _retry_time == 2:
257
+ raise e
258
+ else:
259
+ raise e
243
260
 
244
261
  if experiment.lifecycle_stage != mlflow.entities.LifecycleStage.ACTIVE:
245
262
  raise ValueError(f"Cannot set a deleted experiment '{self.experiment_name}' as the active experiment")
@@ -12,13 +12,18 @@
12
12
  from __future__ import annotations
13
13
 
14
14
  from .inferer import (
15
+ ControlNetDiffusionInferer,
16
+ ControlNetLatentDiffusionInferer,
17
+ DiffusionInferer,
15
18
  Inferer,
19
+ LatentDiffusionInferer,
16
20
  PatchInferer,
17
21
  SaliencyInferer,
18
22
  SimpleInferer,
19
23
  SliceInferer,
20
24
  SlidingWindowInferer,
21
25
  SlidingWindowInfererAdapt,
26
+ VQVAETransformerInferer,
22
27
  )
23
28
  from .merger import AvgMerger, Merger, ZarrAvgMerger
24
29
  from .splitter import SlidingWindowSplitter, Splitter, WSISlidingWindowSplitter