monai-weekly 1.4.dev2428__py3-none-any.whl → 1.4.dev2430__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- monai/__init__.py +1 -1
- monai/_version.py +3 -3
- monai/apps/auto3dseg/hpo_gen.py +1 -1
- monai/apps/detection/utils/anchor_utils.py +2 -2
- monai/apps/pathology/transforms/post/array.py +7 -4
- monai/auto3dseg/analyzer.py +1 -1
- monai/bundle/scripts.py +204 -22
- monai/bundle/utils.py +1 -0
- monai/data/dataset_summary.py +1 -0
- monai/data/meta_tensor.py +2 -2
- monai/data/test_time_augmentation.py +2 -0
- monai/data/utils.py +9 -6
- monai/data/wsi_reader.py +2 -2
- monai/engines/__init__.py +3 -1
- monai/engines/trainer.py +281 -2
- monai/engines/utils.py +76 -1
- monai/handlers/mlflow_handler.py +21 -4
- monai/inferers/__init__.py +5 -0
- monai/inferers/inferer.py +1279 -1
- monai/metrics/cumulative_average.py +2 -0
- monai/metrics/panoptic_quality.py +1 -1
- monai/metrics/rocauc.py +2 -2
- monai/networks/blocks/__init__.py +3 -0
- monai/networks/blocks/attention_utils.py +128 -0
- monai/networks/blocks/crossattention.py +168 -0
- monai/networks/blocks/rel_pos_embedding.py +56 -0
- monai/networks/blocks/selfattention.py +74 -5
- monai/networks/blocks/spade_norm.py +95 -0
- monai/networks/blocks/spatialattention.py +82 -0
- monai/networks/blocks/transformerblock.py +25 -4
- monai/networks/blocks/upsample.py +22 -10
- monai/networks/layers/__init__.py +2 -1
- monai/networks/layers/factories.py +12 -1
- monai/networks/layers/simplelayers.py +1 -1
- monai/networks/layers/utils.py +14 -1
- monai/networks/layers/vector_quantizer.py +233 -0
- monai/networks/nets/__init__.py +9 -0
- monai/networks/nets/autoencoderkl.py +702 -0
- monai/networks/nets/controlnet.py +465 -0
- monai/networks/nets/diffusion_model_unet.py +1913 -0
- monai/networks/nets/patchgan_discriminator.py +230 -0
- monai/networks/nets/quicknat.py +8 -6
- monai/networks/nets/resnet.py +3 -4
- monai/networks/nets/spade_autoencoderkl.py +480 -0
- monai/networks/nets/spade_diffusion_model_unet.py +934 -0
- monai/networks/nets/spade_network.py +435 -0
- monai/networks/nets/swin_unetr.py +4 -3
- monai/networks/nets/transformer.py +157 -0
- monai/networks/nets/vqvae.py +472 -0
- monai/networks/schedulers/__init__.py +17 -0
- monai/networks/schedulers/ddim.py +294 -0
- monai/networks/schedulers/ddpm.py +250 -0
- monai/networks/schedulers/pndm.py +316 -0
- monai/networks/schedulers/scheduler.py +205 -0
- monai/networks/utils.py +22 -0
- monai/transforms/croppad/array.py +8 -8
- monai/transforms/croppad/dictionary.py +4 -4
- monai/transforms/croppad/functional.py +1 -1
- monai/transforms/regularization/array.py +4 -0
- monai/transforms/spatial/array.py +1 -1
- monai/transforms/utils_create_transform_ims.py +2 -4
- monai/utils/__init__.py +1 -0
- monai/utils/misc.py +5 -4
- monai/utils/ordering.py +207 -0
- monai/visualize/class_activation_maps.py +5 -5
- monai/visualize/img2tensorboard.py +3 -1
- {monai_weekly-1.4.dev2428.dist-info → monai_weekly-1.4.dev2430.dist-info}/METADATA +1 -1
- {monai_weekly-1.4.dev2428.dist-info → monai_weekly-1.4.dev2430.dist-info}/RECORD +71 -50
- {monai_weekly-1.4.dev2428.dist-info → monai_weekly-1.4.dev2430.dist-info}/WHEEL +1 -1
- {monai_weekly-1.4.dev2428.dist-info → monai_weekly-1.4.dev2430.dist-info}/LICENSE +0 -0
- {monai_weekly-1.4.dev2428.dist-info → monai_weekly-1.4.dev2430.dist-info}/top_level.txt +0 -0
monai/utils/misc.py
CHANGED
@@ -118,6 +118,7 @@ def star_zip_with(op, *vals):
|
|
118
118
|
|
119
119
|
|
120
120
|
T = TypeVar("T")
|
121
|
+
NT = TypeVar("NT", np.ndarray, torch.Tensor)
|
121
122
|
|
122
123
|
|
123
124
|
@overload
|
@@ -814,7 +815,7 @@ class ConvertUnits:
|
|
814
815
|
"Both input and target units should be from the same quantity. "
|
815
816
|
f"Input quantity is {input_base} while target quantity is {target_base}"
|
816
817
|
)
|
817
|
-
self._calculate_conversion_factor()
|
818
|
+
self.conversion_factor = self._calculate_conversion_factor()
|
818
819
|
|
819
820
|
def _get_valid_unit_and_base(self, unit):
|
820
821
|
unit = str(unit).lower()
|
@@ -841,7 +842,7 @@ class ConvertUnits:
|
|
841
842
|
return 1.0
|
842
843
|
input_power = self._get_unit_power(self.input_unit)
|
843
844
|
target_power = self._get_unit_power(self.target_unit)
|
844
|
-
|
845
|
+
return 10 ** (input_power - target_power)
|
845
846
|
|
846
847
|
def __call__(self, value: int | float) -> Any:
|
847
848
|
return float(value) * self.conversion_factor
|
@@ -907,11 +908,11 @@ def is_sqrt(num: Sequence[int] | int) -> bool:
|
|
907
908
|
return ensure_tuple(ret) == num
|
908
909
|
|
909
910
|
|
910
|
-
def unsqueeze_right(arr:
|
911
|
+
def unsqueeze_right(arr: NT, ndim: int) -> NT:
|
911
912
|
"""Append 1-sized dimensions to `arr` to create a result with `ndim` dimensions."""
|
912
913
|
return arr[(...,) + (None,) * (ndim - arr.ndim)]
|
913
914
|
|
914
915
|
|
915
|
-
def unsqueeze_left(arr:
|
916
|
+
def unsqueeze_left(arr: NT, ndim: int) -> NT:
|
916
917
|
"""Prepend 1-sized dimensions to `arr` to create a result with `ndim` dimensions."""
|
917
918
|
return arr[(None,) * (ndim - arr.ndim)]
|
monai/utils/ordering.py
ADDED
@@ -0,0 +1,207 @@
|
|
1
|
+
# Copyright (c) MONAI Consortium
|
2
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
3
|
+
# you may not use this file except in compliance with the License.
|
4
|
+
# You may obtain a copy of the License at
|
5
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
6
|
+
# Unless required by applicable law or agreed to in writing, software
|
7
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
8
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
9
|
+
# See the License for the specific language governing permissions and
|
10
|
+
# limitations under the License.
|
11
|
+
|
12
|
+
from __future__ import annotations
|
13
|
+
|
14
|
+
import numpy as np
|
15
|
+
|
16
|
+
from monai.utils.enums import OrderingTransformations, OrderingType
|
17
|
+
|
18
|
+
|
19
|
+
class Ordering:
|
20
|
+
"""
|
21
|
+
Ordering class that projects a 2D or 3D image into a 1D sequence. It also allows the image to be transformed with
|
22
|
+
one of the following transformations:
|
23
|
+
Reflection (see np.flip for more details).
|
24
|
+
Transposition (see np.transpose for more details).
|
25
|
+
90-degree rotation (see np.rot90 for more details).
|
26
|
+
|
27
|
+
The transformations are applied in the order specified by the transformation_order parameter.
|
28
|
+
|
29
|
+
Args:
|
30
|
+
ordering_type: The ordering type. One of the following:
|
31
|
+
- 'raster_scan': The image is projected into a 1D sequence by scanning the image from left to right and from
|
32
|
+
top to bottom. Also called a row major ordering.
|
33
|
+
- 's_curve': The image is projected into a 1D sequence by scanning the image in a circular snake like
|
34
|
+
pattern from top left towards right gowing in a spiral towards the center.
|
35
|
+
- random': The image is projected into a 1D sequence by randomly shuffling the image.
|
36
|
+
spatial_dims: The number of spatial dimensions of the image.
|
37
|
+
dimensions: The dimensions of the image.
|
38
|
+
reflected_spatial_dims: A tuple of booleans indicating whether to reflect the image along each spatial dimension.
|
39
|
+
transpositions_axes: A tuple of tuples indicating the axes to transpose the image along.
|
40
|
+
rot90_axes: A tuple of tuples indicating the axes to rotate the image along.
|
41
|
+
transformation_order: The order in which to apply the transformations.
|
42
|
+
"""
|
43
|
+
|
44
|
+
def __init__(
|
45
|
+
self,
|
46
|
+
ordering_type: str,
|
47
|
+
spatial_dims: int,
|
48
|
+
dimensions: tuple[int, int, int] | tuple[int, int, int, int],
|
49
|
+
reflected_spatial_dims: tuple[bool, bool] | None = None,
|
50
|
+
transpositions_axes: tuple[tuple[int, int], ...] | tuple[tuple[int, int, int], ...] | None = None,
|
51
|
+
rot90_axes: tuple[tuple[int, int], ...] | None = None,
|
52
|
+
transformation_order: tuple[str, ...] = (
|
53
|
+
OrderingTransformations.TRANSPOSE.value,
|
54
|
+
OrderingTransformations.ROTATE_90.value,
|
55
|
+
OrderingTransformations.REFLECT.value,
|
56
|
+
),
|
57
|
+
) -> None:
|
58
|
+
super().__init__()
|
59
|
+
self.ordering_type = ordering_type
|
60
|
+
|
61
|
+
if self.ordering_type not in list(OrderingType):
|
62
|
+
raise ValueError(
|
63
|
+
f"ordering_type must be one of the following {list(OrderingType)}, but got {self.ordering_type}."
|
64
|
+
)
|
65
|
+
|
66
|
+
self.spatial_dims = spatial_dims
|
67
|
+
self.dimensions = dimensions
|
68
|
+
|
69
|
+
if len(dimensions) != self.spatial_dims + 1:
|
70
|
+
raise ValueError(f"dimensions must be of length {self.spatial_dims + 1}, but got {len(dimensions)}.")
|
71
|
+
|
72
|
+
self.reflected_spatial_dims = reflected_spatial_dims
|
73
|
+
self.transpositions_axes = transpositions_axes
|
74
|
+
self.rot90_axes = rot90_axes
|
75
|
+
if len(set(transformation_order)) != len(transformation_order):
|
76
|
+
raise ValueError(f"No duplicates are allowed. Received {transformation_order}.")
|
77
|
+
|
78
|
+
for transformation in transformation_order:
|
79
|
+
if transformation not in list(OrderingTransformations):
|
80
|
+
raise ValueError(
|
81
|
+
f"Valid transformations are {list(OrderingTransformations)} but received {transformation}."
|
82
|
+
)
|
83
|
+
self.transformation_order = transformation_order
|
84
|
+
|
85
|
+
self.template = self._create_template()
|
86
|
+
self._sequence_ordering = self._create_ordering()
|
87
|
+
self._revert_sequence_ordering = np.argsort(self._sequence_ordering)
|
88
|
+
|
89
|
+
def __call__(self, x: np.ndarray) -> np.ndarray:
|
90
|
+
x = x[self._sequence_ordering]
|
91
|
+
|
92
|
+
return x
|
93
|
+
|
94
|
+
def get_sequence_ordering(self) -> np.ndarray:
|
95
|
+
return self._sequence_ordering
|
96
|
+
|
97
|
+
def get_revert_sequence_ordering(self) -> np.ndarray:
|
98
|
+
return self._revert_sequence_ordering
|
99
|
+
|
100
|
+
def _create_ordering(self) -> np.ndarray:
|
101
|
+
self.template = self._transform_template()
|
102
|
+
order = self._order_template(template=self.template)
|
103
|
+
|
104
|
+
return order
|
105
|
+
|
106
|
+
def _create_template(self) -> np.ndarray:
|
107
|
+
spatial_dimensions = self.dimensions[1:]
|
108
|
+
template = np.arange(np.prod(spatial_dimensions)).reshape(*spatial_dimensions)
|
109
|
+
|
110
|
+
return template
|
111
|
+
|
112
|
+
def _transform_template(self) -> np.ndarray:
|
113
|
+
for transformation in self.transformation_order:
|
114
|
+
if transformation == OrderingTransformations.TRANSPOSE.value:
|
115
|
+
self.template = self._transpose_template(template=self.template)
|
116
|
+
elif transformation == OrderingTransformations.ROTATE_90.value:
|
117
|
+
self.template = self._rot90_template(template=self.template)
|
118
|
+
elif transformation == OrderingTransformations.REFLECT.value:
|
119
|
+
self.template = self._flip_template(template=self.template)
|
120
|
+
|
121
|
+
return self.template
|
122
|
+
|
123
|
+
def _transpose_template(self, template: np.ndarray) -> np.ndarray:
|
124
|
+
if self.transpositions_axes is not None:
|
125
|
+
for axes in self.transpositions_axes:
|
126
|
+
template = np.transpose(template, axes=axes)
|
127
|
+
|
128
|
+
return template
|
129
|
+
|
130
|
+
def _flip_template(self, template: np.ndarray) -> np.ndarray:
|
131
|
+
if self.reflected_spatial_dims is not None:
|
132
|
+
for axis, to_reflect in enumerate(self.reflected_spatial_dims):
|
133
|
+
template = np.flip(template, axis=axis) if to_reflect else template
|
134
|
+
|
135
|
+
return template
|
136
|
+
|
137
|
+
def _rot90_template(self, template: np.ndarray) -> np.ndarray:
|
138
|
+
if self.rot90_axes is not None:
|
139
|
+
for axes in self.rot90_axes:
|
140
|
+
template = np.rot90(template, axes=axes)
|
141
|
+
|
142
|
+
return template
|
143
|
+
|
144
|
+
def _order_template(self, template: np.ndarray) -> np.ndarray:
|
145
|
+
depths = None
|
146
|
+
if self.spatial_dims == 2:
|
147
|
+
rows, columns = template.shape[0], template.shape[1]
|
148
|
+
else:
|
149
|
+
rows, columns, depths = (template.shape[0], template.shape[1], template.shape[2])
|
150
|
+
|
151
|
+
sequence = eval(f"self.{self.ordering_type}_idx")(rows, columns, depths)
|
152
|
+
|
153
|
+
ordering = np.array([template[tuple(e)] for e in sequence])
|
154
|
+
|
155
|
+
return ordering
|
156
|
+
|
157
|
+
@staticmethod
|
158
|
+
def raster_scan_idx(rows: int, cols: int, depths: int | None = None) -> np.ndarray:
|
159
|
+
idx: list[tuple] = []
|
160
|
+
|
161
|
+
for r in range(rows):
|
162
|
+
for c in range(cols):
|
163
|
+
if depths is not None:
|
164
|
+
for d in range(depths):
|
165
|
+
idx.append((r, c, d))
|
166
|
+
else:
|
167
|
+
idx.append((r, c))
|
168
|
+
|
169
|
+
idx_np = np.array(idx)
|
170
|
+
|
171
|
+
return idx_np
|
172
|
+
|
173
|
+
@staticmethod
|
174
|
+
def s_curve_idx(rows: int, cols: int, depths: int | None = None) -> np.ndarray:
|
175
|
+
idx: list[tuple] = []
|
176
|
+
|
177
|
+
for r in range(rows):
|
178
|
+
col_idx = range(cols) if r % 2 == 0 else range(cols - 1, -1, -1)
|
179
|
+
for c in col_idx:
|
180
|
+
if depths:
|
181
|
+
depth_idx = range(depths) if c % 2 == 0 else range(depths - 1, -1, -1)
|
182
|
+
|
183
|
+
for d in depth_idx:
|
184
|
+
idx.append((r, c, d))
|
185
|
+
else:
|
186
|
+
idx.append((r, c))
|
187
|
+
|
188
|
+
idx_np = np.array(idx)
|
189
|
+
|
190
|
+
return idx_np
|
191
|
+
|
192
|
+
@staticmethod
|
193
|
+
def random_idx(rows: int, cols: int, depths: int | None = None) -> np.ndarray:
|
194
|
+
idx: list[tuple] = []
|
195
|
+
|
196
|
+
for r in range(rows):
|
197
|
+
for c in range(cols):
|
198
|
+
if depths:
|
199
|
+
for d in range(depths):
|
200
|
+
idx.append((r, c, d))
|
201
|
+
else:
|
202
|
+
idx.append((r, c))
|
203
|
+
|
204
|
+
idx_np = np.array(idx)
|
205
|
+
np.random.shuffle(idx_np)
|
206
|
+
|
207
|
+
return idx_np
|
@@ -290,7 +290,7 @@ class CAM(CAMBase):
|
|
290
290
|
)
|
291
291
|
self.fc_layers = fc_layers
|
292
292
|
|
293
|
-
def compute_map(self, x, class_idx=None, layer_idx=-1, **kwargs):
|
293
|
+
def compute_map(self, x, class_idx=None, layer_idx=-1, **kwargs): # type: ignore[override]
|
294
294
|
logits, acti, _ = self.nn_module(x, **kwargs)
|
295
295
|
acti = acti[layer_idx]
|
296
296
|
if class_idx is None:
|
@@ -302,7 +302,7 @@ class CAM(CAMBase):
|
|
302
302
|
output = torch.stack([output[i, b : b + 1] for i, b in enumerate(class_idx)], dim=0)
|
303
303
|
return output.reshape(b, 1, *spatial) # resume the spatial dims on the selected class
|
304
304
|
|
305
|
-
def __call__(self, x, class_idx=None, layer_idx=-1, **kwargs):
|
305
|
+
def __call__(self, x, class_idx=None, layer_idx=-1, **kwargs): # type: ignore[override]
|
306
306
|
"""
|
307
307
|
Compute the activation map with upsampling and postprocessing.
|
308
308
|
|
@@ -361,7 +361,7 @@ class GradCAM(CAMBase):
|
|
361
361
|
|
362
362
|
"""
|
363
363
|
|
364
|
-
def compute_map(self, x, class_idx=None, retain_graph=False, layer_idx=-1, **kwargs):
|
364
|
+
def compute_map(self, x, class_idx=None, retain_graph=False, layer_idx=-1, **kwargs): # type: ignore[override]
|
365
365
|
_, acti, grad = self.nn_module(x, class_idx=class_idx, retain_graph=retain_graph, **kwargs)
|
366
366
|
acti, grad = acti[layer_idx], grad[layer_idx]
|
367
367
|
b, c, *spatial = grad.shape
|
@@ -369,7 +369,7 @@ class GradCAM(CAMBase):
|
|
369
369
|
acti_map = (weights * acti).sum(1, keepdim=True)
|
370
370
|
return F.relu(acti_map)
|
371
371
|
|
372
|
-
def __call__(self, x, class_idx=None, layer_idx=-1, retain_graph=False, **kwargs):
|
372
|
+
def __call__(self, x, class_idx=None, layer_idx=-1, retain_graph=False, **kwargs): # type: ignore[override]
|
373
373
|
"""
|
374
374
|
Compute the activation map with upsampling and postprocessing.
|
375
375
|
|
@@ -401,7 +401,7 @@ class GradCAMpp(GradCAM):
|
|
401
401
|
|
402
402
|
"""
|
403
403
|
|
404
|
-
def compute_map(self, x, class_idx=None, retain_graph=False, layer_idx=-1, **kwargs):
|
404
|
+
def compute_map(self, x, class_idx=None, retain_graph=False, layer_idx=-1, **kwargs): # type: ignore[override]
|
405
405
|
_, acti, grad = self.nn_module(x, class_idx=class_idx, retain_graph=retain_graph, **kwargs)
|
406
406
|
acti, grad = acti[layer_idx], grad[layer_idx]
|
407
407
|
b, c, *spatial = grad.shape
|
@@ -176,7 +176,9 @@ def plot_2d_or_3d_image(
|
|
176
176
|
# as the `d` data has no batch dim, reduce the spatial dim index if positive
|
177
177
|
frame_dim = frame_dim - 1 if frame_dim > 0 else frame_dim
|
178
178
|
|
179
|
-
d: np.ndarray =
|
179
|
+
d: np.ndarray = (
|
180
|
+
data_index.detach().cpu().numpy() if isinstance(data_index, torch.Tensor) else np.asarray(data_index)
|
181
|
+
)
|
180
182
|
|
181
183
|
if d.ndim == 2:
|
182
184
|
d = rescale_array(d, 0, 1) # type: ignore
|
@@ -1,5 +1,5 @@
|
|
1
|
-
monai/__init__.py,sha256=
|
2
|
-
monai/_version.py,sha256=
|
1
|
+
monai/__init__.py,sha256=_QozTiwyy6qpqJ5oX2PSxYbqUoXKRgnQnkEAk33lkjA,2722
|
2
|
+
monai/_version.py,sha256=N95fYvfNA1LI8sPj8gCsJWWoY4Vuyz0MBqeedb7l354,503
|
3
3
|
monai/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
4
4
|
monai/_extensions/__init__.py,sha256=NEBPreRhQ8H9gVvgrLr_y52_TmqB96u_u4VQmeNT93I,642
|
5
5
|
monai/_extensions/loader.py,sha256=7SiKw36q-nOzH8CRbBurFrz7GM40GCu7rc93Tm8XpnI,3643
|
@@ -17,7 +17,7 @@ monai/apps/auto3dseg/auto_runner.py,sha256=a4Ry93TkK0aTb68bwle8HoG4SzUbUf0IbDrY3
|
|
17
17
|
monai/apps/auto3dseg/bundle_gen.py,sha256=y_9lbw0xk1em0TsIn7mTJHmD3OQNcNZVsjgkhdYg0Lw,28994
|
18
18
|
monai/apps/auto3dseg/data_analyzer.py,sha256=XJuQ-bSE3G_6r2i6S75jjo-klWTUGpy5aY3WqijSWqk,18628
|
19
19
|
monai/apps/auto3dseg/ensemble_builder.py,sha256=GaLpeAIW5X9oC921cevE86coOsmXW2C136FHuo6UyMo,27277
|
20
|
-
monai/apps/auto3dseg/hpo_gen.py,sha256=
|
20
|
+
monai/apps/auto3dseg/hpo_gen.py,sha256=VMfN0M5Z8Mq3Epu4fgOD5N6X-BY2PARIC69wW2t5EQU,16691
|
21
21
|
monai/apps/auto3dseg/transforms.py,sha256=iO4v9-dwQzvupJglX-H2HYuwUhmFdVgLbyh4BuDy7DY,3991
|
22
22
|
monai/apps/auto3dseg/utils.py,sha256=7DPJbsL9YbhRdMZ6dEvCA_t_uLSSz7-WZSU2pMY4_qo,3138
|
23
23
|
monai/apps/deepedit/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
@@ -40,7 +40,7 @@ monai/apps/detection/transforms/box_ops.py,sha256=3RFK8zNH8ufpHT_aB5xFR2wXrQauBQ
|
|
40
40
|
monai/apps/detection/transforms/dictionary.py,sha256=OGEYrq2F8gFjYRYv7ZdlWFM6yYRs_24yYn7J2GYlgJc,69282
|
41
41
|
monai/apps/detection/utils/ATSS_matcher.py,sha256=aajY2UJ-Ot9L5KDwORFOCuMsTQEU02BZ9-tNMfIYH98,13532
|
42
42
|
monai/apps/detection/utils/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
43
|
-
monai/apps/detection/utils/anchor_utils.py,sha256=
|
43
|
+
monai/apps/detection/utils/anchor_utils.py,sha256=coSzVq5ictzWL4XqwtlLTKlzdel6cfHFLbvM6zOiq8M,18718
|
44
44
|
monai/apps/detection/utils/box_coder.py,sha256=81Qe8wf6IRb4kJgcS957yWdOpY_G8nUdyIFPXxpMQvk,11120
|
45
45
|
monai/apps/detection/utils/box_selector.py,sha256=uXI0YrhugYR68xYshRs5JpPTT1nL3QMMS1nJ_RpddVo,9031
|
46
46
|
monai/apps/detection/utils/detector_utils.py,sha256=pU7bOzH-ay9Lnzu1aHCrIwlaGVf5xj13E7Somx_vFnk,10306
|
@@ -77,7 +77,7 @@ monai/apps/pathology/metrics/__init__.py,sha256=c7xRUzhQesEWRIUFF6vM-Qs9v0Lv8QzC
|
|
77
77
|
monai/apps/pathology/metrics/lesion_froc.py,sha256=LNwcuatNEppyWMehnpBOn1474jH0hOJCq3gdq5mNw8k,7331
|
78
78
|
monai/apps/pathology/transforms/__init__.py,sha256=c3YkornqjX-fHRnwkpn_PxmnMje6pif1qxPdFNyQUWU,2243
|
79
79
|
monai/apps/pathology/transforms/post/__init__.py,sha256=WUZbaM2bg13mpbnNhol0D0A328XgUspTWtPvli1Uqpk,1995
|
80
|
-
monai/apps/pathology/transforms/post/array.py,sha256=
|
80
|
+
monai/apps/pathology/transforms/post/array.py,sha256=gYIuHMPhGcomPE4RKfS9Zv-7IytCUUBCpl-r9w4rGHA,37417
|
81
81
|
monai/apps/pathology/transforms/post/dictionary.py,sha256=ZReeFqcZRkltwhRaKsedeptprB1B89lKWFimAzkk0Vg,25928
|
82
82
|
monai/apps/pathology/transforms/stain/__init__.py,sha256=i9HfrXiQHG5XHfqMtz2g7yBX7p1uN0xcGAPCYyXSmV8,836
|
83
83
|
monai/apps/pathology/transforms/stain/array.py,sha256=Dr1fCmkQzc8n40XbLAHpq1EG5wkMqTjWgYN2FGJfMGk,8366
|
@@ -102,7 +102,7 @@ monai/apps/tcia/label_desc.py,sha256=B8l9mVmRzLysLmEIIYVeenly_68okCt461qeLQSxCJ8
|
|
102
102
|
monai/apps/tcia/utils.py,sha256=iyLXr5_51rolbRUZFN_Fwc6TIhAbeSl6XZ2m5RYpzTw,6303
|
103
103
|
monai/auto3dseg/__init__.py,sha256=DbZC7wqx4zBNcguLQGu8bGmAiKnk9LvjtQDtwdwG19I,1164
|
104
104
|
monai/auto3dseg/algo_gen.py,sha256=_BscoAnUzQKRqz5jHvdsuCe3tTxq7PUQYPMLX0WuxCc,4286
|
105
|
-
monai/auto3dseg/analyzer.py,sha256
|
105
|
+
monai/auto3dseg/analyzer.py,sha256=7l8QT36lG68b8rK23CC2omz6PO1fxmDwOljxXMn5clQ,41351
|
106
106
|
monai/auto3dseg/operations.py,sha256=1sNDWnz5Zs2-scpb1wotxar7yGYQ-VPI-_b2KnZqW9g,5110
|
107
107
|
monai/auto3dseg/seg_summarizer.py,sha256=T5Kwvc6eKet-vlzvBQgCLHbxHto-P5tiN_7uIk5uVfs,8717
|
108
108
|
monai/auto3dseg/utils.py,sha256=zEicEO_--6-1kzT5HlmhAAd575gnl2AFmW8O3FnIznE,18674
|
@@ -112,8 +112,8 @@ monai/bundle/config_item.py,sha256=rMjXSGkjJZdi04BwSHwCcIwzIb_TflmC3xDhC3SVJRs,1
|
|
112
112
|
monai/bundle/config_parser.py,sha256=IewIX0HnjzL5nZYdcSdWGzc7Z4xqUaOTb9wa6wjZ4Y8,22895
|
113
113
|
monai/bundle/properties.py,sha256=iN3K4FVmN9ny1Hw9p5j7_ULcCdSD8PmrR7qXxbNz49k,11582
|
114
114
|
monai/bundle/reference_resolver.py,sha256=1qdz732zl1dwSWyKaW6JOs1YqoCrXu7NBi5jz3zjqxA,15747
|
115
|
-
monai/bundle/scripts.py,sha256=
|
116
|
-
monai/bundle/utils.py,sha256=
|
115
|
+
monai/bundle/scripts.py,sha256=ipS7CDKx01ySmAQlrHBhpmgqksAOzYxK1ARbgHo9fxg,88619
|
116
|
+
monai/bundle/utils.py,sha256=Heob15Gf_dVpt-Gcts4sycoUny0nr7RvevNVSKe6sqc,8950
|
117
117
|
monai/bundle/workflows.py,sha256=VMuBTkk6DGsnGRLFzNfVUzgy8UqUReluUlIPUaxODPQ,24765
|
118
118
|
monai/config/__init__.py,sha256=CN28CfTdsp301gv8YXfVvkbztCfbAqrLKrJi_C8oP9s,1048
|
119
119
|
monai/config/deviceconfig.py,sha256=3EU1Zi6yD_bxEAeHfzjbslEjq6vOvxNG6o9dxKUiEvc,10315
|
@@ -123,7 +123,7 @@ monai/data/box_utils.py,sha256=YbG6lOoYwUGmwcNmoKzq2xnNTbYA4LMkHmfsqteopCg,50102
|
|
123
123
|
monai/data/csv_saver.py,sha256=fcZF4kBNQnDFwQjV9TS4zjq_zqsv_u3QldxRprMC7zI,4952
|
124
124
|
monai/data/dataloader.py,sha256=GC1x8aZJaidXN8zaA-Vl6iEHlTP4ocjIvRhCv74elkQ,4459
|
125
125
|
monai/data/dataset.py,sha256=U6NoF8JgbhNzJDQ3h57BOcIelx4j3IjRKZJID266Eks,78691
|
126
|
-
monai/data/dataset_summary.py,sha256=
|
126
|
+
monai/data/dataset_summary.py,sha256=5DkrzlNb3lw58j6lMR7aAGZH1YIw6b1UFQjkbourxt0,10243
|
127
127
|
monai/data/decathlon_datalist.py,sha256=3z7p-PqEdj41MlkRFmc-Q1HNxI0D6Tgi4fmD3p1oq_E,10310
|
128
128
|
monai/data/fft_utils.py,sha256=in9Zu8hC4oSVzuA-Zl236X6EkvgFka0RXdOxgvdGkv0,4448
|
129
129
|
monai/data/folder_layout.py,sha256=IsHW1-Bkupn_T8r6MgFTIJQh5HwCg0xQwOKmgBtl0gE,6344
|
@@ -134,21 +134,21 @@ monai/data/image_writer.py,sha256=rH6vboPFkX4ziN3lnrmK6AzAOQYI9tEiOJb7Al2tj-8,39
|
|
134
134
|
monai/data/iterable_dataset.py,sha256=A0L5jaxwnfgProBj96tlT160esI21yutnTf3a4c29Ms,13100
|
135
135
|
monai/data/itk_torch_bridge.py,sha256=3th-B3tJuJE22JFfOUgGeTMOPh1czJEiSccFyn_Ob0w,14461
|
136
136
|
monai/data/meta_obj.py,sha256=OxfcCSBFuN0fUpyIa9ey9HuqrqimARNnEZPuqRRXjLo,8800
|
137
|
-
monai/data/meta_tensor.py,sha256=
|
137
|
+
monai/data/meta_tensor.py,sha256=GG8CPjRZhPCShryY3cnyA5G2Crl_Q7Sym2pw5cVxBL0,27530
|
138
138
|
monai/data/samplers.py,sha256=LUCAHy38ddGm67oJJp3W6ITBsDRqyGCrKtYn-pjrWc4,5102
|
139
139
|
monai/data/synthetic.py,sha256=H0MaQq2nnYxXEMlvOW1-XoWJWY_VKsgZ75tWLO1aCXg,7375
|
140
|
-
monai/data/test_time_augmentation.py,sha256=
|
140
|
+
monai/data/test_time_augmentation.py,sha256=KgIcPDwF_KelBCX118J5gx13sefGaDgQFUDgGWCZujA,9871
|
141
141
|
monai/data/thread_buffer.py,sha256=FtJlRwLHQzU9sf3XJk4G7b_-uKXaRQHAOMauc-zWN2Q,8840
|
142
142
|
monai/data/torchscript_utils.py,sha256=KoJinpJiNepP6i-1DDy3-8m1Qg1bPfAZTScmXr0LT6g,5502
|
143
143
|
monai/data/ultrasound_confidence_map.py,sha256=pEAp4lr-s00_T9d4IEYSJ5B9VQwf_T7BS9GBx8jw_Sg,14464
|
144
|
-
monai/data/utils.py,sha256=
|
144
|
+
monai/data/utils.py,sha256=rqJQlthvhmZcemtnDZFcJzQqw9lwzKrAx_pJYhfRhpk,66665
|
145
145
|
monai/data/video_dataset.py,sha256=mMTZCkgAx_BBoF4HHWcmEuT9zoNoUVPFtPeYYt76t-A,9075
|
146
146
|
monai/data/wsi_datasets.py,sha256=Ga5VnOdOXU_tlhdub0ueD4VtWhkQG4IrueXX-abE3bA,18619
|
147
|
-
monai/data/wsi_reader.py,sha256=
|
148
|
-
monai/engines/__init__.py,sha256=
|
147
|
+
monai/data/wsi_reader.py,sha256=yVbgl44bS9xF0wsr_ZeLwaljMlTOrtjVTpYKykydEMU,49508
|
148
|
+
monai/engines/__init__.py,sha256=oV0zH5n8qPdCCNZCqLqN4Z7iqADouDtZmtswWQoZWOk,1094
|
149
149
|
monai/engines/evaluator.py,sha256=me4ay5X_17TGXrFBb9td2i38Vam7n7RofJNyqo_aB7E,26934
|
150
|
-
monai/engines/trainer.py,sha256=
|
151
|
-
monai/engines/utils.py,sha256=
|
150
|
+
monai/engines/trainer.py,sha256=Dnv_jI7uzgMvZzKzvWUS4WJ7brotD2TnI3GF2vhrcfo,38445
|
151
|
+
monai/engines/utils.py,sha256=1OoDZbsIL6R_j5cz4c3ZCQ90Z1QUh8XMgh8guzf5CmQ,15656
|
152
152
|
monai/engines/workflow.py,sha256=EAWMehQz28o-fX8MKSVBjhI1YAM7-Gt-w1HfzcMl4gI,15250
|
153
153
|
monai/fl/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
154
154
|
monai/fl/client/__init__.py,sha256=Wnkcf-Guhi-d29eAH0p51jz1Tn9WSVM4UUGbbb9SAqQ,725
|
@@ -176,7 +176,7 @@ monai/handlers/mean_iou.py,sha256=-4vDqYx-Zd77PcR2-Wg6X-M35n13sMV5VysGiDCvjbQ,28
|
|
176
176
|
monai/handlers/metric_logger.py,sha256=IEXGngnGh75Mxt1w6Nd4Tau8qHQjyZFLGzoePteH1jM,5477
|
177
177
|
monai/handlers/metrics_reloaded_handler.py,sha256=9JtfWeDvjrdKNMKpRJQBu0k6XGxg8hfOm6224sB4A6E,6195
|
178
178
|
monai/handlers/metrics_saver.py,sha256=GPTaIeXi0noRyW2BQYQtazFfGyezmqSBAYWeAF-C5t0,8560
|
179
|
-
monai/handlers/mlflow_handler.py,sha256=
|
179
|
+
monai/handlers/mlflow_handler.py,sha256=8feCVc7oyhV24jPftHpBs5BMt_E-22efcmZ0C-QC-LA,23233
|
180
180
|
monai/handlers/nvtx_handlers.py,sha256=dBITb2hboynktwZNkRrlqM7STu7n3qXrdoC1-IogWc4,6819
|
181
181
|
monai/handlers/panoptic_quality.py,sha256=Dr_cMANJne1Cvc_pnI33QAUMAVKbkO4NBfTFjedGZOE,3651
|
182
182
|
monai/handlers/parameter_scheduler.py,sha256=UE0Lww8ZYyXcHq9N4TXoWmJWSQaYTwpLlLHDeq2p_UY,7119
|
@@ -190,8 +190,8 @@ monai/handlers/surface_distance.py,sha256=HKQrRGy08uWNr9X-mJ1IhMwV_ndZOijEJS7TYL
|
|
190
190
|
monai/handlers/tensorboard_handlers.py,sha256=FvuK2Ymc9oBoGJQYUcUxBKVNU6a_I5agUXUUgNfIvYM,22615
|
191
191
|
monai/handlers/utils.py,sha256=IXdBBGlQ0rwBeTlFKE1br4Mq42zcAvFgSF7RPg-yAiU,10239
|
192
192
|
monai/handlers/validation_handler.py,sha256=8UicJSkRhJZh7RuK07isiLii_6WpN3AclrbqtV4ny6M,3698
|
193
|
-
monai/inferers/__init__.py,sha256=
|
194
|
-
monai/inferers/inferer.py,sha256=
|
193
|
+
monai/inferers/__init__.py,sha256=K74t_RCeUPdEZvHzIPzVAwZ9DtmouLqhb3qDEmFBWs4,1107
|
194
|
+
monai/inferers/inferer.py,sha256=aZwCmM6WGj49SHi_jIkQeGDstMz45frvM1Lomoeqzm4,92669
|
195
195
|
monai/inferers/merger.py,sha256=Ch-qoGUVTTDWN9z_LXBRxElvyuZxOmuqAcecpg1xxAg,15566
|
196
196
|
monai/inferers/splitter.py,sha256=_hTnFdvDNRckkA7ZGQehVsNZw83oXoGFWyk5VXNqgJg,21149
|
197
197
|
monai/inferers/utils.py,sha256=dloXtQY_zI_h-_ppoJ2P-0ij9j2vCVEiq5VyL1k-Bs0,20386
|
@@ -218,7 +218,7 @@ monai/losses/unified_focal_loss.py,sha256=rCj8IpueYH_UMrOUXU0tjbXIN4Uix3bGnRZQtR
|
|
218
218
|
monai/metrics/__init__.py,sha256=DUjK3_qfGZbw0zCv6OJgMSL3AfiYN47aYqLsxn69-HU,2174
|
219
219
|
monai/metrics/active_learning_metrics.py,sha256=uKID2O4mnY-9P2ZzyT4sqJd2NfgzjSpNKpAwulWCozU,8211
|
220
220
|
monai/metrics/confusion_matrix.py,sha256=Spb20jYPnbgGZfPKDQI36ePznPf1xujxhboNnW8HxdQ,15064
|
221
|
-
monai/metrics/cumulative_average.py,sha256=
|
221
|
+
monai/metrics/cumulative_average.py,sha256=8GGjHmiBboBikprg1380SsNn7RgzFIrHGWBYDBv6ebE,5636
|
222
222
|
monai/metrics/f_beta_score.py,sha256=urI0J_tvl0qQ5-l2fgWV_jChbgpzLmgpRq125B3yxpw,3984
|
223
223
|
monai/metrics/fid.py,sha256=P9wBKnumEdCgKlVUuEt9XzY5umPK1fXnnyXmljDl5N4,4794
|
224
224
|
monai/metrics/froc.py,sha256=q7MAFsHHIp5EHBHwa5UbF5PRApjUonw-hUXax9k1WxQ,7981
|
@@ -229,22 +229,24 @@ monai/metrics/meandice.py,sha256=bFiDcK-af4cqV-JHAO2Qh2ixwj6fLjaBCaCO6jBAmxQ,134
|
|
229
229
|
monai/metrics/meaniou.py,sha256=cGoW1re7v4hxXJfjyEVEFNsuzEupgJaIe6ZK_qrbIjw,7004
|
230
230
|
monai/metrics/metric.py,sha256=VtIMNudwFkEhGAX1n0aYMaj18yKtmENKpo0JuWoVFvQ,15203
|
231
231
|
monai/metrics/mmd.py,sha256=a_O0WlUPrtegG16eBnEaf1HngPN4s4nAH1WtvGo-8BU,3299
|
232
|
-
monai/metrics/panoptic_quality.py,sha256=
|
232
|
+
monai/metrics/panoptic_quality.py,sha256=hsOr9kac9LLVOI2tvFuY80sfTk9w9HOG6zaBxtjFBvI,13707
|
233
233
|
monai/metrics/regression.py,sha256=JV7x8ibD04hZeWz83Ac26jjyufsCanvAmohD-eWKtbY,26218
|
234
|
-
monai/metrics/rocauc.py,sha256=
|
234
|
+
monai/metrics/rocauc.py,sha256=xOopgYaahaH1-PmD4yG3B3f25kA95yK56BbXIykra60,8094
|
235
235
|
monai/metrics/surface_dice.py,sha256=aNERsTuJkPMfxatPaAzoW1KtvZvUAv4qe_7Kl_dOROI,15149
|
236
236
|
monai/metrics/surface_distance.py,sha256=bKDTm7ulhjfiphHLrDJoA3OKI3npwQy2Z5wY-JkXtXg,9727
|
237
237
|
monai/metrics/utils.py,sha256=jJiIFGGa-iwvz1otHAKqPKTNmfZqd2dI7_Hsfblgxqk,46914
|
238
238
|
monai/metrics/wrapper.py,sha256=c1zg-xcypQyZ840TEuhhLgr4sClYMWTxlv1OieJTtvE,11781
|
239
239
|
monai/networks/__init__.py,sha256=X-z-kmVt9kwoNPgfYITGycnvG_9HC3_RSRKD2YC35Ag,1020
|
240
|
-
monai/networks/utils.py,sha256
|
241
|
-
monai/networks/blocks/__init__.py,sha256
|
240
|
+
monai/networks/utils.py,sha256=-ayrjlK_VSCqjSuGnl4shFiM6KazV68gZVu16mJPxIQ,50306
|
241
|
+
monai/networks/blocks/__init__.py,sha256=-LMGPMN-eHzwsjkb88H66kImpr4v2hYATZ2y-mRm_K0,2264
|
242
242
|
monai/networks/blocks/acti_norm.py,sha256=bVGXbTZ_ssRvmED5R7LOQ7jj4V6WbVFl8JMO-4iZ2Dk,4275
|
243
243
|
monai/networks/blocks/activation.py,sha256=S5k3zcP2PsHBkeIxgWgNg8ppW80tTResVP2j9ZsvTFw,5839
|
244
244
|
monai/networks/blocks/aspp.py,sha256=GGGE7NfWj77RkaWHbcLuUP4Aff-WeiDrtgtFuSoekQk,4380
|
245
|
+
monai/networks/blocks/attention_utils.py,sha256=UAlttLpn8vJCIiYyWXEUF-NzVTQBOK-aTieGtR5WrXk,4951
|
245
246
|
monai/networks/blocks/backbone_fpn_utils.py,sha256=mdXFwtnRgwuaisTlY-c7OkY1ZZBY3I82dAjpXFAZFbg,7488
|
246
247
|
monai/networks/blocks/convolutions.py,sha256=gRmbYfy3IR4taiXuxeH5KGOFjP55FoVWfP4e1L6ai0s,11686
|
247
248
|
monai/networks/blocks/crf.py,sha256=gHyRgBWD9DmmbCJnXwsMa6WN7N9fDLuT_SwH8MnHhXE,5009
|
249
|
+
monai/networks/blocks/crossattention.py,sha256=ofE4BBMnOYilwujR_RVuCafFCdvKeeRIJgMd-y0qEVk,7452
|
248
250
|
monai/networks/blocks/denseblock.py,sha256=hs1rcBp95euZT5ULjgefPApZH75-hqSaVKKNtHdGt10,4747
|
249
251
|
monai/networks/blocks/dints_block.py,sha256=-JWz4-nnAjrOxU2oJ86-qN8Krb8FayKS8Zpbp1wLXzc,9255
|
250
252
|
monai/networks/blocks/downsample.py,sha256=18cwYXL5H3DC5Yq12cdqTIijDJfMCE2YNHlPetFB6UY,2413
|
@@ -258,34 +260,41 @@ monai/networks/blocks/mlp.py,sha256=88Ytls8BUmdTIs7y-YiapLA7WoxLEkXTGBmH5EtaCB0,
|
|
258
260
|
monai/networks/blocks/patchembedding.py,sha256=yjbZg4WIuUpyQSD_r_ZBrZqs60lGZMXVK18oHVhR9Tw,9248
|
259
261
|
monai/networks/blocks/pos_embed_utils.py,sha256=vFEQqxZ6UAmjcy_icFDL9EwjRHYXuIbWr1chWUJqO7g,4070
|
260
262
|
monai/networks/blocks/regunet_block.py,sha256=1FLIwVBtk66II6xQ7Q4LMY8DP0rMmeftN7HuaEgnf3A,8825
|
263
|
+
monai/networks/blocks/rel_pos_embedding.py,sha256=wuTJsk_NHSDX-3V0X9ctF99WIh2-SHLDbQxzrG7tz_4,2208
|
261
264
|
monai/networks/blocks/segresnet_block.py,sha256=dREFa0CWuSWlSOm53fT7vZz6UC2J_7JAEaeHB9rYjAk,3339
|
262
|
-
monai/networks/blocks/selfattention.py,sha256=
|
265
|
+
monai/networks/blocks/selfattention.py,sha256=RlCE9x_YIC4EeNKajJbhmFnA_Zftz8gyHu62kV3uxHA,6388
|
266
|
+
monai/networks/blocks/spade_norm.py,sha256=Kq2ImmCQBaFURMnOTj08aphgGkF3ghDm19kXpPRq91c,3654
|
267
|
+
monai/networks/blocks/spatialattention.py,sha256=DIHg9hGM5m1Rn0Bt6aP5Y2Fqqvc5D0I4PmbbLovb5m8,3308
|
263
268
|
monai/networks/blocks/squeeze_and_excitation.py,sha256=y2kXgoSFxywu-KCGYbI_d-NCCAEbuKAIY5gSqO_T7TI,12752
|
264
269
|
monai/networks/blocks/text_embedding.py,sha256=HIlCTQCSyOEXnqo1l9TOC05duCoeWd9Kb4Oc0gvLZKw,3814
|
265
|
-
monai/networks/blocks/transformerblock.py,sha256=
|
270
|
+
monai/networks/blocks/transformerblock.py,sha256=CTN_UBsD0dVfGZYCUDukOX1jWTFzp2nnSJMMh8iL9vE,3090
|
266
271
|
monai/networks/blocks/unetr_block.py,sha256=d_rqE76OFfd3QRcHuor5Zei2pOrupoleBWu3eYUup0c,9049
|
267
|
-
monai/networks/blocks/upsample.py,sha256=
|
272
|
+
monai/networks/blocks/upsample.py,sha256=CeqqKx31gNw1CT3xz6UpU0fOjgW-7ZWxCRAOH4qAcxs,14024
|
268
273
|
monai/networks/blocks/warp.py,sha256=XVFZKZR0kBhEtU5-xQsaqL06a-pAI7JJVupQCD2X4e8,7255
|
269
|
-
monai/networks/layers/__init__.py,sha256=
|
274
|
+
monai/networks/layers/__init__.py,sha256=eSiNtHu0EZ1A8fw_lPTi_4szdRMsgZlZhtL6TR7fUnc,1689
|
270
275
|
monai/networks/layers/conjugate_gradient.py,sha256=kCAwjtX_j5wrgR8x52WdGl4yCwZmcnUFONnM00G1sWU,3717
|
271
276
|
monai/networks/layers/convutils.py,sha256=zwbYK4WJO1Tj2KASnOfxwYnb3p4pizXxdZRm6I1P3j4,8288
|
272
277
|
monai/networks/layers/drop_path.py,sha256=SZtRNa1bDwk1rXWbUe70YDaw6H_NKeplm_Wk5Ye1L4Y,1802
|
273
|
-
monai/networks/layers/factories.py,sha256=
|
278
|
+
monai/networks/layers/factories.py,sha256=dMj-y3LRV5P_FmqMCZuf_A8P8l_fge3TVAXWzNhONuo,15795
|
274
279
|
monai/networks/layers/filtering.py,sha256=7ru9Yt3yOM-ko-UqzYp-2tMpb8VHt5d767F-KkzrqYY,17992
|
275
280
|
monai/networks/layers/gmm.py,sha256=Aq-YCHgUalgOZQ0x5mwYKJe1G7aiCiJybdkPTiiT120,3325
|
276
|
-
monai/networks/layers/simplelayers.py,sha256=
|
281
|
+
monai/networks/layers/simplelayers.py,sha256=ciUdKrj_DpEdT3AKs70aPySh73UMsyhoOCTiR2qk8Js,28478
|
277
282
|
monai/networks/layers/spatial_transforms.py,sha256=fz2t7-ibijNLqTYpAn4ZgdXtzBSIyWlaF35mQtqWRY4,25581
|
278
|
-
monai/networks/layers/utils.py,sha256=
|
283
|
+
monai/networks/layers/utils.py,sha256=k_2xVO8BTEMMVJtemUyKBWw4_5xtqd6OOTOG8qld8To,4916
|
284
|
+
monai/networks/layers/vector_quantizer.py,sha256=0PCcaH5_uaxFORHgEetQKazq74jgOVmvQJ3h4Ywat6Y,10058
|
279
285
|
monai/networks/layers/weight_init.py,sha256=ehwI5F7jm_lmDkK4qVL7ocIzCEPx5UPgLaURcsfMNwk,2253
|
280
|
-
monai/networks/nets/__init__.py,sha256=
|
286
|
+
monai/networks/nets/__init__.py,sha256=F6jnwrFljIP6f5BjR4SeKzi7mr6WU4OgjRvr3ySEvIQ,3807
|
281
287
|
monai/networks/nets/ahnet.py,sha256=RT-loCa5Z_3I2DWB8lmRkhxGXSsnMVBCEDpwo68-YB4,21570
|
282
288
|
monai/networks/nets/attentionunet.py,sha256=lqsrzpy0sRuuFjAtKUUJ0hT3lGF9skpepWXLG0JBo-k,9427
|
283
289
|
monai/networks/nets/autoencoder.py,sha256=QuLdDfDwhefIqA2n8XfmFyi5T8enP6O4PETdBKmFMKc,12586
|
290
|
+
monai/networks/nets/autoencoderkl.py,sha256=gSu8KF8bxM3SRRdvJcAwz5HVDzzXjG9synVvbPcLfHw,25801
|
284
291
|
monai/networks/nets/basic_unet.py,sha256=K76Q-WXuCPGNf8X9qa1wwtiv1gzwlERrL6BKqKcpzlQ,10951
|
285
292
|
monai/networks/nets/basic_unetplusplus.py,sha256=M2sSCgWvqgpiRq1tpR164udnbN1WkO1a81PmgCfV5lU,7961
|
286
293
|
monai/networks/nets/classifier.py,sha256=U94OM91_pNT74wQV-_LOxAnbLvjuJvnorMK-xcE7HJE,6293
|
294
|
+
monai/networks/nets/controlnet.py,sha256=qf6coiiZjA9_Xtd4RyPqSLB2RTAETTjcXxoHrJo3iMU,18565
|
287
295
|
monai/networks/nets/daf3d.py,sha256=mjQiaCreKR8isE1pMWfPMWP55Uq9jcELcldu2CZo5PE,23963
|
288
296
|
monai/networks/nets/densenet.py,sha256=0LZqWU3HNfnEkNKBPwVg2GFoeIHQB5aBfP2_U54bv8g,15823
|
297
|
+
monai/networks/nets/diffusion_model_unet.py,sha256=c6PGGYEiitswWr9C4yJfIGOVtwxTQSDQhc1PmIYIxLs,72850
|
289
298
|
monai/networks/nets/dints.py,sha256=GAL2cmWOk_mhsRaIdZ3pr-mMLqncWINdJCWj26IukL0,44775
|
290
299
|
monai/networks/nets/dynunet.py,sha256=S2DX_tby7e5iCHL7q6X6f-vT6HwP6tbb2lRq9gHVJ24,18210
|
291
300
|
monai/networks/nets/efficientnet.py,sha256=RcEM7ZTLCp9PzE06sCJDUbStzMZpItSiZjDlbRUaz-4,40671
|
@@ -296,16 +305,21 @@ monai/networks/nets/highresnet.py,sha256=1Mx8lR5K4sRXGWjspDAHaKq0WrX9Q7qz8CcBCKZ
|
|
296
305
|
monai/networks/nets/hovernet.py,sha256=E831rgNN8SP1lui8-ffV7IUscDWvyTr-YTqXcpof878,28684
|
297
306
|
monai/networks/nets/milmodel.py,sha256=aUDgYJG0kS3p4nBW_dF7b4cWwuC31w3KIzmUzXA08HE,9813
|
298
307
|
monai/networks/nets/netadapter.py,sha256=JtcME9pcg8ud4jHKZKM9fE-8leP2PQXgUIfKBdB0wcA,6102
|
299
|
-
monai/networks/nets/
|
308
|
+
monai/networks/nets/patchgan_discriminator.py,sha256=yTT0on0lzlDwSu4B9McMqdxqu5xD7Ws9wCwEkxvJEu0,8620
|
309
|
+
monai/networks/nets/quicknat.py,sha256=ko1BO9l4i4BVYG5V4ohkwUEyoRrPPPzmqNqnFhLTZ0k,20463
|
300
310
|
monai/networks/nets/regressor.py,sha256=6Nz5yJuQDJJOr5R0rhot_mHu7_MDCA4ybV48wS1HS1M,6482
|
301
311
|
monai/networks/nets/regunet.py,sha256=-A6ygR7lVyAflFyqWkVVOsY94uMXWol1f2xr_HmsU1c,18664
|
302
|
-
monai/networks/nets/resnet.py,sha256=
|
312
|
+
monai/networks/nets/resnet.py,sha256=oo1MCA9hccBVwDcMrZNpVmbDSRn3dOEkrn3DbKW2WZk,28141
|
303
313
|
monai/networks/nets/segresnet.py,sha256=xNkSIvdk7kAyc3eVn-U_gGj8MoGVc5nklFKc_fkgOUs,13994
|
304
314
|
monai/networks/nets/segresnet_ds.py,sha256=01R-t-cIvAoVEsqTRPC2sHVYGyiVfcvy8hng53X-6yQ,15703
|
305
315
|
monai/networks/nets/senet.py,sha256=gulqPMYmSABbMbN39NElGzSU1TKGviJas7EPTBaZ60A,19289
|
306
|
-
monai/networks/nets/
|
316
|
+
monai/networks/nets/spade_autoencoderkl.py,sha256=4PVlLjKEMHYEmmsGcRhsDBNy9I0gXOTTowmTpeZYylw,18243
|
317
|
+
monai/networks/nets/spade_diffusion_model_unet.py,sha256=JQJRMX96jLHPPUmetpCpy5ZPm4qjoO-NoI4dfnWNaPI,36785
|
318
|
+
monai/networks/nets/spade_network.py,sha256=GguYucjIRyT_rZa9DrvUmv00FtqXHZtY1VfJM9Rygns,16479
|
319
|
+
monai/networks/nets/swin_unetr.py,sha256=H7cjCHZJmZoXDcVFYXJM5iPfQbHZGt1AES2-UoNsGo4,44849
|
307
320
|
monai/networks/nets/torchvision_fc.py,sha256=3g5PD7C1MSkQ8xndhnVd0b3aN8zfshT8uiFS0OHyQaY,6309
|
308
321
|
monai/networks/nets/transchex.py,sha256=uA_RfTDfPhwA1ecAPZ9EDnMyJKn2tUMLEWdyB_rU2v0,15726
|
322
|
+
monai/networks/nets/transformer.py,sha256=ki5lBRjOIAX376OfoP0Ln6wI-olOqiRTnXODyv3v6Q0,6043
|
309
323
|
monai/networks/nets/unet.py,sha256=riKWB8iEEgO4CIiVTOo532726HWWBfuBcIHeoLvvN0w,13627
|
310
324
|
monai/networks/nets/unetr.py,sha256=wQC3mpn_jEcZb0RXef0ueTe4WGjmnZqQVKKdnemFjnc,8545
|
311
325
|
monai/networks/nets/varautoencoder.py,sha256=Pd9BdXW1iVjmAVCZIc2ElGtSDAWRBaLwEKxLDicyxZI,6282
|
@@ -313,6 +327,12 @@ monai/networks/nets/vit.py,sha256=SJ5MCJcVAQ2iTqkc1-AFF7oBgCkE7xcNr_ziGc8n_t8,62
|
|
313
327
|
monai/networks/nets/vitautoenc.py,sha256=tTX-JHNl2H4y9e5Wk9rrtR6i_ebJHq90O61DnbBFhek,6033
|
314
328
|
monai/networks/nets/vnet.py,sha256=zaJi5kSiTLAuFHThSZfhJvHP6zKh3oBWsTWG-328O_g,10820
|
315
329
|
monai/networks/nets/voxelmorph.py,sha256=M6jzGn09wmTd54NeacHLWElug-Iu0ajPS_HtUaLyzDY,20811
|
330
|
+
monai/networks/nets/vqvae.py,sha256=Zf9fTL_rluhuJhH6gTNB6iiKRfwBxfuuyhCdU9TLmAk,18417
|
331
|
+
monai/networks/schedulers/__init__.py,sha256=rPmrNvnt8Bh9D2omPMgDiGVuT1XVJlgtlWIlqA_sjb4,755
|
332
|
+
monai/networks/schedulers/ddim.py,sha256=a01QajgWksTYsPxs4DuBzy59mE_PcyTJedd6VqJv5g0,14376
|
333
|
+
monai/networks/schedulers/ddpm.py,sha256=DkUwyI_TdorGtV9a33aJ8FrPU7CbpYOXYvgYP7uDxds,11318
|
334
|
+
monai/networks/schedulers/pndm.py,sha256=9Qe8NOw_tvlpCBK7yvkmyriyGfIO5RRDV8ZKPh85cQY,14472
|
335
|
+
monai/networks/schedulers/scheduler.py,sha256=X5eu5AmtNiads9cgaFy5r7BdlKYASSICyGSyF-fk6x8,9206
|
316
336
|
monai/optimizers/__init__.py,sha256=XUL7o9vSL7bZImpxVZqcc1c8MwUMrOZL4nJ-mjAA7yM,796
|
317
337
|
monai/optimizers/lr_finder.py,sha256=tbVi6qd-LLI6pENM9cDUv-Hh1HqziO3Wb9aI6JoaPng,21992
|
318
338
|
monai/optimizers/lr_scheduler.py,sha256=YPY5MWgCTmExuIOBsVJrgfErkCT1ELBekcH0XeRP6Kk,4082
|
@@ -327,13 +347,13 @@ monai/transforms/nvtx.py,sha256=1EKEXZIhTUFKoIrJmd_fevwrHwo731dVFUFJQFiOk3w,3386
|
|
327
347
|
monai/transforms/traits.py,sha256=F8kmhnekTyaAdo8wIFjO3-uqpVtmFym3mNxbYbyvkFI,3563
|
328
348
|
monai/transforms/transform.py,sha256=XYunJKTgm99TPBAw4Ikams-wCpgGnKZYZTPN2042m7U,21532
|
329
349
|
monai/transforms/utils.py,sha256=-5AoltSz1qqIZ1jhYAWtis8gJd781Tj9g-coyYvBTZU,94942
|
330
|
-
monai/transforms/utils_create_transform_ims.py,sha256=
|
350
|
+
monai/transforms/utils_create_transform_ims.py,sha256=QEJVHsCZX7ZxsBArk6NjgCzSZuuokf8l1uFqiUZBBys,31155
|
331
351
|
monai/transforms/utils_pytorch_numpy_unification.py,sha256=9Exl8id6kPbFvdZLcgfpj0FCUSjrwIlB7qiSQ4OdTZM,18779
|
332
352
|
monai/transforms/croppad/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
333
|
-
monai/transforms/croppad/array.py,sha256=
|
353
|
+
monai/transforms/croppad/array.py,sha256=mSzd1XdNK4vZB98fll-gREQM1EWuPOfNdUNTpmiy-QA,74793
|
334
354
|
monai/transforms/croppad/batch.py,sha256=5ukcYk3VCDpk62AL5Q_jTqpXmSNTlw0UCUhDeAB4aV0,6138
|
335
|
-
monai/transforms/croppad/dictionary.py,sha256=
|
336
|
-
monai/transforms/croppad/functional.py,sha256=
|
355
|
+
monai/transforms/croppad/dictionary.py,sha256=WOzj_PjmoB3zLEmtQlafb9-PWgXd-s5K7Z5Doc8Adns,60746
|
356
|
+
monai/transforms/croppad/functional.py,sha256=iroD0XBaMG1Mox6-EotIh2nAUxJPrpIyUrHopc83Sug,12640
|
337
357
|
monai/transforms/intensity/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
338
358
|
monai/transforms/intensity/array.py,sha256=bhKIAMgJu-QMQA8df9QdyancMJMShOIOGHjE__4XdXo,121574
|
339
359
|
monai/transforms/intensity/dictionary.py,sha256=RXZeQG9dPvdvjoiWWlNkYec4NDWBxYXjfct4fywv1Ic,85059
|
@@ -351,7 +371,7 @@ monai/transforms/post/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJ
|
|
351
371
|
monai/transforms/post/array.py,sha256=Btv9zElhzHpGAJSGp6N49mXZCI_DeVlB3gXY0Ue00_k,44998
|
352
372
|
monai/transforms/post/dictionary.py,sha256=pq4Oh3GoDcS6sjUkLvHzYmySxuxzVW7grjogFuRsUsA,43042
|
353
373
|
monai/transforms/regularization/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
354
|
-
monai/transforms/regularization/array.py,sha256=
|
374
|
+
monai/transforms/regularization/array.py,sha256=yJbvs0-ElS7uK8jEZzYOL-nW2wizXvwni77s1pR7qvk,8036
|
355
375
|
monai/transforms/regularization/dictionary.py,sha256=b2hw8nElkQeyu3LZSnWvz7pQMcK9tCuNHpLueAGTQr8,4800
|
356
376
|
monai/transforms/signal/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
357
377
|
monai/transforms/signal/array.py,sha256=eTlvqOIUQixh-voTNJcl532RvG4ZlQBNeHhg3TT3Cto,16325
|
@@ -360,13 +380,13 @@ monai/transforms/smooth_field/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6F
|
|
360
380
|
monai/transforms/smooth_field/array.py,sha256=Pz4ErmcfVTRZpBe4_IAXTWHlGSmRfExegNKYyrSVwsE,17856
|
361
381
|
monai/transforms/smooth_field/dictionary.py,sha256=iU4V2VjSy2H1K03KgumMUr3cyZVWEJS0W-tgc6SZtP4,11194
|
362
382
|
monai/transforms/spatial/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
363
|
-
monai/transforms/spatial/array.py,sha256=
|
383
|
+
monai/transforms/spatial/array.py,sha256=alooVNRtqxNFycF1G31J23sgz3EJnddzJImQUajNWBY,183254
|
364
384
|
monai/transforms/spatial/dictionary.py,sha256=mvP_skSEI1sMl9y-AS3PZqNHhTLK6iOVOfbdezpNiNs,131672
|
365
385
|
monai/transforms/spatial/functional.py,sha256=DCeJg2s3pPGd87cpryMsUMObTePhnDf4QX_dKtRpFTo,31249
|
366
386
|
monai/transforms/utility/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
367
387
|
monai/transforms/utility/array.py,sha256=Pcg0nJEAHR60jydZTyueTSss9kaOiM4v6UFF1Fnj0PY,70600
|
368
388
|
monai/transforms/utility/dictionary.py,sha256=hF90-R2wAMLjYZiGz8xjTVhz4z4hmmrNDXZ5DEC7zLs,73114
|
369
|
-
monai/utils/__init__.py,sha256=
|
389
|
+
monai/utils/__init__.py,sha256=QbMAngvOTgxcwIUpo-LRRBF8PtgG3bzgqXLGVlcUGnc,3757
|
370
390
|
monai/utils/aliases.py,sha256=uBxkLudRfy3Rts9RZo4NDPGoq4e3Ymcaihk6lT92GFo,4096
|
371
391
|
monai/utils/component_store.py,sha256=VMF7CtPu5Wi_eX_qFtm9iWo5kvoWFuCUIxdRzk90zZo,4498
|
372
392
|
monai/utils/decorators.py,sha256=YRK5iEMdbc2INrWnBNDSMTaHge_0ezRf2b9yJGL-opg,3129
|
@@ -374,22 +394,23 @@ monai/utils/deprecate_utils.py,sha256=gKeEV4MsI51qeQ5gci2me_C-0e-tDwa3VZzd3XPQqL
|
|
374
394
|
monai/utils/dist.py,sha256=mVaKlBTQJdWAG910sh5pGLEbb_KhRAXV5cPz7amH88Y,8639
|
375
395
|
monai/utils/enums.py,sha256=Gdo9WBrFODIYz5zt6c00hGz0bqjUQbhCWsfGSgKlnAU,19674
|
376
396
|
monai/utils/jupyter_utils.py,sha256=QqcKhJxzEf6YwM8Ik_HvfVDr7gNfrfzCXdzd2urEH8M,15651
|
377
|
-
monai/utils/misc.py,sha256=
|
397
|
+
monai/utils/misc.py,sha256=GJIDxr42juFjnzUTvLtYndcpBQ-EDz6EVXIc7anBoNo,31380
|
378
398
|
monai/utils/module.py,sha256=Uu45ec-NHtccrA1Kv_QL-uxESLcgHLavCg9XelIa6lE,25148
|
379
399
|
monai/utils/nvtx.py,sha256=i9JBxR1uhW1ZCgLPLlTx8b907QlXkFzJyTBLMlFjhtU,6876
|
400
|
+
monai/utils/ordering.py,sha256=0nlA5b5QpVCHbtiCbTC-YsqjTmjm0bub0IeJhGFBOes,8270
|
380
401
|
monai/utils/profiling.py,sha256=V2_cSHgrcmVF48_G3nUi2-O6fnXsS89nSlb8jj58YLo,15937
|
381
402
|
monai/utils/state_cacher.py,sha256=ERBE-mnnf47MwKSq-pNbfu1D2C4ZqKH-mORyLaBa3EE,5955
|
382
403
|
monai/utils/tf32.py,sha256=4bqpPxoTAMmQDNRbbrd4qHG27e1RrxeAmfDf3vP8tQc,3141
|
383
404
|
monai/utils/type_conversion.py,sha256=CwmAfcFNgNOQdMaNdrDcIuj7_esJls4-BymtMD03ZuM,21520
|
384
405
|
monai/visualize/__init__.py,sha256=p7dv9-hRa9vAhlpHyk86yap9HgeDeJRO3pXmFhDx8Mc,1038
|
385
|
-
monai/visualize/class_activation_maps.py,sha256=
|
406
|
+
monai/visualize/class_activation_maps.py,sha256=5eEQkmpcE3QpivadjlsRZBLcUc7NpJHDfWkKCLOAnUM,16288
|
386
407
|
monai/visualize/gradient_based.py,sha256=oXqMxqIClVlrgloZwgdTUl4pWllsoS0ysbjuvAbu-Kg,6278
|
387
|
-
monai/visualize/img2tensorboard.py,sha256=
|
408
|
+
monai/visualize/img2tensorboard.py,sha256=NnMcyfIFqX-jD7TBO3Rn02zt5uug79d_7pIIaVD5c-I,9228
|
388
409
|
monai/visualize/occlusion_sensitivity.py,sha256=OQHEJLyIhB8zWqQsfKaX-1kvCjWFVYtLfS4dFC0nKFI,18160
|
389
410
|
monai/visualize/utils.py,sha256=B-MhTVs7sQbIqYS3yPnpBwPw2K82rE2PBtGIfpwZtWM,9894
|
390
411
|
monai/visualize/visualizer.py,sha256=qckyaMZCbezYUwE20k5yc-Pb7UozVavMDbrmyQwfYHY,1377
|
391
|
-
monai_weekly-1.4.
|
392
|
-
monai_weekly-1.4.
|
393
|
-
monai_weekly-1.4.
|
394
|
-
monai_weekly-1.4.
|
395
|
-
monai_weekly-1.4.
|
412
|
+
monai_weekly-1.4.dev2430.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
413
|
+
monai_weekly-1.4.dev2430.dist-info/METADATA,sha256=NGO426YBM0t6l0tAR8nzoxySiy59z7D8s9J8LYc_ZQ8,10953
|
414
|
+
monai_weekly-1.4.dev2430.dist-info/WHEEL,sha256=Wyh-_nZ0DJYolHNn1_hMa4lM7uDedD_RGVwbmTjyItk,91
|
415
|
+
monai_weekly-1.4.dev2430.dist-info/top_level.txt,sha256=UaNwRzLGORdus41Ip446s3bBfViLkdkDsXDo34J2P44,6
|
416
|
+
monai_weekly-1.4.dev2430.dist-info/RECORD,,
|