molcraft 0.1.0rc10__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- molcraft/__init__.py +18 -0
- molcraft/callbacks.py +100 -0
- molcraft/chem.py +714 -0
- molcraft/datasets.py +132 -0
- molcraft/descriptors.py +149 -0
- molcraft/features.py +379 -0
- molcraft/featurizers.py +727 -0
- molcraft/layers.py +2034 -0
- molcraft/losses.py +37 -0
- molcraft/models.py +627 -0
- molcraft/ops.py +195 -0
- molcraft/records.py +187 -0
- molcraft/tensors.py +561 -0
- molcraft/trainers.py +212 -0
- molcraft-0.1.0rc10.dist-info/METADATA +118 -0
- molcraft-0.1.0rc10.dist-info/RECORD +19 -0
- molcraft-0.1.0rc10.dist-info/WHEEL +5 -0
- molcraft-0.1.0rc10.dist-info/licenses/LICENSE +21 -0
- molcraft-0.1.0rc10.dist-info/top_level.txt +1 -0
molcraft/trainers.py
ADDED
|
@@ -0,0 +1,212 @@
|
|
|
1
|
+
import keras
|
|
2
|
+
import warnings
|
|
3
|
+
|
|
4
|
+
from molcraft import layers
|
|
5
|
+
from molcraft import models
|
|
6
|
+
from molcraft import tensors
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
@keras.saving.register_keras_serializable(package='molcraft')
|
|
10
|
+
class Trainer(models.GraphModel):
|
|
11
|
+
|
|
12
|
+
'''Base trainer.
|
|
13
|
+
|
|
14
|
+
Wraps and (pre)trains a graph neural network for a certain task.
|
|
15
|
+
|
|
16
|
+
Args:
|
|
17
|
+
model:
|
|
18
|
+
A `models.GraphModel` to be (pre)trained.
|
|
19
|
+
'''
|
|
20
|
+
|
|
21
|
+
def __init__(self, model: models.GraphModel, **kwargs) -> None:
|
|
22
|
+
super().__init__(**kwargs)
|
|
23
|
+
self.model = model
|
|
24
|
+
|
|
25
|
+
def get_config(self) -> dict:
|
|
26
|
+
config = super().get_config()
|
|
27
|
+
config['model'] = keras.saving.serialize_keras_object(self.model)
|
|
28
|
+
return config
|
|
29
|
+
|
|
30
|
+
@classmethod
|
|
31
|
+
def from_config(cls, config: dict) -> 'Trainer':
|
|
32
|
+
config['model'] = keras.saving.deserialize_keras_object(config['model'])
|
|
33
|
+
return super().from_config(config)
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
@keras.saving.register_keras_serializable(package='molcraft')
|
|
37
|
+
class NodePredictionTrainer(Trainer):
|
|
38
|
+
|
|
39
|
+
'''Node prediction trainer.
|
|
40
|
+
|
|
41
|
+
Wraps and (pre)trains a graph neural network to perform node predictions.
|
|
42
|
+
|
|
43
|
+
Ignores super nodes and edges, if they exist.
|
|
44
|
+
|
|
45
|
+
Args:
|
|
46
|
+
model:
|
|
47
|
+
A `models.GraphModel` to be (pre)trained.
|
|
48
|
+
decoder:
|
|
49
|
+
An optional decoder for converting updated node features to node predictions.
|
|
50
|
+
If None, a `keras.layers.Dense` layer is used with `units` set to `label` dim.
|
|
51
|
+
select_rate:
|
|
52
|
+
The rate of which nodes will be selected for prediction. If None, all nodes are predicted.
|
|
53
|
+
mask_selected:
|
|
54
|
+
Whether to mask the selected nodes. Only relevant if `select_rate` is specified.
|
|
55
|
+
edge_masking_rate:
|
|
56
|
+
The rate of which edges will be masked. If None, edges will not be masked.
|
|
57
|
+
Only relevant if `select_rate` is specified.
|
|
58
|
+
|
|
59
|
+
Example:
|
|
60
|
+
|
|
61
|
+
>>> import molcraft
|
|
62
|
+
>>> import keras
|
|
63
|
+
>>>
|
|
64
|
+
>>> featurizer = molcraft.featurizers.MolGraphFeaturizer(
|
|
65
|
+
... atom_features=[
|
|
66
|
+
... molcraft.features.AtomType(['C', 'N', 'O', 'P', 'S']),
|
|
67
|
+
... ]
|
|
68
|
+
... )
|
|
69
|
+
>>> graph = featurizer(['N[C@@H](C)C(=O)O', 'N[C@@H](CS)C(=O)O'])
|
|
70
|
+
>>> # Label nodes with the one-hot encoded atom types for illustration
|
|
71
|
+
>>> graph = graph.update({'node': {'label': graph.node['feature']}})
|
|
72
|
+
>>>
|
|
73
|
+
>>> inputs = molcraft.layers.Input(graph.spec)
|
|
74
|
+
>>> x = molcraft.layers.NodeEmbedding(128)(inputs)
|
|
75
|
+
>>> x = molcraft.layers.EdgeEmbedding(128)(x)
|
|
76
|
+
>>> x = molcraft.layers.GraphConv(128)(x)
|
|
77
|
+
>>> outputs = molcraft.layers.GraphConv(128)(x)
|
|
78
|
+
>>> model = molcraft.models.GraphModel(inputs, outputs)
|
|
79
|
+
>>>
|
|
80
|
+
>>> pretrainer = molcraft.trainers.NodePredictionTrainer(
|
|
81
|
+
... model,
|
|
82
|
+
... decoder=None, # Dense(units=node_label_dim)
|
|
83
|
+
... select_rate=0.5,
|
|
84
|
+
... mask_selected=True,
|
|
85
|
+
... )
|
|
86
|
+
>>> pretrainer.compile(
|
|
87
|
+
... optimizer=keras.optimizers.Adam(1e-4),
|
|
88
|
+
... loss=keras.losses.CategoricalCrossentropy(from_logits=True),
|
|
89
|
+
... )
|
|
90
|
+
>>> pretrainer.fit(graph, epochs=10)
|
|
91
|
+
>>> # pretrainer.model.save('/tmp/model.keras')
|
|
92
|
+
'''
|
|
93
|
+
|
|
94
|
+
def __init__(
|
|
95
|
+
self,
|
|
96
|
+
model: models.GraphModel,
|
|
97
|
+
decoder: keras.layers.Layer | None = None,
|
|
98
|
+
select_rate: float | None = None,
|
|
99
|
+
mask_selected: bool = False,
|
|
100
|
+
edge_masking_rate: float | None = None,
|
|
101
|
+
**kwargs
|
|
102
|
+
) -> None:
|
|
103
|
+
super().__init__(model=model, **kwargs)
|
|
104
|
+
|
|
105
|
+
for layer in self.model.layers:
|
|
106
|
+
if isinstance(layer, layers.NodeEmbedding):
|
|
107
|
+
break
|
|
108
|
+
else:
|
|
109
|
+
raise ValueError('Could not find `NodeEmbedding` layer.')
|
|
110
|
+
|
|
111
|
+
self._embedder = models.GraphModel(
|
|
112
|
+
self.model.input, layer._symbolic_output
|
|
113
|
+
)
|
|
114
|
+
self._model = models.GraphModel(
|
|
115
|
+
layer._symbolic_output, self.model.output
|
|
116
|
+
)
|
|
117
|
+
self._decoder = decoder
|
|
118
|
+
self._select_rate = select_rate
|
|
119
|
+
self._mask_selected = mask_selected
|
|
120
|
+
if edge_masking_rate and not mask_selected:
|
|
121
|
+
warnings.warn(
|
|
122
|
+
'Setting `edge_masking_rate` to `None`, '
|
|
123
|
+
'as `mask_selected` is set to `False`.'
|
|
124
|
+
)
|
|
125
|
+
edge_masking_rate = None
|
|
126
|
+
self._edge_masking_rate = edge_masking_rate
|
|
127
|
+
|
|
128
|
+
def build(self, spec: tensors.GraphTensor.Spec) -> None:
|
|
129
|
+
|
|
130
|
+
self._has_super = ('super' in spec.node)
|
|
131
|
+
self._has_edge_feature = ('feature' in spec.edge)
|
|
132
|
+
|
|
133
|
+
if self._mask_selected:
|
|
134
|
+
node_feature_dim = self._embedder._symbolic_output['node']['feature'].shape[-1]
|
|
135
|
+
self._node_mask_feature = self.get_weight(shape=[node_feature_dim])
|
|
136
|
+
|
|
137
|
+
if self._mask_selected and self._has_edge_feature and self._edge_masking_rate:
|
|
138
|
+
edge_feature_dim = self._embedder._symbolic_output['edge']['feature'].shape[-1]
|
|
139
|
+
self._edge_mask_feature = self.get_weight(shape=[edge_feature_dim])
|
|
140
|
+
elif self._edge_masking_rate and not self._has_edge_feature:
|
|
141
|
+
warnings.warn(
|
|
142
|
+
'Setting `edge_masking_rate` to `None`, '
|
|
143
|
+
'as no edge features exist.'
|
|
144
|
+
)
|
|
145
|
+
self._edge_masking_rate = None
|
|
146
|
+
|
|
147
|
+
if self._decoder is None:
|
|
148
|
+
label_dim = spec.node['label'].shape[-1]
|
|
149
|
+
self._decoder = keras.layers.Dense(units=label_dim)
|
|
150
|
+
|
|
151
|
+
def propagate(
|
|
152
|
+
self,
|
|
153
|
+
tensor: tensors.GraphTensor,
|
|
154
|
+
training: bool | None = None,
|
|
155
|
+
) -> tensors.GraphTensor:
|
|
156
|
+
sample_weight = tensor.node.get('sample_weight')
|
|
157
|
+
if sample_weight is None:
|
|
158
|
+
sample_weight = keras.ops.ones([tensor.num_nodes])
|
|
159
|
+
|
|
160
|
+
tensor = self._embedder(tensor)
|
|
161
|
+
|
|
162
|
+
if self._select_rate is not None and training:
|
|
163
|
+
# Select nodes to be predicted
|
|
164
|
+
is_not_super = (
|
|
165
|
+
True if not self._has_super else keras.ops.logical_not(tensor.node['super'])
|
|
166
|
+
)
|
|
167
|
+
r = keras.random.uniform(shape=[tensor.num_nodes])
|
|
168
|
+
node_mask = keras.ops.logical_and(is_not_super, self._select_rate > r)
|
|
169
|
+
sample_weight = keras.ops.where(node_mask, sample_weight, 0.0)
|
|
170
|
+
|
|
171
|
+
if self._mask_selected:
|
|
172
|
+
# Mask selected node features
|
|
173
|
+
node_feature_masked = keras.ops.where(
|
|
174
|
+
node_mask[:, None], self._node_mask_feature, tensor.node['feature']
|
|
175
|
+
)
|
|
176
|
+
tensor = tensor.update({'node': {'feature': node_feature_masked}})
|
|
177
|
+
|
|
178
|
+
if self._edge_masking_rate:
|
|
179
|
+
# Mask edge features
|
|
180
|
+
is_not_super = (
|
|
181
|
+
True if not self._has_super else keras.ops.logical_not(tensor.edge['super'])
|
|
182
|
+
)
|
|
183
|
+
r = keras.random.uniform(shape=[tensor.num_edges])
|
|
184
|
+
edge_mask = keras.ops.logical_and(is_not_super, self._edge_masking_rate > r)
|
|
185
|
+
edge_feature_masked = keras.ops.where(
|
|
186
|
+
edge_mask[:, None], self._edge_mask_feature, tensor.edge['feature']
|
|
187
|
+
)
|
|
188
|
+
tensor = tensor.update({'edge': {'feature': edge_feature_masked}})
|
|
189
|
+
|
|
190
|
+
node_feature = self._model(tensor).node['feature']
|
|
191
|
+
node_prediction = self._decoder(node_feature)
|
|
192
|
+
return tensor.update({
|
|
193
|
+
'node': {
|
|
194
|
+
'prediction': node_prediction,
|
|
195
|
+
'sample_weight': sample_weight
|
|
196
|
+
}
|
|
197
|
+
})
|
|
198
|
+
|
|
199
|
+
def get_config(self) -> dict:
|
|
200
|
+
config = super().get_config()
|
|
201
|
+
config.update({
|
|
202
|
+
'decoder': keras.saving.serialize_keras_object(self._decoder),
|
|
203
|
+
'select_rate': self._select_rate,
|
|
204
|
+
'mask_selected': self._mask_selected,
|
|
205
|
+
'edge_masking_rate': self._edge_masking_rate,
|
|
206
|
+
})
|
|
207
|
+
return config
|
|
208
|
+
|
|
209
|
+
@classmethod
|
|
210
|
+
def from_config(cls, config: dict) -> 'NodePredictionTrainer':
|
|
211
|
+
config['decoder'] = keras.saving.deserialize_keras_object(config['decoder'])
|
|
212
|
+
return super().from_config(config)
|
|
@@ -0,0 +1,118 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: molcraft
|
|
3
|
+
Version: 0.1.0rc10
|
|
4
|
+
Summary: Graph Neural Networks for Molecular Machine Learning
|
|
5
|
+
Author-email: Alexander Kensert <alexander.kensert@gmail.com>
|
|
6
|
+
License: MIT License
|
|
7
|
+
|
|
8
|
+
Copyright (c) 2025 Alexander Kensert
|
|
9
|
+
|
|
10
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
11
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
12
|
+
in the Software without restriction, including without limitation the rights
|
|
13
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
14
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
15
|
+
furnished to do so, subject to the following conditions:
|
|
16
|
+
|
|
17
|
+
The above copyright notice and this permission notice shall be included in all
|
|
18
|
+
copies or substantial portions of the Software.
|
|
19
|
+
|
|
20
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
21
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
22
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
23
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
24
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
25
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
26
|
+
SOFTWARE.
|
|
27
|
+
|
|
28
|
+
Project-URL: Homepage, https://github.com/compomics/molcraft
|
|
29
|
+
Keywords: python,machine-learning,deep-learning,graph-neural-networks,molecular-machine-learning,molecular-graphs,computational-chemistry,computational-biology
|
|
30
|
+
Classifier: Programming Language :: Python :: 3
|
|
31
|
+
Classifier: Intended Audience :: Science/Research
|
|
32
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
33
|
+
Classifier: Operating System :: POSIX :: Linux
|
|
34
|
+
Requires-Python: >=3.10
|
|
35
|
+
Description-Content-Type: text/markdown
|
|
36
|
+
License-File: LICENSE
|
|
37
|
+
Requires-Dist: tensorflow>=2.16
|
|
38
|
+
Requires-Dist: rdkit>=2023.9.5
|
|
39
|
+
Requires-Dist: pandas>=1.0.3
|
|
40
|
+
Requires-Dist: ipython>=8.12.0
|
|
41
|
+
Provides-Extra: gpu
|
|
42
|
+
Requires-Dist: tensorflow[and-cuda]>=2.16; extra == "gpu"
|
|
43
|
+
Dynamic: license-file
|
|
44
|
+
|
|
45
|
+
<img src="https://github.com/akensert/molcraft/blob/main/docs/_static/molcraft-logo.png" alt="molcraft-logo" width="90%">
|
|
46
|
+
|
|
47
|
+
**Deep Learning on Molecules**: A Minimalistic GNN package for Molecular ML.
|
|
48
|
+
|
|
49
|
+
> [!NOTE]
|
|
50
|
+
> In progress.
|
|
51
|
+
|
|
52
|
+
## Installation
|
|
53
|
+
|
|
54
|
+
For CPU users:
|
|
55
|
+
|
|
56
|
+
```bash
|
|
57
|
+
pip install molcraft
|
|
58
|
+
```
|
|
59
|
+
|
|
60
|
+
For GPU users:
|
|
61
|
+
```bash
|
|
62
|
+
pip install molcraft[gpu]
|
|
63
|
+
```
|
|
64
|
+
|
|
65
|
+
## Examples
|
|
66
|
+
|
|
67
|
+
```python
|
|
68
|
+
from molcraft import features
|
|
69
|
+
from molcraft import descriptors
|
|
70
|
+
from molcraft import featurizers
|
|
71
|
+
from molcraft import layers
|
|
72
|
+
from molcraft import models
|
|
73
|
+
import keras
|
|
74
|
+
|
|
75
|
+
featurizer = featurizers.MolGraphFeaturizer(
|
|
76
|
+
atom_features=[
|
|
77
|
+
features.AtomType(),
|
|
78
|
+
features.NumHydrogens(),
|
|
79
|
+
features.Degree(),
|
|
80
|
+
],
|
|
81
|
+
bond_features=[
|
|
82
|
+
features.BondType(),
|
|
83
|
+
features.IsRotatable(),
|
|
84
|
+
],
|
|
85
|
+
super_node=True,
|
|
86
|
+
self_loops=True,
|
|
87
|
+
include_hydrogens=False,
|
|
88
|
+
)
|
|
89
|
+
|
|
90
|
+
graph = featurizer([('N[C@@H](C)C(=O)O', 2.5), ('N[C@@H](CS)C(=O)O', 1.5)])
|
|
91
|
+
print(graph)
|
|
92
|
+
|
|
93
|
+
model = models.GraphModel.from_layers(
|
|
94
|
+
[
|
|
95
|
+
layers.Input(graph.spec),
|
|
96
|
+
layers.NodeEmbedding(dim=128),
|
|
97
|
+
layers.EdgeEmbedding(dim=128),
|
|
98
|
+
layers.GraphConv(units=128),
|
|
99
|
+
layers.GraphConv(units=128),
|
|
100
|
+
layers.GraphConv(units=128),
|
|
101
|
+
layers.GraphConv(units=128),
|
|
102
|
+
layers.Readout(),
|
|
103
|
+
keras.layers.Dense(units=1024, activation='elu'),
|
|
104
|
+
keras.layers.Dense(units=1024, activation='elu'),
|
|
105
|
+
keras.layers.Dense(1)
|
|
106
|
+
]
|
|
107
|
+
)
|
|
108
|
+
|
|
109
|
+
pred = model(graph)
|
|
110
|
+
print(pred)
|
|
111
|
+
|
|
112
|
+
# featurizers.save_featurizer(featurizer, '/tmp/featurizer.json')
|
|
113
|
+
# models.save_model(model, '/tmp/model.keras')
|
|
114
|
+
|
|
115
|
+
# loaded_featurizer = featurizers.load_featurizer('/tmp/featurizer.json')
|
|
116
|
+
# loaded_model = models.load_model('/tmp/model.keras')
|
|
117
|
+
```
|
|
118
|
+
|
|
@@ -0,0 +1,19 @@
|
|
|
1
|
+
molcraft/__init__.py,sha256=ogjj7XhYTN5VJeeRxH_MF07cKyDweLcJpdznkp6Tj-Q,462
|
|
2
|
+
molcraft/callbacks.py,sha256=B4gGWjVW_1ORrt38jfk1ZFI9c0rOpN5sgjGWVqs3Ess,3571
|
|
3
|
+
molcraft/chem.py,sha256=dPRB4aLk5U6nkzfHCTHosh6f7Cph16UH3Ri4JNCE6fw,22488
|
|
4
|
+
molcraft/datasets.py,sha256=1rHccqra5chIBwo2pz9vduyv0i07uY3CABzmAqWiFBU,4161
|
|
5
|
+
molcraft/descriptors.py,sha256=FI15LYcb0KXqvurCkXUkg_h7rOqRZnRPK5LaWdM7Q8M,4876
|
|
6
|
+
molcraft/features.py,sha256=q-wuRP9YjPu_v5czipsh00VEXEjgFaeuLk6dbgyD_VM,13505
|
|
7
|
+
molcraft/featurizers.py,sha256=yoepjnivhpy9pXb__yo1_oRP6eBFRv3JSWr8qBvWdVU,24765
|
|
8
|
+
molcraft/layers.py,sha256=Z-33g3XLSWLPNm0y6qV_4Sa736uu-W2Buf3GHA3nu3w,74033
|
|
9
|
+
molcraft/losses.py,sha256=piu4XYAgjnK7k9LqA4Vkh-SooYZ31sWwRfG1cacCwyA,1081
|
|
10
|
+
molcraft/models.py,sha256=sPM64xy7D70Hl_5HEXW-SiiaSEv86CjErtirW4KiRws,23917
|
|
11
|
+
molcraft/ops.py,sha256=cI373Bg51CXXKnn7vhH1GiZ2GrvkgzaG38fhlPmfIs0,6280
|
|
12
|
+
molcraft/records.py,sha256=b9i1azDM_OkY_E4Rl6etwbzOthekVM-Z7oTSxYg5aNM,5888
|
|
13
|
+
molcraft/tensors.py,sha256=g4CCBMt12vLANXtxt_LTbgXZh1wencnpDxuwU0ES_lA,22728
|
|
14
|
+
molcraft/trainers.py,sha256=-s3SdBUI2Hfvf3D3JLRAGpPSy0umUlhI5MPIg3eA9Jc,8018
|
|
15
|
+
molcraft-0.1.0rc10.dist-info/licenses/LICENSE,sha256=sbVeqlrtZ0V63uYhZGL5dCxUm8rBAOqe2avyA1zIQNk,1074
|
|
16
|
+
molcraft-0.1.0rc10.dist-info/METADATA,sha256=h80TBrpl1jHKqRCDvinrSl6_eqC4RQW2zYTFmnRmFmw,3881
|
|
17
|
+
molcraft-0.1.0rc10.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
18
|
+
molcraft-0.1.0rc10.dist-info/top_level.txt,sha256=dENV6MfOceshM6MQCgJlcN1ojZkiCL9B4F7XyUge3QM,9
|
|
19
|
+
molcraft-0.1.0rc10.dist-info/RECORD,,
|
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2025 Alexander Kensert
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
molcraft
|