modularitypruning 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,14 +1,16 @@
1
- from .partition_utilities import all_degrees, in_degrees, out_degrees, membership_to_communities, \
2
- membership_to_layered_communities
1
+ import warnings
3
2
  from collections import defaultdict
4
- import numpy as np
5
- from numpy.random import choice
6
3
  from math import floor
7
4
  from multiprocessing import Pool, cpu_count
8
- from scipy.spatial import HalfspaceIntersection
5
+
6
+ import numpy as np
7
+ from numpy.random import choice
9
8
  from scipy.linalg import LinAlgWarning
10
9
  from scipy.optimize import linprog, OptimizeWarning
11
- import warnings
10
+ from scipy.spatial import HalfspaceIntersection
11
+
12
+ from .partition_utilities import all_degrees, in_degrees, out_degrees, membership_to_communities, \
13
+ membership_to_layered_communities
12
14
 
13
15
 
14
16
  def get_interior_point(halfspaces, initial_num_sampled=50, full_retry_limit=10):
@@ -1,11 +1,10 @@
1
1
  import functools
2
+ from multiprocessing import Pool, cpu_count
3
+
2
4
  import igraph as ig
3
5
  import leidenalg
4
- from math import ceil
5
- from multiprocessing import Pool, cpu_count
6
- from tqdm import tqdm
7
6
  import numpy as np
8
- import psutil
7
+ from tqdm import tqdm
9
8
 
10
9
  LOW_MEMORY_THRESHOLD = 1e9 # 1 GB
11
10
 
@@ -6,14 +6,16 @@ module ``modularitypruning.louvain_utilities`` now shims single-layer functions
6
6
  in ``modularitypruning.leiden_utilities`` (though it still contains the legacy multi-layer functions since they can be
7
7
  faster in general -- leidenalg does not efficiently implement multilayer optimization).
8
8
  """
9
- from . import leiden_utilities
10
- from .leiden_utilities import sorted_tuple, LOW_MEMORY_THRESHOLD
11
- from .progress import Progress
9
+ import warnings
12
10
  from math import ceil
13
11
  from multiprocessing import Pool, cpu_count
12
+
14
13
  import numpy as np
15
14
  import psutil
16
- import warnings
15
+
16
+ from . import leiden_utilities
17
+ from .leiden_utilities import sorted_tuple, LOW_MEMORY_THRESHOLD
18
+ from .progress import Progress
17
19
 
18
20
  try:
19
21
  import louvain # import louvain if possible
@@ -1,8 +1,9 @@
1
+ import leidenalg
2
+
1
3
  from .leiden_utilities import singlelayer_leiden, multilayer_leiden
2
4
  from .parameter_estimation_utilities import leiden_part_with_membership, estimate_singlelayer_SBM_parameters, \
3
5
  gamma_estimate_from_parameters, omega_function_from_model, estimate_multilayer_SBM_parameters
4
6
  from .partition_utilities import in_degrees
5
- import leidenalg
6
7
 
7
8
 
8
9
  def iterative_monolayer_resolution_parameter_estimation(G, gamma=1.0, tol=1e-2, max_iter=25, verbose=False,
@@ -1,12 +1,14 @@
1
- from .leiden_utilities import leiden_part_with_membership, sorted_tuple
2
- from .champ_utilities import CHAMP_2D, CHAMP_3D
3
- from .partition_utilities import num_communities
1
+ import warnings
2
+ from math import log
3
+
4
4
  import igraph as ig
5
5
  import leidenalg
6
- from math import log
7
6
  import numpy as np
8
7
  from scipy.optimize import fsolve
9
- import warnings
8
+
9
+ from .champ_utilities import CHAMP_2D, CHAMP_3D
10
+ from .leiden_utilities import leiden_part_with_membership, sorted_tuple
11
+ from .partition_utilities import num_communities
10
12
 
11
13
 
12
14
  def estimate_singlelayer_SBM_parameters(G, partition, m=None):
@@ -1,4 +1,5 @@
1
1
  from collections import defaultdict
2
+
2
3
  from sklearn.metrics import adjusted_mutual_info_score, normalized_mutual_info_score
3
4
 
4
5
 
@@ -1,12 +1,14 @@
1
- from .partition_utilities import num_communities, ami
2
1
  from collections import defaultdict
3
2
  from random import sample, shuffle
4
- import numpy as np
3
+
5
4
  import matplotlib
6
- from matplotlib.patches import Polygon
7
- from matplotlib.collections import PatchCollection
8
5
  import matplotlib.pyplot as plt
6
+ import numpy as np
9
7
  import seaborn as sbn
8
+ from matplotlib.collections import PatchCollection
9
+ from matplotlib.patches import Polygon
10
+
11
+ from .partition_utilities import num_communities, ami
10
12
 
11
13
 
12
14
  def plot_adjacency(adj):
@@ -1,10 +1,9 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.4
2
2
  Name: modularitypruning
3
- Version: 1.4.0
4
- Summary: Pruning tool to identify small subsets of network partitions that are significant from the perspective of stochastic block model inference.
5
- Home-page: https://github.com/ragibson/ModularityPruning
6
- Author: Ryan Gibson
7
- Author-email: ryan.alex.gibson@gmail.com
3
+ Version: 1.5.0
4
+ Summary: Pruning tool to identify small subsets of network partitions that are significant from the perspective
5
+ Author-email: Ryan Gibson <ryan.alex.gibson@gmail.com>
6
+ License: MIT
8
7
  Classifier: Development Status :: 5 - Production/Stable
9
8
  Classifier: Topic :: Scientific/Engineering :: Information Analysis
10
9
  Classifier: Programming Language :: Python :: 3
@@ -13,9 +12,11 @@ Classifier: Programming Language :: Python :: 3.9
13
12
  Classifier: Programming Language :: Python :: 3.10
14
13
  Classifier: Programming Language :: Python :: 3.11
15
14
  Classifier: Programming Language :: Python :: 3.12
15
+ Classifier: Programming Language :: Python :: 3.13
16
+ Classifier: Programming Language :: Python :: 3.14
16
17
  Classifier: Programming Language :: Python :: 3 :: Only
17
18
  Classifier: License :: OSI Approved :: MIT License
18
- Requires-Python: >=3.8, <4
19
+ Requires-Python: >=3.8
19
20
  Description-Content-Type: text/markdown
20
21
  License-File: LICENSE
21
22
  Requires-Dist: leidenalg
@@ -24,9 +25,10 @@ Requires-Dist: numpy
24
25
  Requires-Dist: psutil
25
26
  Requires-Dist: igraph
26
27
  Requires-Dist: scikit-learn
27
- Requires-Dist: scipy >=1.7
28
+ Requires-Dist: scipy>=1.7
28
29
  Requires-Dist: seaborn
29
30
  Requires-Dist: tqdm
31
+ Dynamic: license-file
30
32
 
31
33
  # ModularityPruning
32
34
 
@@ -47,6 +49,7 @@ https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-022-20142-6/Media
47
49
  ).
48
50
 
49
51
  ## Installation
52
+
50
53
  This project is on [PyPI](https://pypi.org/project/modularitypruning/) and can
51
54
  be installed with
52
55
 
@@ -61,6 +64,7 @@ Alternatively, you can install it from this repository directly:
61
64
  python3 setup.py install
62
65
 
63
66
  <a name = "Basic Usage"></a>
67
+
64
68
  ## Basic Usage
65
69
 
66
70
  This package interfaces directly with python-igraph. A simple example of its
@@ -0,0 +1,14 @@
1
+ modularitypruning/__init__.py,sha256=U1iz51AVVzHw0aBZeJicxVg_L6TWq5pmv8Ep_bYyySU,238
2
+ modularitypruning/champ_utilities.py,sha256=yRLng9KciNxJst3Ybp24qlRnYvIEIe5Y-ZVsfSijkqc,16350
3
+ modularitypruning/leiden_utilities.py,sha256=kHHYFj30Ezl_YUhgmwEm-vPZ4K7658MqTGegra_4V_8,10360
4
+ modularitypruning/louvain_utilities.py,sha256=duGAK0PlIJvtpo689dNuRNixNXvLIWAPf-5ELGhEHZ4,8233
5
+ modularitypruning/parameter_estimation.py,sha256=n0_VPXa6QvFZqVEKhHSBUrnqQPTLRNGgNLDTsVymYT4,10480
6
+ modularitypruning/parameter_estimation_utilities.py,sha256=teJvq_w1gSjmA2weV9PDKTLN2xgCWgsIQhiY6ZlJ_xU,28152
7
+ modularitypruning/partition_utilities.py,sha256=0hPEftbV6xcYWdusiE65UZG99kqIrALH7Nwo_44KO-Q,957
8
+ modularitypruning/plotting.py,sha256=48yRl0--q1adi415pps1MbTtKtBMQxKVOXoRjPOxu-w,10570
9
+ modularitypruning/progress.py,sha256=XxkEVx8L9BoFnWtvUPg-kWtxUmE1RHqs5p5HPiTExUQ,971
10
+ modularitypruning-1.5.0.dist-info/licenses/LICENSE,sha256=eWz3HIQQxg7p1iSpUOUDKdDhGcuMPuVDDlcXf9F12D8,1068
11
+ modularitypruning-1.5.0.dist-info/METADATA,sha256=Vlq4_S_RBr4nUUuDwPw1n_jYZg4iI2tVP6xrDkCzwGk,3454
12
+ modularitypruning-1.5.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
13
+ modularitypruning-1.5.0.dist-info/top_level.txt,sha256=ZPOx3a-ek0Ge0ZMq-uvbySSaAL9MZ-t23-JkuHZXo9E,18
14
+ modularitypruning-1.5.0.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.43.0)
2
+ Generator: setuptools (80.9.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,14 +0,0 @@
1
- modularitypruning/__init__.py,sha256=U1iz51AVVzHw0aBZeJicxVg_L6TWq5pmv8Ep_bYyySU,238
2
- modularitypruning/champ_utilities.py,sha256=VveP8N9CvMODk3dPtVMRfNLji1pktaolA6iNoW6Fy-A,16348
3
- modularitypruning/leiden_utilities.py,sha256=sV3BkYONzVmKlpy-gUUUoL8XfKhwpytMRmCcijbsAiA,10395
4
- modularitypruning/louvain_utilities.py,sha256=Zt58Wl4hgu6-zejdl-N_NW04UC4rbYmSHgpfoGDC2Ws,8231
5
- modularitypruning/parameter_estimation.py,sha256=EPU5BDDauToPbAdG1lZc9p5Rl_oDqiC7bltfnjs5tg8,10479
6
- modularitypruning/parameter_estimation_utilities.py,sha256=OzgJT4jOo2ovoHzUbS0m40l2cqqOk9tBU9cF35Tmm_M,28150
7
- modularitypruning/partition_utilities.py,sha256=Fizqd0JuODL8W4BP2h8iV0WhZMK6HoKjH_QFNVDZkaI,956
8
- modularitypruning/plotting.py,sha256=3JqJOpfoq_Vj_6y8nqrYHhkSqDdI56iAb4pSAMcgEmI,10568
9
- modularitypruning/progress.py,sha256=XxkEVx8L9BoFnWtvUPg-kWtxUmE1RHqs5p5HPiTExUQ,971
10
- modularitypruning-1.4.0.dist-info/LICENSE,sha256=eWz3HIQQxg7p1iSpUOUDKdDhGcuMPuVDDlcXf9F12D8,1068
11
- modularitypruning-1.4.0.dist-info/METADATA,sha256=ZtLw4-g6NiP2r4G3Wcfk_ND_5wTjrNCn8etyjOkx5QM,3420
12
- modularitypruning-1.4.0.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
13
- modularitypruning-1.4.0.dist-info/top_level.txt,sha256=ZPOx3a-ek0Ge0ZMq-uvbySSaAL9MZ-t23-JkuHZXo9E,18
14
- modularitypruning-1.4.0.dist-info/RECORD,,