mns-scheduler 1.0.8.7__py3-none-any.whl → 1.4.3.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mns_scheduler/__init__.py +1 -3
- mns_scheduler/company_info/announce/company_announce_sync_service.py +65 -0
- mns_scheduler/company_info/{company_info_sync_api.py → base/sync_company_base_info_api.py} +239 -227
- mns_scheduler/company_info/base/sync_company_hold_info_api.py +37 -0
- mns_scheduler/company_info/base/sync_company_product_area_industry.py +161 -0
- mns_scheduler/company_info/clean/company_info_clean_api.py +133 -0
- mns_scheduler/company_info/constant/company_constant_data.py +497 -0
- mns_scheduler/company_info/{de_list_stock_service.py → de_list_stock/de_list_stock_service.py} +1 -1
- mns_scheduler/company_info/em_stock_info/__init__.py +7 -0
- mns_scheduler/company_info/em_stock_info/sync_em_stock_info_sync.py +80 -0
- mns_scheduler/company_info/remark/__init__.py +7 -0
- mns_scheduler/company_info/remark/company_remark_info_sync.py +46 -0
- mns_scheduler/concept/clean/kpl_concept_clean_api.py +1 -1
- mns_scheduler/concept/clean/ths_concept_clean_api.py +74 -51
- mns_scheduler/concept/ths/common/ths_concept_sync_common_api.py +112 -56
- mns_scheduler/concept/ths/common/ths_concept_update_common_api.py +6 -6
- mns_scheduler/concept/ths/detaill/__init__.py +0 -0
- mns_scheduler/concept/ths/detaill/ths_concept_detail_api.py +226 -0
- mns_scheduler/concept/ths/sync_new_index/sync_ths_concept_new_index_api.py +169 -0
- mns_scheduler/concept/ths/update_concept_info/sync_one_concept_all_symbols_api.py +11 -23
- mns_scheduler/concept/ths/update_concept_info/sync_one_symbol_all_concepts_api.py +19 -15
- mns_scheduler/db/col_move_service.py +10 -7
- mns_scheduler/db/db_status.py +1 -1
- mns_scheduler/db/script/__init__.py +7 -0
- mns_scheduler/db/script/col_move_script.py +45 -0
- mns_scheduler/db/script/db_move/__init__.py +7 -0
- mns_scheduler/db/script/db_move/col_move_one_service.py +34 -0
- mns_scheduler/db/script/sync/__init__.py +7 -0
- mns_scheduler/db/script/sync/local_mongo_util.py +231 -0
- mns_scheduler/db/script/sync/remote_data_sync_to_local.py +105 -0
- mns_scheduler/db/script/sync/remote_mongo_util.py +306 -0
- mns_scheduler/db/script/sync/sync_hui_ce_test_data.py +80 -0
- mns_scheduler/db/script/sync/sync_hui_ce_test_data_01.py +69 -0
- mns_scheduler/db/script/update/__init__.py +7 -0
- mns_scheduler/db/script/update/update_col_field.py +36 -0
- mns_scheduler/finance/__init__.py +1 -1
- mns_scheduler/finance/{em_financial_asset_liability_sync_service_api.py → em/em_financial_asset_liability_sync_service_api.py} +3 -3
- mns_scheduler/finance/{em_financial_profit_sync_service_api.py → em/em_financial_profit_sync_service_api.py} +30 -25
- mns_scheduler/finance/{finance_common_api.py → em/finance_common_api.py} +4 -4
- mns_scheduler/finance/sync_financial_report_service_task.py +202 -0
- mns_scheduler/finance/xue_qiu/down_load_xueqiu_report_api.py +77 -0
- mns_scheduler/finance/xue_qiu/sync_xue_qiu_fiance_data.py +161 -0
- mns_scheduler/hk/__init__.py +1 -1
- mns_scheduler/hk/hk_company_info_sync_service_api.py +49 -5
- mns_scheduler/hk/hk_industry_info_sync_service_api.py +68 -0
- mns_scheduler/industry/__init__.py +7 -0
- mns_scheduler/industry/ths/__init__.py +7 -0
- mns_scheduler/industry/ths/ths_industry_index_service.py +58 -0
- mns_scheduler/industry/ths/ths_industry_sync_service.py +68 -0
- mns_scheduler/irm/__init__.py +1 -1
- mns_scheduler/irm/api/__init__.py +1 -1
- mns_scheduler/irm/api/sh_stock_sns_sse_info_api.py +1 -1
- mns_scheduler/irm/api/sz_stock_sns_sse_info_api.py +1 -1
- mns_scheduler/irm/stock_irm_cninfo_service.py +15 -13
- mns_scheduler/k_line/clean/daily/__init__.py +1 -1
- mns_scheduler/k_line/clean/daily/daily_k_line_clean_common_service.py +57 -7
- mns_scheduler/k_line/clean/daily/daily_k_line_service.py +16 -3
- mns_scheduler/k_line/clean/k_line_info_clean_impl.py +3 -2
- mns_scheduler/k_line/clean/k_line_info_clean_task.py +42 -31
- mns_scheduler/k_line/clean/week_month/__init__.py +1 -1
- mns_scheduler/k_line/clean/week_month/normal_week_month_k_line_service.py +125 -27
- mns_scheduler/k_line/clean/week_month/sub_new_week_month_k_line_service.py +72 -17
- mns_scheduler/k_line/common/__init__.py +7 -0
- mns_scheduler/k_line/common/k_line_common_api.py +188 -0
- mns_scheduler/k_line/hot_stocks/__init__.py +1 -1
- mns_scheduler/k_line/hot_stocks/recent_hot_stocks_clean_service.py +1 -1
- mns_scheduler/k_line/month_week_daily/bfq_k_line_sync.py +77 -0
- mns_scheduler/k_line/{sync → month_week_daily}/daily_week_month_line_sync.py +14 -14
- mns_scheduler/k_line/sync_status/__init__.py +7 -0
- mns_scheduler/k_line/sync_status/k_line_sync_status_check.py +54 -0
- mns_scheduler/k_line/test/__init__.py +7 -0
- mns_scheduler/k_line/test/k_line_info_clean_his_data.py +41 -0
- mns_scheduler/k_line/year_quarter/__init__.py +7 -0
- mns_scheduler/k_line/year_quarter/year_quarter_line_sync.py +76 -0
- mns_scheduler/kpl/selection/symbol/sync_best_choose_symbol.py +4 -2
- mns_scheduler/kpl/selection/symbol/sync_kpl_concept_symbol_choose_reason_api.py +108 -0
- mns_scheduler/kpl/selection/total/sync_kpl_best_total_sync_api.py +12 -7
- mns_scheduler/lhb/__init__.py +1 -1
- mns_scheduler/lhb/stock_lhb_sync_service.py +1 -1
- mns_scheduler/open/__init__.py +1 -1
- mns_scheduler/open/sync_one_day_open_data_to_db_service.py +6 -22
- mns_scheduler/risk/__init__.py +1 -1
- mns_scheduler/risk/compliance/__init__.py +0 -0
- mns_scheduler/risk/compliance/undisclosed_annual_report_api.py +71 -0
- mns_scheduler/risk/financial/__init__.py +0 -0
- mns_scheduler/risk/financial/annual_report_audit_check_api.py +54 -0
- mns_scheduler/risk/financial/net_assets_check_api.py +75 -0
- mns_scheduler/risk/financial/profit_income_check_api.py +80 -0
- mns_scheduler/risk/financial/stock_equity_mortgage_check_api.py +1 -0
- mns_scheduler/risk/financial_report_risk_check_api.py +42 -0
- mns_scheduler/risk/major_violations/__init__.py +0 -0
- mns_scheduler/risk/{register_and_investigate_stock_sync_api.py → major_violations/register_and_investigate_stock_sync_api.py} +17 -8
- mns_scheduler/risk/self/__init__.py +0 -0
- mns_scheduler/risk/{wei_pan_stock_api.py → self/wei_pan_stock_api.py} +10 -4
- mns_scheduler/risk/test/__init__.py +7 -0
- mns_scheduler/{finance → risk}/test/fix_blask_list.py +6 -10
- mns_scheduler/risk/transactions/__init__.py +0 -0
- mns_scheduler/risk/transactions/transactions_check_api.py +183 -0
- mns_scheduler/self_choose/__init__.py +7 -0
- mns_scheduler/self_choose/ths_self_choose_service.py +158 -0
- mns_scheduler/trade/auto_ipo_buy_api.py +2 -2
- mns_scheduler/trade/auto_login/__init__.py +7 -0
- mns_scheduler/trade/auto_login/trader_auto_service.py +32 -0
- mns_scheduler/trade/auto_sell_service_api.py +10 -8
- mns_scheduler/trade/balance/__init__.py +7 -0
- mns_scheduler/trade/balance/ths_account_balance_service.py +7 -0
- mns_scheduler/trade/sync_position_api.py +41 -8
- mns_scheduler/trade/task/__init__.py +7 -0
- mns_scheduler/trade/task/trader_task_service.py +65 -0
- mns_scheduler/trade/tfp/__init__.py +7 -0
- mns_scheduler/trade/tfp/stock_tfp_info_sync.py +56 -0
- mns_scheduler/zb/stock_zb_pool_sync.py +1 -15
- mns_scheduler/zt/high_chg/sync_high_chg_pool_service.py +2 -3
- mns_scheduler/zt/high_chg/sync_high_chg_real_time_quotes_service.py +12 -8
- mns_scheduler/zt/open_data/kcx_high_chg_open_data_sync.py +10 -25
- mns_scheduler/zt/script/__init__.py +1 -1
- mns_scheduler/zt/script/fix_error_deal_day.py +41 -0
- mns_scheduler/zt/script/kcx_high_chg_open_his_data_handle.py +2 -11
- mns_scheduler/zt/script/sync_high_chg_pool_his_data.py +2 -2
- mns_scheduler/zt/script/sync_now_higt_chg_zt.py +43 -0
- mns_scheduler/zt/zt_pool/em_zt_pool_sync_api.py +413 -0
- mns_scheduler/zt/zt_pool/ths_zt_pool_sync_api.py +193 -0
- mns_scheduler/zt/zt_pool/update_null_zt_reason_api.py +58 -0
- mns_scheduler/zz_task/compensation/__init__.py +0 -0
- mns_scheduler/zz_task/compensation/compensate_task.py +161 -0
- mns_scheduler/zz_task/compensation/compensate_task_one_day.py +142 -0
- mns_scheduler/zz_task/data_sync_task.py +271 -121
- {mns_scheduler-1.0.8.7.dist-info → mns_scheduler-1.4.3.2.dist-info}/METADATA +1 -1
- mns_scheduler-1.4.3.2.dist-info/RECORD +169 -0
- {mns_scheduler-1.0.8.7.dist-info → mns_scheduler-1.4.3.2.dist-info}/WHEEL +1 -1
- mns_scheduler/backup/app/ths_new_concept_sync_app.py +0 -122
- mns_scheduler/backup/em/em_new_concept_his_sync.py +0 -99
- mns_scheduler/backup/em/em_new_concept_sync_common_api.py +0 -139
- mns_scheduler/backup/em/em_new_concept_sync_web.py +0 -55
- mns_scheduler/backup/wen_cai/wen_cai_concept_sync.py +0 -51
- mns_scheduler/big_deal/ths_big_deal_sync.py +0 -98
- mns_scheduler/company_info/company_constant_data.py +0 -322
- mns_scheduler/concept/ths/sync_new_index/sync_ths_concept_by_ak_api.py +0 -103
- mns_scheduler/concept/ths/sync_new_index/sync_ths_new_concept_by_web_api.py +0 -89
- mns_scheduler/finance/financial_high_risk_stock_clean_service_api.py +0 -202
- mns_scheduler/finance/sync_financial_report_service_api.py +0 -113
- mns_scheduler/real_time/realtime_quotes_now_create_db_index.py +0 -27
- mns_scheduler/real_time/realtime_quotes_now_sync.py +0 -232
- mns_scheduler/risk/stock_equity_mortgage_sync_api.py +0 -32
- mns_scheduler/zt/zt_pool/zt_pool_sync_api.py +0 -151
- mns_scheduler/zz_task/sync_realtime_quotes_task.py +0 -28
- mns_scheduler-1.0.8.7.dist-info/RECORD +0 -112
- /mns_scheduler/{backup/app → company_info/announce}/__init__.py +0 -0
- /mns_scheduler/{backup/em → company_info/base}/__init__.py +0 -0
- /mns_scheduler/{backup/wen_cai → company_info/clean}/__init__.py +0 -0
- /mns_scheduler/{big_deal → company_info/constant}/__init__.py +0 -0
- /mns_scheduler/{real_time → company_info/de_list_stock}/__init__.py +0 -0
- /mns_scheduler/{backup → finance/em}/__init__.py +0 -0
- /mns_scheduler/finance/{test → xue_qiu}/__init__.py +0 -0
- /mns_scheduler/k_line/{sync → month_week_daily}/__init__.py +0 -0
- {mns_scheduler-1.0.8.7.dist-info → mns_scheduler-1.4.3.2.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,413 @@
|
|
|
1
|
+
import sys
|
|
2
|
+
import os
|
|
3
|
+
|
|
4
|
+
file_path = os.path.abspath(__file__)
|
|
5
|
+
end = file_path.index('mns') + 17
|
|
6
|
+
project_path = file_path[0:end]
|
|
7
|
+
sys.path.append(project_path)
|
|
8
|
+
import pandas as pd
|
|
9
|
+
import mns_common.api.akshare.stock_zt_pool_api as stock_zt_pool_api
|
|
10
|
+
import mns_common.utils.date_handle_util as date_handle_util
|
|
11
|
+
from mns_common.db.MongodbUtil import MongodbUtil
|
|
12
|
+
import mns_common.component.company.company_common_service_api as company_common_service_api
|
|
13
|
+
from loguru import logger
|
|
14
|
+
import mns_common.utils.data_frame_util as data_frame_util
|
|
15
|
+
import mns_common.component.common_service_fun_api as common_service_fun_api
|
|
16
|
+
import mns_common.component.trade_date.trade_date_common_service_api as trade_date_common_service_api
|
|
17
|
+
import mns_common.api.ths.zt.ths_stock_zt_pool_v2_api as ths_stock_zt_pool_v2_api
|
|
18
|
+
import mns_common.component.zt.zt_common_service_api as zt_common_service_api
|
|
19
|
+
import mns_common.component.em.em_real_time_quotes_api as em_real_time_quotes_api
|
|
20
|
+
from datetime import datetime
|
|
21
|
+
import mns_common.api.ths.zt.ths_stock_zt_pool_api as ths_stock_zt_pool_api
|
|
22
|
+
import mns_common.constant.db_name_constant as db_name_constant
|
|
23
|
+
import mns_common.component.deal.deal_service_api as deal_service_api
|
|
24
|
+
import mns_common.component.company.company_common_service_new_api as company_common_service_new_api
|
|
25
|
+
|
|
26
|
+
'''
|
|
27
|
+
东方财富涨停池
|
|
28
|
+
'''
|
|
29
|
+
|
|
30
|
+
mongodb_util = MongodbUtil('27017')
|
|
31
|
+
|
|
32
|
+
ZT_FIELD = ['_id', 'symbol', 'name', 'now_price', 'chg', 'first_closure_time',
|
|
33
|
+
'last_closure_time', 'connected_boards_numbers',
|
|
34
|
+
'zt_reason', 'zt_analysis', 'closure_funds',
|
|
35
|
+
# 'closure_funds_per_amount', 'closure_funds_per_flow_mv',
|
|
36
|
+
'frying_plates_numbers',
|
|
37
|
+
# 'statistics_detail', 'zt_type', 'market_code',
|
|
38
|
+
'statistics',
|
|
39
|
+
# 'zt_flag',
|
|
40
|
+
'industry', 'first_sw_industry',
|
|
41
|
+
'second_sw_industry',
|
|
42
|
+
'third_sw_industry', 'ths_concept_name',
|
|
43
|
+
'ths_concept_code', 'ths_concept_sync_day', 'em_industry',
|
|
44
|
+
'mv_circulation_ratio', 'ths_concept_list_info', 'kpl_plate_name',
|
|
45
|
+
'kpl_plate_list_info', 'company_type', 'diff_days', 'amount',
|
|
46
|
+
'list_date',
|
|
47
|
+
'exchange', 'flow_mv', 'total_mv',
|
|
48
|
+
'classification', 'flow_mv_sp', 'total_mv_sp', 'flow_mv_level',
|
|
49
|
+
'amount_level', 'new_stock', 'list_date_01', 'index', 'str_day', 'main_line', 'sub_main_line']
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
def save_zt_info(str_day):
|
|
53
|
+
if bool(1 - trade_date_common_service_api.is_trade_day(str_day)):
|
|
54
|
+
return pd.DataFrame()
|
|
55
|
+
|
|
56
|
+
stock_em_zt_pool_df_data = stock_zt_pool_api.stock_em_zt_pool_df(
|
|
57
|
+
date_handle_util.no_slash_date(str_day))
|
|
58
|
+
|
|
59
|
+
# fix 涨停池没有的股票
|
|
60
|
+
stock_em_zt_pool_df_data = handle_miss_zt_data(stock_em_zt_pool_df_data.copy(), str_day)
|
|
61
|
+
|
|
62
|
+
try:
|
|
63
|
+
# 同花顺问财涨停池
|
|
64
|
+
ths_zt_pool_df_data = ths_stock_zt_pool_v2_api.get_ths_stock_zt_reason_with_cache(str_day)
|
|
65
|
+
except BaseException as e:
|
|
66
|
+
logger.error("同步ths涨停数据异常")
|
|
67
|
+
ths_zt_pool_df_data = pd.DataFrame()
|
|
68
|
+
|
|
69
|
+
stock_em_zt_pool_df_data = handle_ths_em_diff_data(ths_zt_pool_df_data, stock_em_zt_pool_df_data)
|
|
70
|
+
|
|
71
|
+
stock_em_zt_pool_df_data = common_service_fun_api.total_mv_classification(stock_em_zt_pool_df_data.copy())
|
|
72
|
+
|
|
73
|
+
stock_em_zt_pool_df_data = common_service_fun_api.classify_symbol(stock_em_zt_pool_df_data.copy())
|
|
74
|
+
|
|
75
|
+
stock_em_zt_pool_df_data = common_service_fun_api.symbol_amount_simple(stock_em_zt_pool_df_data.copy())
|
|
76
|
+
|
|
77
|
+
stock_em_zt_pool_df_data = company_common_service_api.amendment_industry(stock_em_zt_pool_df_data.copy())
|
|
78
|
+
|
|
79
|
+
# 主线标记 复盘用
|
|
80
|
+
stock_em_zt_pool_df_data['main_line'] = '无'
|
|
81
|
+
stock_em_zt_pool_df_data['sub_main_line'] = '无'
|
|
82
|
+
|
|
83
|
+
# 上个交易交易日涨停股票
|
|
84
|
+
last_trade_day_zt_df = zt_common_service_api.get_last_trade_day_zt(str_day)
|
|
85
|
+
|
|
86
|
+
stock_em_zt_pool_df_data['first_closure_time'] = stock_em_zt_pool_df_data['first_closure_time'].str.strip()
|
|
87
|
+
stock_em_zt_pool_df_data['list_date'] = stock_em_zt_pool_df_data['list_date'].apply(
|
|
88
|
+
lambda x: pd.to_numeric(x, errors="coerce"))
|
|
89
|
+
|
|
90
|
+
stock_em_zt_pool_df_data['new_stock'] = False
|
|
91
|
+
# 将日期数值转换为日期时间格式
|
|
92
|
+
stock_em_zt_pool_df_data['list_date_01'] = pd.to_datetime(stock_em_zt_pool_df_data['list_date'], format='%Y%m%d')
|
|
93
|
+
str_day_date = date_handle_util.str_to_date(str_day, '%Y-%m-%d')
|
|
94
|
+
# 计算日期差值 距离现在上市时间
|
|
95
|
+
stock_em_zt_pool_df_data['diff_days'] = stock_em_zt_pool_df_data.apply(
|
|
96
|
+
lambda row: (str_day_date - row['list_date_01']).days, axis=1)
|
|
97
|
+
# 上市时间小于100天为新股
|
|
98
|
+
stock_em_zt_pool_df_data.loc[
|
|
99
|
+
stock_em_zt_pool_df_data["diff_days"] < 100, ['new_stock']] \
|
|
100
|
+
= True
|
|
101
|
+
stock_em_zt_pool_df_data = stock_em_zt_pool_df_data.dropna(subset=['diff_days'], axis=0, inplace=False)
|
|
102
|
+
|
|
103
|
+
# 按照"time"列进行排序,同时将值为0的数据排到最末尾
|
|
104
|
+
stock_em_zt_pool_df_data = stock_em_zt_pool_df_data.sort_values(by=['first_closure_time'])
|
|
105
|
+
|
|
106
|
+
# 重置索引,并将排序结果保存到新的"index"列中
|
|
107
|
+
|
|
108
|
+
stock_em_zt_pool_df_data['str_day'] = str_day
|
|
109
|
+
stock_em_zt_pool_df_data['_id'] = stock_em_zt_pool_df_data['symbol'] + "_" + str_day
|
|
110
|
+
stock_em_zt_pool_df_data.drop_duplicates('symbol', keep='last', inplace=True)
|
|
111
|
+
|
|
112
|
+
query_today_zt = {'str_day': str_day}
|
|
113
|
+
|
|
114
|
+
stock_today_zt_pool_df = mongodb_util.find_query_data(db_name_constant.STOCK_ZT_POOL, query_today_zt)
|
|
115
|
+
|
|
116
|
+
if data_frame_util.is_empty(stock_today_zt_pool_df):
|
|
117
|
+
|
|
118
|
+
today_new_zt_pool_df = stock_em_zt_pool_df_data.copy()
|
|
119
|
+
else:
|
|
120
|
+
today_new_zt_pool_df = stock_em_zt_pool_df_data.loc[
|
|
121
|
+
~stock_em_zt_pool_df_data['symbol'].isin(stock_today_zt_pool_df['symbol'])]
|
|
122
|
+
|
|
123
|
+
try:
|
|
124
|
+
|
|
125
|
+
today_main_line_df = mongodb_util.find_query_data(db_name_constant.MAIN_LINE_DETAIL, {'str_day': str_day})
|
|
126
|
+
|
|
127
|
+
for stock_one in today_new_zt_pool_df.itertuples():
|
|
128
|
+
try:
|
|
129
|
+
|
|
130
|
+
# 设置连板数目
|
|
131
|
+
stock_em_zt_pool_df_data = set_connected_boards_numbers(stock_em_zt_pool_df_data.copy(),
|
|
132
|
+
stock_one.symbol,
|
|
133
|
+
last_trade_day_zt_df.copy())
|
|
134
|
+
|
|
135
|
+
# 涨停分析
|
|
136
|
+
zt_result_dict = ths_stock_zt_pool_api.zt_analyse_reason(stock_one.symbol)
|
|
137
|
+
zt_analysis = zt_result_dict['zt_analyse_detail']
|
|
138
|
+
zt_reason = zt_result_dict['zt_reason']
|
|
139
|
+
|
|
140
|
+
stock_em_zt_pool_df_data.loc[
|
|
141
|
+
stock_em_zt_pool_df_data['symbol'] == stock_one.symbol, 'zt_reason'] = zt_reason
|
|
142
|
+
|
|
143
|
+
stock_em_zt_pool_df_data.loc[
|
|
144
|
+
stock_em_zt_pool_df_data['symbol'] == stock_one.symbol, 'zt_analysis'] = zt_analysis
|
|
145
|
+
|
|
146
|
+
today_main_line_one_df = today_main_line_df.loc[today_main_line_df['symbol'] == stock_one.symbol]
|
|
147
|
+
if data_frame_util.is_not_empty(today_main_line_one_df):
|
|
148
|
+
stock_em_zt_pool_df_data.loc[
|
|
149
|
+
stock_em_zt_pool_df_data['symbol'] == stock_one.symbol, 'main_line'] = \
|
|
150
|
+
list(today_main_line_one_df['main_line'])[0]
|
|
151
|
+
|
|
152
|
+
stock_em_zt_pool_df_data.loc[
|
|
153
|
+
stock_em_zt_pool_df_data['symbol'] == stock_one.symbol, 'sub_main_line'] = \
|
|
154
|
+
list(today_main_line_one_df['sub_main_line'])[0]
|
|
155
|
+
|
|
156
|
+
query_exist = {'symbol': stock_one.symbol, 'str_day': str_day}
|
|
157
|
+
if mongodb_util.exist_data_query(db_name_constant.STOCK_ZT_POOL, query_exist):
|
|
158
|
+
continue
|
|
159
|
+
else:
|
|
160
|
+
|
|
161
|
+
stock_em_zt_pool_df_data_one = stock_em_zt_pool_df_data.loc[
|
|
162
|
+
stock_em_zt_pool_df_data['symbol'] == stock_one.symbol]
|
|
163
|
+
stock_em_zt_pool_df_data_one = stock_em_zt_pool_df_data_one[ZT_FIELD]
|
|
164
|
+
|
|
165
|
+
chg = round(float(list(stock_em_zt_pool_df_data_one['chg'])[0]), 2)
|
|
166
|
+
stock_em_zt_pool_df_data_one['chg'] = chg
|
|
167
|
+
|
|
168
|
+
mongodb_util.save_mongo(stock_em_zt_pool_df_data_one, db_name_constant.STOCK_ZT_POOL)
|
|
169
|
+
|
|
170
|
+
except BaseException as e:
|
|
171
|
+
stock_em_zt_pool_df_data['zt_reason'] = '0'
|
|
172
|
+
logger.error("同步涨停信息出现异常:{},{}", stock_one.symbol, e)
|
|
173
|
+
except BaseException as e:
|
|
174
|
+
stock_em_zt_pool_df_data['zt_reason'] = '0'
|
|
175
|
+
logger.error("出现异常:{}", e)
|
|
176
|
+
|
|
177
|
+
stock_em_zt_pool_df_data = pd.concat([stock_today_zt_pool_df, today_new_zt_pool_df])
|
|
178
|
+
stock_em_zt_pool_df_data = stock_em_zt_pool_df_data[ZT_FIELD]
|
|
179
|
+
return stock_em_zt_pool_df_data
|
|
180
|
+
|
|
181
|
+
|
|
182
|
+
# 设置连板数目
|
|
183
|
+
def set_connected_boards_numbers(stock_em_zt_pool_df_data, symbol, last_trade_day_zt_df):
|
|
184
|
+
# 连板股票
|
|
185
|
+
connected_boards_df_copy = last_trade_day_zt_df.loc[
|
|
186
|
+
last_trade_day_zt_df['symbol'].isin(stock_em_zt_pool_df_data['symbol'])]
|
|
187
|
+
|
|
188
|
+
connected_boards_df = connected_boards_df_copy.copy()
|
|
189
|
+
connected_boards_df['connected_boards_numbers'] = connected_boards_df['connected_boards_numbers'] + 1
|
|
190
|
+
|
|
191
|
+
# 连板股票
|
|
192
|
+
connected_boards_df_one = connected_boards_df.loc[connected_boards_df['symbol'] == symbol]
|
|
193
|
+
|
|
194
|
+
if data_frame_util.is_not_empty(connected_boards_df_one):
|
|
195
|
+
stock_em_zt_pool_df_data.loc[stock_em_zt_pool_df_data['symbol'] == symbol, 'connected_boards_numbers'] = \
|
|
196
|
+
list(connected_boards_df_one['connected_boards_numbers'])[0]
|
|
197
|
+
|
|
198
|
+
if 'main_line' in connected_boards_df_one.columns:
|
|
199
|
+
stock_em_zt_pool_df_data.loc[stock_em_zt_pool_df_data['symbol'] == symbol, 'main_line'] = \
|
|
200
|
+
list(connected_boards_df_one['main_line'])[0]
|
|
201
|
+
|
|
202
|
+
if 'sub_main_line' in connected_boards_df_one.columns:
|
|
203
|
+
stock_em_zt_pool_df_data.loc[stock_em_zt_pool_df_data['symbol'] == symbol, 'sub_main_line'] = \
|
|
204
|
+
list(connected_boards_df_one['sub_main_line'])[0]
|
|
205
|
+
|
|
206
|
+
return stock_em_zt_pool_df_data
|
|
207
|
+
|
|
208
|
+
|
|
209
|
+
def handle_miss_zt_data(stock_em_zt_pool_df_data, str_day):
|
|
210
|
+
now_date = datetime.now()
|
|
211
|
+
now_day = now_date.strftime('%Y-%m-%d')
|
|
212
|
+
if now_day == str_day:
|
|
213
|
+
real_time_quotes_all_stocks_df = em_real_time_quotes_api.get_real_time_quotes_now(None, None)
|
|
214
|
+
if data_frame_util.is_empty(real_time_quotes_all_stocks_df):
|
|
215
|
+
return stock_em_zt_pool_df_data
|
|
216
|
+
real_time_quotes_all_stocks_df = real_time_quotes_all_stocks_df.loc[
|
|
217
|
+
(real_time_quotes_all_stocks_df['wei_bi'] == 100) & (real_time_quotes_all_stocks_df['chg'] >= 9)]
|
|
218
|
+
miss_zt_data_df_copy = real_time_quotes_all_stocks_df.loc[~(
|
|
219
|
+
real_time_quotes_all_stocks_df['symbol'].isin(stock_em_zt_pool_df_data['symbol']))]
|
|
220
|
+
miss_zt_data_df = miss_zt_data_df_copy.copy()
|
|
221
|
+
if data_frame_util.is_not_empty(miss_zt_data_df):
|
|
222
|
+
miss_zt_data_df['buy_1_num'] = miss_zt_data_df['buy_1_num'].astype(float)
|
|
223
|
+
miss_zt_data_df['now_price'] = miss_zt_data_df['now_price'].astype(float)
|
|
224
|
+
miss_zt_data_df['closure_funds'] = round(miss_zt_data_df['buy_1_num'] * 100 * miss_zt_data_df['now_price'],
|
|
225
|
+
2)
|
|
226
|
+
|
|
227
|
+
company_info_industry_df = company_common_service_api.get_company_info_name()
|
|
228
|
+
company_info_industry_df = company_info_industry_df.loc[
|
|
229
|
+
company_info_industry_df['_id'].isin(miss_zt_data_df['symbol'])]
|
|
230
|
+
|
|
231
|
+
company_info_industry_df = company_info_industry_df[['_id', 'industry', 'name']]
|
|
232
|
+
|
|
233
|
+
company_info_industry_df = company_info_industry_df.set_index(['_id'], drop=True)
|
|
234
|
+
miss_zt_data_df = miss_zt_data_df.set_index(['symbol'], drop=False)
|
|
235
|
+
|
|
236
|
+
miss_zt_data_df = pd.merge(miss_zt_data_df, company_info_industry_df, how='outer',
|
|
237
|
+
left_index=True, right_index=True)
|
|
238
|
+
|
|
239
|
+
miss_zt_data_df = miss_zt_data_df[[
|
|
240
|
+
'symbol',
|
|
241
|
+
'name',
|
|
242
|
+
'chg',
|
|
243
|
+
'now_price',
|
|
244
|
+
'amount',
|
|
245
|
+
'flow_mv',
|
|
246
|
+
'total_mv',
|
|
247
|
+
'exchange',
|
|
248
|
+
'industry',
|
|
249
|
+
'closure_funds'
|
|
250
|
+
|
|
251
|
+
]]
|
|
252
|
+
miss_zt_data_df['index'] = 10000
|
|
253
|
+
miss_zt_data_df['first_closure_time'] = '150000'
|
|
254
|
+
miss_zt_data_df['last_closure_time'] = '150000'
|
|
255
|
+
miss_zt_data_df['statistics'] = '1/1'
|
|
256
|
+
miss_zt_data_df['frying_plates_numbers'] = 0
|
|
257
|
+
miss_zt_data_df['connected_boards_numbers'] = 0
|
|
258
|
+
|
|
259
|
+
stock_em_zt_pool_df_data = pd.concat([miss_zt_data_df, stock_em_zt_pool_df_data])
|
|
260
|
+
return stock_em_zt_pool_df_data
|
|
261
|
+
else:
|
|
262
|
+
return stock_em_zt_pool_df_data
|
|
263
|
+
|
|
264
|
+
|
|
265
|
+
def handle_ths_em_diff_data(ths_zt_pool_df_data, stock_em_zt_pool_df_data):
|
|
266
|
+
if data_frame_util.is_empty(ths_zt_pool_df_data):
|
|
267
|
+
return stock_em_zt_pool_df_data
|
|
268
|
+
else:
|
|
269
|
+
diff_ths_zt_df = ths_zt_pool_df_data.loc[
|
|
270
|
+
~(ths_zt_pool_df_data['symbol'].isin(stock_em_zt_pool_df_data['symbol']))]
|
|
271
|
+
if data_frame_util.is_empty(diff_ths_zt_df):
|
|
272
|
+
return stock_em_zt_pool_df_data
|
|
273
|
+
else:
|
|
274
|
+
diff_ths_zt_df = diff_ths_zt_df[[
|
|
275
|
+
'symbol',
|
|
276
|
+
'name',
|
|
277
|
+
'chg',
|
|
278
|
+
'now_price',
|
|
279
|
+
# 'amount',
|
|
280
|
+
# 'flow_mv',
|
|
281
|
+
# 'total_mv',
|
|
282
|
+
# 'exchange',
|
|
283
|
+
'closure_funds',
|
|
284
|
+
'first_closure_time',
|
|
285
|
+
'last_closure_time',
|
|
286
|
+
'frying_plates_numbers',
|
|
287
|
+
'statistics',
|
|
288
|
+
'connected_boards_numbers'
|
|
289
|
+
|
|
290
|
+
]]
|
|
291
|
+
|
|
292
|
+
company_info_df = query_company_info_with_share()
|
|
293
|
+
company_info_df['symbol'] = company_info_df['_id']
|
|
294
|
+
company_info_df = company_info_df.loc[company_info_df['symbol'].isin(list(diff_ths_zt_df['symbol']))]
|
|
295
|
+
|
|
296
|
+
company_info_df = common_service_fun_api.add_after_prefix(company_info_df)
|
|
297
|
+
|
|
298
|
+
symbol_prefix_list = list(company_info_df['symbol_prefix'])
|
|
299
|
+
real_time_quotes_list = deal_service_api.get_qmt_real_time_quotes_detail('qmt',
|
|
300
|
+
symbol_prefix_list)
|
|
301
|
+
|
|
302
|
+
real_time_quotes_df = pd.DataFrame(real_time_quotes_list)
|
|
303
|
+
|
|
304
|
+
real_time_quotes_df['symbol'] = real_time_quotes_df['symbol'].str.slice(0, 6)
|
|
305
|
+
company_info_df = company_info_df.set_index(['symbol'], drop=True)
|
|
306
|
+
real_time_quotes_df = real_time_quotes_df.set_index(['symbol'], drop=False)
|
|
307
|
+
|
|
308
|
+
real_time_quotes_df = pd.merge(company_info_df, real_time_quotes_df, how='outer',
|
|
309
|
+
left_index=True, right_index=True)
|
|
310
|
+
|
|
311
|
+
real_time_quotes_df['amount'] = round(real_time_quotes_df['amount'], 1)
|
|
312
|
+
|
|
313
|
+
real_time_quotes_df['total_mv'] = round(
|
|
314
|
+
real_time_quotes_df['lastPrice'] * real_time_quotes_df['total_share'], 1)
|
|
315
|
+
real_time_quotes_df['flow_mv'] = round(real_time_quotes_df['lastPrice'] * real_time_quotes_df['flow_share'],
|
|
316
|
+
1)
|
|
317
|
+
real_time_quotes_df['exchange'] = round(
|
|
318
|
+
real_time_quotes_df['amount'] * 100 / real_time_quotes_df['flow_mv'], 1)
|
|
319
|
+
|
|
320
|
+
real_time_quotes_df = real_time_quotes_df[
|
|
321
|
+
['symbol', 'amount', 'total_mv', 'flow_mv', 'exchange', 'industry']]
|
|
322
|
+
|
|
323
|
+
real_time_quotes_df = real_time_quotes_df.set_index(['symbol'], drop=True)
|
|
324
|
+
diff_ths_zt_df = diff_ths_zt_df.set_index(['symbol'], drop=False)
|
|
325
|
+
diff_ths_zt_df = pd.merge(real_time_quotes_df, diff_ths_zt_df, how='outer',
|
|
326
|
+
left_index=True, right_index=True)
|
|
327
|
+
|
|
328
|
+
diff_ths_zt_df = diff_ths_zt_df[[
|
|
329
|
+
'symbol',
|
|
330
|
+
'name',
|
|
331
|
+
'chg',
|
|
332
|
+
'now_price',
|
|
333
|
+
'amount',
|
|
334
|
+
'flow_mv',
|
|
335
|
+
'total_mv',
|
|
336
|
+
'exchange',
|
|
337
|
+
'closure_funds',
|
|
338
|
+
'first_closure_time',
|
|
339
|
+
'last_closure_time',
|
|
340
|
+
'frying_plates_numbers',
|
|
341
|
+
'statistics',
|
|
342
|
+
'connected_boards_numbers',
|
|
343
|
+
'industry'
|
|
344
|
+
|
|
345
|
+
]]
|
|
346
|
+
|
|
347
|
+
exist_number = stock_em_zt_pool_df_data.shape[0] + 1
|
|
348
|
+
|
|
349
|
+
diff_ths_zt_df.index = range(exist_number, exist_number + len(diff_ths_zt_df))
|
|
350
|
+
diff_ths_zt_df['index'] = diff_ths_zt_df.index
|
|
351
|
+
|
|
352
|
+
stock_em_zt_pool_df_data = pd.concat([stock_em_zt_pool_df_data, diff_ths_zt_df])
|
|
353
|
+
return stock_em_zt_pool_df_data
|
|
354
|
+
|
|
355
|
+
|
|
356
|
+
def query_company_info_with_share():
|
|
357
|
+
query_field = {"_id": 1,
|
|
358
|
+
"industry": 1,
|
|
359
|
+
"company_type": 1,
|
|
360
|
+
"ths_industry_code": 1,
|
|
361
|
+
"ths_concept_name": 1,
|
|
362
|
+
"ths_concept_code": 1,
|
|
363
|
+
"ths_concept_sync_day": 1,
|
|
364
|
+
"first_sw_industry": 1,
|
|
365
|
+
"second_sw_industry": 1,
|
|
366
|
+
"second_industry_code": 1,
|
|
367
|
+
"third_sw_industry": 1,
|
|
368
|
+
"mv_circulation_ratio": 1,
|
|
369
|
+
"list_date": 1,
|
|
370
|
+
"diff_days": 1,
|
|
371
|
+
'em_industry': 1,
|
|
372
|
+
'operate_profit': 1,
|
|
373
|
+
'total_operate_income': 1,
|
|
374
|
+
"name": 1,
|
|
375
|
+
'pb': 1,
|
|
376
|
+
'pe_ttm': 1,
|
|
377
|
+
'ROE': 1,
|
|
378
|
+
'ths_industry_name': 1,
|
|
379
|
+
'total_share': 1,
|
|
380
|
+
'flow_share': 1
|
|
381
|
+
}
|
|
382
|
+
de_list_company_symbols = company_common_service_new_api.get_de_list_company()
|
|
383
|
+
query_field_key = str(query_field)
|
|
384
|
+
query = {"_id": {"$regex": "^[^48]"},
|
|
385
|
+
'symbol': {"$nin": de_list_company_symbols}, }
|
|
386
|
+
query_key = str(query)
|
|
387
|
+
company_info_df = company_common_service_new_api.get_company_info_by_field(query_key, query_field_key)
|
|
388
|
+
|
|
389
|
+
return company_info_df
|
|
390
|
+
|
|
391
|
+
|
|
392
|
+
if __name__ == '__main__':
|
|
393
|
+
save_zt_info('2025-11-17')
|
|
394
|
+
# from datetime import datetime
|
|
395
|
+
#
|
|
396
|
+
# if __name__ == '__main__':
|
|
397
|
+
#
|
|
398
|
+
# sync_date = date_handle_util.add_date_day('20240110', 0)
|
|
399
|
+
#
|
|
400
|
+
# now_date = datetime.now()
|
|
401
|
+
#
|
|
402
|
+
# str_now_day = sync_date.strftime('%Y-%m-%d')
|
|
403
|
+
#
|
|
404
|
+
# while now_date > sync_date:
|
|
405
|
+
# try:
|
|
406
|
+
# save_zt_info(str_now_day)
|
|
407
|
+
# sync_date = date_handle_util.add_date_day(date_handle_util.no_slash_date(str_now_day), 1)
|
|
408
|
+
# print(str_now_day)
|
|
409
|
+
# str_now_day = sync_date.strftime('%Y-%m-%d')
|
|
410
|
+
#
|
|
411
|
+
# except BaseException as e:
|
|
412
|
+
# sync_date = date_handle_util.add_date_day(date_handle_util.no_slash_date(str_now_day), 1)
|
|
413
|
+
# str_now_day = sync_date.strftime('%Y-%m-%d')
|
|
@@ -0,0 +1,193 @@
|
|
|
1
|
+
import sys
|
|
2
|
+
import os
|
|
3
|
+
|
|
4
|
+
file_path = os.path.abspath(__file__)
|
|
5
|
+
end = file_path.index('mns') + 17
|
|
6
|
+
project_path = file_path[0:end]
|
|
7
|
+
sys.path.append(project_path)
|
|
8
|
+
import mns_common.api.ths.zt.ths_stock_zt_pool_api as ths_stock_zt_pool_api
|
|
9
|
+
from datetime import datetime
|
|
10
|
+
import mns_common.utils.data_frame_util as data_frame_util
|
|
11
|
+
import pandas as pd
|
|
12
|
+
import mns_common.component.company.company_common_service_new_api as company_common_service_new_api
|
|
13
|
+
import mns_common.component.common_service_fun_api as common_service_fun_api
|
|
14
|
+
from loguru import logger
|
|
15
|
+
import mns_common.utils.date_handle_util as date_handle_util
|
|
16
|
+
from mns_common.db.MongodbUtil import MongodbUtil
|
|
17
|
+
import mns_common.constant.db_name_constant as db_name_constant
|
|
18
|
+
import mns_scheduler.k_line.common.k_line_common_api as k_line_common_api
|
|
19
|
+
|
|
20
|
+
mongodb_util = MongodbUtil('27017')
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
def ths_zt_pool(str_day, real_time_quotes_all_stocks):
|
|
24
|
+
'''
|
|
25
|
+
获取请求头
|
|
26
|
+
:param str_day: 日期
|
|
27
|
+
:param real_time_quotes_all_stocks: 实时行情
|
|
28
|
+
:return:
|
|
29
|
+
'''
|
|
30
|
+
now_date = datetime.now()
|
|
31
|
+
now_day_str_day = now_date.strftime('%Y-%m-%d')
|
|
32
|
+
ths_zt_pool_df = ths_stock_zt_pool_api.get_zt_reason(str_day)
|
|
33
|
+
ths_zt_pool_df_copy = ths_zt_pool_df.copy()
|
|
34
|
+
|
|
35
|
+
if data_frame_util.is_empty(ths_zt_pool_df_copy):
|
|
36
|
+
return pd.DataFrame()
|
|
37
|
+
if str_day == now_day_str_day:
|
|
38
|
+
ths_zt_pool_df = merge_his_day_zt_info(ths_zt_pool_df_copy, str_day)
|
|
39
|
+
else:
|
|
40
|
+
ths_zt_pool_df = merge_his_day_zt_info(ths_zt_pool_df_copy, str_day)
|
|
41
|
+
|
|
42
|
+
return ths_zt_pool_df
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
# 历史数据merge
|
|
46
|
+
def merge_his_day_zt_info(ths_zt_pool_df, str_day):
|
|
47
|
+
'''
|
|
48
|
+
获取请求头
|
|
49
|
+
:param ths_zt_pool_df: 涨停df
|
|
50
|
+
:param str_day: 日期
|
|
51
|
+
:return:
|
|
52
|
+
'''
|
|
53
|
+
|
|
54
|
+
query_field = {
|
|
55
|
+
"ths_concept_name": 1,
|
|
56
|
+
"ths_concept_code": 1,
|
|
57
|
+
"ths_concept_sync_day": 1,
|
|
58
|
+
"company_type": 1,
|
|
59
|
+
"concept_create_day": 1,
|
|
60
|
+
"first_sw_industry": 1,
|
|
61
|
+
"third_sw_industry": 1,
|
|
62
|
+
"industry": 1,
|
|
63
|
+
"list_date": 1,
|
|
64
|
+
}
|
|
65
|
+
query_field_key = str(query_field)
|
|
66
|
+
query_key = str({'symbol': {"$in": list(ths_zt_pool_df['symbol'])}})
|
|
67
|
+
company_df_zt = company_common_service_new_api.get_company_info_by_field(query_key, query_field_key)
|
|
68
|
+
|
|
69
|
+
bfq_k_line_df = get_bfq_daily_line(ths_zt_pool_df, str_day)
|
|
70
|
+
bfq_k_line_df['total_mv'] = bfq_k_line_df['flow_mv']
|
|
71
|
+
|
|
72
|
+
company_df_zt = company_df_zt.set_index(['_id'], drop=True)
|
|
73
|
+
bfq_k_line_df = bfq_k_line_df.set_index(['symbol'], drop=True)
|
|
74
|
+
ths_zt_pool_df = ths_zt_pool_df.set_index(['symbol'], drop=False)
|
|
75
|
+
|
|
76
|
+
if 'chg' in ths_zt_pool_df.columns:
|
|
77
|
+
del ths_zt_pool_df['chg']
|
|
78
|
+
if 'now_price' in ths_zt_pool_df.columns:
|
|
79
|
+
del ths_zt_pool_df['now_price']
|
|
80
|
+
|
|
81
|
+
ths_zt_pool_df = pd.merge(ths_zt_pool_df, company_df_zt, how='outer',
|
|
82
|
+
left_index=True, right_index=True)
|
|
83
|
+
|
|
84
|
+
ths_zt_pool_df = pd.merge(ths_zt_pool_df, bfq_k_line_df, how='outer',
|
|
85
|
+
left_index=True, right_index=True)
|
|
86
|
+
ths_zt_pool_df = common_service_fun_api.classify_symbol(ths_zt_pool_df)
|
|
87
|
+
ths_zt_pool_df = common_service_fun_api.total_mv_classification(ths_zt_pool_df)
|
|
88
|
+
ths_zt_pool_df.fillna('', inplace=True)
|
|
89
|
+
if 'zt_flag' in ths_zt_pool_df.columns:
|
|
90
|
+
del ths_zt_pool_df['zt_flag']
|
|
91
|
+
if 'zt_tag' in ths_zt_pool_df.columns:
|
|
92
|
+
del ths_zt_pool_df['zt_tag']
|
|
93
|
+
|
|
94
|
+
return ths_zt_pool_df
|
|
95
|
+
|
|
96
|
+
|
|
97
|
+
# 获取不复权k线信息
|
|
98
|
+
def get_bfq_daily_line(ths_zt_pool_df, str_day):
|
|
99
|
+
query_k_line = {'symbol': {"$in": list(ths_zt_pool_df['symbol'])}, 'date': date_handle_util.no_slash_date(str_day)}
|
|
100
|
+
bfq_daily_line_df = mongodb_util.find_query_data('stock_bfq_daily', query_k_line)
|
|
101
|
+
if bfq_daily_line_df.shape[0] >= ths_zt_pool_df.shape[0]:
|
|
102
|
+
bfq_daily_line_df = bfq_daily_line_df[['amount', 'chg', 'close', 'exchange',
|
|
103
|
+
'symbol', 'amount_level',
|
|
104
|
+
'flow_mv', 'flow_mv_sp'
|
|
105
|
+
]]
|
|
106
|
+
bfq_daily_line_df = bfq_daily_line_df.rename(columns={"close": 'now_price'})
|
|
107
|
+
return bfq_daily_line_df
|
|
108
|
+
else:
|
|
109
|
+
bfq_k_line_result_df = pd.DataFrame()
|
|
110
|
+
for zt_one in ths_zt_pool_df.itertuples():
|
|
111
|
+
symbol = zt_one.symbol
|
|
112
|
+
try:
|
|
113
|
+
|
|
114
|
+
bfq_daily_line_df = k_line_common_api.get_k_line_common_adapter(symbol, 'daily', '', str_day)
|
|
115
|
+
|
|
116
|
+
if data_frame_util.is_empty(bfq_daily_line_df):
|
|
117
|
+
continue
|
|
118
|
+
|
|
119
|
+
bfq_daily_line_df_one = bfq_daily_line_df.loc[
|
|
120
|
+
bfq_daily_line_df['date'] == date_handle_util.no_slash_date(str_day)]
|
|
121
|
+
|
|
122
|
+
bfq_daily_line_df_one = bfq_daily_line_df_one[['amount', 'chg', 'close', 'exchange',
|
|
123
|
+
'symbol', 'amount_level',
|
|
124
|
+
'flow_mv', 'flow_mv_sp'
|
|
125
|
+
]]
|
|
126
|
+
bfq_daily_line_df_one = bfq_daily_line_df_one.rename(columns={"close": 'now_price'})
|
|
127
|
+
bfq_k_line_result_df = pd.concat([bfq_k_line_result_df, bfq_daily_line_df_one])
|
|
128
|
+
except BaseException as e:
|
|
129
|
+
logger.warning("同步不复权k线异常:{},{}", symbol, e)
|
|
130
|
+
|
|
131
|
+
return bfq_k_line_result_df
|
|
132
|
+
|
|
133
|
+
|
|
134
|
+
def save_ths_zt_pool(ths_zt_pool_df, str_day):
|
|
135
|
+
ths_zt_pool_df = ths_zt_pool_df[[
|
|
136
|
+
"symbol",
|
|
137
|
+
"name",
|
|
138
|
+
"chg",
|
|
139
|
+
"connected_boards_numbers",
|
|
140
|
+
"statistics",
|
|
141
|
+
"statistics_detail",
|
|
142
|
+
"first_closure_time",
|
|
143
|
+
"last_closure_time",
|
|
144
|
+
"zt_detail",
|
|
145
|
+
"zt_reason",
|
|
146
|
+
"closure_volume",
|
|
147
|
+
"closure_funds",
|
|
148
|
+
"closure_funds_per_amount",
|
|
149
|
+
"closure_funds_per_flow_mv",
|
|
150
|
+
"frying_plates_numbers",
|
|
151
|
+
"zt_type",
|
|
152
|
+
"market_code",
|
|
153
|
+
"str_day",
|
|
154
|
+
"industry",
|
|
155
|
+
"first_sw_industry",
|
|
156
|
+
"third_sw_industry",
|
|
157
|
+
"ths_concept_name",
|
|
158
|
+
"ths_concept_code",
|
|
159
|
+
"ths_concept_sync_day",
|
|
160
|
+
"list_date",
|
|
161
|
+
"company_type",
|
|
162
|
+
"amount",
|
|
163
|
+
"now_price",
|
|
164
|
+
"exchange",
|
|
165
|
+
"amount_level",
|
|
166
|
+
"flow_mv",
|
|
167
|
+
"flow_mv_sp",
|
|
168
|
+
"total_mv",
|
|
169
|
+
"classification",
|
|
170
|
+
"total_mv_sp",
|
|
171
|
+
"flow_mv_level"
|
|
172
|
+
]]
|
|
173
|
+
ths_zt_pool_df['_id'] = ths_zt_pool_df['symbol'] + '_' + ths_zt_pool_df['str_day']
|
|
174
|
+
ths_zt_pool_df = ths_zt_pool_df.sort_values(by=['connected_boards_numbers'], ascending=False)
|
|
175
|
+
|
|
176
|
+
# 将日期数值转换为日期时间格式
|
|
177
|
+
ths_zt_pool_df['list_date_01'] = pd.to_datetime(ths_zt_pool_df['list_date'], format='%Y%m%d')
|
|
178
|
+
str_day_date = date_handle_util.str_to_date(str_day, '%Y-%m-%d')
|
|
179
|
+
# 计算日期差值 距离现在上市时间
|
|
180
|
+
ths_zt_pool_df['diff_days'] = ths_zt_pool_df.apply(
|
|
181
|
+
lambda row: (str_day_date - row['list_date_01']).days, axis=1)
|
|
182
|
+
del ths_zt_pool_df['list_date_01']
|
|
183
|
+
|
|
184
|
+
mongodb_util.save_mongo(ths_zt_pool_df, db_name_constant.THS_ZT_POOL)
|
|
185
|
+
|
|
186
|
+
|
|
187
|
+
if __name__ == '__main__':
|
|
188
|
+
# trade_date = '2024-08-01'
|
|
189
|
+
# zt_df = ths_zt_pool(trade_date, None)
|
|
190
|
+
# save_ths_zt_pool(zt_df, trade_date)
|
|
191
|
+
trade_date = '2025-09-05'
|
|
192
|
+
ths_zt_pool_df_test = ths_zt_pool(trade_date, None)
|
|
193
|
+
save_ths_zt_pool(ths_zt_pool_df_test, trade_date)
|
|
@@ -0,0 +1,58 @@
|
|
|
1
|
+
import sys
|
|
2
|
+
import os
|
|
3
|
+
|
|
4
|
+
file_path = os.path.abspath(__file__)
|
|
5
|
+
end = file_path.index('mns') + 17
|
|
6
|
+
project_path = file_path[0:end]
|
|
7
|
+
sys.path.append(project_path)
|
|
8
|
+
from mns_common.db.MongodbUtil import MongodbUtil
|
|
9
|
+
|
|
10
|
+
mongodb_util = MongodbUtil('27017')
|
|
11
|
+
import mns_common.api.ths.zt.ths_stock_zt_pool_api as ths_stock_zt_pool_api
|
|
12
|
+
import mns_common.utils.data_frame_util as data_frame_util
|
|
13
|
+
from loguru import logger
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
def update_null_zt_reason(str_day):
|
|
17
|
+
query = {"str_day": str_day, "$or": [{"zt_reason": "0"},
|
|
18
|
+
{"zt_reason": ""},
|
|
19
|
+
{"zt_reason": float('nan')},
|
|
20
|
+
|
|
21
|
+
{"zt_analysis": "0"},
|
|
22
|
+
{"zt_analysis": ""},
|
|
23
|
+
{"zt_analysis": float('nan')},
|
|
24
|
+
|
|
25
|
+
]}
|
|
26
|
+
stock_zt_pool_df_null_zt_reason = mongodb_util.find_query_data('stock_zt_pool', query)
|
|
27
|
+
if data_frame_util.is_empty(stock_zt_pool_df_null_zt_reason):
|
|
28
|
+
return None
|
|
29
|
+
no_reason_list = list(stock_zt_pool_df_null_zt_reason['symbol'])
|
|
30
|
+
repeat_number = 0
|
|
31
|
+
# 循环10次
|
|
32
|
+
while len(no_reason_list) > 0 and repeat_number < 10:
|
|
33
|
+
|
|
34
|
+
for stock_zt_one in stock_zt_pool_df_null_zt_reason.itertuples():
|
|
35
|
+
try:
|
|
36
|
+
# 涨停原因
|
|
37
|
+
stock_zt_pool_df_one_df = stock_zt_pool_df_null_zt_reason.loc[
|
|
38
|
+
stock_zt_pool_df_null_zt_reason['symbol'] == stock_zt_one.symbol]
|
|
39
|
+
# 涨停分析
|
|
40
|
+
zt_result_dict = ths_stock_zt_pool_api.zt_analyse_reason(stock_zt_one.symbol)
|
|
41
|
+
zt_analysis = zt_result_dict['zt_analyse_detail']
|
|
42
|
+
zt_reason = zt_result_dict['zt_reason']
|
|
43
|
+
|
|
44
|
+
stock_zt_pool_df_one_df['zt_analysis'] = zt_analysis
|
|
45
|
+
stock_zt_pool_df_one_df['zt_reason'] = zt_reason
|
|
46
|
+
|
|
47
|
+
mongodb_util.save_mongo(stock_zt_pool_df_one_df, 'stock_zt_pool')
|
|
48
|
+
if stock_zt_one.symbol in no_reason_list:
|
|
49
|
+
no_reason_list.remove(stock_zt_one.symbol)
|
|
50
|
+
except BaseException as e:
|
|
51
|
+
logger.error("出现异常:{},{}", stock_zt_one.symbol, e)
|
|
52
|
+
continue
|
|
53
|
+
repeat_number = repeat_number + 1
|
|
54
|
+
return stock_zt_pool_df_null_zt_reason
|
|
55
|
+
|
|
56
|
+
|
|
57
|
+
if __name__ == '__main__':
|
|
58
|
+
update_null_zt_reason('2025-11-14')
|
|
File without changes
|