mns-scheduler 1.0.8.7__py3-none-any.whl → 1.4.3.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (156) hide show
  1. mns_scheduler/__init__.py +1 -3
  2. mns_scheduler/company_info/announce/company_announce_sync_service.py +65 -0
  3. mns_scheduler/company_info/{company_info_sync_api.py → base/sync_company_base_info_api.py} +239 -227
  4. mns_scheduler/company_info/base/sync_company_hold_info_api.py +37 -0
  5. mns_scheduler/company_info/base/sync_company_product_area_industry.py +161 -0
  6. mns_scheduler/company_info/clean/company_info_clean_api.py +133 -0
  7. mns_scheduler/company_info/constant/company_constant_data.py +497 -0
  8. mns_scheduler/company_info/{de_list_stock_service.py → de_list_stock/de_list_stock_service.py} +1 -1
  9. mns_scheduler/company_info/em_stock_info/__init__.py +7 -0
  10. mns_scheduler/company_info/em_stock_info/sync_em_stock_info_sync.py +80 -0
  11. mns_scheduler/company_info/remark/__init__.py +7 -0
  12. mns_scheduler/company_info/remark/company_remark_info_sync.py +46 -0
  13. mns_scheduler/concept/clean/kpl_concept_clean_api.py +1 -1
  14. mns_scheduler/concept/clean/ths_concept_clean_api.py +74 -51
  15. mns_scheduler/concept/ths/common/ths_concept_sync_common_api.py +112 -56
  16. mns_scheduler/concept/ths/common/ths_concept_update_common_api.py +6 -6
  17. mns_scheduler/concept/ths/detaill/__init__.py +0 -0
  18. mns_scheduler/concept/ths/detaill/ths_concept_detail_api.py +226 -0
  19. mns_scheduler/concept/ths/sync_new_index/sync_ths_concept_new_index_api.py +169 -0
  20. mns_scheduler/concept/ths/update_concept_info/sync_one_concept_all_symbols_api.py +11 -23
  21. mns_scheduler/concept/ths/update_concept_info/sync_one_symbol_all_concepts_api.py +19 -15
  22. mns_scheduler/db/col_move_service.py +10 -7
  23. mns_scheduler/db/db_status.py +1 -1
  24. mns_scheduler/db/script/__init__.py +7 -0
  25. mns_scheduler/db/script/col_move_script.py +45 -0
  26. mns_scheduler/db/script/db_move/__init__.py +7 -0
  27. mns_scheduler/db/script/db_move/col_move_one_service.py +34 -0
  28. mns_scheduler/db/script/sync/__init__.py +7 -0
  29. mns_scheduler/db/script/sync/local_mongo_util.py +231 -0
  30. mns_scheduler/db/script/sync/remote_data_sync_to_local.py +105 -0
  31. mns_scheduler/db/script/sync/remote_mongo_util.py +306 -0
  32. mns_scheduler/db/script/sync/sync_hui_ce_test_data.py +80 -0
  33. mns_scheduler/db/script/sync/sync_hui_ce_test_data_01.py +69 -0
  34. mns_scheduler/db/script/update/__init__.py +7 -0
  35. mns_scheduler/db/script/update/update_col_field.py +36 -0
  36. mns_scheduler/finance/__init__.py +1 -1
  37. mns_scheduler/finance/{em_financial_asset_liability_sync_service_api.py → em/em_financial_asset_liability_sync_service_api.py} +3 -3
  38. mns_scheduler/finance/{em_financial_profit_sync_service_api.py → em/em_financial_profit_sync_service_api.py} +30 -25
  39. mns_scheduler/finance/{finance_common_api.py → em/finance_common_api.py} +4 -4
  40. mns_scheduler/finance/sync_financial_report_service_task.py +202 -0
  41. mns_scheduler/finance/xue_qiu/down_load_xueqiu_report_api.py +77 -0
  42. mns_scheduler/finance/xue_qiu/sync_xue_qiu_fiance_data.py +161 -0
  43. mns_scheduler/hk/__init__.py +1 -1
  44. mns_scheduler/hk/hk_company_info_sync_service_api.py +49 -5
  45. mns_scheduler/hk/hk_industry_info_sync_service_api.py +68 -0
  46. mns_scheduler/industry/__init__.py +7 -0
  47. mns_scheduler/industry/ths/__init__.py +7 -0
  48. mns_scheduler/industry/ths/ths_industry_index_service.py +58 -0
  49. mns_scheduler/industry/ths/ths_industry_sync_service.py +68 -0
  50. mns_scheduler/irm/__init__.py +1 -1
  51. mns_scheduler/irm/api/__init__.py +1 -1
  52. mns_scheduler/irm/api/sh_stock_sns_sse_info_api.py +1 -1
  53. mns_scheduler/irm/api/sz_stock_sns_sse_info_api.py +1 -1
  54. mns_scheduler/irm/stock_irm_cninfo_service.py +15 -13
  55. mns_scheduler/k_line/clean/daily/__init__.py +1 -1
  56. mns_scheduler/k_line/clean/daily/daily_k_line_clean_common_service.py +57 -7
  57. mns_scheduler/k_line/clean/daily/daily_k_line_service.py +16 -3
  58. mns_scheduler/k_line/clean/k_line_info_clean_impl.py +3 -2
  59. mns_scheduler/k_line/clean/k_line_info_clean_task.py +42 -31
  60. mns_scheduler/k_line/clean/week_month/__init__.py +1 -1
  61. mns_scheduler/k_line/clean/week_month/normal_week_month_k_line_service.py +125 -27
  62. mns_scheduler/k_line/clean/week_month/sub_new_week_month_k_line_service.py +72 -17
  63. mns_scheduler/k_line/common/__init__.py +7 -0
  64. mns_scheduler/k_line/common/k_line_common_api.py +188 -0
  65. mns_scheduler/k_line/hot_stocks/__init__.py +1 -1
  66. mns_scheduler/k_line/hot_stocks/recent_hot_stocks_clean_service.py +1 -1
  67. mns_scheduler/k_line/month_week_daily/bfq_k_line_sync.py +77 -0
  68. mns_scheduler/k_line/{sync → month_week_daily}/daily_week_month_line_sync.py +14 -14
  69. mns_scheduler/k_line/sync_status/__init__.py +7 -0
  70. mns_scheduler/k_line/sync_status/k_line_sync_status_check.py +54 -0
  71. mns_scheduler/k_line/test/__init__.py +7 -0
  72. mns_scheduler/k_line/test/k_line_info_clean_his_data.py +41 -0
  73. mns_scheduler/k_line/year_quarter/__init__.py +7 -0
  74. mns_scheduler/k_line/year_quarter/year_quarter_line_sync.py +76 -0
  75. mns_scheduler/kpl/selection/symbol/sync_best_choose_symbol.py +4 -2
  76. mns_scheduler/kpl/selection/symbol/sync_kpl_concept_symbol_choose_reason_api.py +108 -0
  77. mns_scheduler/kpl/selection/total/sync_kpl_best_total_sync_api.py +12 -7
  78. mns_scheduler/lhb/__init__.py +1 -1
  79. mns_scheduler/lhb/stock_lhb_sync_service.py +1 -1
  80. mns_scheduler/open/__init__.py +1 -1
  81. mns_scheduler/open/sync_one_day_open_data_to_db_service.py +6 -22
  82. mns_scheduler/risk/__init__.py +1 -1
  83. mns_scheduler/risk/compliance/__init__.py +0 -0
  84. mns_scheduler/risk/compliance/undisclosed_annual_report_api.py +71 -0
  85. mns_scheduler/risk/financial/__init__.py +0 -0
  86. mns_scheduler/risk/financial/annual_report_audit_check_api.py +54 -0
  87. mns_scheduler/risk/financial/net_assets_check_api.py +75 -0
  88. mns_scheduler/risk/financial/profit_income_check_api.py +80 -0
  89. mns_scheduler/risk/financial/stock_equity_mortgage_check_api.py +1 -0
  90. mns_scheduler/risk/financial_report_risk_check_api.py +42 -0
  91. mns_scheduler/risk/major_violations/__init__.py +0 -0
  92. mns_scheduler/risk/{register_and_investigate_stock_sync_api.py → major_violations/register_and_investigate_stock_sync_api.py} +17 -8
  93. mns_scheduler/risk/self/__init__.py +0 -0
  94. mns_scheduler/risk/{wei_pan_stock_api.py → self/wei_pan_stock_api.py} +10 -4
  95. mns_scheduler/risk/test/__init__.py +7 -0
  96. mns_scheduler/{finance → risk}/test/fix_blask_list.py +6 -10
  97. mns_scheduler/risk/transactions/__init__.py +0 -0
  98. mns_scheduler/risk/transactions/transactions_check_api.py +183 -0
  99. mns_scheduler/self_choose/__init__.py +7 -0
  100. mns_scheduler/self_choose/ths_self_choose_service.py +158 -0
  101. mns_scheduler/trade/auto_ipo_buy_api.py +2 -2
  102. mns_scheduler/trade/auto_login/__init__.py +7 -0
  103. mns_scheduler/trade/auto_login/trader_auto_service.py +32 -0
  104. mns_scheduler/trade/auto_sell_service_api.py +10 -8
  105. mns_scheduler/trade/balance/__init__.py +7 -0
  106. mns_scheduler/trade/balance/ths_account_balance_service.py +7 -0
  107. mns_scheduler/trade/sync_position_api.py +41 -8
  108. mns_scheduler/trade/task/__init__.py +7 -0
  109. mns_scheduler/trade/task/trader_task_service.py +65 -0
  110. mns_scheduler/trade/tfp/__init__.py +7 -0
  111. mns_scheduler/trade/tfp/stock_tfp_info_sync.py +56 -0
  112. mns_scheduler/zb/stock_zb_pool_sync.py +1 -15
  113. mns_scheduler/zt/high_chg/sync_high_chg_pool_service.py +2 -3
  114. mns_scheduler/zt/high_chg/sync_high_chg_real_time_quotes_service.py +12 -8
  115. mns_scheduler/zt/open_data/kcx_high_chg_open_data_sync.py +10 -25
  116. mns_scheduler/zt/script/__init__.py +1 -1
  117. mns_scheduler/zt/script/fix_error_deal_day.py +41 -0
  118. mns_scheduler/zt/script/kcx_high_chg_open_his_data_handle.py +2 -11
  119. mns_scheduler/zt/script/sync_high_chg_pool_his_data.py +2 -2
  120. mns_scheduler/zt/script/sync_now_higt_chg_zt.py +43 -0
  121. mns_scheduler/zt/zt_pool/em_zt_pool_sync_api.py +413 -0
  122. mns_scheduler/zt/zt_pool/ths_zt_pool_sync_api.py +193 -0
  123. mns_scheduler/zt/zt_pool/update_null_zt_reason_api.py +58 -0
  124. mns_scheduler/zz_task/compensation/__init__.py +0 -0
  125. mns_scheduler/zz_task/compensation/compensate_task.py +161 -0
  126. mns_scheduler/zz_task/compensation/compensate_task_one_day.py +142 -0
  127. mns_scheduler/zz_task/data_sync_task.py +271 -121
  128. {mns_scheduler-1.0.8.7.dist-info → mns_scheduler-1.4.3.2.dist-info}/METADATA +1 -1
  129. mns_scheduler-1.4.3.2.dist-info/RECORD +169 -0
  130. {mns_scheduler-1.0.8.7.dist-info → mns_scheduler-1.4.3.2.dist-info}/WHEEL +1 -1
  131. mns_scheduler/backup/app/ths_new_concept_sync_app.py +0 -122
  132. mns_scheduler/backup/em/em_new_concept_his_sync.py +0 -99
  133. mns_scheduler/backup/em/em_new_concept_sync_common_api.py +0 -139
  134. mns_scheduler/backup/em/em_new_concept_sync_web.py +0 -55
  135. mns_scheduler/backup/wen_cai/wen_cai_concept_sync.py +0 -51
  136. mns_scheduler/big_deal/ths_big_deal_sync.py +0 -98
  137. mns_scheduler/company_info/company_constant_data.py +0 -322
  138. mns_scheduler/concept/ths/sync_new_index/sync_ths_concept_by_ak_api.py +0 -103
  139. mns_scheduler/concept/ths/sync_new_index/sync_ths_new_concept_by_web_api.py +0 -89
  140. mns_scheduler/finance/financial_high_risk_stock_clean_service_api.py +0 -202
  141. mns_scheduler/finance/sync_financial_report_service_api.py +0 -113
  142. mns_scheduler/real_time/realtime_quotes_now_create_db_index.py +0 -27
  143. mns_scheduler/real_time/realtime_quotes_now_sync.py +0 -232
  144. mns_scheduler/risk/stock_equity_mortgage_sync_api.py +0 -32
  145. mns_scheduler/zt/zt_pool/zt_pool_sync_api.py +0 -151
  146. mns_scheduler/zz_task/sync_realtime_quotes_task.py +0 -28
  147. mns_scheduler-1.0.8.7.dist-info/RECORD +0 -112
  148. /mns_scheduler/{backup/app → company_info/announce}/__init__.py +0 -0
  149. /mns_scheduler/{backup/em → company_info/base}/__init__.py +0 -0
  150. /mns_scheduler/{backup/wen_cai → company_info/clean}/__init__.py +0 -0
  151. /mns_scheduler/{big_deal → company_info/constant}/__init__.py +0 -0
  152. /mns_scheduler/{real_time → company_info/de_list_stock}/__init__.py +0 -0
  153. /mns_scheduler/{backup → finance/em}/__init__.py +0 -0
  154. /mns_scheduler/finance/{test → xue_qiu}/__init__.py +0 -0
  155. /mns_scheduler/k_line/{sync → month_week_daily}/__init__.py +0 -0
  156. {mns_scheduler-1.0.8.7.dist-info → mns_scheduler-1.4.3.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,76 @@
1
+ import sys
2
+ import os
3
+
4
+ file_path = os.path.abspath(__file__)
5
+ end = file_path.index('mns') + 17
6
+ project_path = file_path[0:end]
7
+ sys.path.append(project_path)
8
+
9
+ from loguru import logger
10
+ import mns_common.component.em.em_stock_info_api as em_stock_info_api
11
+ from mns_common.db.MongodbUtil import MongodbUtil
12
+ import mns_common.component.common_service_fun_api as common_service_fun_api
13
+ import mns_common.constant.db_name_constant as db_name_constant
14
+ import mns_common.api.xueqiu.xue_qiu_k_line_api as xue_qiu_k_line_api
15
+ import mns_common.component.cookie.cookie_info_service as cookie_info_service
16
+ from datetime import datetime
17
+ import mns_common.utils.data_frame_util as data_frame_util
18
+
19
+ mongodb_util = MongodbUtil('27017')
20
+
21
+
22
+ def sync_year_k_line():
23
+ timestamp = str(int(datetime.now().timestamp() * 1000))
24
+
25
+ col_name = db_name_constant.STOCK_QFQ_YEAR
26
+ real_time_quotes_all_stocks_df = em_stock_info_api.get_a_stock_info()
27
+ real_time_quotes_all_stocks_df = common_service_fun_api.classify_symbol(real_time_quotes_all_stocks_df)
28
+ real_time_quotes_all_stocks_df = common_service_fun_api.add_pre_prefix(real_time_quotes_all_stocks_df)
29
+ for stock_one in real_time_quotes_all_stocks_df.itertuples():
30
+ symbol = stock_one.symbol
31
+ try:
32
+ symbol_prefix = stock_one.symbol_prefix
33
+
34
+ year_k_line_df_copy = xue_qiu_k_line_api.get_xue_qiu_k_line(symbol_prefix, 'year',
35
+ cookie_info_service.get_xue_qiu_cookie(),
36
+ timestamp,
37
+ 'before')
38
+ if data_frame_util.is_empty(year_k_line_df_copy):
39
+ logger.warning("返回数据为空:{}", symbol)
40
+ continue
41
+
42
+ year_k_line_df = year_k_line_df_copy.copy()
43
+ year_k_line_df = year_k_line_df[[
44
+ 'volume',
45
+ 'open',
46
+ 'high',
47
+ 'low',
48
+ 'close',
49
+ 'chg',
50
+ 'percent',
51
+ 'turnoverrate',
52
+ 'amount',
53
+ 'str_day'
54
+ ]]
55
+ year_k_line_df['year'] = year_k_line_df['str_day'].str[:4]
56
+
57
+ year_k_line_df["open_to_high_pct"] = (
58
+ (year_k_line_df["high"] - year_k_line_df["open"]) / year_k_line_df["open"] * 100).round(2)
59
+
60
+ year_k_line_df["low_to_high_pct"] = (
61
+ (year_k_line_df["high"] - year_k_line_df["low"]) / year_k_line_df["low"] * 100).round(2)
62
+ year_k_line_df = year_k_line_df.rename(columns={
63
+ "percent": "chg",
64
+ "chg": "chg_price",
65
+ "turnoverrate": "exchange"
66
+ })
67
+ year_k_line_df['symbol'] = symbol
68
+ year_k_line_df['_id'] = symbol + '_' + year_k_line_df['year']
69
+ mongodb_util.save_mongo(year_k_line_df, col_name)
70
+ logger.info("同步年线数据完成:{},{}", symbol, stock_one.name)
71
+ except BaseException as e:
72
+ logger.error("同步年线数据异常:{},{}", symbol, e)
73
+
74
+
75
+ if __name__ == '__main__':
76
+ sync_year_k_line()
@@ -3,10 +3,8 @@ import os
3
3
 
4
4
  import mns_common.api.kpl.selection.kpl_selection_plate_api as selection_plate_api
5
5
  from mns_common.db.MongodbUtil import MongodbUtil
6
- from loguru import logger
7
6
  from datetime import datetime
8
7
  import mns_common.utils.data_frame_util as data_frame_util
9
- import pandas as pd
10
8
 
11
9
  file_path = os.path.abspath(__file__)
12
10
  end = file_path.index('mns') + 17
@@ -121,6 +119,10 @@ def save_one_plate_detail_data(plate_code, plate_name, index_class, first_plate_
121
119
  new_df['create_day'] = str_day
122
120
  new_df['create_time'] = str_now_date
123
121
  new_df = new_df[choose_field]
122
+ new_df['grade'] = 1
123
+ new_df['remark'] = ''
124
+ new_df['remark_flag'] = ''
125
+ new_df['long'] = ''
124
126
  mongodb_util.insert_mongo(new_df, 'kpl_best_choose_index_detail')
125
127
 
126
128
  # 保存到当日新增概念列表
@@ -0,0 +1,108 @@
1
+ import sys
2
+ import os
3
+
4
+ file_path = os.path.abspath(__file__)
5
+ end = file_path.index('mns') + 16
6
+ project_path = file_path[0:end]
7
+ sys.path.append(project_path)
8
+
9
+ import mns_common.constant.db_name_constant as db_name_constant
10
+ from mns_common.db.MongodbUtil import MongodbUtil
11
+ import mns_common.utils.data_frame_util as data_frame_util
12
+ import mns_common.api.kpl.common.kpl_common_api as kpl_common_api
13
+ from loguru import logger
14
+ from datetime import datetime, timedelta
15
+ import pandas as pd
16
+
17
+ mongodb_util = MongodbUtil('27017')
18
+
19
+
20
+ # 更新所有概念入选原因
21
+ def update_all_kpl_symbol_choose_reason():
22
+ kpl_best_choose_index_df = mongodb_util.find_query_data(db_name_constant.KPL_BEST_CHOOSE_INDEX, {})
23
+ for concept_one in kpl_best_choose_index_df.itertuples():
24
+ try:
25
+ concept_code = concept_one.plate_code
26
+ kpl_best_choose_index_detail_df = mongodb_util.find_query_data(
27
+ db_name_constant.KPL_BEST_CHOOSE_INDEX_DETAIL, {"plate_code": concept_code})
28
+ if data_frame_util.is_not_empty(kpl_best_choose_index_detail_df):
29
+ kpl_symbol_list = list(kpl_best_choose_index_detail_df['symbol'])
30
+ symbol_str = ','.join(kpl_symbol_list)
31
+ choose_reason_df = kpl_common_api.get_kpl_concept_choose_reason(concept_code, symbol_str)
32
+ if data_frame_util.is_not_empty(choose_reason_df):
33
+ for choose_reason_one in choose_reason_df.itertuples():
34
+ symbol = choose_reason_one.symbol
35
+ try:
36
+
37
+ choose_reason = choose_reason_one.choose_reason
38
+ update_query = {'symbol': symbol, 'plate_code': concept_code}
39
+ new_values = {"$set": {"long": choose_reason}}
40
+ mongodb_util.update_many(update_query, new_values,
41
+ db_name_constant.KPL_BEST_CHOOSE_INDEX_DETAIL)
42
+ except BaseException as e:
43
+ logger.error("更新开票啦入选原因异常:{},{},{}", symbol, concept_code, e)
44
+ logger.info("更新开票啦入选原因完成:{},{}", concept_one.plate_code, concept_one.plate_name)
45
+ except BaseException as e:
46
+ logger.error("更新开票啦入选原因异常:{},{},{}", concept_one.plate_code, concept_one.plate_name, e)
47
+
48
+
49
+ # 更新入选概念原因
50
+ def update_symbol_new_concept_reason(plate_code, kpl_symbol_list):
51
+ symbol_str = ','.join(kpl_symbol_list)
52
+ choose_reason_df = kpl_common_api.get_kpl_concept_choose_reason(plate_code, symbol_str)
53
+ if data_frame_util.is_not_empty(choose_reason_df):
54
+ choose_reason_df = choose_reason_df[choose_reason_df['choose_reason'] != '']
55
+ if data_frame_util.is_empty(choose_reason_df):
56
+ return
57
+ for choose_reason_one in choose_reason_df.itertuples():
58
+ symbol = choose_reason_one.symbol
59
+ try:
60
+
61
+ choose_reason = choose_reason_one.choose_reason
62
+ update_query = {'symbol': symbol, 'plate_code': plate_code}
63
+ new_values = {"$set": {"long": choose_reason}}
64
+ mongodb_util.update_many(update_query, new_values,
65
+ db_name_constant.KPL_BEST_CHOOSE_INDEX_DETAIL)
66
+ # 更新今日新增概念列表 入选原因
67
+ mongodb_util.update_many(update_query, new_values,
68
+ db_name_constant.TODAY_NEW_CONCEPT_LIST)
69
+ except BaseException as e:
70
+ logger.error("更新开票啦入选原因异常:{},{},{}", symbol, plate_code, e)
71
+
72
+
73
+ def update_null_choose_reason():
74
+ # 获取当前日期时间
75
+ now = datetime.now()
76
+
77
+ # 计算前15天的日期时间
78
+ days_ago_15 = now - timedelta(days=30)
79
+
80
+ # 按指定格式输出
81
+ formatted_date = days_ago_15.strftime("%Y-%m-%d %H:%M:%S")
82
+ query = {"create_time": {"$gte": formatted_date}, '$or': [{"long": {"$exists": False}}, {"long": ''}]}
83
+ null_choose_reason_detail_df = mongodb_util.find_query_data(db_name_constant.KPL_BEST_CHOOSE_INDEX_DETAIL, query)
84
+ if data_frame_util.is_not_empty(null_choose_reason_detail_df):
85
+ grouped_null_reason_df = null_choose_reason_detail_df.groupby('plate_code')
86
+ grouped_null_reason_list = grouped_null_reason_df.size()
87
+ group_null_reason = pd.DataFrame(grouped_null_reason_list, columns=['number'])
88
+ group_null_reason['plate_code'] = group_null_reason.index
89
+ group_null_reason = group_null_reason.sort_values(by=['number'], ascending=False)
90
+ for null_reason_one in group_null_reason.itertuples():
91
+ plate_code = null_reason_one.plate_code
92
+ try:
93
+
94
+ null_reason_one_plate_df = null_choose_reason_detail_df.loc[
95
+ null_choose_reason_detail_df['plate_code'] == plate_code]
96
+ kpl_symbol_list = list(null_reason_one_plate_df['symbol'])
97
+ update_symbol_new_concept_reason(plate_code, kpl_symbol_list)
98
+ logger.info("更新开票啦入选原因完成:{},{}", null_reason_one.plate_code,
99
+ list(null_reason_one_plate_df['plate_name'])[0])
100
+ except BaseException as e:
101
+ logger.error("更新kpl入选原因异常:{},{}", null_reason_one.plate_code, e)
102
+
103
+ return formatted_date
104
+
105
+
106
+ if __name__ == '__main__':
107
+ update_null_choose_reason()
108
+ # update_all_kpl_symbol_choose_reason()
@@ -10,6 +10,7 @@ import mns_scheduler.kpl.selection.symbol.sync_best_choose_symbol as sync_best_c
10
10
  import threading
11
11
  import mns_common.constant.db_name_constant as db_name_constant
12
12
  import mns_common.api.kpl.constant.kpl_constant as kpl_constant
13
+ import mns_scheduler.kpl.selection.symbol.sync_kpl_concept_symbol_choose_reason_api as sync_kpl_concept_symbol_choose_reason_api
13
14
 
14
15
  file_path = os.path.abspath(__file__)
15
16
  end = file_path.index('mns') + 17
@@ -22,7 +23,7 @@ mongodb_util = MongodbUtil('27017')
22
23
  MAX_PAGE_NUMBER = 10
23
24
 
24
25
 
25
- # 同步开票啦精选概念股票组成
26
+ # 同步开盘啦精选概念股票组成
26
27
  def sync_best_choose_symbol_detail(first_index_df, page_number):
27
28
  for stock_one in first_index_df.itertuples():
28
29
  try:
@@ -76,13 +77,17 @@ def sync_all_plate_info():
76
77
  # 更新一级和二级之间的关联关系
77
78
  # 找出新增精选指数
78
79
  sync_best_choose_first_index.sync_best_choose_index()
79
- logger.info("同步开票啦精选概念指数完成")
80
+ logger.info("同步开盘啦精选概念指数完成")
80
81
  # 同步精选概念股票组成
81
82
  multi_thread_sync_kpl_best_choose_detail()
82
- logger.info("同步开票啦精选概念股票组成完成")
83
- # 更新开票啦空名字名称
83
+ logger.info("同步开盘啦精选概念股票组成完成")
84
+ # 更新开盘啦空名字名称
84
85
  update_null_name()
85
- logger.info("更新开票啦空名字名称")
86
+ logger.info("更新开盘啦空名字名称")
87
+
88
+ # 更新开盘啦入选原因
89
+ sync_kpl_concept_symbol_choose_reason_api.update_null_choose_reason()
90
+ logger.info("更新开盘啦入选原因")
86
91
 
87
92
 
88
93
  # 更新一二级关系
@@ -181,8 +186,8 @@ def update_null_name():
181
186
 
182
187
 
183
188
  if __name__ == '__main__':
184
- update_null_name()
185
- update_best_choose_plate_relation()
189
+ # update_null_name()
190
+ # update_best_choose_plate_relation()
186
191
 
187
192
  # 同步第一和第二级别精选指数
188
193
  sync_all_plate_info()
@@ -2,6 +2,6 @@ import sys
2
2
  import os
3
3
 
4
4
  file_path = os.path.abspath(__file__)
5
- end = file_path.index('mns') + 16
5
+ end = file_path.index('mns') + 17
6
6
  project_path = file_path[0:end]
7
7
  sys.path.append(project_path)
@@ -2,7 +2,7 @@ import sys
2
2
  import os
3
3
 
4
4
  file_path = os.path.abspath(__file__)
5
- end = file_path.index('mns') + 16
5
+ end = file_path.index('mns') + 17
6
6
  project_path = file_path[0:end]
7
7
  sys.path.append(project_path)
8
8
 
@@ -2,6 +2,6 @@ import sys
2
2
  import os
3
3
 
4
4
  file_path = os.path.abspath(__file__)
5
- end = file_path.index('mns') + 16
5
+ end = file_path.index('mns') + 17
6
6
  project_path = file_path[0:end]
7
7
  sys.path.append(project_path)
@@ -2,7 +2,7 @@ import sys
2
2
  import os
3
3
 
4
4
  file_path = os.path.abspath(__file__)
5
- end = file_path.index('mns') + 16
5
+ end = file_path.index('mns') + 17
6
6
  project_path = file_path[0:end]
7
7
  sys.path.append(project_path)
8
8
  # 同步当天所有开盘数据
@@ -11,9 +11,8 @@ from loguru import logger
11
11
  from datetime import time
12
12
  from mns_common.db.MongodbUtil import MongodbUtil
13
13
  import mns_common.component.common_service_fun_api as common_service_fun_api
14
- import mns_common.component.company.company_common_service_api as company_common_service_api
14
+ import mns_common.component.company.company_common_service_new_api as company_common_service_new_api
15
15
  import mns_common.component.data.data_init_api as data_init_api
16
- import pandas as pd
17
16
  import mns_common.utils.db_util as db_util
18
17
 
19
18
  mongodb_util = MongodbUtil('27017')
@@ -51,12 +50,13 @@ def sync_one_day_open_data(str_day):
51
50
 
52
51
 
53
52
  def handle_init_real_time_quotes_data(real_time_quotes_now, str_now_date, number):
53
+ # fix industry
54
+ real_time_quotes_now = company_common_service_new_api.amend_ths_industry(real_time_quotes_now.copy())
54
55
  # exclude b symbol
55
56
  real_time_quotes_now = common_service_fun_api.exclude_b_symbol(real_time_quotes_now.copy())
56
57
  # classification symbol
57
58
  real_time_quotes_now = common_service_fun_api.classify_symbol(real_time_quotes_now.copy())
58
- # fix industry
59
- real_time_quotes_now = fix_industry_data(real_time_quotes_now.copy())
59
+
60
60
  # calculate parameter
61
61
  real_time_quotes_now = data_init_api.calculate_parameter_factor(real_time_quotes_now.copy())
62
62
 
@@ -66,21 +66,5 @@ def handle_init_real_time_quotes_data(real_time_quotes_now, str_now_date, number
66
66
  return real_time_quotes_now
67
67
 
68
68
 
69
- # fix 错杀数据 有成交量的数据
70
- def fix_industry_data(real_time_quotes_now):
71
- # fix industry
72
- real_time_quotes_now_r = company_common_service_api.amendment_industry(real_time_quotes_now.copy())
73
-
74
- symbol_list = list(real_time_quotes_now_r['symbol'])
75
-
76
- na_real_now = real_time_quotes_now.loc[
77
- ~(real_time_quotes_now['symbol'].isin(symbol_list))]
78
-
79
- na_real_now = na_real_now.loc[na_real_now['amount'] != 0]
80
-
81
- real_time_quotes_now_result = pd.concat([real_time_quotes_now_r, na_real_now], axis=0)
82
- return real_time_quotes_now_result
83
-
84
-
85
69
  if __name__ == '__main__':
86
- sync_one_day_open_data('2024-06-04')
70
+ sync_one_day_open_data('2025-03-21')
@@ -2,6 +2,6 @@ import sys
2
2
  import os
3
3
 
4
4
  file_path = os.path.abspath(__file__)
5
- end = file_path.index('mns') + 16
5
+ end = file_path.index('mns') + 17
6
6
  project_path = file_path[0:end]
7
7
  sys.path.append(project_path)
File without changes
@@ -0,0 +1,71 @@
1
+ from datetime import datetime
2
+ import mns_common.component.self_choose.black_list_service_api as black_list_service_api
3
+ import mns_scheduler.finance.em.finance_common_api as finance_common_api
4
+ from loguru import logger
5
+ import mns_common.constant.db_name_constant as db_name_constant
6
+ import mns_common.component.trade_date.trade_date_common_service_api as trade_date_common_service_api
7
+ import pandas as pd
8
+ from mns_common.constant.black_list_classify_enum import BlackClassify
9
+ import mns_common.component.company.company_common_service_api as company_common_service_api
10
+ import mns_common.utils.date_handle_util as date_handle_util
11
+
12
+ # 最迟出报告的交易天数
13
+ LATE_REPORT_DAYS = 3
14
+
15
+
16
+ # 未出财报检查
17
+ def un_disclosed_report_check(sync_time, now_year, period, period_time):
18
+ un_report_asset_df = finance_common_api.find_un_report_symbol(period_time,
19
+ db_name_constant.EM_STOCK_ASSET_LIABILITY)
20
+ un_report_profit_df = finance_common_api.find_un_report_symbol(period_time,
21
+ db_name_constant.EM_STOCK_PROFIT)
22
+ un_report_df = pd.concat([un_report_asset_df, un_report_profit_df])
23
+ if period == 4 or period == 1:
24
+ month = sync_time[5:7]
25
+ day = sync_time[8:10]
26
+ day = int(day)
27
+ month = int(month)
28
+ if (month < 4) or (month == 4 and day < 20):
29
+ return None
30
+ last_report_day = str(now_year) + "-05-01"
31
+ elif period == 2:
32
+ last_report_day = str(now_year) + "-07-01"
33
+ elif period == 3:
34
+ last_report_day = str(now_year) + "-10-01"
35
+ max_report_day = trade_date_common_service_api.get_before_trade_date(last_report_day, LATE_REPORT_DAYS)
36
+ all_company_info = company_common_service_api.get_company_info_industry_list_date()
37
+ if max_report_day >= sync_time:
38
+
39
+ for un_asset_one in un_report_df.itertuples():
40
+ symbol = un_asset_one.symbol
41
+ company_info_one = all_company_info.loc[all_company_info['_id'] == symbol]
42
+ list_date = list(company_info_one['list_date'])[0]
43
+ list_date = str(list_date)
44
+ list_date_time = date_handle_util.add_date_day(list_date[0:8], 0)
45
+ list_date_str = list_date_time.strftime('%Y-%m-%d')
46
+ if max_report_day < list_date_str:
47
+ continue
48
+ id_key = symbol + "_" + period_time + "_" + BlackClassify.UNDISCLOSED_REPORT.level_code
49
+ name = un_asset_one.name
50
+ now_date = datetime.now()
51
+ str_day = now_date.strftime('%Y-%m-%d')
52
+ try:
53
+
54
+ black_list_service_api.save_black_stock(id_key,
55
+ symbol,
56
+ name,
57
+ str_day,
58
+ sync_time,
59
+ '未披露财务报告',
60
+ '未披露财务报告',
61
+ '',
62
+ BlackClassify.UNDISCLOSED_REPORT.up_level_code,
63
+ BlackClassify.UNDISCLOSED_REPORT.up_level_name,
64
+ BlackClassify.UNDISCLOSED_REPORT.level_code,
65
+ BlackClassify.UNDISCLOSED_REPORT.level_name)
66
+ except Exception as e:
67
+ logger.error("更新未出报告异常:{},{},{}", symbol, period_time, e)
68
+
69
+
70
+ if __name__ == '__main__':
71
+ un_disclosed_report_check('2025-04-29', 2025, 4, '2024-12-31 00:00:00')
File without changes
@@ -0,0 +1,54 @@
1
+ import sys
2
+ import os
3
+
4
+ file_path = os.path.abspath(__file__)
5
+ end = file_path.index('mns') + 17
6
+ project_path = file_path[0:end]
7
+ sys.path.append(project_path)
8
+ import mns_common.component.self_choose.black_list_service_api as black_list_service_api
9
+ from mns_common.db.MongodbUtil import MongodbUtil
10
+ from datetime import datetime
11
+ from mns_common.constant.black_list_classify_enum import BlackClassify
12
+ import mns_common.constant.db_name_constant as db_name_constant
13
+
14
+ # 年报审计意见check
15
+ mongodb_util = MongodbUtil('27017')
16
+ # 审核标准意见
17
+ OPINION_TYPE = "标准无保留意见"
18
+ # 新上市不check
19
+ NEW_STOCK = 365
20
+
21
+
22
+ def annual_report_audit_check(new_report_df, period_time):
23
+ new_report_one_df = new_report_df.loc[new_report_df['REPORT_DATE'] == period_time]
24
+ # 审核意见
25
+ opinion_type = list(new_report_one_df['OPINION_TYPE'])[0]
26
+ symbol = list(new_report_one_df['SECURITY_CODE'])[0]
27
+ name = list(new_report_one_df['SECURITY_NAME_ABBR'])[0]
28
+ notice_date = list(new_report_one_df['NOTICE_DATE'])[0]
29
+ now_date = datetime.now()
30
+ str_day = now_date.strftime('%Y-%m-%d')
31
+ query = {'symbol': symbol, 'level_code': BlackClassify.AUDIT_PROBLEM.level_code}
32
+ mongodb_util.remove_data(query, db_name_constant.SELF_BLACK_STOCK)
33
+ # 年报有问题
34
+ if opinion_type != OPINION_TYPE:
35
+ query_company = {'_id': symbol}
36
+ company_info = mongodb_util.find_query_data(db_name_constant.COMPANY_INFO, query_company)
37
+ diff_days = list(company_info['diff_days'])[0]
38
+ if diff_days < NEW_STOCK:
39
+ return
40
+
41
+ id_key = symbol + "_" + period_time + "_" + BlackClassify.AUDIT_PROBLEM.level_code
42
+
43
+ black_list_service_api.save_black_stock(id_key,
44
+ symbol,
45
+ name,
46
+ str_day,
47
+ notice_date,
48
+ '年报审计有问题:' + "[" + str(opinion_type) + "]",
49
+ '年报审计有问题',
50
+ '',
51
+ BlackClassify.AUDIT_PROBLEM.up_level_code,
52
+ BlackClassify.AUDIT_PROBLEM.up_level_name,
53
+ BlackClassify.AUDIT_PROBLEM.level_code,
54
+ BlackClassify.AUDIT_PROBLEM.level_name)
@@ -0,0 +1,75 @@
1
+ from datetime import datetime
2
+ import mns_common.component.self_choose.black_list_service_api as black_list_service_api
3
+ import mns_common.constant.db_name_constant as db_name_constant
4
+ from mns_common.db.MongodbUtil import MongodbUtil
5
+ import mns_common.component.common_service_fun_api as common_service_fun_api
6
+ from mns_common.constant.black_list_classify_enum import BlackClassify
7
+
8
+ mongodb_util = MongodbUtil('27017')
9
+ # 最大负债比
10
+ MAX_LIABILITY_RATIO = 90
11
+ # 最小净资产1.5亿
12
+ MIN_NET_ASSET = 150000000
13
+ # 排除校验负债比的行业
14
+ EXCLUDE_INDUSTRY = ['保险', '银行', '证券']
15
+
16
+
17
+ # 负债比校验| 净资产check
18
+ def net_assets_check(report_type, new_report_df, period_time):
19
+ if report_type == db_name_constant.EM_STOCK_ASSET_LIABILITY:
20
+ new_report_df = new_report_df.sort_values(by=['REPORT_DATE'], ascending=False)
21
+ new_report_one_df = new_report_df.iloc[0:1]
22
+ # 负债比
23
+ liability_ratio = round(
24
+ list(new_report_one_df['TOTAL_LIABILITIES'])[0] * 100 / list(new_report_one_df['TOTAL_ASSETS'])[0],
25
+ 2)
26
+ # 净资产
27
+ net_asset = round(list(new_report_one_df['TOTAL_ASSETS'])[0] - list(new_report_one_df['TOTAL_LIABILITIES'])[0],
28
+ 2)
29
+
30
+ symbol = list(new_report_one_df['SECURITY_CODE'])[0]
31
+ name = list(new_report_one_df['SECURITY_NAME_ABBR'])[0]
32
+ now_date = datetime.now()
33
+ str_day = now_date.strftime('%Y-%m-%d')
34
+ id_key = symbol + "_" + period_time + "_" + BlackClassify.FINANCIAL_PROBLEM_DEBT.level_code
35
+ notice_date = list(new_report_one_df['NOTICE_DATE'])[0]
36
+ query_company = {'_id': symbol, 'industry': {'$in': EXCLUDE_INDUSTRY}}
37
+ query = {'symbol': symbol, 'level_code': BlackClassify.FINANCIAL_PROBLEM_DEBT.level_code}
38
+ mongodb_util.remove_data(query, db_name_constant.SELF_BLACK_STOCK)
39
+
40
+ if mongodb_util.exist_data_query(db_name_constant.COMPANY_INFO, query_company):
41
+ return None
42
+
43
+ if liability_ratio >= MAX_LIABILITY_RATIO and net_asset < MIN_NET_ASSET:
44
+
45
+ black_list_service_api.save_black_stock(id_key,
46
+ symbol,
47
+ name,
48
+ str_day,
49
+ notice_date,
50
+ '负债过高:' + "[" + "负债比:" + str(
51
+ liability_ratio) + "]" + "," + "净资产:"
52
+ + str(round(net_asset / common_service_fun_api.HUNDRED_MILLION,
53
+ 0)) + "亿",
54
+ '负债过高:' + "[" + str(liability_ratio) + "]",
55
+ '',
56
+ BlackClassify.FINANCIAL_PROBLEM_DEBT.up_level_code,
57
+ BlackClassify.FINANCIAL_PROBLEM_DEBT.up_level_name,
58
+ BlackClassify.FINANCIAL_PROBLEM_DEBT.level_code,
59
+ BlackClassify.FINANCIAL_PROBLEM_DEBT.level_name)
60
+ # if net_asset < MIN_NET_ASSET:
61
+ # black_list_service_api.save_black_stock(id_key,
62
+ # symbol,
63
+ # name,
64
+ # str_day,
65
+ # notice_date,
66
+ # '净资产低:' + "[" + "负债比:" + str(
67
+ # liability_ratio) + "]" + "," + "净资产:"
68
+ # + str(round(net_asset / common_service_fun_api.HUNDRED_MILLION,
69
+ # 0)) + "亿",
70
+ # '净资产低:' + "[" + str(liability_ratio) + "]",
71
+ # '',
72
+ # BlackClassify.FINANCIAL_PROBLEM_DEBT.up_level_code,
73
+ # BlackClassify.FINANCIAL_PROBLEM_DEBT.up_level_name,
74
+ # BlackClassify.FINANCIAL_PROBLEM_DEBT.level_code,
75
+ # BlackClassify.FINANCIAL_PROBLEM_DEBT.level_name)
@@ -0,0 +1,80 @@
1
+ import sys
2
+ import os
3
+ from datetime import datetime
4
+ import mns_common.constant.db_name_constant as db_name_constant
5
+ import mns_common.component.self_choose.black_list_service_api as black_list_service_api
6
+ import mns_common.component.common_service_fun_api as common_service_fun_api
7
+ from mns_common.constant.black_list_classify_enum import BlackClassify
8
+ from mns_common.db.MongodbUtil import MongodbUtil
9
+
10
+ mongodb_util = MongodbUtil('27017')
11
+ file_path = os.path.abspath(__file__)
12
+ end = file_path.index('mns') + 17
13
+ project_path = file_path[0:end]
14
+ sys.path.append(project_path)
15
+
16
+ # 利润为负的时候最小营业收入 主板 3.2亿
17
+ MIN_INCOME_MAIN = 320000000
18
+ # 利润为负的时候最小营业收入 科创 创业 1.2亿
19
+ MIN_INCOME_SUB = 120000000
20
+
21
+
22
+ # 营收利润check
23
+
24
+ def profit_income_check(new_report_df, period_time, report_type):
25
+ new_report_one_df = new_report_df.loc[new_report_df['REPORT_DATE'] == period_time]
26
+ symbol = list(new_report_one_df['SECURITY_CODE'])[0]
27
+ name = list(new_report_one_df['SECURITY_NAME_ABBR'])[0]
28
+ now_date = datetime.now()
29
+ str_day = now_date.strftime('%Y-%m-%d')
30
+ notice_date = list(new_report_one_df['NOTICE_DATE'])[0]
31
+ if report_type == db_name_constant.EM_STOCK_PROFIT:
32
+ # 利润总额 净利润 扣除非经常性损益后的净利润 三者最小为负
33
+ # 利润总额
34
+ total_profit = list(new_report_one_df['TOTAL_PROFIT'])[0]
35
+ # 净利润
36
+ net_profit = list(new_report_one_df['NETPROFIT'])[0]
37
+ # 营业利润
38
+ operate_profit = list(new_report_one_df['OPERATE_PROFIT'])[0]
39
+ # 持续经营净利润
40
+ continued_profit = list(new_report_one_df['CONTINUED_NETPROFIT'])[0]
41
+ # 归属于母公司股东的净利润
42
+ parent_profit = list(new_report_one_df['PARENT_NETPROFIT'])[0]
43
+ # 扣除非经常性损益后的净利润
44
+ deduct_parent_profit = list(new_report_one_df['DEDUCT_PARENT_NETPROFIT'])[0]
45
+ # 营业总收入
46
+ total_operate_income = list(new_report_one_df['TOTAL_OPERATE_INCOME'])[0]
47
+ if total_operate_income == 0:
48
+ # 营业收入
49
+ total_operate_income = list(new_report_one_df['OPERATE_INCOME'])[0]
50
+
51
+ # 最小利润收入
52
+ min_profit = min(total_profit, net_profit, operate_profit,
53
+ continued_profit, parent_profit, deduct_parent_profit)
54
+
55
+ query = {'symbol': symbol, 'level_code': BlackClassify.FINANCIAL_PROBLEM_PROFIT.level_code}
56
+ mongodb_util.remove_data(query, db_name_constant.SELF_BLACK_STOCK)
57
+
58
+ if min_profit < 0:
59
+
60
+ classification = common_service_fun_api.classify_symbol_one(symbol)
61
+ if ((classification in ['S', 'H'] and total_operate_income < MIN_INCOME_MAIN)
62
+ | (classification in ['K', 'C'] and total_operate_income < MIN_INCOME_SUB)):
63
+ id_key = symbol + "_" + period_time + "_" + BlackClassify.FINANCIAL_PROBLEM_PROFIT.level_code
64
+ min_profit = round(min_profit / common_service_fun_api.TEN_THOUSAND, 1)
65
+ total_operate_income = round(total_operate_income / common_service_fun_api.HUNDRED_MILLION, 1)
66
+
67
+ black_list_service_api.save_black_stock(id_key,
68
+ symbol,
69
+ name,
70
+ str_day,
71
+ notice_date,
72
+ '年报:利润:' + '[' + str(min_profit) + '万]' + '收入:' + str(
73
+ total_operate_income) + '[' + '亿元]--' + '触发退市风险',
74
+ '年报:利润:' + '[' + str(min_profit) + '万]' + '收入:' + str(
75
+ total_operate_income) + '[' + '亿元]--' + '触发退市风险',
76
+ '',
77
+ BlackClassify.FINANCIAL_PROBLEM_PROFIT.up_level_code,
78
+ BlackClassify.FINANCIAL_PROBLEM_PROFIT.up_level_name,
79
+ BlackClassify.FINANCIAL_PROBLEM_PROFIT.level_code,
80
+ BlackClassify.FINANCIAL_PROBLEM_PROFIT.level_name)
@@ -0,0 +1 @@
1
+ # 股权质押风险