mns-common 1.3.3.5__py3-none-any.whl → 1.5.7.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (76) hide show
  1. mns_common/api/akshare/__init__.py +0 -1
  2. mns_common/api/akshare/k_line_api.py +20 -82
  3. mns_common/api/akshare/stock_bid_ask_api.py +22 -97
  4. mns_common/api/akshare/stock_zb_pool.py +2 -0
  5. mns_common/api/akshare/stock_zt_pool_api.py +1 -1
  6. mns_common/api/em/gd/__init__.py +7 -0
  7. mns_common/api/em/{east_money_stock_gdfx_free_top_10_api.py → gd/east_money_stock_gdfx_free_top_10_api.py} +64 -9
  8. mns_common/api/em/real_time/__init__.py +7 -0
  9. mns_common/api/em/{east_money_debt_api.py → real_time/east_money_debt_api.py} +154 -69
  10. mns_common/api/em/{east_money_etf_api.py → real_time/east_money_etf_api.py} +149 -27
  11. mns_common/api/em/real_time/east_money_stock_a_api.py +301 -0
  12. mns_common/api/em/real_time/east_money_stock_a_v2_api.py +340 -0
  13. mns_common/api/em/real_time/east_money_stock_common_api.py +174 -0
  14. mns_common/api/em/real_time/east_money_stock_hk_api.py +288 -0
  15. mns_common/api/em/real_time/east_money_stock_hk_gtt_api.py +260 -0
  16. mns_common/api/em/real_time/east_money_stock_multi_thread_api_v3.py +154 -0
  17. mns_common/api/em/{east_money_stock_us_api.py → real_time/east_money_stock_us_api.py} +149 -72
  18. mns_common/api/em/real_time/real_time_quotes_repeat_api.py +195 -0
  19. mns_common/api/k_line/stock_k_line_data_api.py +11 -1
  20. mns_common/api/k_line/stock_minute_data_api.py +1 -0
  21. mns_common/api/kpl/common/kpl_common_api.py +35 -0
  22. mns_common/api/kpl/symbol/symbol_his_quotes_api.py +1 -1
  23. mns_common/api/proxies/__init__.py +7 -0
  24. mns_common/api/proxies/liu_guan_proxy_api.py +115 -0
  25. mns_common/api/ths/company/company_product_area_industry_index_query.py +46 -0
  26. mns_common/api/ths/company/ths_company_info_api.py +13 -9
  27. mns_common/api/ths/company/ths_company_info_web.py +159 -0
  28. mns_common/api/ths/concept/app/ths_concept_index_app.py +3 -1
  29. mns_common/api/ths/wen_cai/ths_wen_cai_api.py +10 -7
  30. mns_common/api/ths/zt/ths_stock_zt_pool_api.py +21 -4
  31. mns_common/api/ths/zt/ths_stock_zt_pool_v2_api.py +111 -40
  32. mns_common/api/xueqiu/__init__.py +7 -0
  33. mns_common/api/xueqiu/xue_qiu_k_line_api.py +83 -0
  34. mns_common/component/__init__.py +1 -1
  35. mns_common/component/classify/symbol_classify_api.py +7 -7
  36. mns_common/component/common_service_fun_api.py +66 -6
  37. mns_common/component/company/company_common_service_api.py +21 -1
  38. mns_common/component/company/company_common_service_new_api.py +4 -1
  39. mns_common/component/cookie/cookie_enum.py +15 -0
  40. mns_common/component/cookie/cookie_info_service.py +9 -4
  41. mns_common/component/data/data_init_api.py +13 -8
  42. mns_common/component/deal/deal_service_api.py +70 -8
  43. mns_common/component/deal/deal_service_v2_api.py +167 -0
  44. mns_common/component/em/__init__.py +7 -0
  45. mns_common/component/em/em_real_time_quotes_api.py +56 -0
  46. mns_common/component/em/em_stock_info_api.py +48 -0
  47. mns_common/component/exception/ExceptionMonitor.py +86 -0
  48. mns_common/component/exception/__init__.py +7 -0
  49. mns_common/component/k_line/common/k_line_common_service_api.py +4 -0
  50. mns_common/component/main_line/__init__.py +7 -0
  51. mns_common/component/main_line/main_line_zt_reason_service.py +237 -0
  52. mns_common/component/proxies/__init__.py +7 -0
  53. mns_common/component/proxies/proxy_common_api.py +252 -0
  54. mns_common/component/self_choose/__init__.py +13 -0
  55. mns_common/component/tfp/stock_tfp_api.py +82 -12
  56. mns_common/component/us/__init__.py +7 -0
  57. mns_common/component/us/us_stock_etf_info_api.py +125 -0
  58. mns_common/constant/__init__.py +1 -0
  59. mns_common/constant/db_name_constant.py +65 -34
  60. mns_common/constant/extra_income_db_name.py +154 -0
  61. mns_common/constant/strategy_classify.py +72 -0
  62. mns_common/db/MongodbUtil.py +2 -1
  63. mns_common/db/MongodbUtilLocal.py +1 -0
  64. mns_common/db/v2/MongodbUtilV2.py +0 -4
  65. mns_common-1.5.7.2.dist-info/METADATA +4 -0
  66. {mns_common-1.3.3.5.dist-info → mns_common-1.5.7.2.dist-info}/RECORD +70 -45
  67. {mns_common-1.3.3.5.dist-info → mns_common-1.5.7.2.dist-info}/WHEEL +1 -1
  68. mns_common/api/em/east_money_stock_api.py +0 -222
  69. mns_common/api/em/east_money_stock_hk_api.py +0 -318
  70. mns_common/api/em/east_money_stock_v2_api.py +0 -219
  71. mns_common/api/ths/concept/web/ths_company_info_web.py +0 -163
  72. mns_common/component/qmt/qmt_buy_service.py +0 -172
  73. mns_common-1.3.3.5.dist-info/METADATA +0 -4
  74. /mns_common/{component/qmt → api/em/concept}/__init__.py +0 -0
  75. /mns_common/api/em/{em_concept_index_api.py → concept/em_concept_index_api.py} +0 -0
  76. {mns_common-1.3.3.5.dist-info → mns_common-1.5.7.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,174 @@
1
+ import pandas as pd
2
+ import mns_common.utils.data_frame_util as data_frame_util
3
+ import requests
4
+ from loguru import logger
5
+ import datetime
6
+
7
+ fs = "m:0 t:6,m:0 t:80,m:1 t:2,m:1 t:23,m:0 t:81 s:2048"
8
+ fields = ("f2,f3,f5,f6,f8,"
9
+ "f9,f10,f22,f12,f13,"
10
+ "f14,f15,f16,f17,f18,"
11
+ "f20,f21,f23,f26,f33,"
12
+ "f34,f35,f37,f38,f39,"
13
+ "f62,f64,f65,f67,f68,"
14
+ "f66,f69,f70,f71,f72,"
15
+ "f76,f77,f78,f82,f83,"
16
+ "f84,f102,f184,f100,f103,"
17
+ "f352,f191,f193,f24,f25")
18
+
19
+
20
+ # 获取所有股票实时行情数据 f33,委比
21
+ def rename_real_time_quotes_df(temp_df):
22
+ temp_df = temp_df.rename(columns={
23
+ "f2": "now_price",
24
+ "f3": "chg",
25
+ "f5": "volume",
26
+ "f6": "amount",
27
+ "f8": "exchange",
28
+ "f10": "quantity_ratio",
29
+ "f22": "up_speed",
30
+ "f11": "up_speed_05",
31
+ "f12": "symbol",
32
+ "f14": "name",
33
+ "f15": "high",
34
+ "f16": "low",
35
+ "f17": "open",
36
+ "f18": "yesterday_price",
37
+ "f20": "total_mv",
38
+ "f21": "flow_mv",
39
+ "f26": "list_date",
40
+ "f33": "wei_bi",
41
+ "f34": "outer_disk",
42
+ "f35": "inner_disk",
43
+ "f62": "today_main_net_inflow",
44
+ "f66": "super_large_order_net_inflow",
45
+ "f69": "super_large_order_net_inflow_ratio",
46
+ "f72": "large_order_net_inflow",
47
+ # "f78": "medium_order_net_inflow",
48
+ # "f84": "small_order_net_inflow",
49
+ "f100": "industry",
50
+ # "f103": "concept",
51
+ "f184": "today_main_net_inflow_ratio",
52
+ "f352": "average_price",
53
+ "f211": "buy_1_num",
54
+ "f212": "sell_1_num"
55
+ })
56
+ if data_frame_util.is_empty(temp_df):
57
+ return pd.DataFrame()
58
+ else:
59
+ temp_df.loc[temp_df['buy_1_num'] == '-', 'buy_1_num'] = 0
60
+ temp_df.loc[temp_df['sell_1_num'] == '-', 'sell_1_num'] = 0
61
+ temp_df.loc[temp_df['up_speed_05'] == '-', 'up_speed_05'] = 0
62
+ temp_df.loc[temp_df['up_speed'] == '-', 'up_speed'] = 0
63
+ temp_df.loc[temp_df['average_price'] == '-', 'average_price'] = 0
64
+ temp_df.loc[temp_df['wei_bi'] == '-', 'wei_bi'] = 0
65
+ temp_df.loc[temp_df['yesterday_price'] == '-', 'yesterday_price'] = 0
66
+ temp_df.loc[temp_df['now_price'] == '-', 'now_price'] = 0
67
+ temp_df.loc[temp_df['chg'] == '-', 'chg'] = 0
68
+ temp_df.loc[temp_df['volume'] == '-', 'volume'] = 0
69
+ temp_df.loc[temp_df['amount'] == '-', 'amount'] = 0
70
+ temp_df.loc[temp_df['exchange'] == '-', 'exchange'] = 0
71
+ temp_df.loc[temp_df['quantity_ratio'] == '-', 'quantity_ratio'] = 0
72
+ temp_df.loc[temp_df['high'] == '-', 'high'] = 0
73
+ temp_df.loc[temp_df['low'] == '-', 'low'] = 0
74
+ temp_df.loc[temp_df['open'] == '-', 'open'] = 0
75
+ temp_df.loc[temp_df['total_mv'] == '-', 'total_mv'] = 0
76
+ temp_df.loc[temp_df['flow_mv'] == '-', 'flow_mv'] = 0
77
+ temp_df.loc[temp_df['inner_disk'] == '-', 'inner_disk'] = 0
78
+ temp_df.loc[temp_df['outer_disk'] == '-', 'outer_disk'] = 0
79
+ temp_df.loc[temp_df['today_main_net_inflow_ratio'] == '-', 'today_main_net_inflow_ratio'] = 0
80
+ temp_df.loc[temp_df['today_main_net_inflow'] == '-', 'today_main_net_inflow'] = 0
81
+ temp_df.loc[temp_df['super_large_order_net_inflow'] == '-', 'super_large_order_net_inflow'] = 0
82
+ temp_df.loc[temp_df['super_large_order_net_inflow_ratio'] == '-', 'super_large_order_net_inflow_ratio'] = 0
83
+ temp_df.loc[temp_df['large_order_net_inflow'] == '-', 'large_order_net_inflow'] = 0
84
+ # temp_df.loc[temp_df['medium_order_net_inflow'] == '-', 'medium_order_net_inflow'] = 0
85
+ # temp_df.loc[temp_df['small_order_net_inflow'] == '-', 'small_order_net_inflow'] = 0
86
+
87
+ temp_df["list_date"] = pd.to_numeric(temp_df["list_date"], errors="coerce")
88
+ temp_df["wei_bi"] = pd.to_numeric(temp_df["wei_bi"], errors="coerce")
89
+ temp_df["average_price"] = pd.to_numeric(temp_df["average_price"], errors="coerce")
90
+ temp_df["yesterday_price"] = pd.to_numeric(temp_df["yesterday_price"], errors="coerce")
91
+ temp_df["now_price"] = pd.to_numeric(temp_df["now_price"], errors="coerce")
92
+ temp_df["chg"] = pd.to_numeric(temp_df["chg"], errors="coerce")
93
+ temp_df["volume"] = pd.to_numeric(temp_df["volume"], errors="coerce")
94
+ temp_df["amount"] = pd.to_numeric(temp_df["amount"], errors="coerce")
95
+ temp_df["exchange"] = pd.to_numeric(temp_df["exchange"], errors="coerce")
96
+ temp_df["quantity_ratio"] = pd.to_numeric(temp_df["quantity_ratio"], errors="coerce")
97
+ temp_df["high"] = pd.to_numeric(temp_df["high"], errors="coerce")
98
+ temp_df["low"] = pd.to_numeric(temp_df["low"], errors="coerce")
99
+ temp_df["open"] = pd.to_numeric(temp_df["open"], errors="coerce")
100
+ temp_df["total_mv"] = pd.to_numeric(temp_df["total_mv"], errors="coerce")
101
+ temp_df["flow_mv"] = pd.to_numeric(temp_df["flow_mv"], errors="coerce")
102
+ temp_df["outer_disk"] = pd.to_numeric(temp_df["outer_disk"], errors="coerce")
103
+ temp_df["inner_disk"] = pd.to_numeric(temp_df["inner_disk"], errors="coerce")
104
+ temp_df["today_main_net_inflow"] = pd.to_numeric(temp_df["today_main_net_inflow"], errors="coerce")
105
+ temp_df["super_large_order_net_inflow"] = pd.to_numeric(temp_df["super_large_order_net_inflow"],
106
+ errors="coerce")
107
+ temp_df["super_large_order_net_inflow_ratio"] = pd.to_numeric(temp_df["super_large_order_net_inflow_ratio"],
108
+ errors="coerce")
109
+ temp_df["large_order_net_inflow"] = pd.to_numeric(temp_df["large_order_net_inflow"],
110
+ errors="coerce")
111
+ # temp_df["medium_order_net_inflow"] = pd.to_numeric(temp_df["medium_order_net_inflow"],
112
+ # errors="coerce")
113
+ # temp_df["small_order_net_inflow"] = pd.to_numeric(temp_df["small_order_net_inflow"], errors="coerce")
114
+
115
+ # 大单比例
116
+ temp_df['large_order_net_inflow_ratio'] = round((temp_df['large_order_net_inflow'] / temp_df['amount']) * 100,
117
+ 2)
118
+
119
+ # 外盘是内盘倍数
120
+ temp_df['disk_ratio'] = round((temp_df['outer_disk'] - temp_df['inner_disk']) / temp_df['inner_disk'], 2)
121
+ # 只有外盘没有内盘
122
+ temp_df.loc[temp_df["inner_disk"] == 0, ['disk_ratio']] = 1688
123
+ temp_df = temp_df.sort_values(by=['chg'], ascending=False)
124
+ return temp_df
125
+
126
+
127
+ def get_stocks_num(pn, proxies, page_number, time_out):
128
+ """
129
+ 获取单页股票数据
130
+ """
131
+ # 获取当前日期和时间
132
+ current_time = datetime.datetime.now()
133
+
134
+ # 将当前时间转换为时间戳(以毫秒为单位)
135
+ current_timestamp_ms = int(current_time.timestamp() * 1000)
136
+
137
+ url = "https://13.push2.eastmoney.com/api/qt/clist/get"
138
+ params = {
139
+ "cb": "jQuery1124046660442520420653_" + str(current_timestamp_ms),
140
+ "pn": str(pn),
141
+ "pz": str(page_number), # 每页最大200条
142
+ "po": "1",
143
+ "np": "3",
144
+ "ut": "bd1d9ddb04089700cf9c27f6f7426281",
145
+ "fltt": "2",
146
+ "invt": "2",
147
+ "wbp2u": "|0|0|0|web",
148
+ "fid": "f3",
149
+ "fs": fs,
150
+ "fields": fields,
151
+ "_": current_timestamp_ms
152
+ }
153
+ try:
154
+ if proxies is None:
155
+ r = requests.get(url, params, timeout=time_out)
156
+ else:
157
+ r = requests.get(url, params, proxies=proxies, timeout=time_out)
158
+ data_text = r.text
159
+
160
+ begin_index_total = data_text.index('"total":')
161
+ end_index_total = data_text.index('"diff"')
162
+ return int(data_text[begin_index_total + 8:end_index_total - 1])
163
+
164
+ except Exception as e:
165
+ logger.error("获取股票数量异常:{}", str(e))
166
+ return 0
167
+
168
+
169
+ import mns_common.component.proxies.proxy_common_api as proxy_common_api
170
+
171
+ if __name__ == '__main__':
172
+ proxy_ip = proxy_common_api.generate_proxy_ip_api(1)
173
+ proxies = {"https": proxy_ip}
174
+ get_stocks_num(1, proxies, 100, 30)
@@ -0,0 +1,288 @@
1
+ import os
2
+ import sys
3
+
4
+ file_path = os.path.abspath(__file__)
5
+ end = file_path.index('mns') + 16
6
+ project_path = file_path[0:end]
7
+ sys.path.append(project_path)
8
+ import pandas as pd
9
+ from loguru import logger
10
+ import requests
11
+ import time
12
+ import mns_common.component.proxies.proxy_common_api as proxy_common_api
13
+ from concurrent.futures import ThreadPoolExecutor
14
+ import json
15
+ import mns_common.component.cookie.cookie_info_service as cookie_info_service
16
+
17
+ # 分页条数
18
+ page_number = 100
19
+
20
+ fields = ("f352,f2,f3,f5,f6,f8,f10,f11,f22,f12,f14,f15,f16,f17,f18,f20,f21,f26,"
21
+ "f33,f34,f35,f62,f66,f69,f72,f100,f184,f211,f212,f103,f383")
22
+
23
+
24
+ def get_hk_stock_count(pn, proxies, page_size, cookie, time_out):
25
+ try:
26
+ headers = {
27
+ 'Cookie': cookie
28
+ }
29
+ current_timestamp = str(int(round(time.time() * 1000, 0)))
30
+
31
+ url_new = ('https://push2.eastmoney.com/api/qt/clist/get?cb=jQuery371026074131356896413_' + str(
32
+ current_timestamp) +
33
+ '&np=1'
34
+ '&fltt=1'
35
+ '&invt=2'
36
+ '&fs=m:128+t:3,m:128+t:4,m:128+t:1,m:128+t:2'
37
+ '&fields=' + fields +
38
+ '&fid=f12'
39
+ '&pn=' + str(pn) +
40
+ '&pz=' + str(page_size) +
41
+ '&po=1'
42
+ '&dect=1'
43
+ '&ut=fa5fd1943c7b386f172d6893dbfba10b'
44
+ '&wbp2u=4253366368931142|0|1|0|web'
45
+ '&_' + str(current_timestamp))
46
+
47
+ if proxies is None:
48
+ r = requests.get(url_new, headers=headers, timeout=time_out)
49
+ else:
50
+ r = requests.get(url_new, headers=headers, proxies=proxies, timeout=time_out)
51
+ result = r.content.decode("utf-8")
52
+ begin_index_total = result.index('"total":')
53
+ end_index_total = result.index('"diff"')
54
+ return int(result[begin_index_total + 8:end_index_total - 1])
55
+ except Exception as e:
56
+ logger.error("获取港股股票列表,实时行情异常:{}", e)
57
+ return 0
58
+
59
+
60
+ def get_hk_real_time_quotes_page_df(pn, proxies, page_size, cookie, time_out):
61
+ try:
62
+ headers = {
63
+ 'Cookie': cookie
64
+ }
65
+ current_timestamp = str(int(round(time.time() * 1000, 0)))
66
+ url_new = ('https://61.push2.eastmoney.com/api/qt/clist/get?cb=jQuery112409497467688484127_' + str(
67
+ current_timestamp) +
68
+ '&pn=' + str(pn) +
69
+ '&pz=' + str(page_size) +
70
+ '&po=1'
71
+ '&np=3'
72
+ '&ut=bd1d9ddb04089700cf9c27f6f7426281'
73
+ '&fltt=2'
74
+ '&invt=2'
75
+ '&wbp2u=4253366368931142|0|1|0|web'
76
+ '&fid=f12'
77
+ '&fs=m:116+t:3,m:116+t:4,m:116+t:1,m:116+t:2'
78
+ '&fields=' + fields +
79
+ '&_=' + str(current_timestamp))
80
+
81
+ if proxies is None:
82
+ r = requests.get(url_new, headers=headers, timeout=time_out)
83
+ else:
84
+ r = requests.get(url_new, headers=headers, proxies=proxies, timeout=time_out)
85
+ result = r.content.decode("utf-8")
86
+ startIndex = result.index('"diff"')
87
+ endIndex = result.index('}]}')
88
+ result = result[startIndex + 7:endIndex + 2]
89
+ data_json = json.loads(result)
90
+ temp_df = pd.DataFrame(data_json)
91
+ return temp_df
92
+ except Exception as e:
93
+ logger.error("获取港股列表,实时行情异常:{}", e)
94
+ return pd.DataFrame()
95
+
96
+
97
+ # 改名
98
+ def rename_hk_field(temp_df):
99
+ temp_df = temp_df.rename(columns={
100
+ "f12": "symbol",
101
+ "f14": "name",
102
+ "f3": "chg",
103
+ "f2": "now_price",
104
+ "f5": "volume",
105
+ "f6": "amount",
106
+ "f8": "exchange",
107
+ "f10": "quantity_ratio",
108
+ "f22": "up_speed",
109
+ "f11": "up_speed_05",
110
+ "f15": "high",
111
+ "f16": "low",
112
+ "f17": "open",
113
+ "f18": "yesterday_price",
114
+ "f20": "total_mv",
115
+ "f21": "flow_mv",
116
+ "f26": "list_date",
117
+ "f33": "wei_bi",
118
+ "f34": "outer_disk",
119
+ "f35": "inner_disk",
120
+ "f62": "today_main_net_inflow",
121
+ "f66": "super_large_order_net_inflow",
122
+ "f69": "super_large_order_net_inflow_ratio",
123
+ "f72": "large_order_net_inflow",
124
+ # "f78": "medium_order_net_inflow",
125
+ # "f84": "small_order_net_inflow",
126
+ "f100": "industry",
127
+ "f103": "concept_name_str",
128
+ "f383": "concept_code_str",
129
+ "f184": "today_main_net_inflow_ratio",
130
+ "f352": "average_price",
131
+ "f211": "buy_1_num",
132
+ "f212": "sell_1_num"
133
+ })
134
+ temp_df.loc[temp_df['buy_1_num'] == '-', 'buy_1_num'] = 0
135
+ temp_df.loc[temp_df['sell_1_num'] == '-', 'sell_1_num'] = 0
136
+ temp_df.loc[temp_df['up_speed_05'] == '-', 'up_speed_05'] = 0
137
+ temp_df.loc[temp_df['up_speed'] == '-', 'up_speed'] = 0
138
+ temp_df.loc[temp_df['average_price'] == '-', 'average_price'] = 0
139
+ temp_df.loc[temp_df['wei_bi'] == '-', 'wei_bi'] = 0
140
+ temp_df.loc[temp_df['yesterday_price'] == '-', 'yesterday_price'] = 0
141
+ temp_df.loc[temp_df['now_price'] == '-', 'now_price'] = 0
142
+ temp_df.loc[temp_df['chg'] == '-', 'chg'] = 0
143
+ temp_df.loc[temp_df['volume'] == '-', 'volume'] = 0
144
+ temp_df.loc[temp_df['amount'] == '-', 'amount'] = 0
145
+ temp_df.loc[temp_df['exchange'] == '-', 'exchange'] = 0
146
+ temp_df.loc[temp_df['quantity_ratio'] == '-', 'quantity_ratio'] = 0
147
+ temp_df.loc[temp_df['high'] == '-', 'high'] = 0
148
+ temp_df.loc[temp_df['low'] == '-', 'low'] = 0
149
+ temp_df.loc[temp_df['open'] == '-', 'open'] = 0
150
+ temp_df.loc[temp_df['total_mv'] == '-', 'total_mv'] = 0
151
+ temp_df.loc[temp_df['flow_mv'] == '-', 'flow_mv'] = 0
152
+ temp_df.loc[temp_df['inner_disk'] == '-', 'inner_disk'] = 0
153
+ temp_df.loc[temp_df['outer_disk'] == '-', 'outer_disk'] = 0
154
+ temp_df.loc[temp_df['today_main_net_inflow_ratio'] == '-', 'today_main_net_inflow_ratio'] = 0
155
+ temp_df.loc[temp_df['today_main_net_inflow'] == '-', 'today_main_net_inflow'] = 0
156
+ temp_df.loc[temp_df['super_large_order_net_inflow'] == '-', 'super_large_order_net_inflow'] = 0
157
+ temp_df.loc[temp_df['super_large_order_net_inflow_ratio'] == '-', 'super_large_order_net_inflow_ratio'] = 0
158
+ temp_df.loc[temp_df['large_order_net_inflow'] == '-', 'large_order_net_inflow'] = 0
159
+ # temp_df.loc[temp_df['medium_order_net_inflow'] == '-', 'medium_order_net_inflow'] = 0
160
+ # temp_df.loc[temp_df['small_order_net_inflow'] == '-', 'small_order_net_inflow'] = 0
161
+
162
+ temp_df["list_date"] = pd.to_numeric(temp_df["list_date"], errors="coerce")
163
+ temp_df["wei_bi"] = pd.to_numeric(temp_df["wei_bi"], errors="coerce")
164
+ temp_df["average_price"] = pd.to_numeric(temp_df["average_price"], errors="coerce")
165
+ temp_df["yesterday_price"] = pd.to_numeric(temp_df["yesterday_price"], errors="coerce")
166
+ temp_df["now_price"] = pd.to_numeric(temp_df["now_price"], errors="coerce")
167
+ temp_df["chg"] = pd.to_numeric(temp_df["chg"], errors="coerce")
168
+ temp_df["volume"] = pd.to_numeric(temp_df["volume"], errors="coerce")
169
+ temp_df["amount"] = pd.to_numeric(temp_df["amount"], errors="coerce")
170
+ temp_df["exchange"] = pd.to_numeric(temp_df["exchange"], errors="coerce")
171
+ temp_df["quantity_ratio"] = pd.to_numeric(temp_df["quantity_ratio"], errors="coerce")
172
+ temp_df["high"] = pd.to_numeric(temp_df["high"], errors="coerce")
173
+ temp_df["low"] = pd.to_numeric(temp_df["low"], errors="coerce")
174
+ temp_df["open"] = pd.to_numeric(temp_df["open"], errors="coerce")
175
+ temp_df["total_mv"] = pd.to_numeric(temp_df["total_mv"], errors="coerce")
176
+ temp_df["flow_mv"] = pd.to_numeric(temp_df["flow_mv"], errors="coerce")
177
+ temp_df["outer_disk"] = pd.to_numeric(temp_df["outer_disk"], errors="coerce")
178
+ temp_df["inner_disk"] = pd.to_numeric(temp_df["inner_disk"], errors="coerce")
179
+ temp_df["today_main_net_inflow"] = pd.to_numeric(temp_df["today_main_net_inflow"], errors="coerce")
180
+ temp_df["super_large_order_net_inflow"] = pd.to_numeric(temp_df["super_large_order_net_inflow"],
181
+ errors="coerce")
182
+ temp_df["super_large_order_net_inflow_ratio"] = pd.to_numeric(temp_df["super_large_order_net_inflow_ratio"],
183
+ errors="coerce")
184
+ temp_df["large_order_net_inflow"] = pd.to_numeric(temp_df["large_order_net_inflow"],
185
+ errors="coerce")
186
+ # temp_df["medium_order_net_inflow"] = pd.to_numeric(temp_df["medium_order_net_inflow"],
187
+ # errors="coerce")
188
+ # temp_df["small_order_net_inflow"] = pd.to_numeric(temp_df["small_order_net_inflow"], errors="coerce")
189
+
190
+ # 大单比例
191
+ temp_df['large_order_net_inflow_ratio'] = round((temp_df['large_order_net_inflow'] / temp_df['amount']) * 100,
192
+ 2)
193
+
194
+ # 外盘是内盘倍数
195
+ temp_df['disk_ratio'] = round((temp_df['outer_disk'] - temp_df['inner_disk']) / temp_df['inner_disk'], 2)
196
+ # 只有外盘没有内盘
197
+ temp_df.loc[temp_df["inner_disk"] == 0, ['disk_ratio']] = 1688
198
+ temp_df['disk_diff_amount'] = round(
199
+ (temp_df['outer_disk'] - temp_df['inner_disk']) * temp_df[
200
+ "average_price"],
201
+ 2)
202
+ return temp_df
203
+
204
+
205
+ def all_hk_stock_ticker_data_new(initial_proxies, time_out, em_cookie, max_number) -> pd.DataFrame:
206
+ """
207
+ 使用多线程获取所有股票数据,失败页面会使用新IP重试,最多使用10个IP
208
+ """
209
+ per_page = page_number
210
+ total_pages = (max_number + per_page - 1) // per_page # 向上取整
211
+ all_pages = set(range(1, total_pages + 1)) # 所有需要获取的页码
212
+ success_pages = set() # 成功获取的页码
213
+ results = [] # 存储成功获取的数据
214
+ used_ip_count = 1 # 已使用IP计数器(初始IP算第一个)
215
+ MAX_IP_LIMIT = 10 # IP使用上限
216
+
217
+ # 循环处理直到所有页面成功或达到IP上限
218
+ while (all_pages - success_pages) and (used_ip_count < MAX_IP_LIMIT):
219
+ # 获取当前需要处理的失败页码
220
+ current_failed_pages = all_pages - success_pages
221
+ if used_ip_count > 1:
222
+ logger.info("当前需要处理的失败页码: {}, 已使用IP数量: {}/{}", current_failed_pages, used_ip_count,
223
+ MAX_IP_LIMIT)
224
+
225
+ # 首次使用初始代理,后续获取新代理
226
+ if len(success_pages) == 0:
227
+ proxies = initial_proxies
228
+ else:
229
+ # 每次重试前获取新代理并计数
230
+ # logger.info("获取新代理IP处理失败页面")
231
+ new_proxy_ip = proxy_common_api.generate_proxy_ip_api(1)
232
+ proxies = {"https": new_proxy_ip}
233
+ # logger.info("新代理IP: {}, 已使用IP数量: {}/{}", new_proxy_ip, used_ip_count + 1, MAX_IP_LIMIT)
234
+ used_ip_count += 1 # 增加IP计数器
235
+
236
+ # 创建线程池处理当前失败的页码
237
+ with ThreadPoolExecutor(max_workers=10) as executor:
238
+ futures = {
239
+ executor.submit(get_hk_real_time_quotes_page_df, pn, proxies,
240
+ per_page, em_cookie, time_out): pn
241
+ for pn in current_failed_pages
242
+ }
243
+
244
+ # 收集结果并记录成功页码
245
+ for future, pn in futures.items():
246
+ try:
247
+ result = future.result()
248
+ if not result.empty:
249
+ results.append(result)
250
+ success_pages.add(pn)
251
+ # else:
252
+ # logger.warning("页码 {} 未返回有效数据", pn)
253
+ except Exception as e:
254
+ continue
255
+ # logger.error("页码 {} 处理异常: {}", pn, str(e))
256
+
257
+ # 检查是否达到IP上限
258
+ if used_ip_count >= MAX_IP_LIMIT and (all_pages - success_pages):
259
+ remaining_pages = all_pages - success_pages
260
+ logger.warning("已达到最大IP使用限制({}个),剩余未获取页码: {}, 返回现有数据", MAX_IP_LIMIT, remaining_pages)
261
+
262
+ # 合并所有成功获取的数据
263
+ if results:
264
+ return pd.concat(results, ignore_index=True)
265
+ else:
266
+ return pd.DataFrame()
267
+
268
+
269
+ def get_hk_real_time_quotes(time_out, em_cookie):
270
+ try_numer = 3
271
+ while try_numer > 0:
272
+ proxy_ip = proxy_common_api.generate_proxy_ip_api(1)
273
+ initial_proxies = {"https": proxy_ip,
274
+ "http": proxy_ip}
275
+
276
+ max_number = get_hk_stock_count(1, initial_proxies, 20, em_cookie, time_out)
277
+ if max_number > 0:
278
+ break
279
+ try_numer = try_numer - 1
280
+ if max_number == 0:
281
+ return pd.DataFrame()
282
+ all_hk_stock_ticker_data_new_df = all_hk_stock_ticker_data_new(initial_proxies, time_out, em_cookie, max_number)
283
+ return rename_hk_field(all_hk_stock_ticker_data_new_df)
284
+
285
+
286
+ if __name__ == '__main__':
287
+ em_cookie_test = cookie_info_service.get_em_cookie()
288
+ get_hk_real_time_quotes(30, em_cookie_test)