mns-common 1.3.3.5__py3-none-any.whl → 1.5.7.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (76) hide show
  1. mns_common/api/akshare/__init__.py +0 -1
  2. mns_common/api/akshare/k_line_api.py +20 -82
  3. mns_common/api/akshare/stock_bid_ask_api.py +22 -97
  4. mns_common/api/akshare/stock_zb_pool.py +2 -0
  5. mns_common/api/akshare/stock_zt_pool_api.py +1 -1
  6. mns_common/api/em/gd/__init__.py +7 -0
  7. mns_common/api/em/{east_money_stock_gdfx_free_top_10_api.py → gd/east_money_stock_gdfx_free_top_10_api.py} +64 -9
  8. mns_common/api/em/real_time/__init__.py +7 -0
  9. mns_common/api/em/{east_money_debt_api.py → real_time/east_money_debt_api.py} +154 -69
  10. mns_common/api/em/{east_money_etf_api.py → real_time/east_money_etf_api.py} +149 -27
  11. mns_common/api/em/real_time/east_money_stock_a_api.py +301 -0
  12. mns_common/api/em/real_time/east_money_stock_a_v2_api.py +340 -0
  13. mns_common/api/em/real_time/east_money_stock_common_api.py +174 -0
  14. mns_common/api/em/real_time/east_money_stock_hk_api.py +288 -0
  15. mns_common/api/em/real_time/east_money_stock_hk_gtt_api.py +260 -0
  16. mns_common/api/em/real_time/east_money_stock_multi_thread_api_v3.py +154 -0
  17. mns_common/api/em/{east_money_stock_us_api.py → real_time/east_money_stock_us_api.py} +149 -72
  18. mns_common/api/em/real_time/real_time_quotes_repeat_api.py +195 -0
  19. mns_common/api/k_line/stock_k_line_data_api.py +11 -1
  20. mns_common/api/k_line/stock_minute_data_api.py +1 -0
  21. mns_common/api/kpl/common/kpl_common_api.py +35 -0
  22. mns_common/api/kpl/symbol/symbol_his_quotes_api.py +1 -1
  23. mns_common/api/proxies/__init__.py +7 -0
  24. mns_common/api/proxies/liu_guan_proxy_api.py +115 -0
  25. mns_common/api/ths/company/company_product_area_industry_index_query.py +46 -0
  26. mns_common/api/ths/company/ths_company_info_api.py +13 -9
  27. mns_common/api/ths/company/ths_company_info_web.py +159 -0
  28. mns_common/api/ths/concept/app/ths_concept_index_app.py +3 -1
  29. mns_common/api/ths/wen_cai/ths_wen_cai_api.py +10 -7
  30. mns_common/api/ths/zt/ths_stock_zt_pool_api.py +21 -4
  31. mns_common/api/ths/zt/ths_stock_zt_pool_v2_api.py +111 -40
  32. mns_common/api/xueqiu/__init__.py +7 -0
  33. mns_common/api/xueqiu/xue_qiu_k_line_api.py +83 -0
  34. mns_common/component/__init__.py +1 -1
  35. mns_common/component/classify/symbol_classify_api.py +7 -7
  36. mns_common/component/common_service_fun_api.py +66 -6
  37. mns_common/component/company/company_common_service_api.py +21 -1
  38. mns_common/component/company/company_common_service_new_api.py +4 -1
  39. mns_common/component/cookie/cookie_enum.py +15 -0
  40. mns_common/component/cookie/cookie_info_service.py +9 -4
  41. mns_common/component/data/data_init_api.py +13 -8
  42. mns_common/component/deal/deal_service_api.py +70 -8
  43. mns_common/component/deal/deal_service_v2_api.py +167 -0
  44. mns_common/component/em/__init__.py +7 -0
  45. mns_common/component/em/em_real_time_quotes_api.py +56 -0
  46. mns_common/component/em/em_stock_info_api.py +48 -0
  47. mns_common/component/exception/ExceptionMonitor.py +86 -0
  48. mns_common/component/exception/__init__.py +7 -0
  49. mns_common/component/k_line/common/k_line_common_service_api.py +4 -0
  50. mns_common/component/main_line/__init__.py +7 -0
  51. mns_common/component/main_line/main_line_zt_reason_service.py +237 -0
  52. mns_common/component/proxies/__init__.py +7 -0
  53. mns_common/component/proxies/proxy_common_api.py +252 -0
  54. mns_common/component/self_choose/__init__.py +13 -0
  55. mns_common/component/tfp/stock_tfp_api.py +82 -12
  56. mns_common/component/us/__init__.py +7 -0
  57. mns_common/component/us/us_stock_etf_info_api.py +125 -0
  58. mns_common/constant/__init__.py +1 -0
  59. mns_common/constant/db_name_constant.py +65 -34
  60. mns_common/constant/extra_income_db_name.py +154 -0
  61. mns_common/constant/strategy_classify.py +72 -0
  62. mns_common/db/MongodbUtil.py +2 -1
  63. mns_common/db/MongodbUtilLocal.py +1 -0
  64. mns_common/db/v2/MongodbUtilV2.py +0 -4
  65. mns_common-1.5.7.2.dist-info/METADATA +4 -0
  66. {mns_common-1.3.3.5.dist-info → mns_common-1.5.7.2.dist-info}/RECORD +70 -45
  67. {mns_common-1.3.3.5.dist-info → mns_common-1.5.7.2.dist-info}/WHEEL +1 -1
  68. mns_common/api/em/east_money_stock_api.py +0 -222
  69. mns_common/api/em/east_money_stock_hk_api.py +0 -318
  70. mns_common/api/em/east_money_stock_v2_api.py +0 -219
  71. mns_common/api/ths/concept/web/ths_company_info_web.py +0 -163
  72. mns_common/component/qmt/qmt_buy_service.py +0 -172
  73. mns_common-1.3.3.5.dist-info/METADATA +0 -4
  74. /mns_common/{component/qmt → api/em/concept}/__init__.py +0 -0
  75. /mns_common/api/em/{em_concept_index_api.py → concept/em_concept_index_api.py} +0 -0
  76. {mns_common-1.3.3.5.dist-info → mns_common-1.5.7.2.dist-info}/top_level.txt +0 -0
@@ -1,318 +0,0 @@
1
- import sys
2
- import os
3
-
4
- file_path = os.path.abspath(__file__)
5
- end = file_path.index('mns') + 16
6
- project_path = file_path[0:end]
7
- sys.path.append(project_path)
8
- from concurrent.futures import ThreadPoolExecutor
9
- import pandas as pd
10
- from loguru import logger
11
- import requests
12
- import json
13
- import time
14
-
15
- # 最大返回条数
16
- max_number = 4600
17
- # 最小返回条数
18
- min_number = 4400
19
- # 分页条数
20
- page_number = 100
21
-
22
- fields = ("f352,f2,f3,f5,f6,f8,f10,f11,f22,f12,f14,f15,f16,f17,f18,f20,f21,f26,"
23
- "f33,f34,f35,f62,f66,f69,f72,f100,f184,f211,f212")
24
-
25
-
26
- def hk_real_time_quotes_page_df(cookie, pn):
27
- try:
28
- headers = {
29
- 'Cookie': cookie
30
- }
31
-
32
- current_timestamp = str(int(round(time.time() * 1000, 0)))
33
-
34
- url_new = ('https://61.push2.eastmoney.com/api/qt/clist/get?cb=jQuery112409497467688484127_' + str(
35
- current_timestamp) +
36
- '&pn=' + str(pn) +
37
- '&pz=50000'
38
- '&po=1'
39
- '&np=3'
40
- '&ut=bd1d9ddb04089700cf9c27f6f7426281'
41
- '&fltt=2'
42
- '&invt=2'
43
- '&wbp2u=4253366368931142|0|1|0|web'
44
- '&fid=f12'
45
- '&fs=m:116+t:3,m:116+t:4,m:116+t:1,m:116+t:2'
46
- '&fields=' + fields +
47
- '&_=' + str(current_timestamp))
48
-
49
- r = requests.get(url_new, headers=headers)
50
- result = r.content.decode("utf-8")
51
-
52
- startIndex = result.index('"diff"')
53
- endIndex = result.index('}]}')
54
-
55
- result = result[startIndex + 7:endIndex + 2]
56
-
57
- data_json = json.loads(result)
58
-
59
- temp_df = pd.DataFrame(data_json)
60
-
61
- temp_df = temp_df.rename(columns={
62
-
63
- "f12": "symbol",
64
- "f14": "name",
65
- "f3": "chg",
66
- "f2": "now_price",
67
- "f5": "volume",
68
- "f6": "amount",
69
- "f8": "exchange",
70
- "f10": "quantity_ratio",
71
- "f22": "up_speed",
72
- "f11": "up_speed_05",
73
-
74
- "f15": "high",
75
- "f16": "low",
76
- "f17": "open",
77
- "f18": "yesterday_price",
78
- "f20": "total_mv",
79
- "f21": "flow_mv",
80
- "f26": "list_date",
81
- "f33": "wei_bi",
82
- "f34": "outer_disk",
83
- "f35": "inner_disk",
84
- "f62": "today_main_net_inflow",
85
- "f66": "super_large_order_net_inflow",
86
- "f69": "super_large_order_net_inflow_ratio",
87
- "f72": "large_order_net_inflow",
88
- # "f78": "medium_order_net_inflow",
89
- # "f84": "small_order_net_inflow",
90
- "f100": "industry",
91
- # "f103": "concept",
92
- "f184": "today_main_net_inflow_ratio",
93
- "f352": "average_price",
94
- "f211": "buy_1_num",
95
- "f212": "sell_1_num"
96
- })
97
- temp_df.loc[temp_df['buy_1_num'] == '-', 'buy_1_num'] = 0
98
- temp_df.loc[temp_df['sell_1_num'] == '-', 'sell_1_num'] = 0
99
- temp_df.loc[temp_df['up_speed_05'] == '-', 'up_speed_05'] = 0
100
- temp_df.loc[temp_df['up_speed'] == '-', 'up_speed'] = 0
101
- temp_df.loc[temp_df['average_price'] == '-', 'average_price'] = 0
102
- temp_df.loc[temp_df['wei_bi'] == '-', 'wei_bi'] = 0
103
- temp_df.loc[temp_df['yesterday_price'] == '-', 'yesterday_price'] = 0
104
- temp_df.loc[temp_df['now_price'] == '-', 'now_price'] = 0
105
- temp_df.loc[temp_df['chg'] == '-', 'chg'] = 0
106
- temp_df.loc[temp_df['volume'] == '-', 'volume'] = 0
107
- temp_df.loc[temp_df['amount'] == '-', 'amount'] = 0
108
- temp_df.loc[temp_df['exchange'] == '-', 'exchange'] = 0
109
- temp_df.loc[temp_df['quantity_ratio'] == '-', 'quantity_ratio'] = 0
110
- temp_df.loc[temp_df['high'] == '-', 'high'] = 0
111
- temp_df.loc[temp_df['low'] == '-', 'low'] = 0
112
- temp_df.loc[temp_df['open'] == '-', 'open'] = 0
113
- temp_df.loc[temp_df['total_mv'] == '-', 'total_mv'] = 0
114
- temp_df.loc[temp_df['flow_mv'] == '-', 'flow_mv'] = 0
115
- temp_df.loc[temp_df['inner_disk'] == '-', 'inner_disk'] = 0
116
- temp_df.loc[temp_df['outer_disk'] == '-', 'outer_disk'] = 0
117
- temp_df.loc[temp_df['today_main_net_inflow_ratio'] == '-', 'today_main_net_inflow_ratio'] = 0
118
- temp_df.loc[temp_df['today_main_net_inflow'] == '-', 'today_main_net_inflow'] = 0
119
- temp_df.loc[temp_df['super_large_order_net_inflow'] == '-', 'super_large_order_net_inflow'] = 0
120
- temp_df.loc[temp_df['super_large_order_net_inflow_ratio'] == '-', 'super_large_order_net_inflow_ratio'] = 0
121
- temp_df.loc[temp_df['large_order_net_inflow'] == '-', 'large_order_net_inflow'] = 0
122
- # temp_df.loc[temp_df['medium_order_net_inflow'] == '-', 'medium_order_net_inflow'] = 0
123
- # temp_df.loc[temp_df['small_order_net_inflow'] == '-', 'small_order_net_inflow'] = 0
124
-
125
- temp_df["list_date"] = pd.to_numeric(temp_df["list_date"], errors="coerce")
126
- temp_df["wei_bi"] = pd.to_numeric(temp_df["wei_bi"], errors="coerce")
127
- temp_df["average_price"] = pd.to_numeric(temp_df["average_price"], errors="coerce")
128
- temp_df["yesterday_price"] = pd.to_numeric(temp_df["yesterday_price"], errors="coerce")
129
- temp_df["now_price"] = pd.to_numeric(temp_df["now_price"], errors="coerce")
130
- temp_df["chg"] = pd.to_numeric(temp_df["chg"], errors="coerce")
131
- temp_df["volume"] = pd.to_numeric(temp_df["volume"], errors="coerce")
132
- temp_df["amount"] = pd.to_numeric(temp_df["amount"], errors="coerce")
133
- temp_df["exchange"] = pd.to_numeric(temp_df["exchange"], errors="coerce")
134
- temp_df["quantity_ratio"] = pd.to_numeric(temp_df["quantity_ratio"], errors="coerce")
135
- temp_df["high"] = pd.to_numeric(temp_df["high"], errors="coerce")
136
- temp_df["low"] = pd.to_numeric(temp_df["low"], errors="coerce")
137
- temp_df["open"] = pd.to_numeric(temp_df["open"], errors="coerce")
138
- temp_df["total_mv"] = pd.to_numeric(temp_df["total_mv"], errors="coerce")
139
- temp_df["flow_mv"] = pd.to_numeric(temp_df["flow_mv"], errors="coerce")
140
- temp_df["outer_disk"] = pd.to_numeric(temp_df["outer_disk"], errors="coerce")
141
- temp_df["inner_disk"] = pd.to_numeric(temp_df["inner_disk"], errors="coerce")
142
- temp_df["today_main_net_inflow"] = pd.to_numeric(temp_df["today_main_net_inflow"], errors="coerce")
143
- temp_df["super_large_order_net_inflow"] = pd.to_numeric(temp_df["super_large_order_net_inflow"],
144
- errors="coerce")
145
- temp_df["super_large_order_net_inflow_ratio"] = pd.to_numeric(temp_df["super_large_order_net_inflow_ratio"],
146
- errors="coerce")
147
- temp_df["large_order_net_inflow"] = pd.to_numeric(temp_df["large_order_net_inflow"],
148
- errors="coerce")
149
- # temp_df["medium_order_net_inflow"] = pd.to_numeric(temp_df["medium_order_net_inflow"],
150
- # errors="coerce")
151
- # temp_df["small_order_net_inflow"] = pd.to_numeric(temp_df["small_order_net_inflow"], errors="coerce")
152
-
153
- # 大单比例
154
- temp_df['large_order_net_inflow_ratio'] = round((temp_df['large_order_net_inflow'] / temp_df['amount']) * 100,
155
- 2)
156
-
157
- # 外盘是内盘倍数
158
- temp_df['disk_ratio'] = round((temp_df['outer_disk'] - temp_df['inner_disk']) / temp_df['inner_disk'], 2)
159
- # 只有外盘没有内盘
160
- temp_df.loc[temp_df["inner_disk"] == 0, ['disk_ratio']] = 1688
161
- temp_df['disk_diff_amount'] = round(
162
- (temp_df['outer_disk'] - temp_df['inner_disk']) * temp_df[
163
- "average_price"],
164
- 2)
165
- return temp_df
166
- except Exception as e:
167
- logger.error("获取港股列表,实时行情异常:{}", e)
168
- return pd.DataFrame()
169
-
170
-
171
- def thread_pool_executor(cookie):
172
- """
173
- 使用多线程获取所有ETF数据
174
- """
175
- # 计算总页数,假设总共有1000条数据,每页200条
176
-
177
- per_page = page_number
178
- total_pages = (max_number + per_page - 1) // per_page # 向上取整
179
-
180
- # 创建线程池
181
- with ThreadPoolExecutor(max_workers=3) as executor:
182
- # 提交任务,获取每页数据
183
- futures = [executor.submit(hk_real_time_quotes_page_df, cookie, pn)
184
- for pn in range(1, total_pages + 1)]
185
-
186
- # 收集结果
187
- results = []
188
- for future in futures:
189
- result = future.result()
190
- if not result.empty:
191
- results.append(result)
192
-
193
- # 合并所有页面的数据
194
- if results:
195
- return pd.concat(results, ignore_index=True)
196
- else:
197
- return pd.DataFrame()
198
-
199
-
200
- def get_hk_real_time_quotes(cookie):
201
- # 获取第一页数据
202
- page_one_df = hk_real_time_quotes_page_df(cookie, 1)
203
- # 数据接口正常返回5600以上的数量
204
- if page_one_df.shape[0] > min_number:
205
- page_one_df.drop_duplicates('symbol', keep='last', inplace=True)
206
- return page_one_df
207
- else:
208
- page_df = thread_pool_executor(cookie)
209
- page_df.drop_duplicates('symbol', keep='last', inplace=True)
210
- return page_df
211
-
212
-
213
- def stock_hk_ggt_components_em() -> pd.DataFrame:
214
- pn = 1
215
-
216
- """
217
- 东方财富网-行情中心-港股市场-港股通成份股
218
- https://quote.eastmoney.com/center/gridlist.html#hk_components
219
- :return: 港股通成份股
220
- :rtype: pandas.DataFrame
221
- """
222
- result_df = pd.DataFrame()
223
- while True:
224
- url = "https://33.push2.eastmoney.com/api/qt/clist/get"
225
- params = {
226
- "pn": str(pn),
227
- "pz": "5000",
228
- "po": "1",
229
- "np": "2",
230
- "ut": "bd1d9ddb04089700cf9c27f6f7426281",
231
- "fltt": "2",
232
- "fid": "f3",
233
- "fs": "b:DLMK0146,b:DLMK0144",
234
- "fields": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f19,f20,f21,f23,f24,"
235
- "f25,f26,f22,f33,f11,f62,f128,f136,f115,f152",
236
- "_": "1639974456250",
237
- }
238
- try:
239
- r = requests.get(url, params=params)
240
- data_json = r.json()
241
- temp_df = pd.DataFrame(data_json["data"]["diff"]).T
242
- temp_df.reset_index(inplace=True)
243
- temp_df["index"] = temp_df.index + 1
244
-
245
- temp_df.columns = [
246
- "序号",
247
- "-",
248
- "最新价",
249
- "涨跌幅",
250
- "涨跌额",
251
- "成交量",
252
- "成交额",
253
- "-",
254
- "-",
255
- "-",
256
- "-",
257
- "-",
258
- "代码",
259
- "-",
260
- "名称",
261
- "最高",
262
- "最低",
263
- "今开",
264
- "昨收",
265
- "-",
266
- "-",
267
- "-",
268
- "-",
269
- "-",
270
- "-",
271
- "-",
272
- "-",
273
- "-",
274
- "-",
275
- "-",
276
- "-",
277
- "-",
278
- "-",
279
- "-",
280
- "-",
281
- ]
282
- temp_df = temp_df[
283
- [
284
- "序号",
285
- "代码",
286
- "名称",
287
- "最新价",
288
- "涨跌额",
289
- "涨跌幅",
290
- "今开",
291
- "最高",
292
- "最低",
293
- "昨收",
294
- "成交量",
295
- "成交额",
296
- ]
297
- ]
298
- result_df = pd.concat([result_df, temp_df])
299
- if temp_df.shape[0] < page_number:
300
- break
301
- pn = pn + 1
302
- except Exception as e:
303
- logger.error("获取港股通列表:{}", e)
304
- return result_df
305
-
306
-
307
- if __name__ == '__main__':
308
-
309
- result_df = stock_hk_ggt_components_em()
310
- cookie_test = 'qgqp_b_id=1e0d79428176ed54bef8434efdc0e8c3; mtp=1; ct=QVRY_s8Tiag1WfK2tSW2n03qpsX-PD8aH_rIjKVooawX8K33UVnpIofK088lD1lguWlE_OEIpQwn3PJWFPhHvSvyvYr4Zka3l4vxtZfH1Uikjtyy9z1H4Swo0rQzMKXncVzBXiOo5TjE-Dy9fcoG3ZF7UVdQ35jp_cFwzOlpK5Y; ut=FobyicMgeV51lVMr4ZJXvn-72bp0oeSOvtzifFY_U7kBFtR6og4Usd-VtBM5XBBvHq0lvd9xXkvpIqWro9EDKmv6cbKOQGyawUSMcKVP57isZCaM7lWQ6jWXajvTfvV4mIR-W_MZNK8VY0lL9W4qNMniJ6PBn_gkJsSAJCadmsyI9cxmjx--gR4m54pdF_nie_y4iWHys83cmWR2R7Bt1KKqB25OmkfCQTJJqIf7QsqangVGMUHwMC39Z9QhrfCFHKVNrlqS503O6b9GitQnXtvUdJhCmomu; pi=4253366368931142%3Bp4253366368931142%3B%E8%82%A1%E5%8F%8B9x56I87727%3BYNigLZRW%2FzMdGgVDOJbwReDWnTPHl51dB0gQLiwaCf1XY98mlJYx6eJbsoYr5Nie%2BX1L%2BzaMsec99KkX%2BT29Ds1arfST7sIBXxjUQ3dp11IPUnXy64PaBFRTHzMRWnCFJvvhc%2FAI41rXSGXolC8YMxI%2BvyPS%2BuErwgOVjC5vvsIiKeO7TLyKkhqqQJPX%2F7RWC5Sf3QLh%3Bdwjn4Xho10%2FKjqOgTWs%2FJF4%2FkdKzeuBwM8sz9aLvJovejAkCAyGMyGYA6AE67Xk2Ki7x8zdfBifF2DG%2Fvf2%2BXAYN8ZVISSEWTIXh32Z5MxEacK4JBTkqyiD93e1vFBOFQ82BqaiVmntUq0V6FrTUHGeh1gG5Sg%3D%3D; uidal=4253366368931142%e8%82%a1%e5%8f%8b9x56I87727; sid=170711377; vtpst=|; quote_lt=1; websitepoptg_api_time=1715777390466; emshistory=%5B%22%E8%BD%AC%E5%80%BA%E6%A0%87%22%2C%22%E8%BD%AC%E5%80%BA%E6%A0%87%E7%9A%84%22%5D; st_si=00364513876913; st_asi=delete; HAList=ty-116-00700-%u817E%u8BAF%u63A7%u80A1%2Cty-1-688695-%u4E2D%u521B%u80A1%u4EFD%2Cty-1-600849-%u4E0A%u836F%u8F6C%u6362%2Cty-1-603361-%u6D59%u6C5F%u56FD%u7965%2Cty-1-603555-ST%u8D35%u4EBA%2Cty-0-000627-%u5929%u8302%u96C6%u56E2%2Cty-0-002470-%u91D1%u6B63%u5927%2Cty-0-832876-%u6167%u4E3A%u667A%u80FD%2Cty-0-300059-%u4E1C%u65B9%u8D22%u5BCC%2Cty-107-CWB-%u53EF%u8F6C%u503AETF-SPDR; st_pvi=26930719093675; st_sp=2024-04-28%2017%3A27%3A05; st_inirUrl=https%3A%2F%2Fcn.bing.com%2F; st_sn=23; st_psi=20240517111108288-113200301321-2767127768'
311
- while True:
312
- df_hk_df = get_hk_real_time_quotes(cookie_test)
313
- df_hk_df = df_hk_df[[
314
- "symbol",
315
- "name",
316
- "chg", "amount"
317
- ]]
318
- logger.info('test')
@@ -1,219 +0,0 @@
1
- import sys
2
- import os
3
-
4
- file_path = os.path.abspath(__file__)
5
- end = file_path.index('mns') + 16
6
- project_path = file_path[0:end]
7
- sys.path.append(project_path)
8
-
9
- import requests
10
- import json
11
- import pandas as pd
12
- from concurrent.futures import ThreadPoolExecutor
13
- import datetime
14
- from loguru import logger
15
-
16
- # 最大返回条数
17
- max_number = 5800
18
- # 最小返回条数
19
- min_number = 5600
20
- # 分页条数
21
- page_number = 100
22
-
23
-
24
- def get_stock_page_data(pn, fields, fs):
25
- """
26
- 获取单页股票数据
27
- """
28
- # 获取当前日期和时间
29
- current_time = datetime.datetime.now()
30
-
31
- # 将当前时间转换为时间戳(以毫秒为单位)
32
- current_timestamp_ms = int(current_time.timestamp() * 1000)
33
-
34
- url = "https://13.push2.eastmoney.com/api/qt/clist/get"
35
- params = {
36
- "cb": "jQuery1124046660442520420653_" + str(current_timestamp_ms),
37
- "pn": str(pn),
38
- "pz": "10000", # 每页最大200条
39
- "po": "1",
40
- "np": "3",
41
- "ut": "bd1d9ddb04089700cf9c27f6f7426281",
42
- "fltt": "2",
43
- "invt": "2",
44
- "wbp2u": "|0|0|0|web",
45
- "fid": "f3",
46
- "fs": fs,
47
- "fields": fields,
48
- "_": current_timestamp_ms
49
- }
50
- try:
51
- r = requests.get(url, params)
52
- data_text = r.text
53
- begin_index = data_text.index('[')
54
- end_index = data_text.index(']')
55
- data_json = data_text[begin_index:end_index + 1]
56
- data_json = json.loads(data_json)
57
- if data_json is None:
58
- return pd.DataFrame()
59
- else:
60
- return pd.DataFrame(data_json)
61
- except Exception as e:
62
- logger.error(f"获取第{pn}页股票列表异常: {e}")
63
- return pd.DataFrame()
64
-
65
-
66
- def all_stock_ticker_data_new(fields, fs) -> pd.DataFrame:
67
- """
68
- 使用多线程获取所有股票数据
69
- """
70
-
71
- per_page = page_number
72
- total_pages = (max_number + per_page - 1) // per_page # 向上取整
73
-
74
- # 创建线程池
75
- with ThreadPoolExecutor(max_workers=10) as executor:
76
- # 提交任务,获取每页数据
77
- futures = [executor.submit(get_stock_page_data, pn, fields, fs)
78
- for pn in range(1, total_pages + 1)]
79
-
80
- # 收集结果
81
- results = []
82
- for future in futures:
83
- result = future.result()
84
- if not result.empty:
85
- results.append(result)
86
-
87
- # 合并所有页面的数据
88
- if results:
89
- return pd.concat(results, ignore_index=True)
90
- else:
91
- return pd.DataFrame()
92
-
93
-
94
- def get_all_real_time_quotes():
95
- fields = "f352,f2,f3,f5,f6,f8,f10,f11,f22,f12,f14,f15,f16,f17,f18,f20,f21,f26,f33,f34,f35,f62,f66,f69,f72,f100,f184,f211,f212",
96
- fs = "m:0 t:6,m:0 t:80,m:1 t:2,m:1 t:23,m:0 t:81 s:2048"
97
- # 获取第一页数据
98
- page_one_df = get_stock_page_data(1, fields, fs)
99
- # 数据接口正常返回5600以上的数量
100
- if page_one_df.shape[0] > min_number:
101
- page_one_df = rename_real_time_quotes_df(page_one_df)
102
- return page_one_df
103
- else:
104
- page_df = all_stock_ticker_data_new(fields, fs)
105
- page_df = rename_real_time_quotes_df(page_df)
106
- return page_df
107
-
108
-
109
- # 获取所有股票实时行情数据 f33,委比
110
- def rename_real_time_quotes_df(temp_df):
111
- temp_df = temp_df.rename(columns={
112
- "f2": "now_price",
113
- "f3": "chg",
114
- "f5": "volume",
115
- "f6": "amount",
116
- "f8": "exchange",
117
- "f10": "quantity_ratio",
118
- "f22": "up_speed",
119
- "f11": "up_speed_05",
120
- "f12": "symbol",
121
- "f14": "name",
122
- "f15": "high",
123
- "f16": "low",
124
- "f17": "open",
125
- "f18": "yesterday_price",
126
- "f20": "total_mv",
127
- "f21": "flow_mv",
128
- "f26": "list_date",
129
- "f33": "wei_bi",
130
- "f34": "outer_disk",
131
- "f35": "inner_disk",
132
- "f62": "today_main_net_inflow",
133
- "f66": "super_large_order_net_inflow",
134
- "f69": "super_large_order_net_inflow_ratio",
135
- "f72": "large_order_net_inflow",
136
- # "f78": "medium_order_net_inflow",
137
- # "f84": "small_order_net_inflow",
138
- "f100": "industry",
139
- # "f103": "concept",
140
- "f184": "today_main_net_inflow_ratio",
141
- "f352": "average_price",
142
- "f211": "buy_1_num",
143
- "f212": "sell_1_num"
144
- })
145
-
146
- temp_df.loc[temp_df['buy_1_num'] == '-', 'buy_1_num'] = 0
147
- temp_df.loc[temp_df['sell_1_num'] == '-', 'sell_1_num'] = 0
148
- temp_df.loc[temp_df['up_speed_05'] == '-', 'up_speed_05'] = 0
149
- temp_df.loc[temp_df['up_speed'] == '-', 'up_speed'] = 0
150
- temp_df.loc[temp_df['average_price'] == '-', 'average_price'] = 0
151
- temp_df.loc[temp_df['wei_bi'] == '-', 'wei_bi'] = 0
152
- temp_df.loc[temp_df['yesterday_price'] == '-', 'yesterday_price'] = 0
153
- temp_df.loc[temp_df['now_price'] == '-', 'now_price'] = 0
154
- temp_df.loc[temp_df['chg'] == '-', 'chg'] = 0
155
- temp_df.loc[temp_df['volume'] == '-', 'volume'] = 0
156
- temp_df.loc[temp_df['amount'] == '-', 'amount'] = 0
157
- temp_df.loc[temp_df['exchange'] == '-', 'exchange'] = 0
158
- temp_df.loc[temp_df['quantity_ratio'] == '-', 'quantity_ratio'] = 0
159
- temp_df.loc[temp_df['high'] == '-', 'high'] = 0
160
- temp_df.loc[temp_df['low'] == '-', 'low'] = 0
161
- temp_df.loc[temp_df['open'] == '-', 'open'] = 0
162
- temp_df.loc[temp_df['total_mv'] == '-', 'total_mv'] = 0
163
- temp_df.loc[temp_df['flow_mv'] == '-', 'flow_mv'] = 0
164
- temp_df.loc[temp_df['inner_disk'] == '-', 'inner_disk'] = 0
165
- temp_df.loc[temp_df['outer_disk'] == '-', 'outer_disk'] = 0
166
- temp_df.loc[temp_df['today_main_net_inflow_ratio'] == '-', 'today_main_net_inflow_ratio'] = 0
167
- temp_df.loc[temp_df['today_main_net_inflow'] == '-', 'today_main_net_inflow'] = 0
168
- temp_df.loc[temp_df['super_large_order_net_inflow'] == '-', 'super_large_order_net_inflow'] = 0
169
- temp_df.loc[temp_df['super_large_order_net_inflow_ratio'] == '-', 'super_large_order_net_inflow_ratio'] = 0
170
- temp_df.loc[temp_df['large_order_net_inflow'] == '-', 'large_order_net_inflow'] = 0
171
- # temp_df.loc[temp_df['medium_order_net_inflow'] == '-', 'medium_order_net_inflow'] = 0
172
- # temp_df.loc[temp_df['small_order_net_inflow'] == '-', 'small_order_net_inflow'] = 0
173
-
174
- temp_df["list_date"] = pd.to_numeric(temp_df["list_date"], errors="coerce")
175
- temp_df["wei_bi"] = pd.to_numeric(temp_df["wei_bi"], errors="coerce")
176
- temp_df["average_price"] = pd.to_numeric(temp_df["average_price"], errors="coerce")
177
- temp_df["yesterday_price"] = pd.to_numeric(temp_df["yesterday_price"], errors="coerce")
178
- temp_df["now_price"] = pd.to_numeric(temp_df["now_price"], errors="coerce")
179
- temp_df["chg"] = pd.to_numeric(temp_df["chg"], errors="coerce")
180
- temp_df["volume"] = pd.to_numeric(temp_df["volume"], errors="coerce")
181
- temp_df["amount"] = pd.to_numeric(temp_df["amount"], errors="coerce")
182
- temp_df["exchange"] = pd.to_numeric(temp_df["exchange"], errors="coerce")
183
- temp_df["quantity_ratio"] = pd.to_numeric(temp_df["quantity_ratio"], errors="coerce")
184
- temp_df["high"] = pd.to_numeric(temp_df["high"], errors="coerce")
185
- temp_df["low"] = pd.to_numeric(temp_df["low"], errors="coerce")
186
- temp_df["open"] = pd.to_numeric(temp_df["open"], errors="coerce")
187
- temp_df["total_mv"] = pd.to_numeric(temp_df["total_mv"], errors="coerce")
188
- temp_df["flow_mv"] = pd.to_numeric(temp_df["flow_mv"], errors="coerce")
189
- temp_df["outer_disk"] = pd.to_numeric(temp_df["outer_disk"], errors="coerce")
190
- temp_df["inner_disk"] = pd.to_numeric(temp_df["inner_disk"], errors="coerce")
191
- temp_df["today_main_net_inflow"] = pd.to_numeric(temp_df["today_main_net_inflow"], errors="coerce")
192
- temp_df["super_large_order_net_inflow"] = pd.to_numeric(temp_df["super_large_order_net_inflow"],
193
- errors="coerce")
194
- temp_df["super_large_order_net_inflow_ratio"] = pd.to_numeric(temp_df["super_large_order_net_inflow_ratio"],
195
- errors="coerce")
196
- temp_df["large_order_net_inflow"] = pd.to_numeric(temp_df["large_order_net_inflow"],
197
- errors="coerce")
198
- # temp_df["medium_order_net_inflow"] = pd.to_numeric(temp_df["medium_order_net_inflow"],
199
- # errors="coerce")
200
- # temp_df["small_order_net_inflow"] = pd.to_numeric(temp_df["small_order_net_inflow"], errors="coerce")
201
-
202
- # 大单比例
203
- temp_df['large_order_net_inflow_ratio'] = round((temp_df['large_order_net_inflow'] / temp_df['amount']) * 100, 2)
204
-
205
- # 外盘是内盘倍数
206
- temp_df['disk_ratio'] = round((temp_df['outer_disk'] - temp_df['inner_disk']) / temp_df['inner_disk'], 2)
207
- # 只有外盘没有内盘
208
- temp_df.loc[temp_df["inner_disk"] == 0, ['disk_ratio']] = 1688
209
-
210
- return temp_df
211
-
212
-
213
- # 示例调用
214
- if __name__ == "__main__":
215
- while True:
216
- df = get_all_real_time_quotes()
217
- print(df)
218
- zt_df = df.loc[df['wei_bi'] == 100]
219
- logger.info("涨停数据,{}", zt_df)