mlrun 1.7.0rc5__py3-none-any.whl → 1.7.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mlrun might be problematic. Click here for more details.

Files changed (234) hide show
  1. mlrun/__init__.py +11 -1
  2. mlrun/__main__.py +39 -121
  3. mlrun/{datastore/helpers.py → alerts/__init__.py} +2 -5
  4. mlrun/alerts/alert.py +248 -0
  5. mlrun/api/schemas/__init__.py +4 -3
  6. mlrun/artifacts/__init__.py +8 -3
  7. mlrun/artifacts/base.py +39 -254
  8. mlrun/artifacts/dataset.py +9 -190
  9. mlrun/artifacts/manager.py +73 -46
  10. mlrun/artifacts/model.py +30 -158
  11. mlrun/artifacts/plots.py +23 -380
  12. mlrun/common/constants.py +73 -2
  13. mlrun/common/db/sql_session.py +3 -2
  14. mlrun/common/formatters/__init__.py +21 -0
  15. mlrun/common/formatters/artifact.py +46 -0
  16. mlrun/common/formatters/base.py +113 -0
  17. mlrun/common/formatters/feature_set.py +44 -0
  18. mlrun/common/formatters/function.py +46 -0
  19. mlrun/common/formatters/pipeline.py +53 -0
  20. mlrun/common/formatters/project.py +51 -0
  21. mlrun/common/formatters/run.py +29 -0
  22. mlrun/common/helpers.py +11 -1
  23. mlrun/{runtimes → common/runtimes}/constants.py +32 -4
  24. mlrun/common/schemas/__init__.py +21 -4
  25. mlrun/common/schemas/alert.py +202 -0
  26. mlrun/common/schemas/api_gateway.py +113 -2
  27. mlrun/common/schemas/artifact.py +28 -1
  28. mlrun/common/schemas/auth.py +11 -0
  29. mlrun/common/schemas/client_spec.py +2 -1
  30. mlrun/common/schemas/common.py +7 -4
  31. mlrun/common/schemas/constants.py +3 -0
  32. mlrun/common/schemas/feature_store.py +58 -28
  33. mlrun/common/schemas/frontend_spec.py +8 -0
  34. mlrun/common/schemas/function.py +11 -0
  35. mlrun/common/schemas/hub.py +7 -9
  36. mlrun/common/schemas/model_monitoring/__init__.py +21 -4
  37. mlrun/common/schemas/model_monitoring/constants.py +136 -42
  38. mlrun/common/schemas/model_monitoring/grafana.py +9 -5
  39. mlrun/common/schemas/model_monitoring/model_endpoints.py +89 -41
  40. mlrun/common/schemas/notification.py +69 -12
  41. mlrun/{runtimes/mpijob/v1alpha1.py → common/schemas/pagination.py} +10 -13
  42. mlrun/common/schemas/pipeline.py +7 -0
  43. mlrun/common/schemas/project.py +67 -16
  44. mlrun/common/schemas/runs.py +17 -0
  45. mlrun/common/schemas/schedule.py +1 -1
  46. mlrun/common/schemas/workflow.py +10 -2
  47. mlrun/common/types.py +14 -1
  48. mlrun/config.py +224 -58
  49. mlrun/data_types/data_types.py +11 -1
  50. mlrun/data_types/spark.py +5 -4
  51. mlrun/data_types/to_pandas.py +75 -34
  52. mlrun/datastore/__init__.py +8 -10
  53. mlrun/datastore/alibaba_oss.py +131 -0
  54. mlrun/datastore/azure_blob.py +131 -43
  55. mlrun/datastore/base.py +107 -47
  56. mlrun/datastore/datastore.py +17 -7
  57. mlrun/datastore/datastore_profile.py +91 -7
  58. mlrun/datastore/dbfs_store.py +3 -7
  59. mlrun/datastore/filestore.py +1 -3
  60. mlrun/datastore/google_cloud_storage.py +92 -32
  61. mlrun/datastore/hdfs.py +5 -0
  62. mlrun/datastore/inmem.py +6 -3
  63. mlrun/datastore/redis.py +3 -2
  64. mlrun/datastore/s3.py +30 -12
  65. mlrun/datastore/snowflake_utils.py +45 -0
  66. mlrun/datastore/sources.py +274 -59
  67. mlrun/datastore/spark_utils.py +30 -0
  68. mlrun/datastore/store_resources.py +9 -7
  69. mlrun/datastore/storeytargets.py +151 -0
  70. mlrun/datastore/targets.py +374 -102
  71. mlrun/datastore/utils.py +68 -5
  72. mlrun/datastore/v3io.py +28 -50
  73. mlrun/db/auth_utils.py +152 -0
  74. mlrun/db/base.py +231 -22
  75. mlrun/db/factory.py +1 -4
  76. mlrun/db/httpdb.py +864 -228
  77. mlrun/db/nopdb.py +268 -16
  78. mlrun/errors.py +35 -5
  79. mlrun/execution.py +111 -38
  80. mlrun/feature_store/__init__.py +0 -2
  81. mlrun/feature_store/api.py +46 -53
  82. mlrun/feature_store/common.py +6 -11
  83. mlrun/feature_store/feature_set.py +48 -23
  84. mlrun/feature_store/feature_vector.py +13 -2
  85. mlrun/feature_store/ingestion.py +7 -6
  86. mlrun/feature_store/retrieval/base.py +9 -4
  87. mlrun/feature_store/retrieval/dask_merger.py +2 -0
  88. mlrun/feature_store/retrieval/job.py +13 -4
  89. mlrun/feature_store/retrieval/local_merger.py +2 -0
  90. mlrun/feature_store/retrieval/spark_merger.py +24 -32
  91. mlrun/feature_store/steps.py +38 -19
  92. mlrun/features.py +6 -14
  93. mlrun/frameworks/_common/plan.py +3 -3
  94. mlrun/frameworks/_dl_common/loggers/tensorboard_logger.py +7 -12
  95. mlrun/frameworks/_ml_common/plan.py +1 -1
  96. mlrun/frameworks/auto_mlrun/auto_mlrun.py +2 -2
  97. mlrun/frameworks/lgbm/__init__.py +1 -1
  98. mlrun/frameworks/lgbm/callbacks/callback.py +2 -4
  99. mlrun/frameworks/lgbm/model_handler.py +1 -1
  100. mlrun/frameworks/parallel_coordinates.py +4 -4
  101. mlrun/frameworks/pytorch/__init__.py +2 -2
  102. mlrun/frameworks/sklearn/__init__.py +1 -1
  103. mlrun/frameworks/sklearn/mlrun_interface.py +13 -3
  104. mlrun/frameworks/tf_keras/__init__.py +5 -2
  105. mlrun/frameworks/tf_keras/callbacks/logging_callback.py +1 -1
  106. mlrun/frameworks/tf_keras/mlrun_interface.py +2 -2
  107. mlrun/frameworks/xgboost/__init__.py +1 -1
  108. mlrun/k8s_utils.py +57 -12
  109. mlrun/launcher/__init__.py +1 -1
  110. mlrun/launcher/base.py +6 -5
  111. mlrun/launcher/client.py +13 -11
  112. mlrun/launcher/factory.py +1 -1
  113. mlrun/launcher/local.py +15 -5
  114. mlrun/launcher/remote.py +10 -3
  115. mlrun/lists.py +6 -2
  116. mlrun/model.py +297 -48
  117. mlrun/model_monitoring/__init__.py +1 -1
  118. mlrun/model_monitoring/api.py +152 -357
  119. mlrun/model_monitoring/applications/__init__.py +10 -0
  120. mlrun/model_monitoring/applications/_application_steps.py +190 -0
  121. mlrun/model_monitoring/applications/base.py +108 -0
  122. mlrun/model_monitoring/applications/context.py +341 -0
  123. mlrun/model_monitoring/{evidently_application.py → applications/evidently_base.py} +27 -22
  124. mlrun/model_monitoring/applications/histogram_data_drift.py +227 -91
  125. mlrun/model_monitoring/applications/results.py +99 -0
  126. mlrun/model_monitoring/controller.py +130 -303
  127. mlrun/model_monitoring/{stores/models/sqlite.py → db/__init__.py} +5 -10
  128. mlrun/model_monitoring/db/stores/__init__.py +136 -0
  129. mlrun/model_monitoring/db/stores/base/__init__.py +15 -0
  130. mlrun/model_monitoring/db/stores/base/store.py +213 -0
  131. mlrun/model_monitoring/db/stores/sqldb/__init__.py +13 -0
  132. mlrun/model_monitoring/db/stores/sqldb/models/__init__.py +71 -0
  133. mlrun/model_monitoring/db/stores/sqldb/models/base.py +190 -0
  134. mlrun/model_monitoring/db/stores/sqldb/models/mysql.py +103 -0
  135. mlrun/model_monitoring/{stores/models/mysql.py → db/stores/sqldb/models/sqlite.py} +19 -13
  136. mlrun/model_monitoring/db/stores/sqldb/sql_store.py +659 -0
  137. mlrun/model_monitoring/db/stores/v3io_kv/__init__.py +13 -0
  138. mlrun/model_monitoring/db/stores/v3io_kv/kv_store.py +726 -0
  139. mlrun/model_monitoring/db/tsdb/__init__.py +105 -0
  140. mlrun/model_monitoring/db/tsdb/base.py +448 -0
  141. mlrun/model_monitoring/db/tsdb/helpers.py +30 -0
  142. mlrun/model_monitoring/db/tsdb/tdengine/__init__.py +15 -0
  143. mlrun/model_monitoring/db/tsdb/tdengine/schemas.py +298 -0
  144. mlrun/model_monitoring/db/tsdb/tdengine/stream_graph_steps.py +42 -0
  145. mlrun/model_monitoring/db/tsdb/tdengine/tdengine_connector.py +522 -0
  146. mlrun/model_monitoring/db/tsdb/v3io/__init__.py +15 -0
  147. mlrun/model_monitoring/db/tsdb/v3io/stream_graph_steps.py +158 -0
  148. mlrun/model_monitoring/db/tsdb/v3io/v3io_connector.py +849 -0
  149. mlrun/model_monitoring/features_drift_table.py +34 -22
  150. mlrun/model_monitoring/helpers.py +177 -39
  151. mlrun/model_monitoring/model_endpoint.py +3 -2
  152. mlrun/model_monitoring/stream_processing.py +165 -398
  153. mlrun/model_monitoring/tracking_policy.py +7 -1
  154. mlrun/model_monitoring/writer.py +161 -125
  155. mlrun/package/packagers/default_packager.py +2 -2
  156. mlrun/package/packagers_manager.py +1 -0
  157. mlrun/package/utils/_formatter.py +2 -2
  158. mlrun/platforms/__init__.py +11 -10
  159. mlrun/platforms/iguazio.py +67 -228
  160. mlrun/projects/__init__.py +6 -1
  161. mlrun/projects/operations.py +47 -20
  162. mlrun/projects/pipelines.py +396 -249
  163. mlrun/projects/project.py +1125 -414
  164. mlrun/render.py +28 -22
  165. mlrun/run.py +207 -180
  166. mlrun/runtimes/__init__.py +76 -11
  167. mlrun/runtimes/base.py +40 -14
  168. mlrun/runtimes/daskjob.py +9 -2
  169. mlrun/runtimes/databricks_job/databricks_runtime.py +1 -0
  170. mlrun/runtimes/databricks_job/databricks_wrapper.py +1 -1
  171. mlrun/runtimes/funcdoc.py +1 -29
  172. mlrun/runtimes/kubejob.py +34 -128
  173. mlrun/runtimes/local.py +39 -10
  174. mlrun/runtimes/mpijob/__init__.py +0 -20
  175. mlrun/runtimes/mpijob/abstract.py +8 -8
  176. mlrun/runtimes/mpijob/v1.py +1 -1
  177. mlrun/runtimes/nuclio/api_gateway.py +646 -177
  178. mlrun/runtimes/nuclio/application/__init__.py +15 -0
  179. mlrun/runtimes/nuclio/application/application.py +758 -0
  180. mlrun/runtimes/nuclio/application/reverse_proxy.go +95 -0
  181. mlrun/runtimes/nuclio/function.py +188 -68
  182. mlrun/runtimes/nuclio/serving.py +57 -60
  183. mlrun/runtimes/pod.py +191 -58
  184. mlrun/runtimes/remotesparkjob.py +11 -8
  185. mlrun/runtimes/sparkjob/spark3job.py +17 -18
  186. mlrun/runtimes/utils.py +40 -73
  187. mlrun/secrets.py +6 -2
  188. mlrun/serving/__init__.py +8 -1
  189. mlrun/serving/remote.py +2 -3
  190. mlrun/serving/routers.py +89 -64
  191. mlrun/serving/server.py +54 -26
  192. mlrun/serving/states.py +187 -56
  193. mlrun/serving/utils.py +19 -11
  194. mlrun/serving/v2_serving.py +136 -63
  195. mlrun/track/tracker.py +2 -1
  196. mlrun/track/trackers/mlflow_tracker.py +5 -0
  197. mlrun/utils/async_http.py +26 -6
  198. mlrun/utils/db.py +18 -0
  199. mlrun/utils/helpers.py +375 -105
  200. mlrun/utils/http.py +2 -2
  201. mlrun/utils/logger.py +75 -9
  202. mlrun/utils/notifications/notification/__init__.py +14 -10
  203. mlrun/utils/notifications/notification/base.py +48 -0
  204. mlrun/utils/notifications/notification/console.py +2 -0
  205. mlrun/utils/notifications/notification/git.py +24 -1
  206. mlrun/utils/notifications/notification/ipython.py +2 -0
  207. mlrun/utils/notifications/notification/slack.py +96 -21
  208. mlrun/utils/notifications/notification/webhook.py +63 -2
  209. mlrun/utils/notifications/notification_pusher.py +146 -16
  210. mlrun/utils/regex.py +9 -0
  211. mlrun/utils/retryer.py +3 -2
  212. mlrun/utils/v3io_clients.py +2 -3
  213. mlrun/utils/version/version.json +2 -2
  214. mlrun-1.7.2.dist-info/METADATA +390 -0
  215. mlrun-1.7.2.dist-info/RECORD +351 -0
  216. {mlrun-1.7.0rc5.dist-info → mlrun-1.7.2.dist-info}/WHEEL +1 -1
  217. mlrun/feature_store/retrieval/conversion.py +0 -271
  218. mlrun/kfpops.py +0 -868
  219. mlrun/model_monitoring/application.py +0 -310
  220. mlrun/model_monitoring/batch.py +0 -974
  221. mlrun/model_monitoring/controller_handler.py +0 -37
  222. mlrun/model_monitoring/prometheus.py +0 -216
  223. mlrun/model_monitoring/stores/__init__.py +0 -111
  224. mlrun/model_monitoring/stores/kv_model_endpoint_store.py +0 -574
  225. mlrun/model_monitoring/stores/model_endpoint_store.py +0 -145
  226. mlrun/model_monitoring/stores/models/__init__.py +0 -27
  227. mlrun/model_monitoring/stores/models/base.py +0 -84
  228. mlrun/model_monitoring/stores/sql_model_endpoint_store.py +0 -382
  229. mlrun/platforms/other.py +0 -305
  230. mlrun-1.7.0rc5.dist-info/METADATA +0 -269
  231. mlrun-1.7.0rc5.dist-info/RECORD +0 -323
  232. {mlrun-1.7.0rc5.dist-info → mlrun-1.7.2.dist-info}/LICENSE +0 -0
  233. {mlrun-1.7.0rc5.dist-info → mlrun-1.7.2.dist-info}/entry_points.txt +0 -0
  234. {mlrun-1.7.0rc5.dist-info → mlrun-1.7.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,105 @@
1
+ # Copyright 2024 Iguazio
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import enum
16
+ import typing
17
+
18
+ import mlrun.common.schemas.secret
19
+ import mlrun.errors
20
+
21
+ from .base import TSDBConnector
22
+
23
+
24
+ class ObjectTSDBFactory(enum.Enum):
25
+ """Enum class to handle the different TSDB connector type values for storing real time metrics"""
26
+
27
+ v3io_tsdb = "v3io-tsdb"
28
+ tdengine = "tdengine"
29
+
30
+ def to_tsdb_connector(self, project: str, **kwargs) -> TSDBConnector:
31
+ """
32
+ Return a TSDBConnector object based on the provided enum value.
33
+ :param project: The name of the project.
34
+ :return: `TSDBConnector` object.
35
+ """
36
+
37
+ if self == self.v3io_tsdb:
38
+ if mlrun.mlconf.is_ce_mode():
39
+ raise mlrun.errors.MLRunInvalidArgumentError(
40
+ f"{self.v3io_tsdb} is not supported in CE mode."
41
+ )
42
+
43
+ from .v3io.v3io_connector import V3IOTSDBConnector
44
+
45
+ return V3IOTSDBConnector(project=project, **kwargs)
46
+
47
+ # Assuming TDEngine connector if connector type is not V3IO TSDB.
48
+ # Update these lines once there are more than two connector types.
49
+
50
+ from .tdengine.tdengine_connector import TDEngineConnector
51
+
52
+ return TDEngineConnector(project=project, **kwargs)
53
+
54
+ @classmethod
55
+ def _missing_(cls, value: typing.Any):
56
+ """A lookup function to handle an invalid value.
57
+ :param value: Provided enum (invalid) value.
58
+ """
59
+ valid_values = list(cls.__members__.keys())
60
+ raise mlrun.errors.MLRunInvalidMMStoreTypeError(
61
+ f"{value} is not a valid tsdb, please choose a valid value: %{valid_values}."
62
+ )
63
+
64
+
65
+ def get_tsdb_connector(
66
+ project: str,
67
+ secret_provider: typing.Optional[typing.Callable[[str], str]] = None,
68
+ tsdb_connection_string: typing.Optional[str] = None,
69
+ **kwargs,
70
+ ) -> TSDBConnector:
71
+ """
72
+ Get TSDB connector object.
73
+ :param project: The name of the project.
74
+ :param secret_provider: An optional secret provider to get the connection string secret.
75
+ :param tsdb_connection_string: An optional explicit connection string to the TSDB.
76
+
77
+ :return: `TSDBConnector` object. The main goal of this object is to handle different operations on the
78
+ TSDB connector such as updating drift metrics or write application record result.
79
+ :raise: `MLRunInvalidMMStoreTypeError` if the user didn't provide TSDB connection
80
+ or the provided TSDB connection is invalid.
81
+ """
82
+
83
+ tsdb_connection_string = (
84
+ tsdb_connection_string
85
+ or mlrun.model_monitoring.helpers.get_tsdb_connection_string(
86
+ secret_provider=secret_provider
87
+ )
88
+ )
89
+
90
+ if tsdb_connection_string and tsdb_connection_string.startswith("taosws"):
91
+ tsdb_connector_type = mlrun.common.schemas.model_monitoring.TSDBTarget.TDEngine
92
+ kwargs["connection_string"] = tsdb_connection_string
93
+ elif tsdb_connection_string and tsdb_connection_string == "v3io":
94
+ tsdb_connector_type = mlrun.common.schemas.model_monitoring.TSDBTarget.V3IO_TSDB
95
+ else:
96
+ raise mlrun.errors.MLRunInvalidMMStoreTypeError(
97
+ "You must provide a valid tsdb store connection by using "
98
+ "set_model_monitoring_credentials API."
99
+ )
100
+
101
+ # Get connector type value from ObjectTSDBFactory enum class
102
+ tsdb_connector_factory = ObjectTSDBFactory(tsdb_connector_type)
103
+
104
+ # Convert into TSDB connector object
105
+ return tsdb_connector_factory.to_tsdb_connector(project=project, **kwargs)
@@ -0,0 +1,448 @@
1
+ # Copyright 2024 Iguazio
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import typing
16
+ from abc import ABC, abstractmethod
17
+ from datetime import datetime
18
+ from typing import Union
19
+
20
+ import pandas as pd
21
+ import pydantic
22
+
23
+ import mlrun.common.schemas.model_monitoring as mm_schemas
24
+ import mlrun.model_monitoring.db.tsdb.helpers
25
+ import mlrun.model_monitoring.helpers
26
+ from mlrun.utils import logger
27
+
28
+
29
+ class TSDBConnector(ABC):
30
+ type: typing.ClassVar[str]
31
+
32
+ def __init__(self, project: str) -> None:
33
+ """
34
+ Initialize a new TSDB connector. The connector is used to interact with the TSDB and store monitoring data.
35
+ At the moment we have 3 different types of monitoring data:
36
+ - real time performance metrics: real time performance metrics that are being calculated by the model
37
+ monitoring stream pod.
38
+ Among these metrics are the base metrics (average latency and predictions over time), endpoint features
39
+ (data samples), and custom metrics (user-defined metrics).
40
+ - app_results: a detailed results that include status, kind, extra data, etc. These results are being calculated
41
+ through the monitoring applications and stored in the TSDB using the model monitoring writer.
42
+ - metrics: a basic key value that represents a numeric metric. Similar to the app_results, these metrics
43
+ are being calculated through the monitoring applications and stored in the TSDB using the model monitoring
44
+ writer.
45
+
46
+ :param project: the name of the project.
47
+ """
48
+ self.project = project
49
+
50
+ @abstractmethod
51
+ def apply_monitoring_stream_steps(self, graph) -> None:
52
+ """
53
+ Apply TSDB steps on the provided monitoring graph. Throughout these steps, the graph stores live data of
54
+ different key metric dictionaries. This data is being used by the monitoring dashboards in
55
+ grafana.
56
+ There are 3 different key metric dictionaries that are being generated throughout these steps:
57
+ - base_metrics (average latency and predictions over time)
58
+ - endpoint_features (Prediction and feature names and values)
59
+ - custom_metrics (user-defined metrics)
60
+ """
61
+ pass
62
+
63
+ @abstractmethod
64
+ def handle_model_error(self, graph, **kwargs) -> None:
65
+ """
66
+ Adds a branch to the stream pod graph to handle events that
67
+ arrive with errors from the model server and saves them to the error TSDB table.
68
+ The first step that generates by this method should come after `ForwardError` step.
69
+ """
70
+
71
+ @abstractmethod
72
+ def write_application_event(
73
+ self,
74
+ event: dict,
75
+ kind: mm_schemas.WriterEventKind = mm_schemas.WriterEventKind.RESULT,
76
+ ) -> None:
77
+ """
78
+ Write a single application or metric to TSDB.
79
+
80
+ :raise mlrun.errors.MLRunRuntimeError: If an error occurred while writing the event.
81
+ """
82
+
83
+ @abstractmethod
84
+ def delete_tsdb_resources(self):
85
+ """
86
+ Delete all project resources in the TSDB connector, such as model endpoints data and drift results.
87
+ """
88
+ pass
89
+
90
+ @abstractmethod
91
+ def get_model_endpoint_real_time_metrics(
92
+ self,
93
+ endpoint_id: str,
94
+ metrics: list[str],
95
+ start: str,
96
+ end: str,
97
+ ) -> dict[str, list[tuple[str, float]]]:
98
+ """
99
+ Getting real time metrics from the TSDB. There are pre-defined metrics for model endpoints such as
100
+ `predictions_per_second` and `latency_avg_5m` but also custom metrics defined by the user. Note that these
101
+ metrics are being calculated by the model monitoring stream pod.
102
+ :param endpoint_id: The unique id of the model endpoint.
103
+ :param metrics: A list of real-time metrics to return for the model endpoint.
104
+ :param start: The start time of the metrics. Can be represented by a string containing an RFC 3339
105
+ time, a Unix timestamp in milliseconds, a relative time (`'now'` or
106
+ `'now-[0-9]+[mhd]'`, where `m` = minutes, `h` = hours, `'d'` = days, and `'s'`
107
+ = seconds), or 0 for the earliest time.
108
+ :param end: The end time of the metrics. Can be represented by a string containing an RFC 3339
109
+ time, a Unix timestamp in milliseconds, a relative time (`'now'` or
110
+ `'now-[0-9]+[mhd]'`, where `m` = minutes, `h` = hours, `'d'` = days, and `'s'`
111
+ = seconds), or 0 for the earliest time.
112
+ :return: A dictionary of metrics in which the key is a metric name and the value is a list of tuples that
113
+ includes timestamps and the values.
114
+ """
115
+ pass
116
+
117
+ @abstractmethod
118
+ def create_tables(self) -> None:
119
+ """
120
+ Create the TSDB tables using the TSDB connector. At the moment we support 3 types of tables:
121
+ - app_results: a detailed result that includes status, kind, extra data, etc.
122
+ - metrics: a basic key value that represents a numeric metric.
123
+ - predictions: latency of each prediction.
124
+ """
125
+
126
+ @abstractmethod
127
+ def read_metrics_data(
128
+ self,
129
+ *,
130
+ endpoint_id: str,
131
+ start: datetime,
132
+ end: datetime,
133
+ metrics: list[mm_schemas.ModelEndpointMonitoringMetric],
134
+ type: typing.Literal["metrics", "results"],
135
+ ) -> typing.Union[
136
+ list[
137
+ typing.Union[
138
+ mm_schemas.ModelEndpointMonitoringResultValues,
139
+ mm_schemas.ModelEndpointMonitoringMetricNoData,
140
+ ],
141
+ ],
142
+ list[
143
+ typing.Union[
144
+ mm_schemas.ModelEndpointMonitoringMetricValues,
145
+ mm_schemas.ModelEndpointMonitoringMetricNoData,
146
+ ],
147
+ ],
148
+ ]:
149
+ """
150
+ Read metrics OR results from the TSDB and return as a list.
151
+
152
+ :param endpoint_id: The model endpoint identifier.
153
+ :param start: The start time of the query.
154
+ :param end: The end time of the query.
155
+ :param metrics: The list of metrics to get the values for.
156
+ :param type: "metrics" or "results" - the type of each item in metrics.
157
+ :return: A list of result values or a list of metric values.
158
+ """
159
+
160
+ @abstractmethod
161
+ def read_predictions(
162
+ self,
163
+ *,
164
+ endpoint_id: str,
165
+ start: datetime,
166
+ end: datetime,
167
+ aggregation_window: typing.Optional[str] = None,
168
+ agg_funcs: typing.Optional[list[str]] = None,
169
+ limit: typing.Optional[int] = None,
170
+ ) -> typing.Union[
171
+ mm_schemas.ModelEndpointMonitoringMetricValues,
172
+ mm_schemas.ModelEndpointMonitoringMetricNoData,
173
+ ]:
174
+ """
175
+ Read the "invocations" metric for the provided model endpoint in the given time range,
176
+ and return the metric values if any, otherwise signify with the "no data" object.
177
+
178
+ :param endpoint_id: The model endpoint identifier.
179
+ :param start: The start time of the query.
180
+ :param end: The end time of the query.
181
+ :param aggregation_window: On what time window length should the invocations be aggregated. If provided,
182
+ the `agg_funcs` must be provided as well. Provided as a string in the format of '1m',
183
+ '1h', etc.
184
+ :param agg_funcs: List of aggregation functions to apply on the invocations. If provided, the
185
+ `aggregation_window` must be provided as well. Provided as a list of strings in
186
+ the format of ['sum', 'avg', 'count', ...]
187
+ :param limit: The maximum number of records to return.
188
+
189
+ :raise mlrun.errors.MLRunInvalidArgumentError: If only one of `aggregation_window` and `agg_funcs` is provided.
190
+ :return: Metric values object or no data object.
191
+ """
192
+
193
+ @abstractmethod
194
+ def get_last_request(
195
+ self,
196
+ endpoint_ids: Union[str, list[str]],
197
+ start: Union[datetime, str] = "0",
198
+ end: Union[datetime, str] = "now",
199
+ ) -> pd.DataFrame:
200
+ """
201
+ Fetches data from the predictions TSDB table and returns the most recent request
202
+ timestamp for each specified endpoint.
203
+
204
+ :param endpoint_ids: A list of model endpoint identifiers.
205
+ :param start: The start time for the query.
206
+ :param end: The end time for the query.
207
+
208
+ :return: A pd.DataFrame containing the columns [endpoint_id, last_request, last_latency].
209
+ If an endpoint has not been invoked within the specified time range, it will not appear in the result.
210
+ """
211
+
212
+ @abstractmethod
213
+ def get_drift_status(
214
+ self,
215
+ endpoint_ids: Union[str, list[str]],
216
+ start: Union[datetime, str] = "now-24h",
217
+ end: Union[datetime, str] = "now",
218
+ ) -> pd.DataFrame:
219
+ """
220
+ Fetches data from the app-results TSDB table and returns the highest status among all
221
+ the result in the provided time range, which by default is the last 24 hours, for each specified endpoint.
222
+
223
+ :param endpoint_ids: A list of model endpoint identifiers.
224
+ :param start: The start time for the query.
225
+ :param end: The end time for the query.
226
+
227
+ :return: A pd.DataFrame containing the columns [result_status, endpoint_id].
228
+ If an endpoint has not been monitored within the specified time range (last 24 hours),
229
+ it will not appear in the result.
230
+ """
231
+
232
+ @abstractmethod
233
+ def get_metrics_metadata(
234
+ self,
235
+ endpoint_id: str,
236
+ start: Union[datetime, str] = "0",
237
+ end: Union[datetime, str] = "now",
238
+ ) -> pd.DataFrame:
239
+ """
240
+ Fetches distinct metrics metadata from the metrics TSDB table for a specified model endpoint.
241
+
242
+ :param endpoint_id: The model endpoint identifier.
243
+ :param start: The start time of the query.
244
+ :param end: The end time of the query.
245
+
246
+ :return: A pd.DataFrame containing all distinct metrics for the specified endpoint within the given time range.
247
+ Containing the columns [application_name, metric_name, endpoint_id]
248
+ """
249
+
250
+ @abstractmethod
251
+ def get_results_metadata(
252
+ self,
253
+ endpoint_id: str,
254
+ start: Union[datetime, str] = "0",
255
+ end: Union[datetime, str] = "now",
256
+ ) -> pd.DataFrame:
257
+ """
258
+ Fetches distinct results metadata from the app-results TSDB table for a specified model endpoint.
259
+
260
+ :param endpoint_id: The model endpoint identifier.
261
+ :param start: The start time of the query.
262
+ :param end: The end time of the query.
263
+
264
+ :return: A pd.DataFrame containing all distinct results for the specified endpoint within the given time range.
265
+ Containing the columns [application_name, result_name, result_kind, endpoint_id]
266
+ """
267
+
268
+ @abstractmethod
269
+ def get_error_count(
270
+ self,
271
+ endpoint_ids: Union[str, list[str]],
272
+ start: Union[datetime, str] = "0",
273
+ end: Union[datetime, str] = "now",
274
+ ) -> pd.DataFrame:
275
+ """
276
+ Fetches data from the error TSDB table and returns the error count for each specified endpoint.
277
+
278
+ :param endpoint_ids: A list of model endpoint identifiers.
279
+ :param start: The start time for the query.
280
+ :param end: The end time for the query.
281
+
282
+ :return: A pd.DataFrame containing the columns [error_count, endpoint_id].
283
+ If an endpoint have not raised error within the specified time range, it will not appear in the result.
284
+ """
285
+
286
+ @abstractmethod
287
+ def get_avg_latency(
288
+ self,
289
+ endpoint_ids: Union[str, list[str]],
290
+ start: Union[datetime, str] = "0",
291
+ end: Union[datetime, str] = "now",
292
+ ) -> pd.DataFrame:
293
+ """
294
+ Fetches data from the predictions TSDB table and returns the average latency for each specified endpoint
295
+
296
+ :param endpoint_ids: A list of model endpoint identifiers.
297
+ :param start: The start time for the query.
298
+ :param end: The end time for the query.
299
+
300
+ :return: A pd.DataFrame containing the columns [avg_latency, endpoint_id].
301
+ If an endpoint has not been invoked within the specified time range, it will not appear in the result.
302
+ """
303
+
304
+ @staticmethod
305
+ def df_to_metrics_values(
306
+ *,
307
+ df: pd.DataFrame,
308
+ metrics: list[mm_schemas.ModelEndpointMonitoringMetric],
309
+ project: str,
310
+ ) -> list[
311
+ typing.Union[
312
+ mm_schemas.ModelEndpointMonitoringMetricValues,
313
+ mm_schemas.ModelEndpointMonitoringMetricNoData,
314
+ ]
315
+ ]:
316
+ """
317
+ Parse a time-indexed DataFrame of metrics from the TSDB into a list of
318
+ metrics values per distinct results.
319
+ When a metric is not found in the DataFrame, it is represented in a no-data object.
320
+ """
321
+ metrics_without_data = {metric.full_name: metric for metric in metrics}
322
+
323
+ metrics_values: list[
324
+ typing.Union[
325
+ mm_schemas.ModelEndpointMonitoringMetricValues,
326
+ mm_schemas.ModelEndpointMonitoringMetricNoData,
327
+ ]
328
+ ] = []
329
+ if not df.empty:
330
+ grouped = df.groupby(
331
+ [
332
+ mm_schemas.WriterEvent.APPLICATION_NAME,
333
+ mm_schemas.MetricData.METRIC_NAME,
334
+ ],
335
+ observed=False,
336
+ )
337
+ else:
338
+ logger.debug("No metrics", missing_metrics=metrics_without_data.keys())
339
+ grouped = []
340
+ for (app_name, name), sub_df in grouped:
341
+ full_name = mlrun.model_monitoring.helpers._compose_full_name(
342
+ project=project,
343
+ app=app_name,
344
+ name=name,
345
+ type=mm_schemas.ModelEndpointMonitoringMetricType.METRIC,
346
+ )
347
+ metrics_values.append(
348
+ mm_schemas.ModelEndpointMonitoringMetricValues(
349
+ full_name=full_name,
350
+ values=list(
351
+ zip(
352
+ sub_df.index,
353
+ sub_df[mm_schemas.MetricData.METRIC_VALUE],
354
+ )
355
+ ), # pyright: ignore[reportArgumentType]
356
+ )
357
+ )
358
+ del metrics_without_data[full_name]
359
+
360
+ for metric in metrics_without_data.values():
361
+ metrics_values.append(
362
+ mm_schemas.ModelEndpointMonitoringMetricNoData(
363
+ full_name=metric.full_name,
364
+ type=mm_schemas.ModelEndpointMonitoringMetricType.METRIC,
365
+ )
366
+ )
367
+
368
+ return metrics_values
369
+
370
+ @staticmethod
371
+ def df_to_results_values(
372
+ *,
373
+ df: pd.DataFrame,
374
+ metrics: list[mm_schemas.ModelEndpointMonitoringMetric],
375
+ project: str,
376
+ ) -> list[
377
+ typing.Union[
378
+ mm_schemas.ModelEndpointMonitoringResultValues,
379
+ mm_schemas.ModelEndpointMonitoringMetricNoData,
380
+ ]
381
+ ]:
382
+ """
383
+ Parse a time-indexed DataFrame of results from the TSDB into a list of
384
+ results values per distinct results.
385
+ When a result is not found in the DataFrame, it is represented in no-data object.
386
+ """
387
+ metrics_without_data = {metric.full_name: metric for metric in metrics}
388
+
389
+ metrics_values: list[
390
+ typing.Union[
391
+ mm_schemas.ModelEndpointMonitoringResultValues,
392
+ mm_schemas.ModelEndpointMonitoringMetricNoData,
393
+ ]
394
+ ] = []
395
+ if not df.empty:
396
+ grouped = df.groupby(
397
+ [
398
+ mm_schemas.WriterEvent.APPLICATION_NAME,
399
+ mm_schemas.ResultData.RESULT_NAME,
400
+ ],
401
+ observed=False,
402
+ )
403
+ else:
404
+ grouped = []
405
+ logger.debug("No results", missing_results=metrics_without_data.keys())
406
+ for (app_name, name), sub_df in grouped:
407
+ result_kind = mlrun.model_monitoring.db.tsdb.helpers._get_result_kind(
408
+ sub_df
409
+ )
410
+ full_name = mlrun.model_monitoring.helpers._compose_full_name(
411
+ project=project, app=app_name, name=name
412
+ )
413
+ try:
414
+ metrics_values.append(
415
+ mm_schemas.ModelEndpointMonitoringResultValues(
416
+ full_name=full_name,
417
+ result_kind=result_kind,
418
+ values=list(
419
+ zip(
420
+ sub_df.index,
421
+ sub_df[mm_schemas.ResultData.RESULT_VALUE],
422
+ sub_df[mm_schemas.ResultData.RESULT_STATUS],
423
+ )
424
+ ), # pyright: ignore[reportArgumentType]
425
+ )
426
+ )
427
+ except pydantic.ValidationError:
428
+ logger.exception(
429
+ "Failed to convert data-frame into `ModelEndpointMonitoringResultValues`",
430
+ full_name=full_name,
431
+ sub_df_json=sub_df.to_json(),
432
+ )
433
+ raise
434
+ del metrics_without_data[full_name]
435
+
436
+ for metric in metrics_without_data.values():
437
+ if metric.full_name == mlrun.model_monitoring.helpers.get_invocations_fqn(
438
+ project
439
+ ):
440
+ continue
441
+ metrics_values.append(
442
+ mm_schemas.ModelEndpointMonitoringMetricNoData(
443
+ full_name=metric.full_name,
444
+ type=mm_schemas.ModelEndpointMonitoringMetricType.RESULT,
445
+ )
446
+ )
447
+
448
+ return metrics_values
@@ -0,0 +1,30 @@
1
+ # Copyright 2024 Iguazio
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import pandas as pd
15
+
16
+ import mlrun.common.schemas.model_monitoring as mm_schemas
17
+ from mlrun.utils import logger
18
+
19
+
20
+ def _get_result_kind(result_df: pd.DataFrame) -> mm_schemas.ResultKindApp:
21
+ kind_series = result_df[mm_schemas.ResultData.RESULT_KIND]
22
+ unique_kinds = kind_series.unique()
23
+ if len(unique_kinds) > 1:
24
+ logger.warning(
25
+ "The result has more than one kind",
26
+ kinds=list(unique_kinds),
27
+ application_name=result_df[mm_schemas.WriterEvent.APPLICATION_NAME],
28
+ result_name=result_df[mm_schemas.ResultData.RESULT_NAME],
29
+ )
30
+ return unique_kinds[0]
@@ -0,0 +1,15 @@
1
+ # Copyright 2024 Iguazio
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from .tdengine_connector import TDEngineConnector