mlrun 1.7.0rc5__py3-none-any.whl → 1.7.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mlrun might be problematic. Click here for more details.

Files changed (234) hide show
  1. mlrun/__init__.py +11 -1
  2. mlrun/__main__.py +39 -121
  3. mlrun/{datastore/helpers.py → alerts/__init__.py} +2 -5
  4. mlrun/alerts/alert.py +248 -0
  5. mlrun/api/schemas/__init__.py +4 -3
  6. mlrun/artifacts/__init__.py +8 -3
  7. mlrun/artifacts/base.py +39 -254
  8. mlrun/artifacts/dataset.py +9 -190
  9. mlrun/artifacts/manager.py +73 -46
  10. mlrun/artifacts/model.py +30 -158
  11. mlrun/artifacts/plots.py +23 -380
  12. mlrun/common/constants.py +73 -2
  13. mlrun/common/db/sql_session.py +3 -2
  14. mlrun/common/formatters/__init__.py +21 -0
  15. mlrun/common/formatters/artifact.py +46 -0
  16. mlrun/common/formatters/base.py +113 -0
  17. mlrun/common/formatters/feature_set.py +44 -0
  18. mlrun/common/formatters/function.py +46 -0
  19. mlrun/common/formatters/pipeline.py +53 -0
  20. mlrun/common/formatters/project.py +51 -0
  21. mlrun/common/formatters/run.py +29 -0
  22. mlrun/common/helpers.py +11 -1
  23. mlrun/{runtimes → common/runtimes}/constants.py +32 -4
  24. mlrun/common/schemas/__init__.py +21 -4
  25. mlrun/common/schemas/alert.py +202 -0
  26. mlrun/common/schemas/api_gateway.py +113 -2
  27. mlrun/common/schemas/artifact.py +28 -1
  28. mlrun/common/schemas/auth.py +11 -0
  29. mlrun/common/schemas/client_spec.py +2 -1
  30. mlrun/common/schemas/common.py +7 -4
  31. mlrun/common/schemas/constants.py +3 -0
  32. mlrun/common/schemas/feature_store.py +58 -28
  33. mlrun/common/schemas/frontend_spec.py +8 -0
  34. mlrun/common/schemas/function.py +11 -0
  35. mlrun/common/schemas/hub.py +7 -9
  36. mlrun/common/schemas/model_monitoring/__init__.py +21 -4
  37. mlrun/common/schemas/model_monitoring/constants.py +136 -42
  38. mlrun/common/schemas/model_monitoring/grafana.py +9 -5
  39. mlrun/common/schemas/model_monitoring/model_endpoints.py +89 -41
  40. mlrun/common/schemas/notification.py +69 -12
  41. mlrun/{runtimes/mpijob/v1alpha1.py → common/schemas/pagination.py} +10 -13
  42. mlrun/common/schemas/pipeline.py +7 -0
  43. mlrun/common/schemas/project.py +67 -16
  44. mlrun/common/schemas/runs.py +17 -0
  45. mlrun/common/schemas/schedule.py +1 -1
  46. mlrun/common/schemas/workflow.py +10 -2
  47. mlrun/common/types.py +14 -1
  48. mlrun/config.py +224 -58
  49. mlrun/data_types/data_types.py +11 -1
  50. mlrun/data_types/spark.py +5 -4
  51. mlrun/data_types/to_pandas.py +75 -34
  52. mlrun/datastore/__init__.py +8 -10
  53. mlrun/datastore/alibaba_oss.py +131 -0
  54. mlrun/datastore/azure_blob.py +131 -43
  55. mlrun/datastore/base.py +107 -47
  56. mlrun/datastore/datastore.py +17 -7
  57. mlrun/datastore/datastore_profile.py +91 -7
  58. mlrun/datastore/dbfs_store.py +3 -7
  59. mlrun/datastore/filestore.py +1 -3
  60. mlrun/datastore/google_cloud_storage.py +92 -32
  61. mlrun/datastore/hdfs.py +5 -0
  62. mlrun/datastore/inmem.py +6 -3
  63. mlrun/datastore/redis.py +3 -2
  64. mlrun/datastore/s3.py +30 -12
  65. mlrun/datastore/snowflake_utils.py +45 -0
  66. mlrun/datastore/sources.py +274 -59
  67. mlrun/datastore/spark_utils.py +30 -0
  68. mlrun/datastore/store_resources.py +9 -7
  69. mlrun/datastore/storeytargets.py +151 -0
  70. mlrun/datastore/targets.py +374 -102
  71. mlrun/datastore/utils.py +68 -5
  72. mlrun/datastore/v3io.py +28 -50
  73. mlrun/db/auth_utils.py +152 -0
  74. mlrun/db/base.py +231 -22
  75. mlrun/db/factory.py +1 -4
  76. mlrun/db/httpdb.py +864 -228
  77. mlrun/db/nopdb.py +268 -16
  78. mlrun/errors.py +35 -5
  79. mlrun/execution.py +111 -38
  80. mlrun/feature_store/__init__.py +0 -2
  81. mlrun/feature_store/api.py +46 -53
  82. mlrun/feature_store/common.py +6 -11
  83. mlrun/feature_store/feature_set.py +48 -23
  84. mlrun/feature_store/feature_vector.py +13 -2
  85. mlrun/feature_store/ingestion.py +7 -6
  86. mlrun/feature_store/retrieval/base.py +9 -4
  87. mlrun/feature_store/retrieval/dask_merger.py +2 -0
  88. mlrun/feature_store/retrieval/job.py +13 -4
  89. mlrun/feature_store/retrieval/local_merger.py +2 -0
  90. mlrun/feature_store/retrieval/spark_merger.py +24 -32
  91. mlrun/feature_store/steps.py +38 -19
  92. mlrun/features.py +6 -14
  93. mlrun/frameworks/_common/plan.py +3 -3
  94. mlrun/frameworks/_dl_common/loggers/tensorboard_logger.py +7 -12
  95. mlrun/frameworks/_ml_common/plan.py +1 -1
  96. mlrun/frameworks/auto_mlrun/auto_mlrun.py +2 -2
  97. mlrun/frameworks/lgbm/__init__.py +1 -1
  98. mlrun/frameworks/lgbm/callbacks/callback.py +2 -4
  99. mlrun/frameworks/lgbm/model_handler.py +1 -1
  100. mlrun/frameworks/parallel_coordinates.py +4 -4
  101. mlrun/frameworks/pytorch/__init__.py +2 -2
  102. mlrun/frameworks/sklearn/__init__.py +1 -1
  103. mlrun/frameworks/sklearn/mlrun_interface.py +13 -3
  104. mlrun/frameworks/tf_keras/__init__.py +5 -2
  105. mlrun/frameworks/tf_keras/callbacks/logging_callback.py +1 -1
  106. mlrun/frameworks/tf_keras/mlrun_interface.py +2 -2
  107. mlrun/frameworks/xgboost/__init__.py +1 -1
  108. mlrun/k8s_utils.py +57 -12
  109. mlrun/launcher/__init__.py +1 -1
  110. mlrun/launcher/base.py +6 -5
  111. mlrun/launcher/client.py +13 -11
  112. mlrun/launcher/factory.py +1 -1
  113. mlrun/launcher/local.py +15 -5
  114. mlrun/launcher/remote.py +10 -3
  115. mlrun/lists.py +6 -2
  116. mlrun/model.py +297 -48
  117. mlrun/model_monitoring/__init__.py +1 -1
  118. mlrun/model_monitoring/api.py +152 -357
  119. mlrun/model_monitoring/applications/__init__.py +10 -0
  120. mlrun/model_monitoring/applications/_application_steps.py +190 -0
  121. mlrun/model_monitoring/applications/base.py +108 -0
  122. mlrun/model_monitoring/applications/context.py +341 -0
  123. mlrun/model_monitoring/{evidently_application.py → applications/evidently_base.py} +27 -22
  124. mlrun/model_monitoring/applications/histogram_data_drift.py +227 -91
  125. mlrun/model_monitoring/applications/results.py +99 -0
  126. mlrun/model_monitoring/controller.py +130 -303
  127. mlrun/model_monitoring/{stores/models/sqlite.py → db/__init__.py} +5 -10
  128. mlrun/model_monitoring/db/stores/__init__.py +136 -0
  129. mlrun/model_monitoring/db/stores/base/__init__.py +15 -0
  130. mlrun/model_monitoring/db/stores/base/store.py +213 -0
  131. mlrun/model_monitoring/db/stores/sqldb/__init__.py +13 -0
  132. mlrun/model_monitoring/db/stores/sqldb/models/__init__.py +71 -0
  133. mlrun/model_monitoring/db/stores/sqldb/models/base.py +190 -0
  134. mlrun/model_monitoring/db/stores/sqldb/models/mysql.py +103 -0
  135. mlrun/model_monitoring/{stores/models/mysql.py → db/stores/sqldb/models/sqlite.py} +19 -13
  136. mlrun/model_monitoring/db/stores/sqldb/sql_store.py +659 -0
  137. mlrun/model_monitoring/db/stores/v3io_kv/__init__.py +13 -0
  138. mlrun/model_monitoring/db/stores/v3io_kv/kv_store.py +726 -0
  139. mlrun/model_monitoring/db/tsdb/__init__.py +105 -0
  140. mlrun/model_monitoring/db/tsdb/base.py +448 -0
  141. mlrun/model_monitoring/db/tsdb/helpers.py +30 -0
  142. mlrun/model_monitoring/db/tsdb/tdengine/__init__.py +15 -0
  143. mlrun/model_monitoring/db/tsdb/tdengine/schemas.py +298 -0
  144. mlrun/model_monitoring/db/tsdb/tdengine/stream_graph_steps.py +42 -0
  145. mlrun/model_monitoring/db/tsdb/tdengine/tdengine_connector.py +522 -0
  146. mlrun/model_monitoring/db/tsdb/v3io/__init__.py +15 -0
  147. mlrun/model_monitoring/db/tsdb/v3io/stream_graph_steps.py +158 -0
  148. mlrun/model_monitoring/db/tsdb/v3io/v3io_connector.py +849 -0
  149. mlrun/model_monitoring/features_drift_table.py +34 -22
  150. mlrun/model_monitoring/helpers.py +177 -39
  151. mlrun/model_monitoring/model_endpoint.py +3 -2
  152. mlrun/model_monitoring/stream_processing.py +165 -398
  153. mlrun/model_monitoring/tracking_policy.py +7 -1
  154. mlrun/model_monitoring/writer.py +161 -125
  155. mlrun/package/packagers/default_packager.py +2 -2
  156. mlrun/package/packagers_manager.py +1 -0
  157. mlrun/package/utils/_formatter.py +2 -2
  158. mlrun/platforms/__init__.py +11 -10
  159. mlrun/platforms/iguazio.py +67 -228
  160. mlrun/projects/__init__.py +6 -1
  161. mlrun/projects/operations.py +47 -20
  162. mlrun/projects/pipelines.py +396 -249
  163. mlrun/projects/project.py +1125 -414
  164. mlrun/render.py +28 -22
  165. mlrun/run.py +207 -180
  166. mlrun/runtimes/__init__.py +76 -11
  167. mlrun/runtimes/base.py +40 -14
  168. mlrun/runtimes/daskjob.py +9 -2
  169. mlrun/runtimes/databricks_job/databricks_runtime.py +1 -0
  170. mlrun/runtimes/databricks_job/databricks_wrapper.py +1 -1
  171. mlrun/runtimes/funcdoc.py +1 -29
  172. mlrun/runtimes/kubejob.py +34 -128
  173. mlrun/runtimes/local.py +39 -10
  174. mlrun/runtimes/mpijob/__init__.py +0 -20
  175. mlrun/runtimes/mpijob/abstract.py +8 -8
  176. mlrun/runtimes/mpijob/v1.py +1 -1
  177. mlrun/runtimes/nuclio/api_gateway.py +646 -177
  178. mlrun/runtimes/nuclio/application/__init__.py +15 -0
  179. mlrun/runtimes/nuclio/application/application.py +758 -0
  180. mlrun/runtimes/nuclio/application/reverse_proxy.go +95 -0
  181. mlrun/runtimes/nuclio/function.py +188 -68
  182. mlrun/runtimes/nuclio/serving.py +57 -60
  183. mlrun/runtimes/pod.py +191 -58
  184. mlrun/runtimes/remotesparkjob.py +11 -8
  185. mlrun/runtimes/sparkjob/spark3job.py +17 -18
  186. mlrun/runtimes/utils.py +40 -73
  187. mlrun/secrets.py +6 -2
  188. mlrun/serving/__init__.py +8 -1
  189. mlrun/serving/remote.py +2 -3
  190. mlrun/serving/routers.py +89 -64
  191. mlrun/serving/server.py +54 -26
  192. mlrun/serving/states.py +187 -56
  193. mlrun/serving/utils.py +19 -11
  194. mlrun/serving/v2_serving.py +136 -63
  195. mlrun/track/tracker.py +2 -1
  196. mlrun/track/trackers/mlflow_tracker.py +5 -0
  197. mlrun/utils/async_http.py +26 -6
  198. mlrun/utils/db.py +18 -0
  199. mlrun/utils/helpers.py +375 -105
  200. mlrun/utils/http.py +2 -2
  201. mlrun/utils/logger.py +75 -9
  202. mlrun/utils/notifications/notification/__init__.py +14 -10
  203. mlrun/utils/notifications/notification/base.py +48 -0
  204. mlrun/utils/notifications/notification/console.py +2 -0
  205. mlrun/utils/notifications/notification/git.py +24 -1
  206. mlrun/utils/notifications/notification/ipython.py +2 -0
  207. mlrun/utils/notifications/notification/slack.py +96 -21
  208. mlrun/utils/notifications/notification/webhook.py +63 -2
  209. mlrun/utils/notifications/notification_pusher.py +146 -16
  210. mlrun/utils/regex.py +9 -0
  211. mlrun/utils/retryer.py +3 -2
  212. mlrun/utils/v3io_clients.py +2 -3
  213. mlrun/utils/version/version.json +2 -2
  214. mlrun-1.7.2.dist-info/METADATA +390 -0
  215. mlrun-1.7.2.dist-info/RECORD +351 -0
  216. {mlrun-1.7.0rc5.dist-info → mlrun-1.7.2.dist-info}/WHEEL +1 -1
  217. mlrun/feature_store/retrieval/conversion.py +0 -271
  218. mlrun/kfpops.py +0 -868
  219. mlrun/model_monitoring/application.py +0 -310
  220. mlrun/model_monitoring/batch.py +0 -974
  221. mlrun/model_monitoring/controller_handler.py +0 -37
  222. mlrun/model_monitoring/prometheus.py +0 -216
  223. mlrun/model_monitoring/stores/__init__.py +0 -111
  224. mlrun/model_monitoring/stores/kv_model_endpoint_store.py +0 -574
  225. mlrun/model_monitoring/stores/model_endpoint_store.py +0 -145
  226. mlrun/model_monitoring/stores/models/__init__.py +0 -27
  227. mlrun/model_monitoring/stores/models/base.py +0 -84
  228. mlrun/model_monitoring/stores/sql_model_endpoint_store.py +0 -382
  229. mlrun/platforms/other.py +0 -305
  230. mlrun-1.7.0rc5.dist-info/METADATA +0 -269
  231. mlrun-1.7.0rc5.dist-info/RECORD +0 -323
  232. {mlrun-1.7.0rc5.dist-info → mlrun-1.7.2.dist-info}/LICENSE +0 -0
  233. {mlrun-1.7.0rc5.dist-info → mlrun-1.7.2.dist-info}/entry_points.txt +0 -0
  234. {mlrun-1.7.0rc5.dist-info → mlrun-1.7.2.dist-info}/top_level.txt +0 -0
mlrun/db/httpdb.py CHANGED
@@ -11,29 +11,37 @@
11
11
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
+
14
15
  import enum
15
16
  import http
16
17
  import re
17
- import tempfile
18
18
  import time
19
19
  import traceback
20
20
  import typing
21
21
  import warnings
22
+ from copy import deepcopy
22
23
  from datetime import datetime, timedelta
23
24
  from os import path, remove
24
25
  from typing import Optional, Union
25
26
  from urllib.parse import urlparse
26
27
 
27
- import kfp
28
28
  import requests
29
29
  import semver
30
+ from mlrun_pipelines.utils import compile_pipeline
30
31
 
31
32
  import mlrun
33
+ import mlrun.common.formatters
34
+ import mlrun.common.runtimes
32
35
  import mlrun.common.schemas
36
+ import mlrun.common.types
33
37
  import mlrun.model_monitoring.model_endpoint
34
38
  import mlrun.platforms
35
39
  import mlrun.projects
36
40
  import mlrun.runtimes.nuclio.api_gateway
41
+ import mlrun.runtimes.nuclio.function
42
+ import mlrun.utils
43
+ from mlrun.alerts.alert import AlertConfig
44
+ from mlrun.db.auth_utils import OAuthClientIDTokenProvider, StaticTokenProvider
37
45
  from mlrun.errors import MLRunInvalidArgumentError, err_to_str
38
46
 
39
47
  from ..artifacts import Artifact
@@ -46,7 +54,6 @@ from ..utils import (
46
54
  datetime_to_iso,
47
55
  dict_to_json,
48
56
  logger,
49
- new_pipe_metadata,
50
57
  normalize_name,
51
58
  version,
52
59
  )
@@ -134,17 +141,28 @@ class HTTPRunDB(RunDBInterface):
134
141
  endpoint += f":{parsed_url.port}"
135
142
  base_url = f"{parsed_url.scheme}://{endpoint}{parsed_url.path}"
136
143
 
144
+ self.base_url = base_url
137
145
  username = parsed_url.username or config.httpdb.user
138
146
  password = parsed_url.password or config.httpdb.password
147
+ self.token_provider = None
148
+
149
+ if config.auth_with_client_id.enabled:
150
+ self.token_provider = OAuthClientIDTokenProvider(
151
+ token_endpoint=mlrun.get_secret_or_env("MLRUN_AUTH_TOKEN_ENDPOINT"),
152
+ client_id=mlrun.get_secret_or_env("MLRUN_AUTH_CLIENT_ID"),
153
+ client_secret=mlrun.get_secret_or_env("MLRUN_AUTH_CLIENT_SECRET"),
154
+ timeout=config.auth_with_client_id.request_timeout,
155
+ )
156
+ else:
157
+ username, password, token = mlrun.platforms.add_or_refresh_credentials(
158
+ parsed_url.hostname, username, password, config.httpdb.token
159
+ )
139
160
 
140
- username, password, token = mlrun.platforms.add_or_refresh_credentials(
141
- parsed_url.hostname, username, password, config.httpdb.token
142
- )
161
+ if token:
162
+ self.token_provider = StaticTokenProvider(token)
143
163
 
144
- self.base_url = base_url
145
164
  self.user = username
146
165
  self.password = password
147
- self.token = token
148
166
 
149
167
  def __repr__(self):
150
168
  cls = self.__class__.__name__
@@ -180,7 +198,7 @@ class HTTPRunDB(RunDBInterface):
180
198
  headers=None,
181
199
  timeout=45,
182
200
  version=None,
183
- ):
201
+ ) -> requests.Response:
184
202
  """Perform a direct REST API call on the :py:mod:`mlrun` API server.
185
203
 
186
204
  Caution:
@@ -198,7 +216,7 @@ class HTTPRunDB(RunDBInterface):
198
216
  :param version: API version to use, None (the default) will mean to use the default value from config,
199
217
  for un-versioned api set an empty string.
200
218
 
201
- :return: Python HTTP response object
219
+ :returns: `requests.Response` HTTP response object
202
220
  """
203
221
  url = self.get_base_api_url(path, version)
204
222
  kw = {
@@ -214,17 +232,19 @@ class HTTPRunDB(RunDBInterface):
214
232
 
215
233
  if self.user:
216
234
  kw["auth"] = (self.user, self.password)
217
- elif self.token:
218
- # Iguazio auth doesn't support passing token through bearer, so use cookie instead
219
- if mlrun.platforms.iguazio.is_iguazio_session(self.token):
220
- session_cookie = f'j:{{"sid": "{self.token}"}}'
221
- cookies = {
222
- "session": session_cookie,
223
- }
224
- kw["cookies"] = cookies
225
- else:
226
- if "Authorization" not in kw.setdefault("headers", {}):
227
- kw["headers"].update({"Authorization": "Bearer " + self.token})
235
+ elif self.token_provider:
236
+ token = self.token_provider.get_token()
237
+ if token:
238
+ # Iguazio auth doesn't support passing token through bearer, so use cookie instead
239
+ if self.token_provider.is_iguazio_session():
240
+ session_cookie = f'j:{{"sid": "{token}"}}'
241
+ cookies = {
242
+ "session": session_cookie,
243
+ }
244
+ kw["cookies"] = cookies
245
+ else:
246
+ if "Authorization" not in kw.setdefault("headers", {}):
247
+ kw["headers"].update({"Authorization": "Bearer " + token})
228
248
 
229
249
  if mlrun.common.schemas.HeaderNames.client_version not in kw.setdefault(
230
250
  "headers", {}
@@ -279,6 +299,68 @@ class HTTPRunDB(RunDBInterface):
279
299
 
280
300
  return response
281
301
 
302
+ def paginated_api_call(
303
+ self,
304
+ method,
305
+ path,
306
+ error=None,
307
+ params=None,
308
+ body=None,
309
+ json=None,
310
+ headers=None,
311
+ timeout=45,
312
+ version=None,
313
+ ) -> typing.Generator[requests.Response, None, None]:
314
+ """
315
+ Calls the api with pagination, yielding each page of the response
316
+ """
317
+
318
+ def _api_call(_params):
319
+ return self.api_call(
320
+ method=method,
321
+ path=path,
322
+ error=error,
323
+ params=_params,
324
+ body=body,
325
+ json=json,
326
+ headers=headers,
327
+ timeout=timeout,
328
+ version=version,
329
+ )
330
+
331
+ first_page_params = deepcopy(params) or {}
332
+ first_page_params["page"] = 1
333
+ first_page_params["page-size"] = config.httpdb.pagination.default_page_size
334
+ response = _api_call(first_page_params)
335
+ page_token = response.json().get("pagination", {}).get("page-token")
336
+ if not page_token:
337
+ yield response
338
+ return
339
+
340
+ params_with_page_token = deepcopy(params) or {}
341
+ params_with_page_token["page-token"] = page_token
342
+ while page_token:
343
+ yield response
344
+ try:
345
+ response = _api_call(params_with_page_token)
346
+ except mlrun.errors.MLRunNotFoundError:
347
+ # pagination token expired
348
+ break
349
+
350
+ page_token = response.json().get("pagination", {}).get("page-token", None)
351
+
352
+ @staticmethod
353
+ def process_paginated_responses(
354
+ responses: typing.Generator[requests.Response, None, None], key: str = "data"
355
+ ) -> list[typing.Any]:
356
+ """
357
+ Processes the paginated responses and returns the combined data
358
+ """
359
+ data = []
360
+ for response in responses:
361
+ data.extend(response.json().get(key, []))
362
+ return data
363
+
282
364
  def _init_session(self, retry_on_post: bool = False):
283
365
  return mlrun.utils.HTTPSessionWithRetry(
284
366
  retry_on_exception=config.httpdb.retry_api_call_on_exception
@@ -311,7 +393,7 @@ class HTTPRunDB(RunDBInterface):
311
393
 
312
394
  For example::
313
395
 
314
- config.dbpath = config.dbpath or 'http://mlrun-api:8080'
396
+ config.dbpath = config.dbpath or "http://mlrun-api:8080"
315
397
  db = get_run_db().connect()
316
398
  """
317
399
  # hack to allow unit tests to instantiate HTTPRunDB without a real server behind
@@ -443,14 +525,18 @@ class HTTPRunDB(RunDBInterface):
443
525
  server_cfg.get("external_platform_tracking")
444
526
  or config.external_platform_tracking
445
527
  )
446
- config.model_endpoint_monitoring.store_type = (
447
- server_cfg.get("model_endpoint_monitoring_store_type")
448
- or config.model_endpoint_monitoring.store_type
449
- )
450
528
  config.model_endpoint_monitoring.endpoint_store_connection = (
451
529
  server_cfg.get("model_endpoint_monitoring_endpoint_store_connection")
452
530
  or config.model_endpoint_monitoring.endpoint_store_connection
453
531
  )
532
+ config.model_endpoint_monitoring.tsdb_connection = (
533
+ server_cfg.get("model_monitoring_tsdb_connection")
534
+ or config.model_endpoint_monitoring.tsdb_connection
535
+ )
536
+ config.model_endpoint_monitoring.stream_connection = (
537
+ server_cfg.get("stream_connection")
538
+ or config.model_endpoint_monitoring.stream_connection
539
+ )
454
540
  config.packagers = server_cfg.get("packagers") or config.packagers
455
541
  server_data_prefixes = server_cfg.get("feature_store_data_prefixes") or {}
456
542
  for prefix in ["default", "nosql", "redisnosql"]:
@@ -463,6 +549,7 @@ class HTTPRunDB(RunDBInterface):
463
549
  server_cfg.get("feature_store_default_targets")
464
550
  or config.feature_store.default_targets
465
551
  )
552
+ config.alerts.mode = server_cfg.get("alerts_mode") or config.alerts.mode
466
553
 
467
554
  except Exception as exc:
468
555
  logger.warning(
@@ -509,7 +596,7 @@ class HTTPRunDB(RunDBInterface):
509
596
  if offset < 0:
510
597
  raise MLRunInvalidArgumentError("Offset cannot be negative")
511
598
  if size is None:
512
- size = int(config.httpdb.logs.pull_logs_default_size_limit)
599
+ size = int(mlrun.mlconf.httpdb.logs.pull_logs_default_size_limit)
513
600
  elif size == -1:
514
601
  logger.warning(
515
602
  "Retrieving all logs. This may be inefficient and can result in a large log."
@@ -555,33 +642,35 @@ class HTTPRunDB(RunDBInterface):
555
642
 
556
643
  state, text = self.get_log(uid, project, offset=offset)
557
644
  if text:
558
- print(text.decode(errors=config.httpdb.logs.decode.errors))
645
+ print(text.decode(errors=mlrun.mlconf.httpdb.logs.decode.errors))
559
646
  nil_resp = 0
560
647
  while True:
561
648
  offset += len(text)
562
649
  # if we get 3 nil responses in a row, increase the sleep time to 10 seconds
563
650
  # TODO: refactor this to use a conditional backoff mechanism
564
651
  if nil_resp < 3:
565
- time.sleep(int(config.httpdb.logs.pull_logs_default_interval))
652
+ time.sleep(int(mlrun.mlconf.httpdb.logs.pull_logs_default_interval))
566
653
  else:
567
654
  time.sleep(
568
- int(config.httpdb.logs.pull_logs_backoff_no_logs_default_interval)
655
+ int(
656
+ mlrun.mlconf.httpdb.logs.pull_logs_backoff_no_logs_default_interval
657
+ )
569
658
  )
570
659
  state, text = self.get_log(uid, project, offset=offset)
571
660
  if text:
572
661
  nil_resp = 0
573
662
  print(
574
- text.decode(errors=config.httpdb.logs.decode.errors),
663
+ text.decode(errors=mlrun.mlconf.httpdb.logs.decode.errors),
575
664
  end="",
576
665
  )
577
666
  else:
578
667
  nil_resp += 1
579
668
 
580
669
  if watch and state in [
581
- mlrun.runtimes.constants.RunStates.pending,
582
- mlrun.runtimes.constants.RunStates.running,
583
- mlrun.runtimes.constants.RunStates.created,
584
- mlrun.runtimes.constants.RunStates.aborting,
670
+ mlrun.common.runtimes.constants.RunStates.pending,
671
+ mlrun.common.runtimes.constants.RunStates.running,
672
+ mlrun.common.runtimes.constants.RunStates.created,
673
+ mlrun.common.runtimes.constants.RunStates.aborting,
585
674
  ]:
586
675
  continue
587
676
  else:
@@ -637,16 +726,26 @@ class HTTPRunDB(RunDBInterface):
637
726
  )
638
727
  return None
639
728
 
640
- def read_run(self, uid, project="", iter=0):
729
+ def read_run(
730
+ self,
731
+ uid,
732
+ project="",
733
+ iter=0,
734
+ format_: mlrun.common.formatters.RunFormat = mlrun.common.formatters.RunFormat.full,
735
+ ):
641
736
  """Read the details of a stored run from the DB.
642
737
 
643
- :param uid: The run's unique ID.
644
- :param project: Project name.
645
- :param iter: Iteration within a specific execution.
738
+ :param uid: The run's unique ID.
739
+ :param project: Project name.
740
+ :param iter: Iteration within a specific execution.
741
+ :param format_: The format in which to return the run details.
646
742
  """
647
743
 
648
744
  path = self._path_of("runs", project, uid)
649
- params = {"iter": iter}
745
+ params = {
746
+ "iter": iter,
747
+ "format": format_.value,
748
+ }
650
749
  error = f"get run {project}/{uid}"
651
750
  resp = self.api_call("GET", path, error, params=params)
652
751
  return resp.json()["data"]
@@ -670,7 +769,10 @@ class HTTPRunDB(RunDBInterface):
670
769
  uid: Optional[Union[str, list[str]]] = None,
671
770
  project: Optional[str] = None,
672
771
  labels: Optional[Union[str, list[str]]] = None,
673
- state: Optional[str] = None,
772
+ state: Optional[
773
+ mlrun.common.runtimes.constants.RunStates
774
+ ] = None, # Backward compatibility
775
+ states: typing.Optional[list[mlrun.common.runtimes.constants.RunStates]] = None,
674
776
  sort: bool = True,
675
777
  last: int = 0,
676
778
  iter: bool = False,
@@ -695,9 +797,11 @@ class HTTPRunDB(RunDBInterface):
695
797
 
696
798
  Example::
697
799
 
698
- runs = db.list_runs(name='download', project='iris', labels=['owner=admin', 'kind=job'])
800
+ runs = db.list_runs(
801
+ name="download", project="iris", labels=["owner=admin", "kind=job"]
802
+ )
699
803
  # If running in Jupyter, can use the .show() function to display the results
700
- db.list_runs(name='', project=project_name).show()
804
+ db.list_runs(name="", project=project_name).show()
701
805
 
702
806
 
703
807
  :param name: Name of the run to retrieve.
@@ -706,7 +810,8 @@ class HTTPRunDB(RunDBInterface):
706
810
  :param labels: A list of labels to filter by. Label filters work by either filtering a specific value
707
811
  of a label (i.e. list("key=value")) or by looking for the existence of a given
708
812
  key (i.e. "key").
709
- :param state: List only runs whose state is specified.
813
+ :param state: Deprecated - List only runs whose state is specified (will be removed in 1.9.0)
814
+ :param states: List only runs whose state is one of the provided states.
710
815
  :param sort: Whether to sort the result according to their start time. Otherwise, results will be
711
816
  returned by their internal order in the DB (order will not be guaranteed).
712
817
  :param last: Deprecated - currently not used (will be removed in 1.8.0).
@@ -742,11 +847,19 @@ class HTTPRunDB(RunDBInterface):
742
847
  FutureWarning,
743
848
  )
744
849
 
850
+ if state:
851
+ # TODO: Remove this in 1.9.0
852
+ warnings.warn(
853
+ "'state' is deprecated and will be removed in 1.9.0. Use 'states' instead.",
854
+ FutureWarning,
855
+ )
856
+
745
857
  if (
746
858
  not name
747
859
  and not uid
748
860
  and not labels
749
861
  and not state
862
+ and not states
750
863
  and not last
751
864
  and not start_time_from
752
865
  and not start_time_to
@@ -758,14 +871,16 @@ class HTTPRunDB(RunDBInterface):
758
871
  ):
759
872
  # default to last week on no filter
760
873
  start_time_from = datetime.now() - timedelta(days=7)
761
- partition_by = mlrun.common.schemas.RunPartitionByField.name
874
+ partition_by = mlrun.common.schemas.RunPartitionByField.project_and_name
762
875
  partition_sort_by = mlrun.common.schemas.SortField.updated
763
876
 
764
877
  params = {
765
878
  "name": name,
766
879
  "uid": uid,
767
880
  "label": labels or [],
768
- "state": state,
881
+ "state": mlrun.utils.helpers.as_list(state)
882
+ if state is not None
883
+ else states or None,
769
884
  "sort": bool2str(sort),
770
885
  "iter": bool2str(iter),
771
886
  "start_time_from": datetime_to_iso(start_time_from),
@@ -788,15 +903,15 @@ class HTTPRunDB(RunDBInterface):
788
903
  )
789
904
  error = "list runs"
790
905
  _path = self._path_of("runs", project)
791
- resp = self.api_call("GET", _path, error, params=params)
792
- return RunList(resp.json()["runs"])
906
+ responses = self.paginated_api_call("GET", _path, error, params=params)
907
+ return RunList(self.process_paginated_responses(responses, "runs"))
793
908
 
794
909
  def del_runs(self, name=None, project=None, labels=None, state=None, days_ago=0):
795
910
  """Delete a group of runs identified by the parameters of the function.
796
911
 
797
912
  Example::
798
913
 
799
- db.del_runs(state='completed')
914
+ db.del_runs(state="completed")
800
915
 
801
916
  :param name: Name of the task which the runs belong to.
802
917
  :param project: Project to which the runs belong.
@@ -849,7 +964,7 @@ class HTTPRunDB(RunDBInterface):
849
964
 
850
965
  # we do this because previously the 'uid' name was used for the 'tree' parameter
851
966
  tree = tree or uid
852
-
967
+ project = project or mlrun.mlconf.default_project
853
968
  endpoint_path = f"projects/{project}/artifacts/{key}"
854
969
 
855
970
  error = f"store artifact {project}/{key}"
@@ -875,6 +990,7 @@ class HTTPRunDB(RunDBInterface):
875
990
  project="",
876
991
  tree=None,
877
992
  uid=None,
993
+ format_: mlrun.common.formatters.ArtifactFormat = mlrun.common.formatters.ArtifactFormat.full,
878
994
  ):
879
995
  """Read an artifact, identified by its key, tag, tree and iteration.
880
996
 
@@ -884,25 +1000,37 @@ class HTTPRunDB(RunDBInterface):
884
1000
  :param project: Project that the artifact belongs to.
885
1001
  :param tree: The tree which generated this artifact.
886
1002
  :param uid: A unique ID for this specific version of the artifact (the uid that was generated in the backend)
1003
+ :param format_: The format in which to return the artifact. Default is 'full'.
887
1004
  """
888
1005
 
889
- project = project or config.default_project
1006
+ project = project or mlrun.mlconf.default_project
890
1007
  tag = tag or "latest"
891
1008
  endpoint_path = f"projects/{project}/artifacts/{key}"
892
1009
  error = f"read artifact {project}/{key}"
893
- # explicitly set artifacts format to 'full' since old servers may default to 'legacy'
894
1010
  params = {
895
- "format": mlrun.common.schemas.ArtifactsFormat.full.value,
1011
+ "format": format_,
896
1012
  "tag": tag,
897
1013
  "tree": tree,
898
- "uid": uid,
1014
+ "object-uid": uid,
899
1015
  }
900
- if iter:
1016
+ if iter is not None:
901
1017
  params["iter"] = str(iter)
902
1018
  resp = self.api_call("GET", endpoint_path, error, params=params, version="v2")
903
1019
  return resp.json()
904
1020
 
905
- def del_artifact(self, key, tag=None, project="", tree=None, uid=None):
1021
+ def del_artifact(
1022
+ self,
1023
+ key,
1024
+ tag=None,
1025
+ project="",
1026
+ tree=None,
1027
+ uid=None,
1028
+ deletion_strategy: mlrun.common.schemas.artifact.ArtifactsDeletionStrategies = (
1029
+ mlrun.common.schemas.artifact.ArtifactsDeletionStrategies.metadata_only
1030
+ ),
1031
+ secrets: dict = None,
1032
+ iter=None,
1033
+ ):
906
1034
  """Delete an artifact.
907
1035
 
908
1036
  :param key: Identifying key of the artifact.
@@ -910,17 +1038,28 @@ class HTTPRunDB(RunDBInterface):
910
1038
  :param project: Project that the artifact belongs to.
911
1039
  :param tree: The tree which generated this artifact.
912
1040
  :param uid: A unique ID for this specific version of the artifact (the uid that was generated in the backend)
1041
+ :param deletion_strategy: The artifact deletion strategy types.
1042
+ :param secrets: Credentials needed to access the artifact data.
913
1043
  """
914
-
1044
+ project = project or mlrun.mlconf.default_project
915
1045
  endpoint_path = f"projects/{project}/artifacts/{key}"
916
1046
  params = {
917
1047
  "key": key,
918
1048
  "tag": tag,
919
1049
  "tree": tree,
920
- "uid": uid,
1050
+ "object-uid": uid,
1051
+ "iter": iter,
1052
+ "deletion_strategy": deletion_strategy,
921
1053
  }
922
1054
  error = f"del artifact {project}/{key}"
923
- self.api_call("DELETE", endpoint_path, error, params=params, version="v2")
1055
+ self.api_call(
1056
+ "DELETE",
1057
+ endpoint_path,
1058
+ error,
1059
+ params=params,
1060
+ version="v2",
1061
+ body=dict_to_json(secrets),
1062
+ )
924
1063
 
925
1064
  def list_artifacts(
926
1065
  self,
@@ -928,24 +1067,31 @@ class HTTPRunDB(RunDBInterface):
928
1067
  project=None,
929
1068
  tag=None,
930
1069
  labels: Optional[Union[dict[str, str], list[str]]] = None,
931
- since=None,
932
- until=None,
1070
+ since: Optional[datetime] = None,
1071
+ until: Optional[datetime] = None,
933
1072
  iter: int = None,
934
1073
  best_iteration: bool = False,
935
1074
  kind: str = None,
936
1075
  category: Union[str, mlrun.common.schemas.ArtifactCategories] = None,
937
1076
  tree: str = None,
1077
+ producer_uri: str = None,
1078
+ format_: Optional[
1079
+ mlrun.common.formatters.ArtifactFormat
1080
+ ] = mlrun.common.formatters.ArtifactFormat.full,
1081
+ limit: int = None,
938
1082
  ) -> ArtifactList:
939
1083
  """List artifacts filtered by various parameters.
940
1084
 
941
1085
  Examples::
942
1086
 
943
1087
  # Show latest version of all artifacts in project
944
- latest_artifacts = db.list_artifacts('', tag='latest', project='iris')
1088
+ latest_artifacts = db.list_artifacts("", tag="latest", project="iris")
945
1089
  # check different artifact versions for a specific artifact
946
- result_versions = db.list_artifacts('results', tag='*', project='iris')
1090
+ result_versions = db.list_artifacts("results", tag="*", project="iris")
947
1091
  # Show artifacts with label filters - both uploaded and of binary type
948
- result_labels = db.list_artifacts('results', tag='*', project='iris', labels=['uploaded', 'type=binary'])
1092
+ result_labels = db.list_artifacts(
1093
+ "results", tag="*", project="iris", labels=["uploaded", "type=binary"]
1094
+ )
949
1095
 
950
1096
  :param name: Name of artifacts to retrieve. Name with '~' prefix is used as a like query, and is not
951
1097
  case-sensitive. This means that querying for ``~name`` may return artifacts named
@@ -954,16 +1100,21 @@ class HTTPRunDB(RunDBInterface):
954
1100
  :param tag: Return artifacts assigned this tag.
955
1101
  :param labels: Return artifacts that have these labels. Labels can either be a dictionary {"label": "value"} or
956
1102
  a list of "label=value" (match label key and value) or "label" (match just label key) strings.
957
- :param since: Not in use in :py:class:`HTTPRunDB`.
958
- :param until: Not in use in :py:class:`HTTPRunDB`.
1103
+ :param since: Return artifacts updated after this date (as datetime object).
1104
+ :param until: Return artifacts updated before this date (as datetime object).
959
1105
  :param iter: Return artifacts from a specific iteration (where ``iter=0`` means the root iteration). If
960
1106
  ``None`` (default) return artifacts from all iterations.
961
1107
  :param best_iteration: Returns the artifact which belongs to the best iteration of a given run, in the case of
962
1108
  artifacts generated from a hyper-param run. If only a single iteration exists, will return the artifact
963
1109
  from that iteration. If using ``best_iter``, the ``iter`` parameter must not be used.
964
- :param kind: Return artifacts of the requested kind.
965
- :param category: Return artifacts of the requested category.
966
- :param tree: Return artifacts of the requested tree.
1110
+ :param kind: Return artifacts of the requested kind.
1111
+ :param category: Return artifacts of the requested category.
1112
+ :param tree: Return artifacts of the requested tree.
1113
+ :param producer_uri: Return artifacts produced by the requested producer URI. Producer URI usually
1114
+ points to a run and is used to filter artifacts by the run that produced them when the artifact producer id
1115
+ is a workflow id (artifact was created as part of a workflow).
1116
+ :param format_: The format in which to return the artifacts. Default is 'full'.
1117
+ :param limit: Maximum number of artifacts to return.
967
1118
  """
968
1119
 
969
1120
  project = project or config.default_project
@@ -981,7 +1132,11 @@ class HTTPRunDB(RunDBInterface):
981
1132
  "kind": kind,
982
1133
  "category": category,
983
1134
  "tree": tree,
984
- "format": mlrun.common.schemas.ArtifactsFormat.full.value,
1135
+ "format": format_,
1136
+ "producer_uri": producer_uri,
1137
+ "limit": limit,
1138
+ "since": datetime_to_iso(since),
1139
+ "until": datetime_to_iso(until),
985
1140
  }
986
1141
  error = "list artifacts"
987
1142
  endpoint_path = f"projects/{project}/artifacts"
@@ -1071,15 +1226,44 @@ class HTTPRunDB(RunDBInterface):
1071
1226
  project = project or config.default_project
1072
1227
  path = f"projects/{project}/functions/{name}"
1073
1228
  error_message = f"Failed deleting function {project}/{name}"
1074
- self.api_call("DELETE", path, error_message)
1229
+ response = self.api_call("DELETE", path, error_message, version="v2")
1230
+ if response.status_code == http.HTTPStatus.ACCEPTED:
1231
+ logger.info(
1232
+ "Function is being deleted", project_name=project, function_name=name
1233
+ )
1234
+ background_task = mlrun.common.schemas.BackgroundTask(**response.json())
1235
+ background_task = self._wait_for_background_task_to_reach_terminal_state(
1236
+ background_task.metadata.name, project=project
1237
+ )
1238
+ if (
1239
+ background_task.status.state
1240
+ == mlrun.common.schemas.BackgroundTaskState.succeeded
1241
+ ):
1242
+ logger.info(
1243
+ "Function deleted", project_name=project, function_name=name
1244
+ )
1245
+ elif (
1246
+ background_task.status.state
1247
+ == mlrun.common.schemas.BackgroundTaskState.failed
1248
+ ):
1249
+ logger.info(
1250
+ "Function deletion failed",
1251
+ reason=background_task.status.error,
1252
+ project_name=project,
1253
+ function_name=name,
1254
+ )
1075
1255
 
1076
- def list_functions(self, name=None, project=None, tag=None, labels=None):
1256
+ def list_functions(
1257
+ self, name=None, project=None, tag=None, labels=None, since=None, until=None
1258
+ ):
1077
1259
  """Retrieve a list of functions, filtered by specific criteria.
1078
1260
 
1079
1261
  :param name: Return only functions with a specific name.
1080
1262
  :param project: Return functions belonging to this project. If not specified, the default project is used.
1081
- :param tag: Return function versions with specific tags.
1263
+ :param tag: Return function versions with specific tags. To return only tagged functions, set tag to ``"*"``.
1082
1264
  :param labels: Return functions that have specific labels assigned to them.
1265
+ :param since: Return functions updated after this date (as datetime object).
1266
+ :param until: Return functions updated before this date (as datetime object).
1083
1267
  :returns: List of function objects (as dictionary).
1084
1268
  """
1085
1269
  project = project or config.default_project
@@ -1087,11 +1271,13 @@ class HTTPRunDB(RunDBInterface):
1087
1271
  "name": name,
1088
1272
  "tag": tag,
1089
1273
  "label": labels or [],
1274
+ "since": datetime_to_iso(since),
1275
+ "until": datetime_to_iso(until),
1090
1276
  }
1091
1277
  error = "list functions"
1092
1278
  path = f"projects/{project}/functions"
1093
- resp = self.api_call("GET", path, error, params=params)
1094
- return resp.json()["funcs"]
1279
+ responses = self.paginated_api_call("GET", path, error, params=params)
1280
+ return self.process_paginated_responses(responses, "funcs")
1095
1281
 
1096
1282
  def list_runtime_resources(
1097
1283
  self,
@@ -1181,25 +1367,19 @@ class HTTPRunDB(RunDBInterface):
1181
1367
  period didn't pass.
1182
1368
  :param grace_period: Grace period given to the runtime resource before they are actually removed, counted from
1183
1369
  the moment they moved to terminal state
1184
- (defaults to mlrun.config.config.runtime_resources_deletion_grace_period).
1370
+ (defaults to mlrun.mlconf.runtime_resources_deletion_grace_period).
1185
1371
 
1186
1372
  :returns: :py:class:`~mlrun.common.schemas.GroupedByProjectRuntimeResourcesOutput` listing the runtime resources
1187
1373
  that were removed.
1188
1374
  """
1189
- if grace_period is None:
1190
- grace_period = config.runtime_resources_deletion_grace_period
1191
- logger.info(
1192
- "Using default grace period for runtime resources deletion",
1193
- grace_period=grace_period,
1194
- )
1195
-
1196
1375
  params = {
1197
1376
  "label-selector": label_selector,
1198
1377
  "kind": kind,
1199
1378
  "object-id": object_id,
1200
1379
  "force": force,
1201
- "grace-period": grace_period,
1202
1380
  }
1381
+ if grace_period is not None:
1382
+ params["grace-period"] = grace_period
1203
1383
  error = "Failed deleting runtime resources"
1204
1384
  project_path = project if project else "*"
1205
1385
  response = self.api_call(
@@ -1237,7 +1417,9 @@ class HTTPRunDB(RunDBInterface):
1237
1417
  name="run_func_on_tuesdays",
1238
1418
  kind="job",
1239
1419
  scheduled_object=get_data_func,
1240
- cron_trigger=schemas.ScheduleCronTrigger(day_of_week='tue', hour=15, minute=30),
1420
+ cron_trigger=schemas.ScheduleCronTrigger(
1421
+ day_of_week="tue", hour=15, minute=30
1422
+ ),
1241
1423
  )
1242
1424
  db.create_schedule(project_name, schedule)
1243
1425
  """
@@ -1340,21 +1522,7 @@ class HTTPRunDB(RunDBInterface):
1340
1522
  :param builder_env: Kaniko builder pod env vars dict (for config/credentials)
1341
1523
  :param force_build: Force building the image, even when no changes were made
1342
1524
  """
1343
- is_s3_source = func.spec.build.source and func.spec.build.source.startswith(
1344
- "s3://"
1345
- )
1346
- is_ecr_image = mlrun.utils.is_ecr_url(config.httpdb.builder.docker_registry)
1347
- if not func.spec.build.load_source_on_run and is_s3_source and is_ecr_image:
1348
- logger.warning(
1349
- "Building a function image to ECR and loading an S3 source to the image may require conflicting access "
1350
- "keys. Only the permissions granted to the platform's configured secret will take affect "
1351
- "(see mlrun.config.config.httpdb.builder.docker_registry_secret). "
1352
- "In case the permissions are limited to ECR scope, you may use pull_at_runtime=True instead",
1353
- source=func.spec.build.source,
1354
- load_source_on_run=func.spec.build.load_source_on_run,
1355
- default_docker_registry=config.httpdb.builder.docker_registry,
1356
- )
1357
-
1525
+ self.warn_on_s3_and_ecr_permissions_conflict(func)
1358
1526
  try:
1359
1527
  req = {
1360
1528
  "function": func.to_dict(),
@@ -1373,10 +1541,94 @@ class HTTPRunDB(RunDBInterface):
1373
1541
 
1374
1542
  if not resp.ok:
1375
1543
  logger.error(f"bad resp!!\n{resp.text}")
1376
- raise ValueError("bad function run response")
1544
+ raise ValueError("bad submit build response")
1377
1545
 
1378
1546
  return resp.json()
1379
1547
 
1548
+ def deploy_nuclio_function(
1549
+ self,
1550
+ func: mlrun.runtimes.RemoteRuntime,
1551
+ builder_env: Optional[dict] = None,
1552
+ ):
1553
+ """
1554
+ Deploy a Nuclio function.
1555
+
1556
+ :param func: Function to build.
1557
+ :param builder_env: Kaniko builder pod env vars dict (for config/credentials)
1558
+ """
1559
+ func.metadata.project = func.metadata.project or config.default_project
1560
+ self.warn_on_s3_and_ecr_permissions_conflict(func)
1561
+ try:
1562
+ req = {
1563
+ "function": func.to_dict(),
1564
+ }
1565
+ if builder_env:
1566
+ req["builder_env"] = builder_env
1567
+ _path = (
1568
+ f"projects/{func.metadata.project}/nuclio/{func.metadata.name}/deploy"
1569
+ )
1570
+ resp = self.api_call("POST", _path, json=req)
1571
+ except OSError as err:
1572
+ logger.error(f"error submitting nuclio deploy task: {err_to_str(err)}")
1573
+ raise OSError(f"error: cannot submit deploy, {err_to_str(err)}")
1574
+
1575
+ if not resp.ok:
1576
+ logger.error(f"deploy nuclio - bad response:\n{resp.text}")
1577
+ raise ValueError("bad nuclio deploy response")
1578
+
1579
+ return resp.json()
1580
+
1581
+ def get_nuclio_deploy_status(
1582
+ self,
1583
+ func: mlrun.runtimes.RemoteRuntime,
1584
+ last_log_timestamp: float = 0.0,
1585
+ verbose: bool = False,
1586
+ ):
1587
+ """Retrieve the status of a deploy operation currently in progress.
1588
+
1589
+ :param func: Function object that is being built.
1590
+ :param last_log_timestamp: Last timestamp of logs that were already retrieved. Function will return only logs
1591
+ later than this parameter.
1592
+ :param verbose: Add verbose logs into the output.
1593
+
1594
+ :returns: The following parameters:
1595
+
1596
+ - Text of builder logs.
1597
+ - Timestamp of last log retrieved, to be used in subsequent calls to this function.
1598
+ """
1599
+
1600
+ try:
1601
+ normalized_name = normalize_name(func.metadata.name)
1602
+ params = {
1603
+ "name": normalized_name,
1604
+ "project": func.metadata.project,
1605
+ "tag": func.metadata.tag,
1606
+ "last_log_timestamp": str(last_log_timestamp),
1607
+ "verbose": bool2str(verbose),
1608
+ }
1609
+ _path = f"projects/{func.metadata.project}/nuclio/{normalized_name}/deploy"
1610
+ resp = self.api_call("GET", _path, params=params)
1611
+ except OSError as err:
1612
+ logger.error(f"error getting deploy status: {err_to_str(err)}")
1613
+ raise OSError(f"error: cannot get deploy status, {err_to_str(err)}")
1614
+
1615
+ if not resp.ok:
1616
+ logger.warning(f"failed resp, {resp.text}")
1617
+ raise RunDBError("bad function build response")
1618
+
1619
+ if resp.headers:
1620
+ last_log_timestamp = float(
1621
+ resp.headers.get("x-mlrun-last-timestamp", "0.0")
1622
+ )
1623
+ mlrun.runtimes.nuclio.function.enrich_nuclio_function_from_headers(
1624
+ func, resp.headers
1625
+ )
1626
+
1627
+ text = ""
1628
+ if resp.content:
1629
+ text = resp.content.decode()
1630
+ return text, last_log_timestamp
1631
+
1380
1632
  def get_builder_status(
1381
1633
  self,
1382
1634
  func: BaseRuntime,
@@ -1426,21 +1678,18 @@ class HTTPRunDB(RunDBInterface):
1426
1678
  last_log_timestamp = float(
1427
1679
  resp.headers.get("x-mlrun-last-timestamp", "0.0")
1428
1680
  )
1429
- if func.kind in mlrun.runtimes.RuntimeKinds.nuclio_runtimes():
1430
- func.status.address = resp.headers.get("x-mlrun-address", "")
1431
- func.status.nuclio_name = resp.headers.get("x-mlrun-name", "")
1432
- func.status.internal_invocation_urls = resp.headers.get(
1433
- "x-mlrun-internal-invocation-urls", ""
1434
- ).split(",")
1435
- func.status.external_invocation_urls = resp.headers.get(
1436
- "x-mlrun-external-invocation-urls", ""
1437
- ).split(",")
1438
- func.status.container_image = resp.headers.get(
1439
- "x-mlrun-container-image", ""
1681
+ if func.kind in mlrun.runtimes.RuntimeKinds.pure_nuclio_deployed_runtimes():
1682
+ mlrun.runtimes.nuclio.function.enrich_nuclio_function_from_headers(
1683
+ func, resp.headers
1440
1684
  )
1441
- else:
1442
- func.status.build_pod = resp.headers.get("builder_pod", "")
1443
- func.spec.image = resp.headers.get("function_image", "")
1685
+
1686
+ builder_pod = resp.headers.get("builder_pod", "")
1687
+ if builder_pod:
1688
+ func.status.build_pod = builder_pod
1689
+
1690
+ function_image = resp.headers.get("function_image", "")
1691
+ if function_image:
1692
+ func.spec.image = function_image
1444
1693
 
1445
1694
  text = ""
1446
1695
  if resp.content:
@@ -1503,7 +1752,7 @@ class HTTPRunDB(RunDBInterface):
1503
1752
  Retrieve updated information on project background tasks being executed.
1504
1753
  If no filter is provided, will return background tasks from the last week.
1505
1754
 
1506
- :param project: Project name (defaults to mlrun.config.config.default_project).
1755
+ :param project: Project name (defaults to mlrun.mlconf.default_project).
1507
1756
  :param state: List only background tasks whose state is specified.
1508
1757
  :param created_from: Filter by background task created time in ``[created_from, created_to]``.
1509
1758
  :param created_to: Filter by background task created time in ``[created_from, created_to]``.
@@ -1616,32 +1865,31 @@ class HTTPRunDB(RunDBInterface):
1616
1865
  artifact_path=None,
1617
1866
  ops=None,
1618
1867
  cleanup_ttl=None,
1868
+ timeout=60,
1619
1869
  ):
1620
1870
  """Submit a KFP pipeline for execution.
1621
1871
 
1622
- :param project: The project of the pipeline
1623
- :param pipeline: Pipeline function or path to .yaml/.zip pipeline file.
1624
- :param arguments: A dictionary of arguments to pass to the pipeline.
1625
- :param experiment: A name to assign for the specific experiment.
1626
- :param run: A name for this specific run.
1627
- :param namespace: Kubernetes namespace to execute the pipeline in.
1628
- :param artifact_path: A path to artifacts used by this pipeline.
1629
- :param ops: Transformers to apply on all ops in the pipeline.
1630
- :param cleanup_ttl: pipeline cleanup ttl in secs (time to wait after workflow completion, at which point the
1631
- workflow and all its resources are deleted)
1872
+ :param project: The project of the pipeline
1873
+ :param pipeline: Pipeline function or path to .yaml/.zip pipeline file.
1874
+ :param arguments: A dictionary of arguments to pass to the pipeline.
1875
+ :param experiment: A name to assign for the specific experiment.
1876
+ :param run: A name for this specific run.
1877
+ :param namespace: Kubernetes namespace to execute the pipeline in.
1878
+ :param artifact_path: A path to artifacts used by this pipeline.
1879
+ :param ops: Transformers to apply on all ops in the pipeline.
1880
+ :param cleanup_ttl: Pipeline cleanup ttl in secs (time to wait after workflow completion, at which point the
1881
+ workflow and all its resources are deleted)
1882
+ :param timeout: Timeout for the API call.
1632
1883
  """
1633
1884
 
1634
1885
  if isinstance(pipeline, str):
1635
1886
  pipe_file = pipeline
1636
1887
  else:
1637
- pipe_file = tempfile.NamedTemporaryFile(suffix=".yaml", delete=False).name
1638
- conf = new_pipe_metadata(
1888
+ pipe_file = compile_pipeline(
1639
1889
  artifact_path=artifact_path,
1640
1890
  cleanup_ttl=cleanup_ttl,
1641
- op_transformers=ops,
1642
- )
1643
- kfp.compiler.Compiler().compile(
1644
- pipeline, pipe_file, type_check=False, pipeline_conf=conf
1891
+ ops=ops,
1892
+ pipeline=pipeline,
1645
1893
  )
1646
1894
 
1647
1895
  if pipe_file.endswith(".yaml"):
@@ -1670,7 +1918,7 @@ class HTTPRunDB(RunDBInterface):
1670
1918
  "POST",
1671
1919
  f"projects/{project}/pipelines",
1672
1920
  params=params,
1673
- timeout=20,
1921
+ timeout=timeout,
1674
1922
  body=data,
1675
1923
  headers=headers,
1676
1924
  )
@@ -1696,8 +1944,8 @@ class HTTPRunDB(RunDBInterface):
1696
1944
  page_token: str = "",
1697
1945
  filter_: str = "",
1698
1946
  format_: Union[
1699
- str, mlrun.common.schemas.PipelinesFormat
1700
- ] = mlrun.common.schemas.PipelinesFormat.metadata_only,
1947
+ str, mlrun.common.formatters.PipelineFormat
1948
+ ] = mlrun.common.formatters.PipelineFormat.metadata_only,
1701
1949
  page_size: int = None,
1702
1950
  ) -> mlrun.common.schemas.PipelinesOutput:
1703
1951
  """Retrieve a list of KFP pipelines. This function can be invoked to get all pipelines from all projects,
@@ -1743,8 +1991,8 @@ class HTTPRunDB(RunDBInterface):
1743
1991
  namespace: str = None,
1744
1992
  timeout: int = 30,
1745
1993
  format_: Union[
1746
- str, mlrun.common.schemas.PipelinesFormat
1747
- ] = mlrun.common.schemas.PipelinesFormat.summary,
1994
+ str, mlrun.common.formatters.PipelineFormat
1995
+ ] = mlrun.common.formatters.PipelineFormat.summary,
1748
1996
  project: str = None,
1749
1997
  ):
1750
1998
  """Retrieve details of a specific pipeline using its run ID (as provided when the pipeline was executed)."""
@@ -1868,6 +2116,41 @@ class HTTPRunDB(RunDBInterface):
1868
2116
  resp = self.api_call("GET", path, error_message, params=params)
1869
2117
  return resp.json()["features"]
1870
2118
 
2119
+ def list_features_v2(
2120
+ self,
2121
+ project: str,
2122
+ name: str = None,
2123
+ tag: str = None,
2124
+ entities: list[str] = None,
2125
+ labels: list[str] = None,
2126
+ ) -> dict[str, list[dict]]:
2127
+ """List feature-sets which contain specific features. This function may return multiple versions of the same
2128
+ feature-set if a specific tag is not requested. Note that the various filters of this function actually
2129
+ refer to the feature-set object containing the features, not to the features themselves.
2130
+
2131
+ :param project: Project which contains these features.
2132
+ :param name: Name of the feature to look for. The name is used in a like query, and is not case-sensitive. For
2133
+ example, looking for ``feat`` will return features which are named ``MyFeature`` as well as ``defeat``.
2134
+ :param tag: Return feature-sets which contain the features looked for, and are tagged with the specific tag.
2135
+ :param entities: Return only feature-sets which contain an entity whose name is contained in this list.
2136
+ :param labels: Return only feature-sets which are labeled as requested.
2137
+ :returns: A list of features, and a list of their corresponding feature sets.
2138
+ """
2139
+
2140
+ project = project or config.default_project
2141
+ params = {
2142
+ "name": name,
2143
+ "tag": tag,
2144
+ "entity": entities or [],
2145
+ "label": labels or [],
2146
+ }
2147
+
2148
+ path = f"projects/{project}/features"
2149
+
2150
+ error_message = f"Failed listing features, project: {project}, query: {params}"
2151
+ resp = self.api_call("GET", path, error_message, params=params, version="v2")
2152
+ return resp.json()
2153
+
1871
2154
  def list_entities(
1872
2155
  self,
1873
2156
  project: str,
@@ -1893,6 +2176,31 @@ class HTTPRunDB(RunDBInterface):
1893
2176
  resp = self.api_call("GET", path, error_message, params=params)
1894
2177
  return resp.json()["entities"]
1895
2178
 
2179
+ def list_entities_v2(
2180
+ self,
2181
+ project: str,
2182
+ name: str = None,
2183
+ tag: str = None,
2184
+ labels: list[str] = None,
2185
+ ) -> dict[str, list[dict]]:
2186
+ """Retrieve a list of entities and their mapping to the containing feature-sets. This function is similar
2187
+ to the :py:func:`~list_features_v2` function, and uses the same logic. However, the entities are matched
2188
+ against the name rather than the features.
2189
+ """
2190
+
2191
+ project = project or config.default_project
2192
+ params = {
2193
+ "name": name,
2194
+ "tag": tag,
2195
+ "label": labels or [],
2196
+ }
2197
+
2198
+ path = f"projects/{project}/entities"
2199
+
2200
+ error_message = f"Failed listing entities, project: {project}, query: {params}"
2201
+ resp = self.api_call("GET", path, error_message, params=params, version="v2")
2202
+ return resp.json()
2203
+
1896
2204
  @staticmethod
1897
2205
  def _generate_partition_by_params(
1898
2206
  partition_by_cls,
@@ -1929,6 +2237,9 @@ class HTTPRunDB(RunDBInterface):
1929
2237
  partition_order: Union[
1930
2238
  mlrun.common.schemas.OrderType, str
1931
2239
  ] = mlrun.common.schemas.OrderType.desc,
2240
+ format_: Union[
2241
+ str, mlrun.common.formatters.FeatureSetFormat
2242
+ ] = mlrun.common.formatters.FeatureSetFormat.full,
1932
2243
  ) -> list[FeatureSet]:
1933
2244
  """Retrieve a list of feature-sets matching the criteria provided.
1934
2245
 
@@ -1946,6 +2257,9 @@ class HTTPRunDB(RunDBInterface):
1946
2257
  :param partition_sort_by: What field to sort the results by, within each partition defined by `partition_by`.
1947
2258
  Currently the only allowed value are `created` and `updated`.
1948
2259
  :param partition_order: Order of sorting within partitions - `asc` or `desc`. Default is `desc`.
2260
+ :param format_: Format of the results. Possible values are:
2261
+ - ``minimal`` - Return minimal feature set objects, not including stats and preview for each feature set.
2262
+ - ``full`` - Return full feature set objects.
1949
2263
  :returns: List of matching :py:class:`~mlrun.feature_store.FeatureSet` objects.
1950
2264
  """
1951
2265
 
@@ -1958,6 +2272,7 @@ class HTTPRunDB(RunDBInterface):
1958
2272
  "entity": entities or [],
1959
2273
  "feature": features or [],
1960
2274
  "label": labels or [],
2275
+ "format": format_,
1961
2276
  }
1962
2277
  if partition_by:
1963
2278
  params.update(
@@ -2044,7 +2359,7 @@ class HTTPRunDB(RunDBInterface):
2044
2359
  not a full object.
2045
2360
  Example::
2046
2361
 
2047
- feature_set_update = {"status": {"processed" : True}}
2362
+ feature_set_update = {"status": {"processed": True}}
2048
2363
 
2049
2364
  Will apply the field ``status.processed`` to the existing object.
2050
2365
  :param project: Project which contains the modified object.
@@ -2386,8 +2701,8 @@ class HTTPRunDB(RunDBInterface):
2386
2701
  self,
2387
2702
  owner: str = None,
2388
2703
  format_: Union[
2389
- str, mlrun.common.schemas.ProjectsFormat
2390
- ] = mlrun.common.schemas.ProjectsFormat.name_only,
2704
+ str, mlrun.common.formatters.ProjectFormat
2705
+ ] = mlrun.common.formatters.ProjectFormat.name_only,
2391
2706
  labels: list[str] = None,
2392
2707
  state: Union[str, mlrun.common.schemas.ProjectState] = None,
2393
2708
  ) -> list[Union[mlrun.projects.MlrunProject, str]]:
@@ -2413,7 +2728,7 @@ class HTTPRunDB(RunDBInterface):
2413
2728
 
2414
2729
  error_message = f"Failed listing projects, query: {params}"
2415
2730
  response = self.api_call("GET", "projects", error_message, params=params)
2416
- if format_ == mlrun.common.schemas.ProjectsFormat.name_only:
2731
+ if format_ == mlrun.common.formatters.ProjectFormat.name_only:
2417
2732
  # projects is just a list of strings
2418
2733
  return response.json()["projects"]
2419
2734
 
@@ -2441,7 +2756,7 @@ class HTTPRunDB(RunDBInterface):
2441
2756
  deletion_strategy: Union[
2442
2757
  str, mlrun.common.schemas.DeletionStrategy
2443
2758
  ] = mlrun.common.schemas.DeletionStrategy.default(),
2444
- ):
2759
+ ) -> None:
2445
2760
  """Delete a project.
2446
2761
 
2447
2762
  :param name: Name of the project to delete.
@@ -2460,7 +2775,7 @@ class HTTPRunDB(RunDBInterface):
2460
2775
  "DELETE", f"projects/{name}", error_message, headers=headers, version="v2"
2461
2776
  )
2462
2777
  if response.status_code == http.HTTPStatus.ACCEPTED:
2463
- logger.info("Project is being deleted", project_name=name)
2778
+ logger.info("Waiting for project to be deleted", project_name=name)
2464
2779
  background_task = mlrun.common.schemas.BackgroundTask(**response.json())
2465
2780
  background_task = self._wait_for_background_task_to_reach_terminal_state(
2466
2781
  background_task.metadata.name
@@ -2470,10 +2785,17 @@ class HTTPRunDB(RunDBInterface):
2470
2785
  == mlrun.common.schemas.BackgroundTaskState.succeeded
2471
2786
  ):
2472
2787
  logger.info("Project deleted", project_name=name)
2473
- return
2788
+ elif (
2789
+ background_task.status.state
2790
+ == mlrun.common.schemas.BackgroundTaskState.failed
2791
+ ):
2792
+ logger.error(
2793
+ "Project deletion failed",
2794
+ project_name=name,
2795
+ error=background_task.status.error,
2796
+ )
2474
2797
  elif response.status_code == http.HTTPStatus.NO_CONTENT:
2475
2798
  logger.info("Project deleted", project_name=name)
2476
- return
2477
2799
 
2478
2800
  def store_project(
2479
2801
  self,
@@ -2618,11 +2940,11 @@ class HTTPRunDB(RunDBInterface):
2618
2940
  :param secrets: A set of secret values to store.
2619
2941
  Example::
2620
2942
 
2621
- secrets = {'password': 'myPassw0rd', 'aws_key': '111222333'}
2943
+ secrets = {"password": "myPassw0rd", "aws_key": "111222333"}
2622
2944
  db.create_project_secrets(
2623
2945
  "project1",
2624
2946
  provider=mlrun.common.schemas.SecretProviderName.kubernetes,
2625
- secrets=secrets
2947
+ secrets=secrets,
2626
2948
  )
2627
2949
  """
2628
2950
  path = f"projects/{project}/secrets"
@@ -2918,14 +3240,12 @@ class HTTPRunDB(RunDBInterface):
2918
3240
  :param labels: A list of labels to filter by. Label filters work by either filtering a specific value of a
2919
3241
  label (i.e. list("key=value")) or by looking for the existence of a given key (i.e. "key")
2920
3242
  :param metrics: A list of metrics to return for each endpoint, read more in 'TimeMetric'
2921
- :param start: The start time of the metrics. Can be represented by a string containing an RFC 3339
2922
- time, a Unix timestamp in milliseconds, a relative time (`'now'` or
2923
- `'now-[0-9]+[mhd]'`, where `m` = minutes, `h` = hours, and `'d'` =
2924
- days), or 0 for the earliest time.
2925
- :param end: The end time of the metrics. Can be represented by a string containing an RFC 3339
2926
- time, a Unix timestamp in milliseconds, a relative time (`'now'` or
2927
- `'now-[0-9]+[mhd]'`, where `m` = minutes, `h` = hours, and `'d'` =
2928
- days), or 0 for the earliest time.
3243
+ :param start: The start time of the metrics. Can be represented by a string containing an RFC 3339 time, a
3244
+ Unix timestamp in milliseconds, a relative time (`'now'` or `'now-[0-9]+[mhd]'`, where
3245
+ `m` = minutes, `h` = hours, `'d'` = days, and `'s'` = seconds), or 0 for the earliest time.
3246
+ :param end: The end time of the metrics. Can be represented by a string containing an RFC 3339 time, a
3247
+ Unix timestamp in milliseconds, a relative time (`'now'` or `'now-[0-9]+[mhd]'`, where
3248
+ `m` = minutes, `h` = hours, `'d'` = days, and `'s'` = seconds), or 0 for the earliest time.
2929
3249
  :param top_level: if true will return only routers and endpoint that are NOT children of any router
2930
3250
  :param uids: if passed will return a list `ModelEndpoint` object with uid in uids
2931
3251
  """
@@ -2974,13 +3294,13 @@ class HTTPRunDB(RunDBInterface):
2974
3294
  :param project: The name of the project
2975
3295
  :param endpoint_id: The unique id of the model endpoint.
2976
3296
  :param start: The start time of the metrics. Can be represented by a string containing an
2977
- RFC 3339 time, a Unix timestamp in milliseconds, a relative time (`'now'` or
2978
- `'now-[0-9]+[mhd]'`, where `m` = minutes, `h` = hours, and `'d'` = days), or
2979
- 0 for the earliest time.
3297
+ RFC 3339 time, a Unix timestamp in milliseconds, a relative time
3298
+ (`'now'` or `'now-[0-9]+[mhd]'`, where `m` = minutes, `h` = hours,
3299
+ `'d'` = days, and `'s'` = seconds), or 0 for the earliest time.
2980
3300
  :param end: The end time of the metrics. Can be represented by a string containing an
2981
- RFC 3339 time, a Unix timestamp in milliseconds, a relative time (`'now'` or
2982
- `'now-[0-9]+[mhd]'`, where `m` = minutes, `h` = hours, and `'d'` = days), or
2983
- 0 for the earliest time.
3301
+ RFC 3339 time, a Unix timestamp in milliseconds, a relative time
3302
+ (`'now'` or `'now-[0-9]+[mhd]'`, where `m` = minutes, `h` = hours,
3303
+ `'d'` = days, and `'s'` = seconds), or 0 for the earliest time.
2984
3304
  :param metrics: A list of metrics to return for the model endpoint. There are pre-defined
2985
3305
  metrics for model endpoints such as predictions_per_second and
2986
3306
  latency_avg_5m but also custom metrics defined by the user. Please note that
@@ -2989,7 +3309,7 @@ class HTTPRunDB(RunDBInterface):
2989
3309
  :param feature_analysis: When True, the base feature statistics and current feature statistics will
2990
3310
  be added to the output of the resulting object.
2991
3311
 
2992
- :return: A `ModelEndpoint` object.
3312
+ :returns: A `ModelEndpoint` object.
2993
3313
  """
2994
3314
 
2995
3315
  path = f"projects/{project}/model-endpoints/{endpoint_id}"
@@ -3050,41 +3370,12 @@ class HTTPRunDB(RunDBInterface):
3050
3370
  params=attributes,
3051
3371
  )
3052
3372
 
3053
- def deploy_monitoring_batch_job(
3054
- self,
3055
- project: str = "",
3056
- default_batch_image: str = "mlrun/mlrun",
3057
- with_schedule: bool = False,
3058
- ):
3059
- """
3060
- Submit model monitoring batch job. By default, submit only the batch job as ML function without scheduling.
3061
- To submit a scheduled job as well, please set with_schedule = True.
3062
-
3063
- :param project: Project name.
3064
- :param default_batch_image: The default image of the model monitoring batch job. By default, the image
3065
- is mlrun/mlrun.
3066
- :param with_schedule: If true, submit the model monitoring scheduled job as well.
3067
-
3068
-
3069
- :returns: model monitoring batch job as a dictionary. You can easily convert the returned function into a
3070
- runtime object by calling ~mlrun.new_function.
3071
- """
3072
-
3073
- params = {
3074
- "default_batch_image": default_batch_image,
3075
- "with_schedule": with_schedule,
3076
- }
3077
- path = f"projects/{project}/jobs/batch-monitoring"
3078
-
3079
- resp = self.api_call(method="POST", path=path, params=params)
3080
- return resp.json()["func"]
3081
-
3082
3373
  def update_model_monitoring_controller(
3083
3374
  self,
3084
3375
  project: str,
3085
3376
  base_period: int = 10,
3086
3377
  image: str = "mlrun/mlrun",
3087
- ):
3378
+ ) -> None:
3088
3379
  """
3089
3380
  Redeploy model monitoring application controller function.
3090
3381
 
@@ -3094,20 +3385,24 @@ class HTTPRunDB(RunDBInterface):
3094
3385
  :param image: The image of the model monitoring controller function.
3095
3386
  By default, the image is mlrun/mlrun.
3096
3387
  """
3097
-
3098
- params = {
3099
- "image": image,
3100
- "base_period": base_period,
3101
- }
3102
- path = f"projects/{project}/model-monitoring/model-monitoring-controller"
3103
- self.api_call(method="POST", path=path, params=params)
3388
+ self.api_call(
3389
+ method=mlrun.common.types.HTTPMethod.PATCH,
3390
+ path=f"projects/{project}/model-monitoring/model-monitoring-controller",
3391
+ params={
3392
+ "base_period": base_period,
3393
+ "image": image,
3394
+ },
3395
+ )
3104
3396
 
3105
3397
  def enable_model_monitoring(
3106
3398
  self,
3107
3399
  project: str,
3108
3400
  base_period: int = 10,
3109
3401
  image: str = "mlrun/mlrun",
3110
- ):
3402
+ deploy_histogram_data_drift_app: bool = True,
3403
+ rebuild_images: bool = False,
3404
+ fetch_credentials_from_sys_config: bool = False,
3405
+ ) -> None:
3111
3406
  """
3112
3407
  Deploy model monitoring application controller, writer and stream functions.
3113
3408
  While the main goal of the controller function is to handle the monitoring processing and triggering
@@ -3116,21 +3411,169 @@ class HTTPRunDB(RunDBInterface):
3116
3411
  The stream function goal is to monitor the log of the data stream. It is triggered when a new log entry
3117
3412
  is detected. It processes the new events into statistics that are then written to statistics databases.
3118
3413
 
3414
+ :param project: Project name.
3415
+ :param base_period: The time period in minutes in which the model monitoring controller
3416
+ function triggers. By default, the base period is 10 minutes.
3417
+ :param image: The image of the model monitoring controller, writer & monitoring
3418
+ stream functions, which are real time nuclio functions.
3419
+ By default, the image is mlrun/mlrun.
3420
+ :param deploy_histogram_data_drift_app: If true, deploy the default histogram-based data drift application.
3421
+ :param rebuild_images: If true, force rebuild of model monitoring infrastructure images.
3422
+ :param fetch_credentials_from_sys_config: If true, fetch the credentials from the system configuration.
3119
3423
 
3120
- :param project: Project name.
3121
- :param base_period: The time period in minutes in which the model monitoring controller function
3122
- triggers. By default, the base period is 10 minutes.
3123
- :param image: The image of the model monitoring controller, writer & monitoring
3124
- stream functions, which are real time nuclio functions.
3125
- By default, the image is mlrun/mlrun.
3126
3424
  """
3425
+ self.api_call(
3426
+ method=mlrun.common.types.HTTPMethod.POST,
3427
+ path=f"projects/{project}/model-monitoring/enable-model-monitoring",
3428
+ params={
3429
+ "base_period": base_period,
3430
+ "image": image,
3431
+ "deploy_histogram_data_drift_app": deploy_histogram_data_drift_app,
3432
+ "rebuild_images": rebuild_images,
3433
+ "fetch_credentials_from_sys_config": fetch_credentials_from_sys_config,
3434
+ },
3435
+ )
3127
3436
 
3128
- params = {
3129
- "base_period": base_period,
3130
- "image": image,
3131
- }
3132
- path = f"projects/{project}/model-monitoring/enable-model-monitoring"
3133
- self.api_call(method="POST", path=path, params=params)
3437
+ def disable_model_monitoring(
3438
+ self,
3439
+ project: str,
3440
+ delete_resources: bool = True,
3441
+ delete_stream_function: bool = False,
3442
+ delete_histogram_data_drift_app: bool = True,
3443
+ delete_user_applications: bool = False,
3444
+ user_application_list: list[str] = None,
3445
+ ) -> bool:
3446
+ """
3447
+ Disable model monitoring application controller, writer, stream, histogram data drift application
3448
+ and the user's applications functions, according to the given params.
3449
+
3450
+ :param project: Project name.
3451
+ :param delete_resources: If True, it would delete the model monitoring controller & writer
3452
+ functions. Default True
3453
+ :param delete_stream_function: If True, it would delete model monitoring stream function,
3454
+ need to use wisely because if you're deleting this function
3455
+ this can cause data loss in case you will want to
3456
+ enable the model monitoring capability to the project.
3457
+ Default False.
3458
+ :param delete_histogram_data_drift_app: If True, it would delete the default histogram-based data drift
3459
+ application. Default False.
3460
+ :param delete_user_applications: If True, it would delete the user's model monitoring
3461
+ application according to user_application_list, Default False.
3462
+ :param user_application_list: List of the user's model monitoring application to disable.
3463
+ Default all the applications.
3464
+ Note: you have to set delete_user_applications to True
3465
+ in order to delete the desired application.
3466
+
3467
+ :returns: True if the deletion was successful, False otherwise.
3468
+ """
3469
+ response = self.api_call(
3470
+ method=mlrun.common.types.HTTPMethod.DELETE,
3471
+ path=f"projects/{project}/model-monitoring/disable-model-monitoring",
3472
+ params={
3473
+ "delete_resources": delete_resources,
3474
+ "delete_stream_function": delete_stream_function,
3475
+ "delete_histogram_data_drift_app": delete_histogram_data_drift_app,
3476
+ "delete_user_applications": delete_user_applications,
3477
+ "user_application_list": user_application_list,
3478
+ },
3479
+ )
3480
+ deletion_failed = False
3481
+ if response.status_code == http.HTTPStatus.ACCEPTED:
3482
+ if delete_resources:
3483
+ logger.info(
3484
+ "Model Monitoring is being disabled",
3485
+ project_name=project,
3486
+ )
3487
+ if delete_user_applications:
3488
+ logger.info("User applications are being deleted", project_name=project)
3489
+ background_tasks = mlrun.common.schemas.BackgroundTaskList(
3490
+ **response.json()
3491
+ ).background_tasks
3492
+ for task in background_tasks:
3493
+ task = self._wait_for_background_task_to_reach_terminal_state(
3494
+ task.metadata.name, project=project
3495
+ )
3496
+ if (
3497
+ task.status.state
3498
+ == mlrun.common.schemas.BackgroundTaskState.succeeded
3499
+ ):
3500
+ continue
3501
+ elif (
3502
+ task.status.state == mlrun.common.schemas.BackgroundTaskState.failed
3503
+ ):
3504
+ deletion_failed = True
3505
+ return not deletion_failed
3506
+
3507
+ def delete_model_monitoring_function(
3508
+ self, project: str, functions: list[str]
3509
+ ) -> bool:
3510
+ """
3511
+ Delete a model monitoring application.
3512
+
3513
+ :param functions: List of the model monitoring function to delete.
3514
+ :param project: Project name.
3515
+
3516
+ :returns: True if the deletion was successful, False otherwise.
3517
+ """
3518
+ response = self.api_call(
3519
+ method=mlrun.common.types.HTTPMethod.DELETE,
3520
+ path=f"projects/{project}/model-monitoring/functions",
3521
+ params={"functions": functions},
3522
+ )
3523
+ deletion_failed = False
3524
+ if response.status_code == http.HTTPStatus.ACCEPTED:
3525
+ logger.info("User applications are being deleted", project_name=project)
3526
+ background_tasks = mlrun.common.schemas.BackgroundTaskList(
3527
+ **response.json()
3528
+ ).background_tasks
3529
+ for task in background_tasks:
3530
+ task = self._wait_for_background_task_to_reach_terminal_state(
3531
+ task.metadata.name, project=project
3532
+ )
3533
+ if (
3534
+ task.status.state
3535
+ == mlrun.common.schemas.BackgroundTaskState.succeeded
3536
+ ):
3537
+ continue
3538
+ elif (
3539
+ task.status.state == mlrun.common.schemas.BackgroundTaskState.failed
3540
+ ):
3541
+ deletion_failed = True
3542
+ return not deletion_failed
3543
+
3544
+ def deploy_histogram_data_drift_app(
3545
+ self, project: str, image: str = "mlrun/mlrun"
3546
+ ) -> None:
3547
+ """
3548
+ Deploy the histogram data drift application.
3549
+
3550
+ :param project: Project name.
3551
+ :param image: The image on which the application will run.
3552
+ """
3553
+ self.api_call(
3554
+ method=mlrun.common.types.HTTPMethod.POST,
3555
+ path=f"projects/{project}/model-monitoring/deploy-histogram-data-drift-app",
3556
+ params={"image": image},
3557
+ )
3558
+
3559
+ def set_model_monitoring_credentials(
3560
+ self,
3561
+ project: str,
3562
+ credentials: dict[str, str],
3563
+ replace_creds: bool,
3564
+ ) -> None:
3565
+ """
3566
+ Set the credentials for the model monitoring application.
3567
+
3568
+ :param project: Project name.
3569
+ :param credentials: Credentials to set.
3570
+ :param replace_creds: If True, will override the existing credentials.
3571
+ """
3572
+ self.api_call(
3573
+ method=mlrun.common.types.HTTPMethod.POST,
3574
+ path=f"projects/{project}/model-monitoring/set-model-monitoring-credentials",
3575
+ params={**credentials, "replace_creds": replace_creds},
3576
+ )
3134
3577
 
3135
3578
  def create_hub_source(
3136
3579
  self, source: Union[dict, mlrun.common.schemas.IndexedHubSource]
@@ -3161,8 +3604,10 @@ class HTTPRunDB(RunDBInterface):
3161
3604
  metadata=mlrun.common.schemas.HubObjectMetadata(
3162
3605
  name="priv", description="a private source"
3163
3606
  ),
3164
- spec=mlrun.common.schemas.HubSourceSpec(path="/local/path/to/source", channel="development")
3165
- )
3607
+ spec=mlrun.common.schemas.HubSourceSpec(
3608
+ path="/local/path/to/source", channel="development"
3609
+ ),
3610
+ ),
3166
3611
  )
3167
3612
  db.create_hub_source(private_source)
3168
3613
 
@@ -3176,9 +3621,9 @@ class HTTPRunDB(RunDBInterface):
3176
3621
  spec=mlrun.common.schemas.HubSourceSpec(
3177
3622
  path="/local/path/to/source/2",
3178
3623
  channel="development",
3179
- credentials={...}
3180
- )
3181
- )
3624
+ credentials={...},
3625
+ ),
3626
+ ),
3182
3627
  )
3183
3628
  db.create_hub_source(another_source)
3184
3629
 
@@ -3342,7 +3787,7 @@ class HTTPRunDB(RunDBInterface):
3342
3787
  :param version: Get a specific version of the item. Default is ``None``.
3343
3788
  :param tag: Get a specific version of the item identified by tag. Default is ``latest``.
3344
3789
 
3345
- :return: http response with the asset in the content attribute
3790
+ :returns: http response with the asset in the content attribute
3346
3791
  """
3347
3792
  path = f"hub/sources/{source_name}/items/{item_name}/assets/{asset_name}"
3348
3793
  params = {
@@ -3373,9 +3818,10 @@ class HTTPRunDB(RunDBInterface):
3373
3818
  def list_api_gateways(self, project=None) -> mlrun.common.schemas.APIGatewaysOutput:
3374
3819
  """
3375
3820
  Returns a list of Nuclio api gateways
3821
+
3376
3822
  :param project: optional str parameter to filter by project, if not passed, default project value is taken
3377
3823
 
3378
- :return: :py:class:`~mlrun.common.schemas.APIGateways`.
3824
+ :returns: :py:class:`~mlrun.common.schemas.APIGateways`.
3379
3825
  """
3380
3826
  project = project or config.default_project
3381
3827
  error = "list api gateways"
@@ -3386,10 +3832,11 @@ class HTTPRunDB(RunDBInterface):
3386
3832
  def get_api_gateway(self, name, project=None) -> mlrun.common.schemas.APIGateway:
3387
3833
  """
3388
3834
  Returns an API gateway
3835
+
3389
3836
  :param name: API gateway name
3390
3837
  :param project: optional str parameter to filter by project, if not passed, default project value is taken
3391
3838
 
3392
- :return: :py:class:`~mlrun.common.schemas.APIGateway`.
3839
+ :returns: :py:class:`~mlrun.common.schemas.APIGateway`.
3393
3840
  """
3394
3841
  project = project or config.default_project
3395
3842
  error = "get api gateway"
@@ -3397,6 +3844,18 @@ class HTTPRunDB(RunDBInterface):
3397
3844
  response = self.api_call("GET", endpoint_path, error)
3398
3845
  return mlrun.common.schemas.APIGateway(**response.json())
3399
3846
 
3847
+ def delete_api_gateway(self, name, project=None):
3848
+ """
3849
+ Deletes an API gateway
3850
+
3851
+ :param name: API gateway name
3852
+ :param project: Project name
3853
+ """
3854
+ project = project or config.default_project
3855
+ error = "delete api gateway"
3856
+ endpoint_path = f"projects/{project}/api-gateways/{name}"
3857
+ self.api_call("DELETE", endpoint_path, error)
3858
+
3400
3859
  def store_api_gateway(
3401
3860
  self,
3402
3861
  api_gateway: Union[
@@ -3407,11 +3866,12 @@ class HTTPRunDB(RunDBInterface):
3407
3866
  ) -> mlrun.common.schemas.APIGateway:
3408
3867
  """
3409
3868
  Stores an API Gateway.
3410
- :param api_gateway :py:class:`~mlrun.runtimes.nuclio.APIGateway`
3869
+
3870
+ :param api_gateway: :py:class:`~mlrun.runtimes.nuclio.APIGateway`
3411
3871
  or :py:class:`~mlrun.common.schemas.APIGateway`: API Gateway entity.
3412
3872
  :param project: project name. Mandatory if api_gateway is mlrun.common.schemas.APIGateway.
3413
3873
 
3414
- :return: :py:class:`~mlrun.common.schemas.APIGateway`.
3874
+ :returns: :py:class:`~mlrun.common.schemas.APIGateway`.
3415
3875
  """
3416
3876
 
3417
3877
  if isinstance(api_gateway, mlrun.runtimes.nuclio.api_gateway.APIGateway):
@@ -3422,13 +3882,14 @@ class HTTPRunDB(RunDBInterface):
3422
3882
  "PUT",
3423
3883
  endpoint_path,
3424
3884
  error,
3425
- json=api_gateway.dict(exclude_unset=True, exclude_none=True),
3885
+ json=api_gateway.dict(exclude_none=True),
3426
3886
  )
3427
3887
  return mlrun.common.schemas.APIGateway(**response.json())
3428
3888
 
3429
3889
  def trigger_migrations(self) -> Optional[mlrun.common.schemas.BackgroundTask]:
3430
3890
  """Trigger migrations (will do nothing if no migrations are needed) and wait for them to finish if actually
3431
3891
  triggered
3892
+
3432
3893
  :returns: :py:class:`~mlrun.common.schemas.BackgroundTask`.
3433
3894
  """
3434
3895
  response = self.api_call(
@@ -3451,6 +3912,7 @@ class HTTPRunDB(RunDBInterface):
3451
3912
  ):
3452
3913
  """
3453
3914
  Set notifications on a run. This will override any existing notifications on the run.
3915
+
3454
3916
  :param project: Project containing the run.
3455
3917
  :param run_uid: UID of the run.
3456
3918
  :param notifications: List of notifications to set on the run. Default is an empty list.
@@ -3476,6 +3938,7 @@ class HTTPRunDB(RunDBInterface):
3476
3938
  ):
3477
3939
  """
3478
3940
  Set notifications on a schedule. This will override any existing notifications on the schedule.
3941
+
3479
3942
  :param project: Project containing the schedule.
3480
3943
  :param schedule_name: Name of the schedule.
3481
3944
  :param notifications: List of notifications to set on the schedule. Default is an empty list.
@@ -3507,6 +3970,16 @@ class HTTPRunDB(RunDBInterface):
3507
3970
  """
3508
3971
  pass
3509
3972
 
3973
+ def store_alert_notifications(
3974
+ self,
3975
+ session,
3976
+ notification_objects: list[mlrun.model.Notification],
3977
+ alert_id: str,
3978
+ project: str,
3979
+ mask_params: bool = True,
3980
+ ):
3981
+ pass
3982
+
3510
3983
  def submit_workflow(
3511
3984
  self,
3512
3985
  project: str,
@@ -3614,15 +4087,16 @@ class HTTPRunDB(RunDBInterface):
3614
4087
  ) -> str:
3615
4088
  """
3616
4089
  Loading a project remotely from the given source.
4090
+
3617
4091
  :param name: project name
3618
4092
  :param url: git or tar.gz or .zip sources archive path e.g.:
3619
- git://github.com/mlrun/demo-xgb-project.git
3620
- http://mysite/archived-project.zip
3621
- The git project should include the project yaml file.
4093
+ git://github.com/mlrun/demo-xgb-project.git
4094
+ http://mysite/archived-project.zip
4095
+ The git project should include the project yaml file.
3622
4096
  :param secrets: Secrets to store in project in order to load it from the provided url. For more
3623
- information see :py:func:`mlrun.load_project` function.
4097
+ information see :py:func:`mlrun.load_project` function.
3624
4098
  :param save_secrets: Whether to store secrets in the loaded project. Setting to False will cause waiting
3625
- for the process completion.
4099
+ for the process completion.
3626
4100
 
3627
4101
  :returns: The terminal state of load project process.
3628
4102
  """
@@ -3698,6 +4172,168 @@ class HTTPRunDB(RunDBInterface):
3698
4172
 
3699
4173
  self.api_call(method="PUT", path=_path, json=profile.dict())
3700
4174
 
4175
+ @staticmethod
4176
+ def warn_on_s3_and_ecr_permissions_conflict(func):
4177
+ is_s3_source = func.spec.build.source and func.spec.build.source.startswith(
4178
+ "s3://"
4179
+ )
4180
+ is_ecr_image = mlrun.utils.is_ecr_url(config.httpdb.builder.docker_registry)
4181
+ if not func.spec.build.load_source_on_run and is_s3_source and is_ecr_image:
4182
+ logger.warning(
4183
+ "Building a function image to ECR and loading an S3 source to the image may require conflicting access "
4184
+ "keys. Only the permissions granted to the platform's configured secret will take affect "
4185
+ "(see mlrun.mlconf.httpdb.builder.docker_registry_secret). "
4186
+ "In case the permissions are limited to ECR scope, you may use pull_at_runtime=True instead",
4187
+ source=func.spec.build.source,
4188
+ load_source_on_run=func.spec.build.load_source_on_run,
4189
+ default_docker_registry=config.httpdb.builder.docker_registry,
4190
+ )
4191
+
4192
+ def generate_event(
4193
+ self, name: str, event_data: Union[dict, mlrun.common.schemas.Event], project=""
4194
+ ):
4195
+ """
4196
+ Generate an event.
4197
+
4198
+ :param name: The name of the event.
4199
+ :param event_data: The data of the event.
4200
+ :param project: The project that the event belongs to.
4201
+ """
4202
+ if mlrun.mlconf.alerts.mode == mlrun.common.schemas.alert.AlertsModes.disabled:
4203
+ logger.warning("Alerts are disabled, event will not be generated")
4204
+
4205
+ project = project or config.default_project
4206
+ endpoint_path = f"projects/{project}/events/{name}"
4207
+ error_message = f"post event {project}/events/{name}"
4208
+ if isinstance(event_data, mlrun.common.schemas.Event):
4209
+ event_data = event_data.dict()
4210
+ self.api_call(
4211
+ "POST", endpoint_path, error_message, body=dict_to_json(event_data)
4212
+ )
4213
+
4214
+ def store_alert_config(
4215
+ self,
4216
+ alert_name: str,
4217
+ alert_data: Union[dict, AlertConfig],
4218
+ project="",
4219
+ ) -> AlertConfig:
4220
+ """
4221
+ Create/modify an alert.
4222
+
4223
+ :param alert_name: The name of the alert.
4224
+ :param alert_data: The data of the alert.
4225
+ :param project: The project that the alert belongs to.
4226
+ :returns: The created/modified alert.
4227
+ """
4228
+ if not alert_data:
4229
+ raise mlrun.errors.MLRunInvalidArgumentError("Alert data must be provided")
4230
+
4231
+ if mlrun.mlconf.alerts.mode == mlrun.common.schemas.alert.AlertsModes.disabled:
4232
+ logger.warning(
4233
+ "Alerts are disabled, alert will still be stored but will not be triggered"
4234
+ )
4235
+
4236
+ project = project or config.default_project
4237
+ endpoint_path = f"projects/{project}/alerts/{alert_name}"
4238
+ error_message = f"put alert {project}/alerts/{alert_name}"
4239
+ alert_instance = (
4240
+ alert_data
4241
+ if isinstance(alert_data, AlertConfig)
4242
+ else AlertConfig.from_dict(alert_data)
4243
+ )
4244
+ # Validation is necessary here because users can directly invoke this function
4245
+ # through `mlrun.get_run_db().store_alert_config()`.
4246
+ alert_instance.validate_required_fields()
4247
+
4248
+ alert_data = alert_instance.to_dict()
4249
+ body = _as_json(alert_data)
4250
+ response = self.api_call("PUT", endpoint_path, error_message, body=body)
4251
+ return AlertConfig.from_dict(response.json())
4252
+
4253
+ def get_alert_config(self, alert_name: str, project="") -> AlertConfig:
4254
+ """
4255
+ Retrieve an alert.
4256
+
4257
+ :param alert_name: The name of the alert to retrieve.
4258
+ :param project: The project that the alert belongs to.
4259
+
4260
+ :returns: The alert object.
4261
+ """
4262
+ project = project or config.default_project
4263
+ endpoint_path = f"projects/{project}/alerts/{alert_name}"
4264
+ error_message = f"get alert {project}/alerts/{alert_name}"
4265
+ response = self.api_call("GET", endpoint_path, error_message)
4266
+ return AlertConfig.from_dict(response.json())
4267
+
4268
+ def list_alerts_configs(self, project="") -> list[AlertConfig]:
4269
+ """
4270
+ Retrieve list of alerts of a project.
4271
+
4272
+ :param project: The project name.
4273
+
4274
+ :returns: All the alerts objects of the project.
4275
+ """
4276
+ project = project or config.default_project
4277
+ endpoint_path = f"projects/{project}/alerts"
4278
+ error_message = f"get alerts {project}/alerts"
4279
+ response = self.api_call("GET", endpoint_path, error_message).json()
4280
+ results = []
4281
+ for item in response:
4282
+ results.append(AlertConfig(**item))
4283
+ return results
4284
+
4285
+ def delete_alert_config(self, alert_name: str, project=""):
4286
+ """
4287
+ Delete an alert.
4288
+ :param alert_name: The name of the alert to delete.
4289
+ :param project: The project that the alert belongs to.
4290
+ """
4291
+ project = project or config.default_project
4292
+ endpoint_path = f"projects/{project}/alerts/{alert_name}"
4293
+ error_message = f"delete alert {project}/alerts/{alert_name}"
4294
+ self.api_call("DELETE", endpoint_path, error_message)
4295
+
4296
+ def reset_alert_config(self, alert_name: str, project=""):
4297
+ """
4298
+ Reset an alert.
4299
+
4300
+ :param alert_name: The name of the alert to reset.
4301
+ :param project: The project that the alert belongs to.
4302
+ """
4303
+ project = project or config.default_project
4304
+ endpoint_path = f"projects/{project}/alerts/{alert_name}/reset"
4305
+ error_message = f"post alert {project}/alerts/{alert_name}/reset"
4306
+ self.api_call("POST", endpoint_path, error_message)
4307
+
4308
+ def get_alert_template(
4309
+ self, template_name: str
4310
+ ) -> mlrun.common.schemas.AlertTemplate:
4311
+ """
4312
+ Retrieve a specific alert template.
4313
+
4314
+ :param template_name: The name of the template to retrieve.
4315
+
4316
+ :returns: The template object.
4317
+ """
4318
+ endpoint_path = f"alert-templates/{template_name}"
4319
+ error_message = f"get template alert-templates/{template_name}"
4320
+ response = self.api_call("GET", endpoint_path, error_message)
4321
+ return mlrun.common.schemas.AlertTemplate(**response.json())
4322
+
4323
+ def list_alert_templates(self) -> list[mlrun.common.schemas.AlertTemplate]:
4324
+ """
4325
+ Retrieve list of all alert templates.
4326
+
4327
+ :returns: All the alert template objects in the database.
4328
+ """
4329
+ endpoint_path = "alert-templates"
4330
+ error_message = "get templates /alert-templates"
4331
+ response = self.api_call("GET", endpoint_path, error_message).json()
4332
+ results = []
4333
+ for item in response:
4334
+ results.append(mlrun.common.schemas.AlertTemplate(**item))
4335
+ return results
4336
+
3701
4337
 
3702
4338
  def _as_json(obj):
3703
4339
  fn = getattr(obj, "to_json", None)