mlrun 1.6.0rc35__py3-none-any.whl → 1.7.0rc2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mlrun might be problematic. Click here for more details.

Files changed (199) hide show
  1. mlrun/__main__.py +3 -3
  2. mlrun/api/schemas/__init__.py +1 -1
  3. mlrun/artifacts/base.py +11 -6
  4. mlrun/artifacts/dataset.py +2 -2
  5. mlrun/artifacts/model.py +30 -24
  6. mlrun/artifacts/plots.py +2 -2
  7. mlrun/common/db/sql_session.py +5 -3
  8. mlrun/common/helpers.py +1 -2
  9. mlrun/common/schemas/artifact.py +3 -3
  10. mlrun/common/schemas/auth.py +3 -3
  11. mlrun/common/schemas/background_task.py +1 -1
  12. mlrun/common/schemas/client_spec.py +1 -1
  13. mlrun/common/schemas/feature_store.py +16 -16
  14. mlrun/common/schemas/frontend_spec.py +7 -7
  15. mlrun/common/schemas/function.py +1 -1
  16. mlrun/common/schemas/hub.py +4 -9
  17. mlrun/common/schemas/memory_reports.py +2 -2
  18. mlrun/common/schemas/model_monitoring/grafana.py +4 -4
  19. mlrun/common/schemas/model_monitoring/model_endpoints.py +14 -15
  20. mlrun/common/schemas/notification.py +4 -4
  21. mlrun/common/schemas/object.py +2 -2
  22. mlrun/common/schemas/pipeline.py +1 -1
  23. mlrun/common/schemas/project.py +3 -3
  24. mlrun/common/schemas/runtime_resource.py +8 -12
  25. mlrun/common/schemas/schedule.py +3 -3
  26. mlrun/common/schemas/tag.py +1 -2
  27. mlrun/common/schemas/workflow.py +2 -2
  28. mlrun/config.py +8 -4
  29. mlrun/data_types/to_pandas.py +1 -3
  30. mlrun/datastore/base.py +0 -28
  31. mlrun/datastore/datastore_profile.py +9 -9
  32. mlrun/datastore/filestore.py +0 -1
  33. mlrun/datastore/google_cloud_storage.py +1 -1
  34. mlrun/datastore/sources.py +7 -11
  35. mlrun/datastore/spark_utils.py +1 -2
  36. mlrun/datastore/targets.py +31 -31
  37. mlrun/datastore/utils.py +4 -6
  38. mlrun/datastore/v3io.py +70 -46
  39. mlrun/db/base.py +22 -23
  40. mlrun/db/httpdb.py +34 -34
  41. mlrun/db/nopdb.py +19 -19
  42. mlrun/errors.py +1 -1
  43. mlrun/execution.py +4 -4
  44. mlrun/feature_store/api.py +20 -21
  45. mlrun/feature_store/common.py +1 -1
  46. mlrun/feature_store/feature_set.py +28 -32
  47. mlrun/feature_store/feature_vector.py +24 -27
  48. mlrun/feature_store/retrieval/base.py +7 -7
  49. mlrun/feature_store/retrieval/conversion.py +2 -4
  50. mlrun/feature_store/steps.py +7 -15
  51. mlrun/features.py +5 -7
  52. mlrun/frameworks/_common/artifacts_library.py +9 -9
  53. mlrun/frameworks/_common/mlrun_interface.py +5 -5
  54. mlrun/frameworks/_common/model_handler.py +48 -48
  55. mlrun/frameworks/_common/plan.py +2 -3
  56. mlrun/frameworks/_common/producer.py +3 -4
  57. mlrun/frameworks/_common/utils.py +5 -5
  58. mlrun/frameworks/_dl_common/loggers/logger.py +6 -7
  59. mlrun/frameworks/_dl_common/loggers/mlrun_logger.py +9 -9
  60. mlrun/frameworks/_dl_common/loggers/tensorboard_logger.py +16 -35
  61. mlrun/frameworks/_ml_common/artifacts_library.py +1 -2
  62. mlrun/frameworks/_ml_common/loggers/logger.py +3 -4
  63. mlrun/frameworks/_ml_common/loggers/mlrun_logger.py +4 -5
  64. mlrun/frameworks/_ml_common/model_handler.py +24 -24
  65. mlrun/frameworks/_ml_common/pkl_model_server.py +2 -2
  66. mlrun/frameworks/_ml_common/plan.py +1 -1
  67. mlrun/frameworks/_ml_common/plans/calibration_curve_plan.py +2 -3
  68. mlrun/frameworks/_ml_common/plans/confusion_matrix_plan.py +2 -3
  69. mlrun/frameworks/_ml_common/plans/dataset_plan.py +3 -3
  70. mlrun/frameworks/_ml_common/plans/feature_importance_plan.py +3 -3
  71. mlrun/frameworks/_ml_common/plans/roc_curve_plan.py +4 -4
  72. mlrun/frameworks/_ml_common/utils.py +4 -4
  73. mlrun/frameworks/auto_mlrun/auto_mlrun.py +7 -7
  74. mlrun/frameworks/huggingface/model_server.py +4 -4
  75. mlrun/frameworks/lgbm/__init__.py +32 -32
  76. mlrun/frameworks/lgbm/callbacks/logging_callback.py +4 -5
  77. mlrun/frameworks/lgbm/callbacks/mlrun_logging_callback.py +4 -5
  78. mlrun/frameworks/lgbm/mlrun_interfaces/booster_mlrun_interface.py +1 -3
  79. mlrun/frameworks/lgbm/mlrun_interfaces/mlrun_interface.py +6 -6
  80. mlrun/frameworks/lgbm/model_handler.py +9 -9
  81. mlrun/frameworks/lgbm/model_server.py +6 -6
  82. mlrun/frameworks/lgbm/utils.py +5 -5
  83. mlrun/frameworks/onnx/dataset.py +8 -8
  84. mlrun/frameworks/onnx/mlrun_interface.py +3 -3
  85. mlrun/frameworks/onnx/model_handler.py +6 -6
  86. mlrun/frameworks/onnx/model_server.py +7 -7
  87. mlrun/frameworks/parallel_coordinates.py +2 -2
  88. mlrun/frameworks/pytorch/__init__.py +16 -16
  89. mlrun/frameworks/pytorch/callbacks/callback.py +4 -5
  90. mlrun/frameworks/pytorch/callbacks/logging_callback.py +17 -17
  91. mlrun/frameworks/pytorch/callbacks/mlrun_logging_callback.py +11 -11
  92. mlrun/frameworks/pytorch/callbacks/tensorboard_logging_callback.py +23 -29
  93. mlrun/frameworks/pytorch/callbacks_handler.py +38 -38
  94. mlrun/frameworks/pytorch/mlrun_interface.py +20 -20
  95. mlrun/frameworks/pytorch/model_handler.py +17 -17
  96. mlrun/frameworks/pytorch/model_server.py +7 -7
  97. mlrun/frameworks/sklearn/__init__.py +12 -12
  98. mlrun/frameworks/sklearn/estimator.py +4 -4
  99. mlrun/frameworks/sklearn/metrics_library.py +14 -14
  100. mlrun/frameworks/sklearn/mlrun_interface.py +3 -6
  101. mlrun/frameworks/sklearn/model_handler.py +2 -2
  102. mlrun/frameworks/tf_keras/__init__.py +5 -5
  103. mlrun/frameworks/tf_keras/callbacks/logging_callback.py +14 -14
  104. mlrun/frameworks/tf_keras/callbacks/mlrun_logging_callback.py +11 -11
  105. mlrun/frameworks/tf_keras/callbacks/tensorboard_logging_callback.py +19 -23
  106. mlrun/frameworks/tf_keras/mlrun_interface.py +7 -9
  107. mlrun/frameworks/tf_keras/model_handler.py +14 -14
  108. mlrun/frameworks/tf_keras/model_server.py +6 -6
  109. mlrun/frameworks/xgboost/__init__.py +12 -12
  110. mlrun/frameworks/xgboost/model_handler.py +6 -6
  111. mlrun/k8s_utils.py +4 -5
  112. mlrun/kfpops.py +2 -2
  113. mlrun/launcher/base.py +10 -10
  114. mlrun/launcher/local.py +8 -8
  115. mlrun/launcher/remote.py +7 -7
  116. mlrun/lists.py +3 -4
  117. mlrun/model.py +205 -55
  118. mlrun/model_monitoring/api.py +21 -24
  119. mlrun/model_monitoring/application.py +4 -4
  120. mlrun/model_monitoring/batch.py +17 -17
  121. mlrun/model_monitoring/controller.py +2 -1
  122. mlrun/model_monitoring/features_drift_table.py +44 -31
  123. mlrun/model_monitoring/prometheus.py +1 -4
  124. mlrun/model_monitoring/stores/kv_model_endpoint_store.py +11 -13
  125. mlrun/model_monitoring/stores/model_endpoint_store.py +9 -11
  126. mlrun/model_monitoring/stores/models/__init__.py +2 -2
  127. mlrun/model_monitoring/stores/sql_model_endpoint_store.py +11 -13
  128. mlrun/model_monitoring/stream_processing.py +16 -34
  129. mlrun/model_monitoring/tracking_policy.py +2 -1
  130. mlrun/package/__init__.py +6 -6
  131. mlrun/package/context_handler.py +5 -5
  132. mlrun/package/packager.py +7 -7
  133. mlrun/package/packagers/default_packager.py +6 -6
  134. mlrun/package/packagers/numpy_packagers.py +15 -15
  135. mlrun/package/packagers/pandas_packagers.py +5 -5
  136. mlrun/package/packagers/python_standard_library_packagers.py +10 -10
  137. mlrun/package/packagers_manager.py +18 -23
  138. mlrun/package/utils/_formatter.py +4 -4
  139. mlrun/package/utils/_pickler.py +2 -2
  140. mlrun/package/utils/_supported_format.py +4 -4
  141. mlrun/package/utils/log_hint_utils.py +2 -2
  142. mlrun/package/utils/type_hint_utils.py +4 -9
  143. mlrun/platforms/other.py +1 -2
  144. mlrun/projects/operations.py +5 -5
  145. mlrun/projects/pipelines.py +9 -9
  146. mlrun/projects/project.py +58 -46
  147. mlrun/render.py +1 -1
  148. mlrun/run.py +9 -9
  149. mlrun/runtimes/__init__.py +7 -4
  150. mlrun/runtimes/base.py +20 -23
  151. mlrun/runtimes/constants.py +5 -5
  152. mlrun/runtimes/daskjob.py +8 -8
  153. mlrun/runtimes/databricks_job/databricks_cancel_task.py +1 -1
  154. mlrun/runtimes/databricks_job/databricks_runtime.py +7 -7
  155. mlrun/runtimes/function_reference.py +1 -1
  156. mlrun/runtimes/local.py +1 -1
  157. mlrun/runtimes/mpijob/abstract.py +1 -2
  158. mlrun/runtimes/nuclio/__init__.py +20 -0
  159. mlrun/runtimes/{function.py → nuclio/function.py} +15 -16
  160. mlrun/runtimes/{nuclio.py → nuclio/nuclio.py} +6 -6
  161. mlrun/runtimes/{serving.py → nuclio/serving.py} +13 -12
  162. mlrun/runtimes/pod.py +95 -48
  163. mlrun/runtimes/remotesparkjob.py +1 -1
  164. mlrun/runtimes/sparkjob/spark3job.py +50 -33
  165. mlrun/runtimes/utils.py +1 -2
  166. mlrun/secrets.py +3 -3
  167. mlrun/serving/remote.py +0 -4
  168. mlrun/serving/routers.py +6 -6
  169. mlrun/serving/server.py +4 -4
  170. mlrun/serving/states.py +29 -0
  171. mlrun/serving/utils.py +3 -3
  172. mlrun/serving/v1_serving.py +6 -7
  173. mlrun/serving/v2_serving.py +50 -8
  174. mlrun/track/tracker_manager.py +3 -3
  175. mlrun/track/trackers/mlflow_tracker.py +1 -2
  176. mlrun/utils/async_http.py +5 -7
  177. mlrun/utils/azure_vault.py +1 -1
  178. mlrun/utils/clones.py +1 -2
  179. mlrun/utils/condition_evaluator.py +3 -3
  180. mlrun/utils/db.py +3 -3
  181. mlrun/utils/helpers.py +37 -119
  182. mlrun/utils/http.py +1 -4
  183. mlrun/utils/logger.py +49 -14
  184. mlrun/utils/notifications/notification/__init__.py +3 -3
  185. mlrun/utils/notifications/notification/base.py +2 -2
  186. mlrun/utils/notifications/notification/ipython.py +1 -1
  187. mlrun/utils/notifications/notification_pusher.py +8 -14
  188. mlrun/utils/retryer.py +207 -0
  189. mlrun/utils/singleton.py +1 -1
  190. mlrun/utils/v3io_clients.py +2 -3
  191. mlrun/utils/version/version.json +2 -2
  192. mlrun/utils/version/version.py +2 -6
  193. {mlrun-1.6.0rc35.dist-info → mlrun-1.7.0rc2.dist-info}/METADATA +9 -9
  194. mlrun-1.7.0rc2.dist-info/RECORD +315 -0
  195. mlrun-1.6.0rc35.dist-info/RECORD +0 -313
  196. {mlrun-1.6.0rc35.dist-info → mlrun-1.7.0rc2.dist-info}/LICENSE +0 -0
  197. {mlrun-1.6.0rc35.dist-info → mlrun-1.7.0rc2.dist-info}/WHEEL +0 -0
  198. {mlrun-1.6.0rc35.dist-info → mlrun-1.7.0rc2.dist-info}/entry_points.txt +0 -0
  199. {mlrun-1.6.0rc35.dist-info → mlrun-1.7.0rc2.dist-info}/top_level.txt +0 -0
@@ -12,7 +12,6 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
  #
15
- from typing import Dict, List
16
15
 
17
16
  from ..utils import MLTypes
18
17
 
@@ -42,7 +41,7 @@ class Logger:
42
41
  self._iterations = 0
43
42
 
44
43
  @property
45
- def results(self) -> Dict[str, Dict[str, List[float]]]:
44
+ def results(self) -> dict[str, dict[str, list[float]]]:
46
45
  """
47
46
  Get the results logged. The results will be stored in a dictionary where each key is the validation set name
48
47
  and the value is a dictionary of metrics to their list of iterations values.
@@ -52,7 +51,7 @@ class Logger:
52
51
  return self._results
53
52
 
54
53
  @property
55
- def static_hyperparameters(self) -> Dict[str, MLTypes.TrackableType]:
54
+ def static_hyperparameters(self) -> dict[str, MLTypes.TrackableType]:
56
55
  """
57
56
  Get the static hyperparameters logged. The hyperparameters will be stored in a dictionary where each key is the
58
57
  hyperparameter name and the value is his logged value.
@@ -62,7 +61,7 @@ class Logger:
62
61
  return self._static_hyperparameters
63
62
 
64
63
  @property
65
- def dynamic_hyperparameters(self) -> Dict[str, List[MLTypes.TrackableType]]:
64
+ def dynamic_hyperparameters(self) -> dict[str, list[MLTypes.TrackableType]]:
66
65
  """
67
66
  Get the dynamic hyperparameters logged. The hyperparameters will be stored in a dictionary where each key is the
68
67
  hyperparameter name and the value is a list of his logged values per epoch.
@@ -13,7 +13,6 @@
13
13
  # limitations under the License.
14
14
  #
15
15
  import re
16
- from typing import Dict, List
17
16
 
18
17
  import numpy as np
19
18
  import plotly.graph_objects as go
@@ -39,7 +38,7 @@ class MLRunLogger(Logger):
39
38
 
40
39
  :param context: MLRun context to log to. The context parameters can be logged as static hyperparameters.
41
40
  """
42
- super(MLRunLogger, self).__init__()
41
+ super().__init__()
43
42
 
44
43
  # An MLRun context to log to:
45
44
  self._context = context
@@ -47,7 +46,7 @@ class MLRunLogger(Logger):
47
46
  # Prepare the artifacts dictionary:
48
47
  self._artifacts = {} # type: Dict[str, Artifact]
49
48
 
50
- def get_artifacts(self) -> Dict[str, Artifact]:
49
+ def get_artifacts(self) -> dict[str, Artifact]:
51
50
  """
52
51
  Get the artifacts created by this logger.
53
52
 
@@ -55,7 +54,7 @@ class MLRunLogger(Logger):
55
54
  """
56
55
  return self._artifacts
57
56
 
58
- def get_metrics(self) -> Dict[str, float]:
57
+ def get_metrics(self) -> dict[str, float]:
59
58
  """
60
59
  Generate a metrics summary to log along the model.
61
60
 
@@ -144,7 +143,7 @@ class MLRunLogger(Logger):
144
143
 
145
144
  @staticmethod
146
145
  def _produce_convergence_plot_artifact(
147
- name: str, values: List[float]
146
+ name: str, values: list[float]
148
147
  ) -> PlotlyArtifact:
149
148
  """
150
149
  Produce the convergences for the provided metric according.
@@ -13,7 +13,7 @@
13
13
  # limitations under the License.
14
14
  #
15
15
  from abc import ABC
16
- from typing import Dict, List, Union
16
+ from typing import Union
17
17
 
18
18
  import mlrun
19
19
  from mlrun.artifacts import Artifact
@@ -35,10 +35,10 @@ class MLModelHandler(ModelHandler, ABC):
35
35
  model_path: MLTypes.PathType = None,
36
36
  model_name: str = None,
37
37
  modules_map: Union[
38
- Dict[str, Union[None, str, List[str]]], MLTypes.PathType
38
+ dict[str, Union[None, str, list[str]]], MLTypes.PathType
39
39
  ] = None,
40
40
  custom_objects_map: Union[
41
- Dict[str, Union[str, List[str]]], MLTypes.PathType
41
+ dict[str, Union[str, list[str]]], MLTypes.PathType
42
42
  ] = None,
43
43
  custom_objects_directory: MLTypes.PathType = None,
44
44
  context: mlrun.MLClientCtx = None,
@@ -105,7 +105,7 @@ class MLModelHandler(ModelHandler, ABC):
105
105
  self._feature_weights = None # type: List[float]
106
106
 
107
107
  # Continue the initialization:
108
- super(MLModelHandler, self).__init__(
108
+ super().__init__(
109
109
  model=model,
110
110
  model_path=model_path,
111
111
  model_name=model_name,
@@ -153,7 +153,7 @@ class MLModelHandler(ModelHandler, ABC):
153
153
  return self._feature_vector
154
154
 
155
155
  @property
156
- def feature_weights(self) -> List[float]:
156
+ def feature_weights(self) -> list[float]:
157
157
  """
158
158
  Get the feature weights set in this handler.
159
159
 
@@ -213,7 +213,7 @@ class MLModelHandler(ModelHandler, ABC):
213
213
  """
214
214
  self._feature_vector = feature_vector
215
215
 
216
- def set_feature_weights(self, feature_weights: List[float]):
216
+ def set_feature_weights(self, feature_weights: list[float]):
217
217
  """
218
218
  Set the feature weights this model will be logged with.
219
219
 
@@ -224,18 +224,18 @@ class MLModelHandler(ModelHandler, ABC):
224
224
  def log(
225
225
  self,
226
226
  tag: str = "",
227
- labels: Dict[str, Union[str, int, float]] = None,
228
- parameters: Dict[str, Union[str, int, float]] = None,
229
- inputs: List[Feature] = None,
230
- outputs: List[Feature] = None,
231
- metrics: Dict[str, Union[int, float]] = None,
232
- artifacts: Dict[str, Artifact] = None,
233
- extra_data: Dict[str, MLTypes.ExtraDataType] = None,
227
+ labels: dict[str, Union[str, int, float]] = None,
228
+ parameters: dict[str, Union[str, int, float]] = None,
229
+ inputs: list[Feature] = None,
230
+ outputs: list[Feature] = None,
231
+ metrics: dict[str, Union[int, float]] = None,
232
+ artifacts: dict[str, Artifact] = None,
233
+ extra_data: dict[str, MLTypes.ExtraDataType] = None,
234
234
  algorithm: str = None,
235
235
  sample_set: MLTypes.DatasetType = None,
236
236
  target_columns: MLTypes.TargetColumnsNamesType = None,
237
237
  feature_vector: str = None,
238
- feature_weights: List[float] = None,
238
+ feature_weights: list[float] = None,
239
239
  ):
240
240
  """
241
241
  Log the model held by this handler into the MLRun context provided.
@@ -281,7 +281,7 @@ class MLModelHandler(ModelHandler, ABC):
281
281
  self.set_feature_weights(feature_weights=feature_weights)
282
282
 
283
283
  # Continue with the handler logging:
284
- super(MLModelHandler, self).log(
284
+ super().log(
285
285
  tag=tag,
286
286
  labels=labels,
287
287
  parameters=parameters,
@@ -299,15 +299,15 @@ class MLModelHandler(ModelHandler, ABC):
299
299
 
300
300
  def update(
301
301
  self,
302
- labels: Dict[str, Union[str, int, float]] = None,
303
- parameters: Dict[str, Union[str, int, float]] = None,
304
- inputs: List[Feature] = None,
305
- outputs: List[Feature] = None,
306
- metrics: Dict[str, Union[int, float]] = None,
307
- artifacts: Dict[str, Artifact] = None,
308
- extra_data: Dict[str, MLTypes.ExtraDataType] = None,
302
+ labels: dict[str, Union[str, int, float]] = None,
303
+ parameters: dict[str, Union[str, int, float]] = None,
304
+ inputs: list[Feature] = None,
305
+ outputs: list[Feature] = None,
306
+ metrics: dict[str, Union[int, float]] = None,
307
+ artifacts: dict[str, Artifact] = None,
308
+ extra_data: dict[str, MLTypes.ExtraDataType] = None,
309
309
  feature_vector: str = None,
310
- feature_weights: List[float] = None,
310
+ feature_weights: list[float] = None,
311
311
  ):
312
312
  """
313
313
  Update the model held by this handler into the MLRun context provided, updating the model's artifact properties
@@ -336,7 +336,7 @@ class MLModelHandler(ModelHandler, ABC):
336
336
  self._feature_weights = feature_weights
337
337
 
338
338
  # Continue with the handler update:
339
- super(MLModelHandler, self).update(
339
+ super().update(
340
340
  labels=labels,
341
341
  parameters=parameters,
342
342
  inputs=inputs,
@@ -12,7 +12,7 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
  #
15
- from typing import Any, Dict
15
+ from typing import Any
16
16
 
17
17
  import numpy as np
18
18
  import pandas as pd
@@ -59,7 +59,7 @@ class PickleModelServer(V2ModelServer):
59
59
 
60
60
  return y_pred.tolist()
61
61
 
62
- def explain(self, request: Dict[str, Any]) -> str:
62
+ def explain(self, request: dict[str, Any]) -> str:
63
63
  """
64
64
  Returns a string listing the model that is being served in this serving function and the function name.
65
65
 
@@ -57,7 +57,7 @@ class MLPlan(Plan, ABC):
57
57
  False.
58
58
  """
59
59
  self._need_probabilities = need_probabilities
60
- super(MLPlan, self).__init__()
60
+ super().__init__()
61
61
 
62
62
  @property
63
63
  def need_probabilities(self) -> bool:
@@ -12,7 +12,6 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
  #
15
- from typing import Dict
16
15
 
17
16
  import plotly.graph_objects as go
18
17
  from sklearn.calibration import calibration_curve
@@ -51,7 +50,7 @@ class CalibrationCurvePlan(MLPlotPlan):
51
50
  self._strategy = strategy
52
51
 
53
52
  # Continue the initialization for the MLPlan:
54
- super(CalibrationCurvePlan, self).__init__(need_probabilities=True)
53
+ super().__init__(need_probabilities=True)
55
54
 
56
55
  def is_ready(self, stage: MLPlanStages, is_probabilities: bool) -> bool:
57
56
  """
@@ -73,7 +72,7 @@ class CalibrationCurvePlan(MLPlotPlan):
73
72
  model: MLTypes.ModelType = None,
74
73
  x: MLTypes.DatasetType = None,
75
74
  **kwargs,
76
- ) -> Dict[str, Artifact]:
75
+ ) -> dict[str, Artifact]:
77
76
  """
78
77
  Produce the calibration curve according to the ground truth (y) and predictions (y_pred) values. If predictions
79
78
  are not available, the model and a dataset can be given to produce them.
@@ -12,7 +12,6 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
  #
15
- from typing import Dict
16
15
 
17
16
  import numpy as np
18
17
  import pandas as pd
@@ -57,7 +56,7 @@ class ConfusionMatrixPlan(MLPlotPlan):
57
56
  self._normalize = normalize
58
57
 
59
58
  # Continue the initialization for the MLPlan:
60
- super(ConfusionMatrixPlan, self).__init__()
59
+ super().__init__()
61
60
 
62
61
  def is_ready(self, stage: MLPlanStages, is_probabilities: bool) -> bool:
63
62
  """
@@ -79,7 +78,7 @@ class ConfusionMatrixPlan(MLPlotPlan):
79
78
  model: MLTypes.ModelType = None,
80
79
  x: MLTypes.DatasetType = None,
81
80
  **kwargs,
82
- ) -> Dict[str, Artifact]:
81
+ ) -> dict[str, Artifact]:
83
82
  """
84
83
  Produce the confusion matrix according to the ground truth (y) and predictions (y_pred) values. If predictions
85
84
  are not available, the model and a dataset can be given to produce them.
@@ -13,7 +13,7 @@
13
13
  # limitations under the License.
14
14
  #
15
15
  from enum import Enum
16
- from typing import Dict, Union
16
+ from typing import Union
17
17
 
18
18
  import mlrun.errors
19
19
  from mlrun.artifacts import Artifact, DatasetArtifact
@@ -92,7 +92,7 @@ class DatasetPlan(MLPlan):
92
92
  self._plans = {} # TODO: Implement DatasetPlansLibrary with dataset specific artifacts plans.
93
93
 
94
94
  # Continue initializing the plan:
95
- super(DatasetPlan, self).__init__(need_probabilities=False)
95
+ super().__init__(need_probabilities=False)
96
96
 
97
97
  def is_ready(self, stage: MLPlanStages, is_probabilities: bool) -> bool:
98
98
  """
@@ -124,7 +124,7 @@ class DatasetPlan(MLPlan):
124
124
  y: MLTypes.DatasetType = None,
125
125
  target_columns_names: MLTypes.TargetColumnsNamesType = None,
126
126
  **kwargs,
127
- ) -> Dict[str, Artifact]:
127
+ ) -> dict[str, Artifact]:
128
128
  """
129
129
  Produce the dataset artifact according to this plan.
130
130
 
@@ -12,7 +12,7 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
  #
15
- from typing import Dict, Union
15
+ from typing import Union
16
16
 
17
17
  import numpy as np
18
18
  import plotly.graph_objects as go
@@ -38,7 +38,7 @@ class FeatureImportancePlan(MLPlotPlan):
38
38
  An example of use can be seen at the Scikit-Learn docs here:
39
39
  https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html
40
40
  """
41
- super(FeatureImportancePlan, self).__init__()
41
+ super().__init__()
42
42
 
43
43
  def is_ready(self, stage: MLPlanStages, is_probabilities: bool) -> bool:
44
44
  """
@@ -55,7 +55,7 @@ class FeatureImportancePlan(MLPlotPlan):
55
55
 
56
56
  def produce(
57
57
  self, model: MLTypes.ModelType, x: MLTypes.DatasetType, **kwargs
58
- ) -> Dict[str, Artifact]:
58
+ ) -> dict[str, Artifact]:
59
59
  """
60
60
  Produce the feature importance according to the given model and dataset ('x').
61
61
 
@@ -12,7 +12,7 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
  #
15
- from typing import Dict, List, Union
15
+ from typing import Union
16
16
 
17
17
  import numpy as np
18
18
  import pandas as pd
@@ -41,7 +41,7 @@ class ROCCurvePlan(MLPlotPlan):
41
41
  average: str = "macro",
42
42
  max_fpr: float = None,
43
43
  multi_class: str = "raise",
44
- labels: List[str] = None,
44
+ labels: list[str] = None,
45
45
  ):
46
46
  """
47
47
  Initialize a receiver operating characteristic plan with the given configuration.
@@ -75,7 +75,7 @@ class ROCCurvePlan(MLPlotPlan):
75
75
  self._labels = labels
76
76
 
77
77
  # Continue the initialization for the MLPlan:
78
- super(ROCCurvePlan, self).__init__(need_probabilities=True)
78
+ super().__init__(need_probabilities=True)
79
79
 
80
80
  def is_ready(self, stage: MLPlanStages, is_probabilities: bool) -> bool:
81
81
  """
@@ -97,7 +97,7 @@ class ROCCurvePlan(MLPlotPlan):
97
97
  model: MLTypes.ModelType = None,
98
98
  x: MLTypes.DatasetType = None,
99
99
  **kwargs,
100
- ) -> Dict[str, Artifact]:
100
+ ) -> dict[str, Artifact]:
101
101
  """
102
102
  Produce the roc curve according to the ground truth (y) and predictions (y_pred) values. If predictions are not
103
103
  available, the model and a dataset can be given to produce them.
@@ -14,7 +14,7 @@
14
14
  #
15
15
  from abc import ABC
16
16
  from enum import Enum
17
- from typing import Callable, List, Tuple, Union
17
+ from typing import Callable, Union
18
18
 
19
19
  import pandas as pd
20
20
  from sklearn.base import is_classifier, is_regressor
@@ -137,10 +137,10 @@ class MLTypes(CommonTypes, ABC):
137
137
  # of the function and the full module path to the function to import. Arguments to use when calling the metric can
138
138
  # be joined by wrapping it as a tuple:
139
139
  # TODO: will be moved to SKLearn's framework once LightGBM and XGBoost are fully supported.
140
- MetricEntryType = Union[Tuple[Union[Callable, str], dict], Callable, str]
140
+ MetricEntryType = Union[tuple[Union[Callable, str], dict], Callable, str]
141
141
 
142
142
  # Type for the target column name - a list of indices or column names that are the ground truth (y) of a dataset.
143
- TargetColumnsNamesType = Union[List[str], List[int]]
143
+ TargetColumnsNamesType = Union[list[str], list[int]]
144
144
 
145
145
 
146
146
  class MLUtils(CommonUtils, ABC):
@@ -154,7 +154,7 @@ class MLUtils(CommonUtils, ABC):
154
154
  y: CommonTypes.DatasetType = None,
155
155
  target_columns_names: MLTypes.TargetColumnsNamesType = None,
156
156
  default_target_column_prefix: str = "y_",
157
- ) -> Tuple[pd.DataFrame, Union[MLTypes.TargetColumnsNamesType, None]]:
157
+ ) -> tuple[pd.DataFrame, Union[MLTypes.TargetColumnsNamesType, None]]:
158
158
  """
159
159
  Concatenating the provided x and y data into a single pd.DataFrame, casting from np.ndarray and renaming y's
160
160
  original columns if 'y_columns' was not provided. The concatenated dataset index level will be reset to 0
@@ -13,7 +13,7 @@
13
13
  # limitations under the License.
14
14
  #
15
15
  # flake8: noqa - this is until we take care of the F401 violations with respect to __all__ & sphinx
16
- from typing import Callable, Dict, List, Tuple, Type, Union
16
+ from typing import Callable, Union
17
17
 
18
18
  import mlrun
19
19
  from mlrun.artifacts import get_model
@@ -165,7 +165,7 @@ def get_framework_by_class_name(model: CommonTypes.ModelType) -> str:
165
165
  )
166
166
 
167
167
 
168
- def framework_to_model_handler(framework: str) -> Type[ModelHandler]:
168
+ def framework_to_model_handler(framework: str) -> type[ModelHandler]:
169
169
  """
170
170
  Get the ModelHandler class of the given framework's name.
171
171
 
@@ -262,7 +262,7 @@ class AutoMLRun:
262
262
  @staticmethod
263
263
  def _get_framework(
264
264
  model: CommonTypes.ModelType = None, model_path: str = None
265
- ) -> Union[Tuple[str, dict]]:
265
+ ) -> Union[tuple[str, dict]]:
266
266
  """
267
267
  Try to get the framework from the model or model path provided. The framework can be read from the model path
268
268
  only if the model path is of a logged model artifact (store object uri).
@@ -322,8 +322,8 @@ class AutoMLRun:
322
322
  model_path: str,
323
323
  model_name: str = None,
324
324
  context: mlrun.MLClientCtx = None,
325
- modules_map: Union[Dict[str, Union[None, str, List[str]]], str] = None,
326
- custom_objects_map: Union[Dict[str, Union[str, List[str]]], str] = None,
325
+ modules_map: Union[dict[str, Union[None, str, list[str]]], str] = None,
326
+ custom_objects_map: Union[dict[str, Union[str, list[str]]], str] = None,
327
327
  custom_objects_directory: str = None,
328
328
  framework: str = None,
329
329
  **kwargs,
@@ -420,8 +420,8 @@ class AutoMLRun:
420
420
  model_name: str = None,
421
421
  tag: str = "",
422
422
  model_path: str = None,
423
- modules_map: Union[Dict[str, Union[None, str, List[str]]], str] = None,
424
- custom_objects_map: Union[Dict[str, Union[str, List[str]]], str] = None,
423
+ modules_map: Union[dict[str, Union[None, str, list[str]]], str] = None,
424
+ custom_objects_map: Union[dict[str, Union[str, list[str]]], str] = None,
425
425
  custom_objects_directory: str = None,
426
426
  context: mlrun.MLClientCtx = None,
427
427
  framework: str = None,
@@ -12,7 +12,7 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
 
15
- from typing import Any, Dict, List
15
+ from typing import Any
16
16
 
17
17
  import numpy as np
18
18
  import transformers
@@ -65,7 +65,7 @@ class HuggingFaceModelServer(V2ModelServer):
65
65
  framework of the `model`, or to PyTorch if no model is provided
66
66
  :param class_args: -
67
67
  """
68
- super(HuggingFaceModelServer, self).__init__(
68
+ super().__init__(
69
69
  context=context,
70
70
  name=name,
71
71
  model_path=model_path,
@@ -104,7 +104,7 @@ class HuggingFaceModelServer(V2ModelServer):
104
104
  framework=self.framework,
105
105
  )
106
106
 
107
- def predict(self, request: Dict[str, Any]) -> List:
107
+ def predict(self, request: dict[str, Any]) -> list:
108
108
  """
109
109
  Generate model predictions from sample.
110
110
  :param request: The request to the model. The input to the model will be read from the "inputs" key.
@@ -135,7 +135,7 @@ class HuggingFaceModelServer(V2ModelServer):
135
135
 
136
136
  return result
137
137
 
138
- def explain(self, request: Dict) -> str:
138
+ def explain(self, request: dict) -> str:
139
139
  """
140
140
  Return a string explaining what model is being served in this serving function and the function name.
141
141
  :param request: A given request.
@@ -13,7 +13,7 @@
13
13
  # limitations under the License.
14
14
  #
15
15
  # flake8: noqa - this is until we take care of the F401 violations with respect to __all__ & sphinx
16
- from typing import Any, Dict, List, Union
16
+ from typing import Any, Union
17
17
 
18
18
  import lightgbm as lgb
19
19
 
@@ -37,20 +37,20 @@ LGBMArtifactsLibrary = MLArtifactsLibrary
37
37
  def _apply_mlrun_on_module(
38
38
  model_name: str = "model",
39
39
  tag: str = "",
40
- modules_map: Union[Dict[str, Union[None, str, List[str]]], str] = None,
41
- custom_objects_map: Union[Dict[str, Union[str, List[str]]], str] = None,
40
+ modules_map: Union[dict[str, Union[None, str, list[str]]], str] = None,
41
+ custom_objects_map: Union[dict[str, Union[str, list[str]]], str] = None,
42
42
  custom_objects_directory: str = None,
43
43
  context: mlrun.MLClientCtx = None,
44
44
  model_format: str = LGBMModelHandler.ModelFormats.PKL,
45
45
  sample_set: Union[LGBMTypes.DatasetType, mlrun.DataItem, str] = None,
46
- y_columns: Union[List[str], List[int]] = None,
46
+ y_columns: Union[list[str], list[int]] = None,
47
47
  feature_vector: str = None,
48
- feature_weights: List[float] = None,
49
- labels: Dict[str, Union[str, int, float]] = None,
50
- parameters: Dict[str, Union[str, int, float]] = None,
51
- extra_data: Dict[str, LGBMTypes.ExtraDataType] = None,
48
+ feature_weights: list[float] = None,
49
+ labels: dict[str, Union[str, int, float]] = None,
50
+ parameters: dict[str, Union[str, int, float]] = None,
51
+ extra_data: dict[str, LGBMTypes.ExtraDataType] = None,
52
52
  auto_log: bool = True,
53
- mlrun_logging_callback_kwargs: Dict[str, Any] = None,
53
+ mlrun_logging_callback_kwargs: dict[str, Any] = None,
54
54
  ):
55
55
  # Apply MLRun's interface on the LightGBM module:
56
56
  LGBMMLRunInterface.add_interface(obj=lgb)
@@ -85,26 +85,26 @@ def _apply_mlrun_on_model(
85
85
  model_name: str = "model",
86
86
  tag: str = "",
87
87
  model_path: str = None,
88
- modules_map: Union[Dict[str, Union[None, str, List[str]]], str] = None,
89
- custom_objects_map: Union[Dict[str, Union[str, List[str]]], str] = None,
88
+ modules_map: Union[dict[str, Union[None, str, list[str]]], str] = None,
89
+ custom_objects_map: Union[dict[str, Union[str, list[str]]], str] = None,
90
90
  custom_objects_directory: str = None,
91
91
  context: mlrun.MLClientCtx = None,
92
92
  model_format: str = LGBMModelHandler.ModelFormats.PKL,
93
- artifacts: Union[List[MLPlan], List[str], Dict[str, dict]] = None,
93
+ artifacts: Union[list[MLPlan], list[str], dict[str, dict]] = None,
94
94
  metrics: Union[
95
- List[Metric],
96
- List[LGBMTypes.MetricEntryType],
97
- Dict[str, LGBMTypes.MetricEntryType],
95
+ list[Metric],
96
+ list[LGBMTypes.MetricEntryType],
97
+ dict[str, LGBMTypes.MetricEntryType],
98
98
  ] = None,
99
99
  x_test: LGBMTypes.DatasetType = None,
100
100
  y_test: LGBMTypes.DatasetType = None,
101
101
  sample_set: Union[LGBMTypes.DatasetType, mlrun.DataItem, str] = None,
102
- y_columns: Union[List[str], List[int]] = None,
102
+ y_columns: Union[list[str], list[int]] = None,
103
103
  feature_vector: str = None,
104
- feature_weights: List[float] = None,
105
- labels: Dict[str, Union[str, int, float]] = None,
106
- parameters: Dict[str, Union[str, int, float]] = None,
107
- extra_data: Dict[str, LGBMTypes.ExtraDataType] = None,
104
+ feature_weights: list[float] = None,
105
+ labels: dict[str, Union[str, int, float]] = None,
106
+ parameters: dict[str, Union[str, int, float]] = None,
107
+ extra_data: dict[str, LGBMTypes.ExtraDataType] = None,
108
108
  auto_log: bool = True,
109
109
  **kwargs,
110
110
  ):
@@ -183,28 +183,28 @@ def apply_mlrun(
183
183
  model_name: str = "model",
184
184
  tag: str = "",
185
185
  model_path: str = None,
186
- modules_map: Union[Dict[str, Union[None, str, List[str]]], str] = None,
187
- custom_objects_map: Union[Dict[str, Union[str, List[str]]], str] = None,
186
+ modules_map: Union[dict[str, Union[None, str, list[str]]], str] = None,
187
+ custom_objects_map: Union[dict[str, Union[str, list[str]]], str] = None,
188
188
  custom_objects_directory: str = None,
189
189
  context: mlrun.MLClientCtx = None,
190
190
  model_format: str = LGBMModelHandler.ModelFormats.PKL,
191
- artifacts: Union[List[MLPlan], List[str], Dict[str, dict]] = None,
191
+ artifacts: Union[list[MLPlan], list[str], dict[str, dict]] = None,
192
192
  metrics: Union[
193
- List[Metric],
194
- List[LGBMTypes.MetricEntryType],
195
- Dict[str, LGBMTypes.MetricEntryType],
193
+ list[Metric],
194
+ list[LGBMTypes.MetricEntryType],
195
+ dict[str, LGBMTypes.MetricEntryType],
196
196
  ] = None,
197
197
  x_test: LGBMTypes.DatasetType = None,
198
198
  y_test: LGBMTypes.DatasetType = None,
199
199
  sample_set: Union[LGBMTypes.DatasetType, mlrun.DataItem, str] = None,
200
- y_columns: Union[List[str], List[int]] = None,
200
+ y_columns: Union[list[str], list[int]] = None,
201
201
  feature_vector: str = None,
202
- feature_weights: List[float] = None,
203
- labels: Dict[str, Union[str, int, float]] = None,
204
- parameters: Dict[str, Union[str, int, float]] = None,
205
- extra_data: Dict[str, LGBMTypes.ExtraDataType] = None,
202
+ feature_weights: list[float] = None,
203
+ labels: dict[str, Union[str, int, float]] = None,
204
+ parameters: dict[str, Union[str, int, float]] = None,
205
+ extra_data: dict[str, LGBMTypes.ExtraDataType] = None,
206
206
  auto_log: bool = True,
207
- mlrun_logging_callback_kwargs: Dict[str, Any] = None,
207
+ mlrun_logging_callback_kwargs: dict[str, Any] = None,
208
208
  **kwargs,
209
209
  ) -> Union[LGBMModelHandler, None]:
210
210
  """
@@ -12,7 +12,6 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
  #
15
- from typing import List
16
15
 
17
16
  from ..._ml_common.loggers import Logger
18
17
  from ..utils import LGBMTypes
@@ -26,8 +25,8 @@ class LoggingCallback(Callback):
26
25
 
27
26
  def __init__(
28
27
  self,
29
- dynamic_hyperparameters: List[str] = None,
30
- static_hyperparameters: List[str] = None,
28
+ dynamic_hyperparameters: list[str] = None,
29
+ static_hyperparameters: list[str] = None,
31
30
  ):
32
31
  """
33
32
  Initialize the logging callback with the given configuration. All the metrics data will be collected but the
@@ -41,7 +40,7 @@ class LoggingCallback(Callback):
41
40
  The parameter expects a list of all the hyperparameters names to track our of
42
41
  the `params` dictionary.
43
42
  """
44
- super(LoggingCallback, self).__init__()
43
+ super().__init__()
45
44
  self._logger = Logger()
46
45
  self._dynamic_hyperparameters_keys = (
47
46
  dynamic_hyperparameters if dynamic_hyperparameters is not None else {}
@@ -76,7 +75,7 @@ class LoggingCallback(Callback):
76
75
  self._log_hyperparameters(parameters=env.params)
77
76
 
78
77
  def _log_results(
79
- self, evaluation_result_list: List[LGBMTypes.EvaluationResultType]
78
+ self, evaluation_result_list: list[LGBMTypes.EvaluationResultType]
80
79
  ):
81
80
  """
82
81
  Log the callback environment results data into the logger.