mlrun 1.6.0rc35__py3-none-any.whl → 1.7.0rc2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mlrun might be problematic. Click here for more details.

Files changed (199) hide show
  1. mlrun/__main__.py +3 -3
  2. mlrun/api/schemas/__init__.py +1 -1
  3. mlrun/artifacts/base.py +11 -6
  4. mlrun/artifacts/dataset.py +2 -2
  5. mlrun/artifacts/model.py +30 -24
  6. mlrun/artifacts/plots.py +2 -2
  7. mlrun/common/db/sql_session.py +5 -3
  8. mlrun/common/helpers.py +1 -2
  9. mlrun/common/schemas/artifact.py +3 -3
  10. mlrun/common/schemas/auth.py +3 -3
  11. mlrun/common/schemas/background_task.py +1 -1
  12. mlrun/common/schemas/client_spec.py +1 -1
  13. mlrun/common/schemas/feature_store.py +16 -16
  14. mlrun/common/schemas/frontend_spec.py +7 -7
  15. mlrun/common/schemas/function.py +1 -1
  16. mlrun/common/schemas/hub.py +4 -9
  17. mlrun/common/schemas/memory_reports.py +2 -2
  18. mlrun/common/schemas/model_monitoring/grafana.py +4 -4
  19. mlrun/common/schemas/model_monitoring/model_endpoints.py +14 -15
  20. mlrun/common/schemas/notification.py +4 -4
  21. mlrun/common/schemas/object.py +2 -2
  22. mlrun/common/schemas/pipeline.py +1 -1
  23. mlrun/common/schemas/project.py +3 -3
  24. mlrun/common/schemas/runtime_resource.py +8 -12
  25. mlrun/common/schemas/schedule.py +3 -3
  26. mlrun/common/schemas/tag.py +1 -2
  27. mlrun/common/schemas/workflow.py +2 -2
  28. mlrun/config.py +8 -4
  29. mlrun/data_types/to_pandas.py +1 -3
  30. mlrun/datastore/base.py +0 -28
  31. mlrun/datastore/datastore_profile.py +9 -9
  32. mlrun/datastore/filestore.py +0 -1
  33. mlrun/datastore/google_cloud_storage.py +1 -1
  34. mlrun/datastore/sources.py +7 -11
  35. mlrun/datastore/spark_utils.py +1 -2
  36. mlrun/datastore/targets.py +31 -31
  37. mlrun/datastore/utils.py +4 -6
  38. mlrun/datastore/v3io.py +70 -46
  39. mlrun/db/base.py +22 -23
  40. mlrun/db/httpdb.py +34 -34
  41. mlrun/db/nopdb.py +19 -19
  42. mlrun/errors.py +1 -1
  43. mlrun/execution.py +4 -4
  44. mlrun/feature_store/api.py +20 -21
  45. mlrun/feature_store/common.py +1 -1
  46. mlrun/feature_store/feature_set.py +28 -32
  47. mlrun/feature_store/feature_vector.py +24 -27
  48. mlrun/feature_store/retrieval/base.py +7 -7
  49. mlrun/feature_store/retrieval/conversion.py +2 -4
  50. mlrun/feature_store/steps.py +7 -15
  51. mlrun/features.py +5 -7
  52. mlrun/frameworks/_common/artifacts_library.py +9 -9
  53. mlrun/frameworks/_common/mlrun_interface.py +5 -5
  54. mlrun/frameworks/_common/model_handler.py +48 -48
  55. mlrun/frameworks/_common/plan.py +2 -3
  56. mlrun/frameworks/_common/producer.py +3 -4
  57. mlrun/frameworks/_common/utils.py +5 -5
  58. mlrun/frameworks/_dl_common/loggers/logger.py +6 -7
  59. mlrun/frameworks/_dl_common/loggers/mlrun_logger.py +9 -9
  60. mlrun/frameworks/_dl_common/loggers/tensorboard_logger.py +16 -35
  61. mlrun/frameworks/_ml_common/artifacts_library.py +1 -2
  62. mlrun/frameworks/_ml_common/loggers/logger.py +3 -4
  63. mlrun/frameworks/_ml_common/loggers/mlrun_logger.py +4 -5
  64. mlrun/frameworks/_ml_common/model_handler.py +24 -24
  65. mlrun/frameworks/_ml_common/pkl_model_server.py +2 -2
  66. mlrun/frameworks/_ml_common/plan.py +1 -1
  67. mlrun/frameworks/_ml_common/plans/calibration_curve_plan.py +2 -3
  68. mlrun/frameworks/_ml_common/plans/confusion_matrix_plan.py +2 -3
  69. mlrun/frameworks/_ml_common/plans/dataset_plan.py +3 -3
  70. mlrun/frameworks/_ml_common/plans/feature_importance_plan.py +3 -3
  71. mlrun/frameworks/_ml_common/plans/roc_curve_plan.py +4 -4
  72. mlrun/frameworks/_ml_common/utils.py +4 -4
  73. mlrun/frameworks/auto_mlrun/auto_mlrun.py +7 -7
  74. mlrun/frameworks/huggingface/model_server.py +4 -4
  75. mlrun/frameworks/lgbm/__init__.py +32 -32
  76. mlrun/frameworks/lgbm/callbacks/logging_callback.py +4 -5
  77. mlrun/frameworks/lgbm/callbacks/mlrun_logging_callback.py +4 -5
  78. mlrun/frameworks/lgbm/mlrun_interfaces/booster_mlrun_interface.py +1 -3
  79. mlrun/frameworks/lgbm/mlrun_interfaces/mlrun_interface.py +6 -6
  80. mlrun/frameworks/lgbm/model_handler.py +9 -9
  81. mlrun/frameworks/lgbm/model_server.py +6 -6
  82. mlrun/frameworks/lgbm/utils.py +5 -5
  83. mlrun/frameworks/onnx/dataset.py +8 -8
  84. mlrun/frameworks/onnx/mlrun_interface.py +3 -3
  85. mlrun/frameworks/onnx/model_handler.py +6 -6
  86. mlrun/frameworks/onnx/model_server.py +7 -7
  87. mlrun/frameworks/parallel_coordinates.py +2 -2
  88. mlrun/frameworks/pytorch/__init__.py +16 -16
  89. mlrun/frameworks/pytorch/callbacks/callback.py +4 -5
  90. mlrun/frameworks/pytorch/callbacks/logging_callback.py +17 -17
  91. mlrun/frameworks/pytorch/callbacks/mlrun_logging_callback.py +11 -11
  92. mlrun/frameworks/pytorch/callbacks/tensorboard_logging_callback.py +23 -29
  93. mlrun/frameworks/pytorch/callbacks_handler.py +38 -38
  94. mlrun/frameworks/pytorch/mlrun_interface.py +20 -20
  95. mlrun/frameworks/pytorch/model_handler.py +17 -17
  96. mlrun/frameworks/pytorch/model_server.py +7 -7
  97. mlrun/frameworks/sklearn/__init__.py +12 -12
  98. mlrun/frameworks/sklearn/estimator.py +4 -4
  99. mlrun/frameworks/sklearn/metrics_library.py +14 -14
  100. mlrun/frameworks/sklearn/mlrun_interface.py +3 -6
  101. mlrun/frameworks/sklearn/model_handler.py +2 -2
  102. mlrun/frameworks/tf_keras/__init__.py +5 -5
  103. mlrun/frameworks/tf_keras/callbacks/logging_callback.py +14 -14
  104. mlrun/frameworks/tf_keras/callbacks/mlrun_logging_callback.py +11 -11
  105. mlrun/frameworks/tf_keras/callbacks/tensorboard_logging_callback.py +19 -23
  106. mlrun/frameworks/tf_keras/mlrun_interface.py +7 -9
  107. mlrun/frameworks/tf_keras/model_handler.py +14 -14
  108. mlrun/frameworks/tf_keras/model_server.py +6 -6
  109. mlrun/frameworks/xgboost/__init__.py +12 -12
  110. mlrun/frameworks/xgboost/model_handler.py +6 -6
  111. mlrun/k8s_utils.py +4 -5
  112. mlrun/kfpops.py +2 -2
  113. mlrun/launcher/base.py +10 -10
  114. mlrun/launcher/local.py +8 -8
  115. mlrun/launcher/remote.py +7 -7
  116. mlrun/lists.py +3 -4
  117. mlrun/model.py +205 -55
  118. mlrun/model_monitoring/api.py +21 -24
  119. mlrun/model_monitoring/application.py +4 -4
  120. mlrun/model_monitoring/batch.py +17 -17
  121. mlrun/model_monitoring/controller.py +2 -1
  122. mlrun/model_monitoring/features_drift_table.py +44 -31
  123. mlrun/model_monitoring/prometheus.py +1 -4
  124. mlrun/model_monitoring/stores/kv_model_endpoint_store.py +11 -13
  125. mlrun/model_monitoring/stores/model_endpoint_store.py +9 -11
  126. mlrun/model_monitoring/stores/models/__init__.py +2 -2
  127. mlrun/model_monitoring/stores/sql_model_endpoint_store.py +11 -13
  128. mlrun/model_monitoring/stream_processing.py +16 -34
  129. mlrun/model_monitoring/tracking_policy.py +2 -1
  130. mlrun/package/__init__.py +6 -6
  131. mlrun/package/context_handler.py +5 -5
  132. mlrun/package/packager.py +7 -7
  133. mlrun/package/packagers/default_packager.py +6 -6
  134. mlrun/package/packagers/numpy_packagers.py +15 -15
  135. mlrun/package/packagers/pandas_packagers.py +5 -5
  136. mlrun/package/packagers/python_standard_library_packagers.py +10 -10
  137. mlrun/package/packagers_manager.py +18 -23
  138. mlrun/package/utils/_formatter.py +4 -4
  139. mlrun/package/utils/_pickler.py +2 -2
  140. mlrun/package/utils/_supported_format.py +4 -4
  141. mlrun/package/utils/log_hint_utils.py +2 -2
  142. mlrun/package/utils/type_hint_utils.py +4 -9
  143. mlrun/platforms/other.py +1 -2
  144. mlrun/projects/operations.py +5 -5
  145. mlrun/projects/pipelines.py +9 -9
  146. mlrun/projects/project.py +58 -46
  147. mlrun/render.py +1 -1
  148. mlrun/run.py +9 -9
  149. mlrun/runtimes/__init__.py +7 -4
  150. mlrun/runtimes/base.py +20 -23
  151. mlrun/runtimes/constants.py +5 -5
  152. mlrun/runtimes/daskjob.py +8 -8
  153. mlrun/runtimes/databricks_job/databricks_cancel_task.py +1 -1
  154. mlrun/runtimes/databricks_job/databricks_runtime.py +7 -7
  155. mlrun/runtimes/function_reference.py +1 -1
  156. mlrun/runtimes/local.py +1 -1
  157. mlrun/runtimes/mpijob/abstract.py +1 -2
  158. mlrun/runtimes/nuclio/__init__.py +20 -0
  159. mlrun/runtimes/{function.py → nuclio/function.py} +15 -16
  160. mlrun/runtimes/{nuclio.py → nuclio/nuclio.py} +6 -6
  161. mlrun/runtimes/{serving.py → nuclio/serving.py} +13 -12
  162. mlrun/runtimes/pod.py +95 -48
  163. mlrun/runtimes/remotesparkjob.py +1 -1
  164. mlrun/runtimes/sparkjob/spark3job.py +50 -33
  165. mlrun/runtimes/utils.py +1 -2
  166. mlrun/secrets.py +3 -3
  167. mlrun/serving/remote.py +0 -4
  168. mlrun/serving/routers.py +6 -6
  169. mlrun/serving/server.py +4 -4
  170. mlrun/serving/states.py +29 -0
  171. mlrun/serving/utils.py +3 -3
  172. mlrun/serving/v1_serving.py +6 -7
  173. mlrun/serving/v2_serving.py +50 -8
  174. mlrun/track/tracker_manager.py +3 -3
  175. mlrun/track/trackers/mlflow_tracker.py +1 -2
  176. mlrun/utils/async_http.py +5 -7
  177. mlrun/utils/azure_vault.py +1 -1
  178. mlrun/utils/clones.py +1 -2
  179. mlrun/utils/condition_evaluator.py +3 -3
  180. mlrun/utils/db.py +3 -3
  181. mlrun/utils/helpers.py +37 -119
  182. mlrun/utils/http.py +1 -4
  183. mlrun/utils/logger.py +49 -14
  184. mlrun/utils/notifications/notification/__init__.py +3 -3
  185. mlrun/utils/notifications/notification/base.py +2 -2
  186. mlrun/utils/notifications/notification/ipython.py +1 -1
  187. mlrun/utils/notifications/notification_pusher.py +8 -14
  188. mlrun/utils/retryer.py +207 -0
  189. mlrun/utils/singleton.py +1 -1
  190. mlrun/utils/v3io_clients.py +2 -3
  191. mlrun/utils/version/version.json +2 -2
  192. mlrun/utils/version/version.py +2 -6
  193. {mlrun-1.6.0rc35.dist-info → mlrun-1.7.0rc2.dist-info}/METADATA +9 -9
  194. mlrun-1.7.0rc2.dist-info/RECORD +315 -0
  195. mlrun-1.6.0rc35.dist-info/RECORD +0 -313
  196. {mlrun-1.6.0rc35.dist-info → mlrun-1.7.0rc2.dist-info}/LICENSE +0 -0
  197. {mlrun-1.6.0rc35.dist-info → mlrun-1.7.0rc2.dist-info}/WHEEL +0 -0
  198. {mlrun-1.6.0rc35.dist-info → mlrun-1.7.0rc2.dist-info}/entry_points.txt +0 -0
  199. {mlrun-1.6.0rc35.dist-info → mlrun-1.7.0rc2.dist-info}/top_level.txt +0 -0
@@ -14,7 +14,7 @@
14
14
  #
15
15
  import importlib
16
16
  import sys
17
- from typing import Any, Dict, List, Tuple, Union
17
+ from typing import Any, Union
18
18
 
19
19
  import torch
20
20
  import torch.multiprocessing as mp
@@ -109,13 +109,13 @@ class PyTorchMLRunInterface:
109
109
  loss_function: Module,
110
110
  optimizer: Optimizer,
111
111
  validation_set: DataLoader = None,
112
- metric_functions: List[PyTorchTypes.MetricFunctionType] = None,
112
+ metric_functions: list[PyTorchTypes.MetricFunctionType] = None,
113
113
  scheduler=None,
114
114
  scheduler_step_frequency: Union[int, float, str] = "epoch",
115
115
  epochs: int = 1,
116
116
  training_iterations: int = None,
117
117
  validation_iterations: int = None,
118
- callbacks: List[Callback] = None,
118
+ callbacks: list[Callback] = None,
119
119
  use_cuda: bool = True,
120
120
  use_horovod: bool = None,
121
121
  ):
@@ -221,12 +221,12 @@ class PyTorchMLRunInterface:
221
221
  self,
222
222
  dataset: DataLoader,
223
223
  loss_function: Module = None,
224
- metric_functions: List[PyTorchTypes.MetricFunctionType] = None,
224
+ metric_functions: list[PyTorchTypes.MetricFunctionType] = None,
225
225
  iterations: int = None,
226
- callbacks: List[Callback] = None,
226
+ callbacks: list[Callback] = None,
227
227
  use_cuda: bool = True,
228
228
  use_horovod: bool = None,
229
- ) -> List[PyTorchTypes.MetricValueType]:
229
+ ) -> list[PyTorchTypes.MetricValueType]:
230
230
  """
231
231
  Initiate an evaluation process on this interface configuration.
232
232
 
@@ -303,9 +303,9 @@ class PyTorchMLRunInterface:
303
303
  def add_auto_logging_callbacks(
304
304
  self,
305
305
  add_mlrun_logger: bool = True,
306
- mlrun_callback_kwargs: Dict[str, Any] = None,
306
+ mlrun_callback_kwargs: dict[str, Any] = None,
307
307
  add_tensorboard_logger: bool = True,
308
- tensorboard_callback_kwargs: Dict[str, Any] = None,
308
+ tensorboard_callback_kwargs: dict[str, Any] = None,
309
309
  ):
310
310
  """
311
311
  Get automatic logging callbacks to both MLRun's context and Tensorboard. For further features of logging to both
@@ -347,7 +347,7 @@ class PyTorchMLRunInterface:
347
347
 
348
348
  def predict(
349
349
  self,
350
- inputs: Union[Tensor, List[Tensor]],
350
+ inputs: Union[Tensor, list[Tensor]],
351
351
  use_cuda: bool = True,
352
352
  batch_size: int = -1,
353
353
  ) -> Tensor:
@@ -402,13 +402,13 @@ class PyTorchMLRunInterface:
402
402
  loss_function: Module = None,
403
403
  optimizer: Optimizer = None,
404
404
  validation_set: DataLoader = None,
405
- metric_functions: List[PyTorchTypes.MetricFunctionType] = None,
405
+ metric_functions: list[PyTorchTypes.MetricFunctionType] = None,
406
406
  scheduler=None,
407
407
  scheduler_step_frequency: Union[int, float, str] = "epoch",
408
408
  epochs: int = 1,
409
409
  training_iterations: int = None,
410
410
  validation_iterations: int = None,
411
- callbacks: List[Callback] = None,
411
+ callbacks: list[Callback] = None,
412
412
  use_cuda: bool = True,
413
413
  use_horovod: bool = None,
414
414
  ):
@@ -734,7 +734,7 @@ class PyTorchMLRunInterface:
734
734
 
735
735
  def _validate(
736
736
  self, is_evaluation: bool = False
737
- ) -> Tuple[PyTorchTypes.MetricValueType, List[PyTorchTypes.MetricValueType]]:
737
+ ) -> tuple[PyTorchTypes.MetricValueType, list[PyTorchTypes.MetricValueType]]:
738
738
  """
739
739
  Initiate a single epoch validation.
740
740
 
@@ -817,7 +817,7 @@ class PyTorchMLRunInterface:
817
817
  )
818
818
  return loss_value, metric_values
819
819
 
820
- def _print_results(self, loss_value: Tensor, metric_values: List[float]):
820
+ def _print_results(self, loss_value: Tensor, metric_values: list[float]):
821
821
  """
822
822
  Print the given result between each epoch.
823
823
 
@@ -832,7 +832,7 @@ class PyTorchMLRunInterface:
832
832
  + tabulate(table, headers=["Metrics", "Values"], tablefmt="pretty")
833
833
  )
834
834
 
835
- def _metrics(self, y_pred: Tensor, y_true: Tensor) -> List[float]:
835
+ def _metrics(self, y_pred: Tensor, y_true: Tensor) -> list[float]:
836
836
  """
837
837
  Call all the metrics on the given batch's truth and prediction output.
838
838
 
@@ -860,7 +860,7 @@ class PyTorchMLRunInterface:
860
860
  average_tensor = self._hvd.allreduce(rank_value, name=name)
861
861
  return average_tensor.item()
862
862
 
863
- def _get_learning_rate(self) -> Union[Tuple[str, List[Union[str, int]]], None]:
863
+ def _get_learning_rate(self) -> Union[tuple[str, list[Union[str, int]]], None]:
864
864
  """
865
865
  Try and get the learning rate value form the stored optimizer.
866
866
 
@@ -949,8 +949,8 @@ class PyTorchMLRunInterface:
949
949
 
950
950
  @staticmethod
951
951
  def _tensor_to_cuda(
952
- tensor: Union[Tensor, Dict, List, Tuple],
953
- ) -> Union[Tensor, Dict, List, Tuple]:
952
+ tensor: Union[Tensor, dict, list, tuple],
953
+ ) -> Union[Tensor, dict, list, tuple]:
954
954
  """
955
955
  Send to given tensor to cuda if it is a tensor. If the given object is a dictionary, the dictionary values will
956
956
  be sent to the function again recursively. If the given object is a list or a tuple, all the values in it will
@@ -997,7 +997,7 @@ class PyTorchMLRunInterface:
997
997
  dataset: DataLoader,
998
998
  iterations: int,
999
999
  description: str,
1000
- metrics: List[PyTorchTypes.MetricFunctionType],
1000
+ metrics: list[PyTorchTypes.MetricFunctionType],
1001
1001
  ) -> tqdm:
1002
1002
  """
1003
1003
  Create a progress bar for training and validating / evaluating.
@@ -1028,8 +1028,8 @@ class PyTorchMLRunInterface:
1028
1028
  @staticmethod
1029
1029
  def _update_progress_bar(
1030
1030
  progress_bar: tqdm,
1031
- metrics: List[PyTorchTypes.MetricFunctionType],
1032
- values: List[PyTorchTypes.MetricValueType],
1031
+ metrics: list[PyTorchTypes.MetricFunctionType],
1032
+ values: list[PyTorchTypes.MetricValueType],
1033
1033
  ):
1034
1034
  """
1035
1035
  Update the progress bar metrics results.
@@ -13,7 +13,7 @@
13
13
  # limitations under the License.
14
14
  #
15
15
  import os
16
- from typing import Dict, List, Tuple, Type, Union
16
+ from typing import Union
17
17
 
18
18
  import numpy as np
19
19
  import torch
@@ -50,9 +50,9 @@ class PyTorchModelHandler(DLModelHandler):
50
50
  model: Module = None,
51
51
  model_path: str = None,
52
52
  model_name: str = None,
53
- model_class: Union[Type[Module], str] = None,
54
- modules_map: Union[Dict[str, Union[None, str, List[str]]], str] = None,
55
- custom_objects_map: Union[Dict[str, Union[str, List[str]]], str] = None,
53
+ model_class: Union[type[Module], str] = None,
54
+ modules_map: Union[dict[str, Union[None, str, list[str]]], str] = None,
55
+ custom_objects_map: Union[dict[str, Union[str, list[str]]], str] = None,
56
56
  custom_objects_directory: str = None,
57
57
  context: mlrun.MLClientCtx = None,
58
58
  **kwargs,
@@ -136,7 +136,7 @@ class PyTorchModelHandler(DLModelHandler):
136
136
  )
137
137
 
138
138
  # Set up the base handler class:
139
- super(PyTorchModelHandler, self).__init__(
139
+ super().__init__(
140
140
  model=model,
141
141
  model_path=model_path,
142
142
  model_name=model_name,
@@ -152,8 +152,8 @@ class PyTorchModelHandler(DLModelHandler):
152
152
 
153
153
  def set_labels(
154
154
  self,
155
- to_add: Dict[str, Union[str, int, float]] = None,
156
- to_remove: List[str] = None,
155
+ to_add: dict[str, Union[str, int, float]] = None,
156
+ to_remove: list[str] = None,
157
157
  ):
158
158
  """
159
159
  Update the labels dictionary of this model artifact. There are required labels that cannot be edited or removed.
@@ -162,14 +162,14 @@ class PyTorchModelHandler(DLModelHandler):
162
162
  :param to_remove: A list of labels keys to remove.
163
163
  """
164
164
  # Update the user's labels:
165
- super(PyTorchModelHandler, self).set_labels(to_add=to_add, to_remove=to_remove)
165
+ super().set_labels(to_add=to_add, to_remove=to_remove)
166
166
 
167
167
  # Set the required labels:
168
168
  self._labels[self._LabelKeys.MODEL_CLASS_NAME] = self._model_class_name
169
169
 
170
170
  def save(
171
171
  self, output_path: str = None, **kwargs
172
- ) -> Union[Dict[str, Artifact], None]:
172
+ ) -> Union[dict[str, Artifact], None]:
173
173
  """
174
174
  Save the handled model at the given output path.
175
175
 
@@ -182,7 +182,7 @@ class PyTorchModelHandler(DLModelHandler):
182
182
  :raise MLRunInvalidArgumentError: If an output path was not given, yet a context was not provided in
183
183
  initialization.
184
184
  """
185
- super(PyTorchModelHandler, self).save(output_path=output_path)
185
+ super().save(output_path=output_path)
186
186
 
187
187
  # Set the output path:
188
188
  if output_path is None:
@@ -207,7 +207,7 @@ class PyTorchModelHandler(DLModelHandler):
207
207
 
208
208
  :raise MLRunInvalidArgumentError: If the model's class is not in the custom objects map.
209
209
  """
210
- super(PyTorchModelHandler, self).load()
210
+ super().load()
211
211
 
212
212
  # Validate the model's class is in the custom objects map:
213
213
  if (
@@ -233,10 +233,10 @@ class PyTorchModelHandler(DLModelHandler):
233
233
  def to_onnx(
234
234
  self,
235
235
  model_name: str = None,
236
- input_sample: Union[torch.Tensor, Tuple[torch.Tensor, ...]] = None,
237
- input_layers_names: List[str] = None,
238
- output_layers_names: List[str] = None,
239
- dynamic_axes: Dict[str, Dict[int, str]] = None,
236
+ input_sample: Union[torch.Tensor, tuple[torch.Tensor, ...]] = None,
237
+ input_layers_names: list[str] = None,
238
+ output_layers_names: list[str] = None,
239
+ dynamic_axes: dict[str, dict[int, str]] = None,
240
240
  is_batched: bool = True,
241
241
  optimize: bool = True,
242
242
  output_path: str = None,
@@ -406,7 +406,7 @@ class PyTorchModelHandler(DLModelHandler):
406
406
  ]
407
407
 
408
408
  # Continue collecting from abstract class:
409
- super(PyTorchModelHandler, self)._collect_files_from_store_object()
409
+ super()._collect_files_from_store_object()
410
410
 
411
411
  def _collect_files_from_local_path(self):
412
412
  """
@@ -443,7 +443,7 @@ class PyTorchModelHandler(DLModelHandler):
443
443
  """
444
444
  # Supported types:
445
445
  if isinstance(sample, np.ndarray):
446
- return super(PyTorchModelHandler, self)._read_sample(sample=sample)
446
+ return super()._read_sample(sample=sample)
447
447
  elif isinstance(sample, torch.Tensor):
448
448
  return Feature(
449
449
  value_type=PyTorchUtils.convert_torch_dtype_to_value_type(
@@ -12,7 +12,7 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
  #
15
- from typing import Any, Dict, List, Type, Union
15
+ from typing import Any, Union
16
16
 
17
17
  import numpy as np
18
18
  import torch
@@ -39,9 +39,9 @@ class PyTorchModelServer(V2ModelServer):
39
39
  model: Module = None,
40
40
  model_path: str = None,
41
41
  model_name: str = None,
42
- model_class: Union[Type[Module], str] = None,
43
- modules_map: Union[Dict[str, Union[None, str, List[str]]], str] = None,
44
- custom_objects_map: Union[Dict[str, Union[str, List[str]]], str] = None,
42
+ model_class: Union[type[Module], str] = None,
43
+ modules_map: Union[dict[str, Union[None, str, list[str]]], str] = None,
44
+ custom_objects_map: Union[dict[str, Union[str, list[str]]], str] = None,
45
45
  custom_objects_directory: str = None,
46
46
  use_cuda: bool = True,
47
47
  to_list: bool = False,
@@ -106,7 +106,7 @@ class PyTorchModelServer(V2ModelServer):
106
106
  :param protocol: -
107
107
  :param class_args: -
108
108
  """
109
- super(PyTorchModelServer, self).__init__(
109
+ super().__init__(
110
110
  context=context,
111
111
  name=name,
112
112
  model_path=model_path,
@@ -158,7 +158,7 @@ class PyTorchModelServer(V2ModelServer):
158
158
  model=self._model_handler.model, context=self.context
159
159
  )
160
160
 
161
- def predict(self, request: Dict[str, Any]) -> Union[Tensor, list]:
161
+ def predict(self, request: dict[str, Any]) -> Union[Tensor, list]:
162
162
  """
163
163
  Infer the inputs through the model using MLRun's PyTorch interface and return its output. The inferred data will
164
164
  be read from the "inputs" key of the request.
@@ -183,7 +183,7 @@ class PyTorchModelServer(V2ModelServer):
183
183
  # Return as list if required:
184
184
  return predictions if not self.to_list else predictions.tolist()
185
185
 
186
- def explain(self, request: Dict[str, Any]) -> str:
186
+ def explain(self, request: dict[str, Any]) -> str:
187
187
  """
188
188
  Return a string explaining what model is being serve in this serving function and the function name.
189
189
 
@@ -14,7 +14,7 @@
14
14
  #
15
15
  # flake8: noqa - this is until we take care of the F401 violations with respect to __all__ & sphinx
16
16
  import warnings
17
- from typing import Dict, List, Union
17
+ from typing import Union
18
18
 
19
19
  import mlrun
20
20
  from mlrun.frameworks.sklearn.metric import Metric
@@ -37,25 +37,25 @@ def apply_mlrun(
37
37
  model_name: str = "model",
38
38
  tag: str = "",
39
39
  model_path: str = None,
40
- modules_map: Union[Dict[str, Union[None, str, List[str]]], str] = None,
41
- custom_objects_map: Union[Dict[str, Union[str, List[str]]], str] = None,
40
+ modules_map: Union[dict[str, Union[None, str, list[str]]], str] = None,
41
+ custom_objects_map: Union[dict[str, Union[str, list[str]]], str] = None,
42
42
  custom_objects_directory: str = None,
43
43
  context: mlrun.MLClientCtx = None,
44
- artifacts: Union[List[MLPlan], List[str], Dict[str, dict]] = None,
44
+ artifacts: Union[list[MLPlan], list[str], dict[str, dict]] = None,
45
45
  metrics: Union[
46
- List[Metric],
47
- List[SKLearnTypes.MetricEntryType],
48
- Dict[str, SKLearnTypes.MetricEntryType],
46
+ list[Metric],
47
+ list[SKLearnTypes.MetricEntryType],
48
+ dict[str, SKLearnTypes.MetricEntryType],
49
49
  ] = None,
50
50
  x_test: SKLearnTypes.DatasetType = None,
51
51
  y_test: SKLearnTypes.DatasetType = None,
52
52
  sample_set: Union[SKLearnTypes.DatasetType, mlrun.DataItem, str] = None,
53
- y_columns: Union[List[str], List[int]] = None,
53
+ y_columns: Union[list[str], list[int]] = None,
54
54
  feature_vector: str = None,
55
- feature_weights: List[float] = None,
56
- labels: Dict[str, Union[str, int, float]] = None,
57
- parameters: Dict[str, Union[str, int, float]] = None,
58
- extra_data: Dict[str, SKLearnTypes.ExtraDataType] = None,
55
+ feature_weights: list[float] = None,
56
+ labels: dict[str, Union[str, int, float]] = None,
57
+ parameters: dict[str, Union[str, int, float]] = None,
58
+ extra_data: dict[str, SKLearnTypes.ExtraDataType] = None,
59
59
  auto_log: bool = True,
60
60
  **kwargs,
61
61
  ) -> SKLearnModelHandler:
@@ -12,7 +12,7 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
  #
15
- from typing import Dict, List, Union
15
+ from typing import Union
16
16
 
17
17
  import numpy as np
18
18
  import pandas as pd
@@ -32,7 +32,7 @@ class Estimator:
32
32
  def __init__(
33
33
  self,
34
34
  context: mlrun.MLClientCtx = None,
35
- metrics: List[Metric] = None,
35
+ metrics: list[Metric] = None,
36
36
  ):
37
37
  """
38
38
  Initialize an estimator with the given metrics. The estimator will log the calculated results using the given
@@ -62,7 +62,7 @@ class Estimator:
62
62
  return self._context
63
63
 
64
64
  @property
65
- def results(self) -> Dict[str, float]:
65
+ def results(self) -> dict[str, float]:
66
66
  """
67
67
  Get the logged results.
68
68
 
@@ -86,7 +86,7 @@ class Estimator:
86
86
  """
87
87
  self._context = context
88
88
 
89
- def set_metrics(self, metrics: List[Metric]):
89
+ def set_metrics(self, metrics: list[Metric]):
90
90
  """
91
91
  Update the metrics of this logger to the given list of metrics here.
92
92
 
@@ -13,7 +13,7 @@
13
13
  # limitations under the License.
14
14
  #
15
15
  from abc import ABC
16
- from typing import Dict, List, Union
16
+ from typing import Union
17
17
 
18
18
  import sklearn
19
19
  from sklearn.preprocessing import LabelBinarizer
@@ -40,14 +40,14 @@ class MetricsLibrary(ABC):
40
40
  def get_metrics(
41
41
  cls,
42
42
  metrics: Union[
43
- List[Metric],
44
- List[SKLearnTypes.MetricEntryType],
45
- Dict[str, SKLearnTypes.MetricEntryType],
43
+ list[Metric],
44
+ list[SKLearnTypes.MetricEntryType],
45
+ dict[str, SKLearnTypes.MetricEntryType],
46
46
  ] = None,
47
47
  context: mlrun.MLClientCtx = None,
48
48
  include_default: bool = True,
49
49
  **default_kwargs,
50
- ) -> List[Metric]:
50
+ ) -> list[Metric]:
51
51
  """
52
52
  Get metrics for a run. The metrics will be taken from the provided metrics / configuration via code, from
53
53
  provided configuration via MLRun context and if the 'include_default' is True, from the metric library's
@@ -87,11 +87,11 @@ class MetricsLibrary(ABC):
87
87
  def _parse(
88
88
  cls,
89
89
  metrics: Union[
90
- List[Metric],
91
- List[SKLearnTypes.MetricEntryType],
92
- Dict[str, SKLearnTypes.MetricEntryType],
90
+ list[Metric],
91
+ list[SKLearnTypes.MetricEntryType],
92
+ dict[str, SKLearnTypes.MetricEntryType],
93
93
  ],
94
- ) -> List[Metric]:
94
+ ) -> list[Metric]:
95
95
  """
96
96
  Parse the given metrics by the possible rules of the framework implementing.
97
97
 
@@ -116,8 +116,8 @@ class MetricsLibrary(ABC):
116
116
 
117
117
  @classmethod
118
118
  def _from_list(
119
- cls, metrics_list: List[Union[Metric, SKLearnTypes.MetricEntryType]]
120
- ) -> List[Metric]:
119
+ cls, metrics_list: list[Union[Metric, SKLearnTypes.MetricEntryType]]
120
+ ) -> list[Metric]:
121
121
  """
122
122
  Collect the given metrics configurations from a list. The metrics names will be chosen by the following rules:
123
123
 
@@ -143,8 +143,8 @@ class MetricsLibrary(ABC):
143
143
 
144
144
  @classmethod
145
145
  def _from_dict(
146
- cls, metrics_dictionary: Dict[str, SKLearnTypes.MetricEntryType]
147
- ) -> List[Metric]:
146
+ cls, metrics_dictionary: dict[str, SKLearnTypes.MetricEntryType]
147
+ ) -> list[Metric]:
148
148
  """
149
149
  Collect the given metrics configurations from a dictionary.
150
150
 
@@ -165,7 +165,7 @@ class MetricsLibrary(ABC):
165
165
  @classmethod
166
166
  def _default(
167
167
  cls, model: SKLearnTypes.ModelType, y: SKLearnTypes.DatasetType = None
168
- ) -> List[Metric]:
168
+ ) -> list[Metric]:
169
169
  """
170
170
  Get the default metrics list according to the algorithm functionality.
171
171
 
@@ -13,7 +13,6 @@
13
13
  # limitations under the License.
14
14
  #
15
15
  from abc import ABC
16
- from typing import List
17
16
 
18
17
  import mlrun
19
18
 
@@ -75,9 +74,7 @@ class SKLearnMLRunInterface(MLRunInterface, ABC):
75
74
  cls._REPLACED_METHODS.remove("predict_proba")
76
75
 
77
76
  # Add the interface to the model:
78
- super(SKLearnMLRunInterface, cls).add_interface(
79
- obj=obj, restoration=restoration
80
- )
77
+ super().add_interface(obj=obj, restoration=restoration)
81
78
 
82
79
  # Restore the '_REPLACED_METHODS' list for next models:
83
80
  if "predict_proba" not in cls._REPLACED_METHODS:
@@ -154,8 +151,8 @@ class SKLearnMLRunInterface(MLRunInterface, ABC):
154
151
  def configure_logging(
155
152
  self,
156
153
  context: mlrun.MLClientCtx = None,
157
- plans: List[MLPlan] = None,
158
- metrics: List[Metric] = None,
154
+ plans: list[MLPlan] = None,
155
+ metrics: list[Metric] = None,
159
156
  x_test: SKLearnTypes.DatasetType = None,
160
157
  y_test: SKLearnTypes.DatasetType = None,
161
158
  model_handler: MLModelHandler = None,
@@ -59,7 +59,7 @@ class SKLearnModelHandler(MLModelHandler):
59
59
 
60
60
  :return The saved model additional artifacts (if needed) dictionary if context is available and None otherwise.
61
61
  """
62
- super(SKLearnModelHandler, self).save(output_path=output_path)
62
+ super().save(output_path=output_path)
63
63
 
64
64
  # Save the model pkl file:
65
65
  self._model_file = f"{self._model_name}.pkl"
@@ -73,7 +73,7 @@ class SKLearnModelHandler(MLModelHandler):
73
73
  Load the specified model in this handler. Additional parameters for the class initializer can be passed via the
74
74
  kwargs dictionary.
75
75
  """
76
- super(SKLearnModelHandler, self).load()
76
+ super().load()
77
77
 
78
78
  # Load from a pkl file:
79
79
  with open(self._model_file, "rb") as pickle_file:
@@ -13,7 +13,7 @@
13
13
  # limitations under the License.
14
14
  #
15
15
  # flake8: noqa - this is until we take care of the F401 violations with respect to __all__ & sphinx
16
- from typing import Any, Dict, List, Union
16
+ from typing import Any, Union
17
17
 
18
18
  from tensorflow import keras
19
19
 
@@ -33,14 +33,14 @@ def apply_mlrun(
33
33
  model_path: str = None,
34
34
  model_format: str = TFKerasModelHandler.ModelFormats.SAVED_MODEL,
35
35
  save_traces: bool = False,
36
- modules_map: Union[Dict[str, Union[None, str, List[str]]], str] = None,
37
- custom_objects_map: Union[Dict[str, Union[str, List[str]]], str] = None,
36
+ modules_map: Union[dict[str, Union[None, str, list[str]]], str] = None,
37
+ custom_objects_map: Union[dict[str, Union[str, list[str]]], str] = None,
38
38
  custom_objects_directory: str = None,
39
39
  context: mlrun.MLClientCtx = None,
40
40
  auto_log: bool = True,
41
41
  tensorboard_directory: str = None,
42
- mlrun_callback_kwargs: Dict[str, Any] = None,
43
- tensorboard_callback_kwargs: Dict[str, Any] = None,
42
+ mlrun_callback_kwargs: dict[str, Any] = None,
43
+ tensorboard_callback_kwargs: dict[str, Any] = None,
44
44
  use_horovod: bool = None,
45
45
  **kwargs,
46
46
  ) -> TFKerasModelHandler:
@@ -12,7 +12,7 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
  #
15
- from typing import Callable, Dict, List, Union
15
+ from typing import Callable, Union
16
16
 
17
17
  import numpy as np
18
18
  import tensorflow as tf
@@ -36,11 +36,11 @@ class LoggingCallback(Callback):
36
36
  def __init__(
37
37
  self,
38
38
  context: mlrun.MLClientCtx = None,
39
- dynamic_hyperparameters: Dict[
40
- str, Union[List[Union[str, int]], Callable[[], TFKerasTypes.TrackableType]]
39
+ dynamic_hyperparameters: dict[
40
+ str, Union[list[Union[str, int]], Callable[[], TFKerasTypes.TrackableType]]
41
41
  ] = None,
42
- static_hyperparameters: Dict[
43
- str, Union[TFKerasTypes.TrackableType, List[Union[str, int]]]
42
+ static_hyperparameters: dict[
43
+ str, Union[TFKerasTypes.TrackableType, list[Union[str, int]]]
44
44
  ] = None,
45
45
  auto_log: bool = False,
46
46
  ):
@@ -70,7 +70,7 @@ class LoggingCallback(Callback):
70
70
  :param auto_log: Whether or not to enable auto logging, trying to track common static and dynamic
71
71
  hyperparameters.
72
72
  """
73
- super(LoggingCallback, self).__init__()
73
+ super().__init__()
74
74
  self._supports_tf_logs = True
75
75
 
76
76
  # Store the configurations:
@@ -93,7 +93,7 @@ class LoggingCallback(Callback):
93
93
  self._is_training = None # type: bool
94
94
  self._auto_log = auto_log
95
95
 
96
- def get_training_results(self) -> Dict[str, List[List[float]]]:
96
+ def get_training_results(self) -> dict[str, list[list[float]]]:
97
97
  """
98
98
  Get the training results logged. The results will be stored in a dictionary where each key is the metric name
99
99
  and the value is a list of lists of values. The first list is by epoch and the second list is by iteration
@@ -103,7 +103,7 @@ class LoggingCallback(Callback):
103
103
  """
104
104
  return self._logger.training_results
105
105
 
106
- def get_validation_results(self) -> Dict[str, List[List[float]]]:
106
+ def get_validation_results(self) -> dict[str, list[list[float]]]:
107
107
  """
108
108
  Get the validation results logged. The results will be stored in a dictionary where each key is the metric name
109
109
  and the value is a list of lists of values. The first list is by epoch and the second list is by iteration
@@ -113,7 +113,7 @@ class LoggingCallback(Callback):
113
113
  """
114
114
  return self._logger.validation_results
115
115
 
116
- def get_training_summaries(self) -> Dict[str, List[float]]:
116
+ def get_training_summaries(self) -> dict[str, list[float]]:
117
117
  """
118
118
  Get the training summaries of the metrics results. The summaries will be stored in a dictionary where each key
119
119
  is the metric names and the value is a list of all the summary values per epoch.
@@ -122,7 +122,7 @@ class LoggingCallback(Callback):
122
122
  """
123
123
  return self._logger.training_summaries
124
124
 
125
- def get_validation_summaries(self) -> Dict[str, List[float]]:
125
+ def get_validation_summaries(self) -> dict[str, list[float]]:
126
126
  """
127
127
  Get the validation summaries of the metrics results. The summaries will be stored in a dictionary where each key
128
128
  is the metric names and the value is a list of all the summary values per epoch.
@@ -131,7 +131,7 @@ class LoggingCallback(Callback):
131
131
  """
132
132
  return self._logger.validation_summaries
133
133
 
134
- def get_static_hyperparameters(self) -> Dict[str, TFKerasTypes.TrackableType]:
134
+ def get_static_hyperparameters(self) -> dict[str, TFKerasTypes.TrackableType]:
135
135
  """
136
136
  Get the static hyperparameters logged. The hyperparameters will be stored in a dictionary where each key is the
137
137
  hyperparameter name and the value is his logged value.
@@ -142,7 +142,7 @@ class LoggingCallback(Callback):
142
142
 
143
143
  def get_dynamic_hyperparameters(
144
144
  self,
145
- ) -> Dict[str, List[TFKerasTypes.TrackableType]]:
145
+ ) -> dict[str, list[TFKerasTypes.TrackableType]]:
146
146
  """
147
147
  Get the dynamic hyperparameters logged. The hyperparameters will be stored in a dictionary where each key is the
148
148
  hyperparameter name and the value is a list of his logged values per epoch.
@@ -329,7 +329,7 @@ class LoggingCallback(Callback):
329
329
 
330
330
  # Static hyperparameters:
331
331
  for name, value in self._static_hyperparameters_keys.items():
332
- if isinstance(value, List):
332
+ if isinstance(value, list):
333
333
  # Its a parameter that needed to be extracted via key chain.
334
334
  self._logger.log_static_hyperparameter(
335
335
  parameter_name=name,
@@ -398,7 +398,7 @@ class LoggingCallback(Callback):
398
398
  def _get_hyperparameter(
399
399
  self,
400
400
  key_chain: Union[
401
- Callable[[], TFKerasTypes.TrackableType], List[Union[str, int]]
401
+ Callable[[], TFKerasTypes.TrackableType], list[Union[str, int]]
402
402
  ],
403
403
  ) -> TFKerasTypes.TrackableType:
404
404
  """