mlrun 1.6.0rc34__py3-none-any.whl → 1.6.1rc1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mlrun might be problematic. Click here for more details.
- mlrun/runtimes/serving.py +2 -1
- mlrun/utils/version/version.json +2 -2
- {mlrun-1.6.0rc34.dist-info → mlrun-1.6.1rc1.dist-info}/METADATA +6 -6
- {mlrun-1.6.0rc34.dist-info → mlrun-1.6.1rc1.dist-info}/RECORD +8 -8
- {mlrun-1.6.0rc34.dist-info → mlrun-1.6.1rc1.dist-info}/LICENSE +0 -0
- {mlrun-1.6.0rc34.dist-info → mlrun-1.6.1rc1.dist-info}/WHEEL +0 -0
- {mlrun-1.6.0rc34.dist-info → mlrun-1.6.1rc1.dist-info}/entry_points.txt +0 -0
- {mlrun-1.6.0rc34.dist-info → mlrun-1.6.1rc1.dist-info}/top_level.txt +0 -0
mlrun/runtimes/serving.py
CHANGED
|
@@ -309,7 +309,8 @@ class ServingRuntime(RemoteRuntime):
|
|
|
309
309
|
stream_args: dict = None,
|
|
310
310
|
tracking_policy: Union[TrackingPolicy, dict] = None,
|
|
311
311
|
):
|
|
312
|
-
"""
|
|
312
|
+
"""apply on your serving function to monitor a deployed model, including real-time dashboards to detect drift
|
|
313
|
+
and analyze performance.
|
|
313
314
|
|
|
314
315
|
:param stream_path: Path/url of the tracking stream e.g. v3io:///users/mike/mystream
|
|
315
316
|
you can use the "dummy://" path for test/simulation.
|
mlrun/utils/version/version.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: mlrun
|
|
3
|
-
Version: 1.6.
|
|
3
|
+
Version: 1.6.1rc1
|
|
4
4
|
Summary: Tracking and config of machine learning runs
|
|
5
5
|
Home-page: https://github.com/mlrun/mlrun
|
|
6
6
|
Author: Yaron Haviv
|
|
@@ -222,7 +222,7 @@ In MLRun the assets, metadata, and services (data, functions, jobs, artifacts, m
|
|
|
222
222
|
Projects can be imported/exported as a whole, mapped to git repositories or IDE projects (in PyCharm, VSCode, etc.), which enables versioning, collaboration, and CI/CD.
|
|
223
223
|
Project access can be restricted to a set of users and roles.
|
|
224
224
|
|
|
225
|
-
See: **Docs:** [Projects and Automation](https://docs.mlrun.org/en/latest/projects/project.html), [CI/CD Integration](https://docs.mlrun.org/en/latest/projects/ci-integration.html), **Tutorials:** [Quick start](https://docs.mlrun.org/en/latest/tutorials/01-mlrun-basics.html), [Automated ML Pipeline](https://docs.mlrun.org/en/latest/tutorials/04-pipeline.html), **Video:** [
|
|
225
|
+
See: **Docs:** [Projects and Automation](https://docs.mlrun.org/en/latest/projects/project.html), [CI/CD Integration](https://docs.mlrun.org/en/latest/projects/ci-integration.html), **Tutorials:** [Quick start](https://docs.mlrun.org/en/latest/tutorials/01-mlrun-basics.html), [Automated ML Pipeline](https://docs.mlrun.org/en/latest/tutorials/04-pipeline.html), **Video:** [Quick start](https://youtu.be/xI8KVGLlj7Q).
|
|
226
226
|
|
|
227
227
|
### Ingest and process data
|
|
228
228
|
|
|
@@ -235,13 +235,13 @@ See: **Docs:** [Ingest and process data](https://docs.mlrun.org/en/latest/data-p
|
|
|
235
235
|
|
|
236
236
|
MLRun allows you to easily build ML pipelines that take data from various sources or the Feature Store and process it, train models at scale with multiple parameters, test models, tracks each experiments, register, version and deploy models, etc. MLRun provides scalable built-in or custom model training services, integrate with any framework and can work with 3rd party training/auto-ML services. You can also bring your own pre-trained model and use it in the pipeline.
|
|
237
237
|
|
|
238
|
-
See: **Docs:** [Develop and train models](https://docs.mlrun.org/en/latest/development/index.html), [Model Training and Tracking](https://docs.mlrun.org/en/latest/development/model-training-tracking.html), [Batch Runs and Workflows](https://docs.mlrun.org/en/latest/concepts/runs-workflows.html); **Tutorials:** [Train
|
|
238
|
+
See: **Docs:** [Develop and train models](https://docs.mlrun.org/en/latest/development/index.html), [Model Training and Tracking](https://docs.mlrun.org/en/latest/development/model-training-tracking.html), [Batch Runs and Workflows](https://docs.mlrun.org/en/latest/concepts/runs-workflows.html); **Tutorials:** [Train, compare, and register models](https://docs.mlrun.org/en/latest/tutorials/02-model-training.html), [Automated ML Pipeline](https://docs.mlrun.org/en/latest/tutorials/04-pipeline.html); **Video:** [Train and compare models](https://youtu.be/bZgBsmLMdQo).
|
|
239
239
|
|
|
240
240
|
### Deploy models and applications
|
|
241
241
|
|
|
242
242
|
MLRun rapidly deploys and manages production-grade real-time or batch application pipelines using elastic and resilient serverless functions. MLRun addresses the entire ML application: intercepting application/user requests, running data processing tasks, inferencing using one or more models, driving actions, and integrating with the application logic.
|
|
243
243
|
|
|
244
|
-
See: **Docs:** [Deploy models and applications](https://docs.mlrun.org/en/latest/deployment/index.html), [Realtime Pipelines](https://docs.mlrun.org/en/latest/serving/serving-graph.html), [Batch Inference](https://docs.mlrun.org/en/latest/
|
|
244
|
+
See: **Docs:** [Deploy models and applications](https://docs.mlrun.org/en/latest/deployment/index.html), [Realtime Pipelines](https://docs.mlrun.org/en/latest/serving/serving-graph.html), [Batch Inference](https://docs.mlrun.org/en/latest/deployment/batch_inference.html), **Tutorials:** [Realtime Serving](https://docs.mlrun.org/en/latest/tutorials/03-model-serving.html), [Batch Inference](https://docs.mlrun.org/en/latest/tutorials/07-batch-infer.html), [Advanced Pipeline](https://docs.mlrun.org/en/latest/tutorials/07-batch-infer.html); **Video:** [Serving pre-trained models](https://youtu.be/OUjOus4dZfw).
|
|
245
245
|
|
|
246
246
|
### Monitor and alert
|
|
247
247
|
|
|
@@ -259,9 +259,9 @@ MLRun includes the following major components:
|
|
|
259
259
|
|
|
260
260
|
[**Project Management:**](https://docs.mlrun.org/en/latest/projects/project.html) A service (API, SDK, DB, UI) that manages the different project assets (data, functions, jobs, workflows, secrets, etc.) and provides central control and metadata layer.
|
|
261
261
|
|
|
262
|
-
[**
|
|
262
|
+
[**Functions:**](https://docs.mlrun.org/en/latest/runtimes/functions.html) automatically deployed software package with one or more methods and runtime-specific attributes (such as image, libraries, command, arguments, resources, etc.).
|
|
263
263
|
|
|
264
|
-
[**Data & Artifacts:**](https://docs.mlrun.org/en/latest/concepts/data
|
|
264
|
+
[**Data & Artifacts:**](https://docs.mlrun.org/en/latest/concepts/data.html) Glueless connectivity to various data sources, metadata management, catalog, and versioning for structures/unstructured artifacts.
|
|
265
265
|
|
|
266
266
|
[**Feature Store:**](https://docs.mlrun.org/en/latest/feature-store/feature-store.html) automatically collects, prepares, catalogs, and serves production data features for development (offline) and real-time (online) deployment using minimal engineering effort.
|
|
267
267
|
|
|
@@ -253,7 +253,7 @@ mlrun/runtimes/local.py,sha256=OAGkcShFlxYXSPnJSAWe0MFxwrVdAvW7VP_Y-bycXQs,21767
|
|
|
253
253
|
mlrun/runtimes/nuclio.py,sha256=hwk4dUaZefI-Qbb4s289vQpt1h0nAucxf6eINzVI-d8,2908
|
|
254
254
|
mlrun/runtimes/pod.py,sha256=73gXYggAdOW4uqRHQPVZy4PnvlS9t3x7qrygxXW2vl0,56778
|
|
255
255
|
mlrun/runtimes/remotesparkjob.py,sha256=W7WqlPbyqE6FjOZ2EFeOzlL1jLGWAWe61jOH0Umy3F4,7334
|
|
256
|
-
mlrun/runtimes/serving.py,sha256=
|
|
256
|
+
mlrun/runtimes/serving.py,sha256=8hSHDrEqGlGpaHQr5JpDLfIA5ETVIddp2Zo2rkOi8mY,30329
|
|
257
257
|
mlrun/runtimes/utils.py,sha256=mNVu3ejmfEV3d7-fCAiSaF5K-Jyz2ladc5HzqhsY0Cs,16025
|
|
258
258
|
mlrun/runtimes/databricks_job/__init__.py,sha256=kXGBqhLN0rlAx0kTXhozGzFsIdSqW0uTSKMmsLgq_is,569
|
|
259
259
|
mlrun/runtimes/databricks_job/databricks_cancel_task.py,sha256=Qr1tbLuGI9BhNXytfB0IbKuLLC0V_mtqrdwgvdQX36I,2250
|
|
@@ -303,11 +303,11 @@ mlrun/utils/notifications/notification/ipython.py,sha256=qrBmtECiRG6sZpCIVMg7RZc
|
|
|
303
303
|
mlrun/utils/notifications/notification/slack.py,sha256=5JysqIpUYUZKXPSeeZtbl7qb2L9dj7p2NvnEBcEsZkA,3898
|
|
304
304
|
mlrun/utils/notifications/notification/webhook.py,sha256=QHezCuN5uXkLcroAGxGrhGHaxAdUvkDLIsp27_Yrfd4,2390
|
|
305
305
|
mlrun/utils/version/__init__.py,sha256=7kkrB7hEZ3cLXoWj1kPoDwo4MaswsI2JVOBpbKgPAgc,614
|
|
306
|
-
mlrun/utils/version/version.json,sha256=
|
|
306
|
+
mlrun/utils/version/version.json,sha256=k9md2YAgOLbIxSpyEZLKSbxhM5eCDTraQznLxjHtvYQ,88
|
|
307
307
|
mlrun/utils/version/version.py,sha256=HMwseV8xjTQ__6T6yUWojx_z6yUj7Io7O4NcCCH_sz8,1970
|
|
308
|
-
mlrun-1.6.
|
|
309
|
-
mlrun-1.6.
|
|
310
|
-
mlrun-1.6.
|
|
311
|
-
mlrun-1.6.
|
|
312
|
-
mlrun-1.6.
|
|
313
|
-
mlrun-1.6.
|
|
308
|
+
mlrun-1.6.1rc1.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
|
309
|
+
mlrun-1.6.1rc1.dist-info/METADATA,sha256=FS19cKClPHBeeazNgD4UX6qA2BO7zlN762xLF1Supy8,18417
|
|
310
|
+
mlrun-1.6.1rc1.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
|
|
311
|
+
mlrun-1.6.1rc1.dist-info/entry_points.txt,sha256=1Owd16eAclD5pfRCoJpYC2ZJSyGNTtUr0nCELMioMmU,46
|
|
312
|
+
mlrun-1.6.1rc1.dist-info/top_level.txt,sha256=NObLzw3maSF9wVrgSeYBv-fgnHkAJ1kEkh12DLdd5KM,6
|
|
313
|
+
mlrun-1.6.1rc1.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|