mlrun 1.6.0rc34__py3-none-any.whl → 1.6.1rc1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mlrun might be problematic. Click here for more details.

mlrun/runtimes/serving.py CHANGED
@@ -309,7 +309,8 @@ class ServingRuntime(RemoteRuntime):
309
309
  stream_args: dict = None,
310
310
  tracking_policy: Union[TrackingPolicy, dict] = None,
311
311
  ):
312
- """set tracking parameters:
312
+ """apply on your serving function to monitor a deployed model, including real-time dashboards to detect drift
313
+ and analyze performance.
313
314
 
314
315
  :param stream_path: Path/url of the tracking stream e.g. v3io:///users/mike/mystream
315
316
  you can use the "dummy://" path for test/simulation.
@@ -1,4 +1,4 @@
1
1
  {
2
- "git_commit": "092a991da5ef704304aab333c7699afe699376fe",
3
- "version": "1.6.0-rc34"
2
+ "git_commit": "d43a3022a1afd7e52a5e3c855c3dade12e543c72",
3
+ "version": "1.6.1-rc1"
4
4
  }
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mlrun
3
- Version: 1.6.0rc34
3
+ Version: 1.6.1rc1
4
4
  Summary: Tracking and config of machine learning runs
5
5
  Home-page: https://github.com/mlrun/mlrun
6
6
  Author: Yaron Haviv
@@ -222,7 +222,7 @@ In MLRun the assets, metadata, and services (data, functions, jobs, artifacts, m
222
222
  Projects can be imported/exported as a whole, mapped to git repositories or IDE projects (in PyCharm, VSCode, etc.), which enables versioning, collaboration, and CI/CD.
223
223
  Project access can be restricted to a set of users and roles.
224
224
 
225
- See: **Docs:** [Projects and Automation](https://docs.mlrun.org/en/latest/projects/project.html), [CI/CD Integration](https://docs.mlrun.org/en/latest/projects/ci-integration.html), **Tutorials:** [Quick start](https://docs.mlrun.org/en/latest/tutorials/01-mlrun-basics.html), [Automated ML Pipeline](https://docs.mlrun.org/en/latest/tutorials/04-pipeline.html), **Video:** [quick start](https://youtu.be/xI8KVGLlj7Q).
225
+ See: **Docs:** [Projects and Automation](https://docs.mlrun.org/en/latest/projects/project.html), [CI/CD Integration](https://docs.mlrun.org/en/latest/projects/ci-integration.html), **Tutorials:** [Quick start](https://docs.mlrun.org/en/latest/tutorials/01-mlrun-basics.html), [Automated ML Pipeline](https://docs.mlrun.org/en/latest/tutorials/04-pipeline.html), **Video:** [Quick start](https://youtu.be/xI8KVGLlj7Q).
226
226
 
227
227
  ### Ingest and process data
228
228
 
@@ -235,13 +235,13 @@ See: **Docs:** [Ingest and process data](https://docs.mlrun.org/en/latest/data-p
235
235
 
236
236
  MLRun allows you to easily build ML pipelines that take data from various sources or the Feature Store and process it, train models at scale with multiple parameters, test models, tracks each experiments, register, version and deploy models, etc. MLRun provides scalable built-in or custom model training services, integrate with any framework and can work with 3rd party training/auto-ML services. You can also bring your own pre-trained model and use it in the pipeline.
237
237
 
238
- See: **Docs:** [Develop and train models](https://docs.mlrun.org/en/latest/development/index.html), [Model Training and Tracking](https://docs.mlrun.org/en/latest/development/model-training-tracking.html), [Batch Runs and Workflows](https://docs.mlrun.org/en/latest/concepts/runs-workflows.html); **Tutorials:** [Train & Eval Models](https://docs.mlrun.org/en/latest/tutorials/02-model-training.html), [Automated ML Pipeline](https://docs.mlrun.org/en/latest/tutorials/04-pipeline.html); **Video:** [Training models](https://youtu.be/bZgBsmLMdQo).
238
+ See: **Docs:** [Develop and train models](https://docs.mlrun.org/en/latest/development/index.html), [Model Training and Tracking](https://docs.mlrun.org/en/latest/development/model-training-tracking.html), [Batch Runs and Workflows](https://docs.mlrun.org/en/latest/concepts/runs-workflows.html); **Tutorials:** [Train, compare, and register models](https://docs.mlrun.org/en/latest/tutorials/02-model-training.html), [Automated ML Pipeline](https://docs.mlrun.org/en/latest/tutorials/04-pipeline.html); **Video:** [Train and compare models](https://youtu.be/bZgBsmLMdQo).
239
239
 
240
240
  ### Deploy models and applications
241
241
 
242
242
  MLRun rapidly deploys and manages production-grade real-time or batch application pipelines using elastic and resilient serverless functions. MLRun addresses the entire ML application: intercepting application/user requests, running data processing tasks, inferencing using one or more models, driving actions, and integrating with the application logic.
243
243
 
244
- See: **Docs:** [Deploy models and applications](https://docs.mlrun.org/en/latest/deployment/index.html), [Realtime Pipelines](https://docs.mlrun.org/en/latest/serving/serving-graph.html), [Batch Inference](https://docs.mlrun.org/en/latest/concepts/TBD.html), **Tutorials:** [Realtime Serving](https://docs.mlrun.org/en/latest/tutorials/03-model-serving.html), [Batch Inference](https://docs.mlrun.org/en/latest/tutorials/07-batch-infer.html), [Advanced Pipeline](https://docs.mlrun.org/en/latest/tutorials/07-batch-infer.html); **Video:** [Serving models](https://youtu.be/OUjOus4dZfw).
244
+ See: **Docs:** [Deploy models and applications](https://docs.mlrun.org/en/latest/deployment/index.html), [Realtime Pipelines](https://docs.mlrun.org/en/latest/serving/serving-graph.html), [Batch Inference](https://docs.mlrun.org/en/latest/deployment/batch_inference.html), **Tutorials:** [Realtime Serving](https://docs.mlrun.org/en/latest/tutorials/03-model-serving.html), [Batch Inference](https://docs.mlrun.org/en/latest/tutorials/07-batch-infer.html), [Advanced Pipeline](https://docs.mlrun.org/en/latest/tutorials/07-batch-infer.html); **Video:** [Serving pre-trained models](https://youtu.be/OUjOus4dZfw).
245
245
 
246
246
  ### Monitor and alert
247
247
 
@@ -259,9 +259,9 @@ MLRun includes the following major components:
259
259
 
260
260
  [**Project Management:**](https://docs.mlrun.org/en/latest/projects/project.html) A service (API, SDK, DB, UI) that manages the different project assets (data, functions, jobs, workflows, secrets, etc.) and provides central control and metadata layer.
261
261
 
262
- [**Serverless Functions:**](https://docs.mlrun.org/en/latest/runtimes/functions.html) automatically deployed software package with one or more methods and runtime-specific attributes (such as image, libraries, command, arguments, resources, etc.).
262
+ [**Functions:**](https://docs.mlrun.org/en/latest/runtimes/functions.html) automatically deployed software package with one or more methods and runtime-specific attributes (such as image, libraries, command, arguments, resources, etc.).
263
263
 
264
- [**Data & Artifacts:**](https://docs.mlrun.org/en/latest/concepts/data-feature-store.html) Glueless connectivity to various data sources, metadata management, catalog, and versioning for structures/unstructured artifacts.
264
+ [**Data & Artifacts:**](https://docs.mlrun.org/en/latest/concepts/data.html) Glueless connectivity to various data sources, metadata management, catalog, and versioning for structures/unstructured artifacts.
265
265
 
266
266
  [**Feature Store:**](https://docs.mlrun.org/en/latest/feature-store/feature-store.html) automatically collects, prepares, catalogs, and serves production data features for development (offline) and real-time (online) deployment using minimal engineering effort.
267
267
 
@@ -253,7 +253,7 @@ mlrun/runtimes/local.py,sha256=OAGkcShFlxYXSPnJSAWe0MFxwrVdAvW7VP_Y-bycXQs,21767
253
253
  mlrun/runtimes/nuclio.py,sha256=hwk4dUaZefI-Qbb4s289vQpt1h0nAucxf6eINzVI-d8,2908
254
254
  mlrun/runtimes/pod.py,sha256=73gXYggAdOW4uqRHQPVZy4PnvlS9t3x7qrygxXW2vl0,56778
255
255
  mlrun/runtimes/remotesparkjob.py,sha256=W7WqlPbyqE6FjOZ2EFeOzlL1jLGWAWe61jOH0Umy3F4,7334
256
- mlrun/runtimes/serving.py,sha256=0k0bTeUBXMKys3LDWN1uvn1-ZkTXM5MHA2jM0mxrJPk,30211
256
+ mlrun/runtimes/serving.py,sha256=8hSHDrEqGlGpaHQr5JpDLfIA5ETVIddp2Zo2rkOi8mY,30329
257
257
  mlrun/runtimes/utils.py,sha256=mNVu3ejmfEV3d7-fCAiSaF5K-Jyz2ladc5HzqhsY0Cs,16025
258
258
  mlrun/runtimes/databricks_job/__init__.py,sha256=kXGBqhLN0rlAx0kTXhozGzFsIdSqW0uTSKMmsLgq_is,569
259
259
  mlrun/runtimes/databricks_job/databricks_cancel_task.py,sha256=Qr1tbLuGI9BhNXytfB0IbKuLLC0V_mtqrdwgvdQX36I,2250
@@ -303,11 +303,11 @@ mlrun/utils/notifications/notification/ipython.py,sha256=qrBmtECiRG6sZpCIVMg7RZc
303
303
  mlrun/utils/notifications/notification/slack.py,sha256=5JysqIpUYUZKXPSeeZtbl7qb2L9dj7p2NvnEBcEsZkA,3898
304
304
  mlrun/utils/notifications/notification/webhook.py,sha256=QHezCuN5uXkLcroAGxGrhGHaxAdUvkDLIsp27_Yrfd4,2390
305
305
  mlrun/utils/version/__init__.py,sha256=7kkrB7hEZ3cLXoWj1kPoDwo4MaswsI2JVOBpbKgPAgc,614
306
- mlrun/utils/version/version.json,sha256=CIbz1ano6WEYxZg2EjUpIzEjNtFvbNV7lWduE5KdZps,89
306
+ mlrun/utils/version/version.json,sha256=k9md2YAgOLbIxSpyEZLKSbxhM5eCDTraQznLxjHtvYQ,88
307
307
  mlrun/utils/version/version.py,sha256=HMwseV8xjTQ__6T6yUWojx_z6yUj7Io7O4NcCCH_sz8,1970
308
- mlrun-1.6.0rc34.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
309
- mlrun-1.6.0rc34.dist-info/METADATA,sha256=nzKLoafV4m1tu2BE_FxRttTb0r7BPWA434eOpdCl1w4,18392
310
- mlrun-1.6.0rc34.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
311
- mlrun-1.6.0rc34.dist-info/entry_points.txt,sha256=1Owd16eAclD5pfRCoJpYC2ZJSyGNTtUr0nCELMioMmU,46
312
- mlrun-1.6.0rc34.dist-info/top_level.txt,sha256=NObLzw3maSF9wVrgSeYBv-fgnHkAJ1kEkh12DLdd5KM,6
313
- mlrun-1.6.0rc34.dist-info/RECORD,,
308
+ mlrun-1.6.1rc1.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
309
+ mlrun-1.6.1rc1.dist-info/METADATA,sha256=FS19cKClPHBeeazNgD4UX6qA2BO7zlN762xLF1Supy8,18417
310
+ mlrun-1.6.1rc1.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
311
+ mlrun-1.6.1rc1.dist-info/entry_points.txt,sha256=1Owd16eAclD5pfRCoJpYC2ZJSyGNTtUr0nCELMioMmU,46
312
+ mlrun-1.6.1rc1.dist-info/top_level.txt,sha256=NObLzw3maSF9wVrgSeYBv-fgnHkAJ1kEkh12DLdd5KM,6
313
+ mlrun-1.6.1rc1.dist-info/RECORD,,