ml4gw 0.4.2__py3-none-any.whl → 0.5.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ml4gw might be problematic. Click here for more details.
- ml4gw/augmentations.py +8 -2
- ml4gw/constants.py +45 -0
- ml4gw/dataloading/chunked_dataset.py +4 -2
- ml4gw/dataloading/hdf5_dataset.py +1 -1
- ml4gw/dataloading/in_memory_dataset.py +8 -4
- ml4gw/distributions.py +18 -12
- ml4gw/gw.py +21 -27
- ml4gw/nn/autoencoder/base.py +11 -6
- ml4gw/nn/autoencoder/convolutional.py +7 -4
- ml4gw/nn/autoencoder/skip_connection.py +7 -6
- ml4gw/nn/autoencoder/utils.py +2 -1
- ml4gw/nn/norm.py +11 -1
- ml4gw/nn/streaming/online_average.py +7 -5
- ml4gw/nn/streaming/snapshotter.py +7 -5
- ml4gw/spectral.py +40 -36
- ml4gw/transforms/pearson.py +7 -3
- ml4gw/transforms/qtransform.py +20 -14
- ml4gw/transforms/scaler.py +6 -2
- ml4gw/transforms/snr_rescaler.py +6 -5
- ml4gw/transforms/spectral.py +25 -6
- ml4gw/transforms/spectrogram.py +7 -1
- ml4gw/transforms/transform.py +4 -3
- ml4gw/transforms/waveforms.py +10 -7
- ml4gw/transforms/whitening.py +12 -4
- ml4gw/types.py +25 -10
- ml4gw/utils/interferometer.py +7 -1
- ml4gw/utils/slicing.py +24 -16
- ml4gw/waveforms/__init__.py +2 -0
- ml4gw/waveforms/generator.py +9 -5
- ml4gw/waveforms/phenom_d.py +1338 -1256
- ml4gw/waveforms/phenom_p.py +796 -0
- ml4gw/waveforms/ringdown.py +109 -0
- ml4gw/waveforms/sine_gaussian.py +10 -11
- ml4gw/waveforms/taylorf2.py +304 -279
- {ml4gw-0.4.2.dist-info → ml4gw-0.5.1.dist-info}/METADATA +5 -3
- ml4gw-0.5.1.dist-info/RECORD +47 -0
- ml4gw-0.4.2.dist-info/RECORD +0 -44
- {ml4gw-0.4.2.dist-info → ml4gw-0.5.1.dist-info}/WHEEL +0 -0
ml4gw/waveforms/taylorf2.py
CHANGED
|
@@ -1,306 +1,331 @@
|
|
|
1
1
|
import torch
|
|
2
|
-
from
|
|
2
|
+
from jaxtyping import Float
|
|
3
3
|
|
|
4
|
-
|
|
5
|
-
|
|
4
|
+
from ml4gw.constants import MPC_SEC, MTSUN_SI, PI
|
|
5
|
+
from ml4gw.constants import EulerGamma as GAMMA
|
|
6
|
+
from ml4gw.types import BatchTensor, FrequencySeries1d
|
|
6
7
|
|
|
7
|
-
MSUN_SI = 1.988409870698050731911960804878414216e30
|
|
8
|
-
"""Solar mass in kg. Same as lal.MSUN_SI"""
|
|
9
8
|
|
|
10
|
-
|
|
11
|
-
|
|
9
|
+
class TaylorF2(torch.nn.Module):
|
|
10
|
+
def __init__(self):
|
|
11
|
+
super().__init__()
|
|
12
12
|
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
13
|
+
def forward(
|
|
14
|
+
self,
|
|
15
|
+
f: FrequencySeries1d,
|
|
16
|
+
chirp_mass: BatchTensor,
|
|
17
|
+
mass_ratio: BatchTensor,
|
|
18
|
+
chi1: BatchTensor,
|
|
19
|
+
chi2: BatchTensor,
|
|
20
|
+
distance: BatchTensor,
|
|
21
|
+
phic: BatchTensor,
|
|
22
|
+
inclination: BatchTensor,
|
|
23
|
+
f_ref: float,
|
|
24
|
+
):
|
|
25
|
+
"""
|
|
26
|
+
TaylorF2 up to 3.5 PN in phase. Newtonian SPA amplitude.
|
|
20
27
|
|
|
28
|
+
Args:
|
|
29
|
+
f:
|
|
30
|
+
Frequency series in Hz.
|
|
31
|
+
chirp_mass:
|
|
32
|
+
Chirp mass in solar masses
|
|
33
|
+
mass_ratio:
|
|
34
|
+
Mass ratio m1/m2
|
|
35
|
+
chi1:
|
|
36
|
+
Spin of m1
|
|
37
|
+
chi2:
|
|
38
|
+
Spin of m2
|
|
39
|
+
distance:
|
|
40
|
+
Luminosity distance
|
|
41
|
+
phic:
|
|
42
|
+
Phase at coalescence
|
|
43
|
+
inclination:
|
|
44
|
+
Inclination angle
|
|
45
|
+
f_ref:
|
|
46
|
+
Reference frequency
|
|
21
47
|
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
chi1: TensorType,
|
|
27
|
-
chi2: TensorType,
|
|
28
|
-
) -> TensorType:
|
|
29
|
-
"""
|
|
30
|
-
Calculate the inspiral phase for the TaylorF2.
|
|
31
|
-
"""
|
|
32
|
-
M = mass1 + mass2
|
|
33
|
-
eta = mass1 * mass2 / M / M
|
|
34
|
-
m1byM = mass1 / M
|
|
35
|
-
m2byM = mass2 / M
|
|
36
|
-
chi1sq = chi1 * chi1
|
|
37
|
-
chi2sq = chi2 * chi2
|
|
48
|
+
Returns:
|
|
49
|
+
hc, hp: Tuple[torch.Tensor, torch.Tensor]
|
|
50
|
+
Cross and plus polarizations
|
|
51
|
+
"""
|
|
38
52
|
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
53
|
+
# shape assumed (n_batch, params)
|
|
54
|
+
if (
|
|
55
|
+
chirp_mass.shape[0] != mass_ratio.shape[0]
|
|
56
|
+
or chirp_mass.shape[0] != chi1.shape[0]
|
|
57
|
+
or chi1.shape[0] != chi2.shape[0]
|
|
58
|
+
or chi2.shape[0] != distance.shape[0]
|
|
59
|
+
or distance.shape[0] != phic.shape[0]
|
|
60
|
+
or phic.shape[0] != inclination.shape[0]
|
|
61
|
+
):
|
|
62
|
+
raise RuntimeError("Tensors should have same batch size")
|
|
63
|
+
mass2 = chirp_mass * (1.0 + mass_ratio) ** 0.2 / mass_ratio**0.6
|
|
64
|
+
mass1 = mass_ratio * mass2
|
|
65
|
+
cfac = torch.cos(inclination)
|
|
66
|
+
pfac = 0.5 * (1.0 + cfac * cfac)
|
|
50
67
|
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
pfa_v0 = 1.0
|
|
54
|
-
pfa_v1 = 0.0
|
|
55
|
-
pfa_v2 = 5.0 * (74.3 / 8.4 + 11.0 * eta) / 9.0
|
|
56
|
-
pfa_v3 = -16.0 * PI
|
|
57
|
-
# SO contributions at 1.5 PN
|
|
58
|
-
pfa_v3 += (
|
|
59
|
-
m1byM * (25.0 + 38.0 / 3.0 * m1byM) * chi1
|
|
60
|
-
+ m2byM * (25.0 + 38.0 / 3.0 * m2byM) * chi2
|
|
61
|
-
)
|
|
62
|
-
pfa_v4 = (
|
|
63
|
-
5.0
|
|
64
|
-
* (3058.673 / 7.056 + 5429.0 / 7.0 * eta + 617.0 * eta * eta)
|
|
65
|
-
/ 72.0
|
|
66
|
-
)
|
|
67
|
-
# SO, SS, S1,2-squared contributions
|
|
68
|
-
pfa_v4 += (
|
|
69
|
-
247.0 / 4.8 * eta * chi1 * chi2
|
|
70
|
-
+ -721.0 / 4.8 * eta * chi1 * chi2
|
|
71
|
-
+ (-720.0 / 9.6 * m1byM * m1byM + 1.0 / 9.6 * m1byM * m1byM) * chi1sq
|
|
72
|
-
+ (-720.0 / 9.6 * m2byM * m2byM + 1.0 / 9.6 * m2byM * m2byM) * chi2sq
|
|
73
|
-
+ (240.0 / 9.6 * m1byM * m1byM + -7.0 / 9.6 * m1byM * m1byM) * chi1sq
|
|
74
|
-
+ (240.0 / 9.6 * m2byM * m2byM + -7.0 / 9.6 * m2byM * m2byM) * chi2sq
|
|
75
|
-
)
|
|
76
|
-
pfa_v5logv = 5.0 / 3.0 * (772.9 / 8.4 - 13.0 * eta) * PI
|
|
77
|
-
pfa_v5 = 5.0 / 9.0 * (772.9 / 8.4 - 13.0 * eta) * PI
|
|
78
|
-
# SO coefficient for 2.5 PN
|
|
79
|
-
pfa_v5logv += 3.0 * (
|
|
80
|
-
-m1byM
|
|
81
|
-
* (
|
|
82
|
-
1391.5 / 8.4
|
|
83
|
-
- 10.0 / 3.0 * m1byM * (1.0 - m1byM)
|
|
84
|
-
+ m1byM * (1276.0 / 8.1 + 170.0 / 9.0 * m1byM * (1.0 - m1byM))
|
|
85
|
-
)
|
|
86
|
-
* chi1
|
|
87
|
-
- m2byM
|
|
88
|
-
* (
|
|
89
|
-
1391.5 / 8.4
|
|
90
|
-
- 10.0 / 3.0 * m2byM * (1.0 - m2byM)
|
|
91
|
-
+ m2byM * (1276.0 / 8.1 + 170.0 / 9.0 * m2byM * (1.0 - m2byM))
|
|
92
|
-
)
|
|
93
|
-
* chi2
|
|
94
|
-
)
|
|
95
|
-
pfa_v5 += (
|
|
96
|
-
-m1byM
|
|
97
|
-
* (
|
|
98
|
-
1391.5 / 8.4
|
|
99
|
-
- 10.0 / 3.0 * m1byM * (1.0 - m1byM)
|
|
100
|
-
+ m1byM * (1276.0 / 8.1 + 170.0 / 9.0 * m1byM * (1.0 - m1byM))
|
|
101
|
-
)
|
|
102
|
-
* chi1
|
|
103
|
-
+ -m2byM
|
|
104
|
-
* (
|
|
105
|
-
1391.5 / 8.4
|
|
106
|
-
- 10.0 / 3.0 * m2byM * (1.0 - m2byM)
|
|
107
|
-
+ m2byM * (1276.0 / 8.1 + 170.0 / 9.0 * m2byM * (1.0 - m2byM))
|
|
108
|
-
)
|
|
109
|
-
* chi2
|
|
110
|
-
)
|
|
111
|
-
pfa_v6logv = -684.8 / 2.1
|
|
112
|
-
pfa_v6 = (
|
|
113
|
-
11583.231236531 / 4.694215680
|
|
114
|
-
- 640.0 / 3.0 * PI * PI
|
|
115
|
-
- 684.8 / 2.1 * GAMMA
|
|
116
|
-
+ eta * (-15737.765635 / 3.048192 + 225.5 / 1.2 * PI * PI)
|
|
117
|
-
+ eta * eta * 76.055 / 1.728
|
|
118
|
-
- eta * eta * eta * 127.825 / 1.296
|
|
119
|
-
+ pfa_v6logv * torch.log(torch.tensor(4.0))
|
|
120
|
-
)
|
|
121
|
-
# SO + S1-S2 + S-squared contribution at 3 PN
|
|
122
|
-
pfa_v6 += (
|
|
123
|
-
PI * m1byM * (1490.0 / 3.0 + m1byM * 260.0) * chi1
|
|
124
|
-
+ PI * m2byM * (1490.0 / 3.0 + m2byM * 260.0) * chi2
|
|
125
|
-
+ (326.75 / 1.12 + 557.5 / 1.8 * eta) * eta * chi1 * chi2
|
|
126
|
-
+ (
|
|
127
|
-
(4703.5 / 8.4 + 2935.0 / 6.0 * m1byM - 120.0 * m1byM * m1byM)
|
|
128
|
-
* m1byM
|
|
129
|
-
* m1byM
|
|
130
|
-
+ (
|
|
131
|
-
-4108.25 / 6.72
|
|
132
|
-
- 108.5 / 1.2 * m1byM
|
|
133
|
-
+ 125.5 / 3.6 * m1byM * m1byM
|
|
134
|
-
)
|
|
135
|
-
* m1byM
|
|
136
|
-
* m1byM
|
|
137
|
-
)
|
|
138
|
-
* chi1sq
|
|
139
|
-
+ (
|
|
140
|
-
(4703.5 / 8.4 + 2935.0 / 6.0 * m2byM - 120.0 * m2byM * m2byM)
|
|
141
|
-
* m2byM
|
|
142
|
-
* m2byM
|
|
143
|
-
+ (
|
|
144
|
-
-4108.25 / 6.72
|
|
145
|
-
- 108.5 / 1.2 * m2byM
|
|
146
|
-
+ 125.5 / 3.6 * m2byM * m2byM
|
|
147
|
-
)
|
|
148
|
-
* m2byM
|
|
149
|
-
* m2byM
|
|
68
|
+
htilde = self.taylorf2_htilde(
|
|
69
|
+
f, mass1, mass2, chi1, chi2, distance, phic, f_ref
|
|
150
70
|
)
|
|
151
|
-
* chi2sq
|
|
152
|
-
)
|
|
153
|
-
pfa_v7 = PI * (
|
|
154
|
-
770.96675 / 2.54016 + 378.515 / 1.512 * eta - 740.45 / 7.56 * eta * eta
|
|
155
|
-
)
|
|
156
|
-
# SO contribution at 3.5 PN
|
|
157
|
-
pfa_v7 += (
|
|
158
|
-
m1byM
|
|
159
|
-
* (
|
|
160
|
-
-17097.8035 / 4.8384
|
|
161
|
-
+ eta * 28764.25 / 6.72
|
|
162
|
-
+ eta * eta * 47.35 / 1.44
|
|
163
|
-
+ m1byM
|
|
164
|
-
* (
|
|
165
|
-
-7189.233785 / 1.524096
|
|
166
|
-
+ eta * 458.555 / 3.024
|
|
167
|
-
- eta * eta * 534.5 / 7.2
|
|
168
|
-
)
|
|
169
|
-
)
|
|
170
|
-
) * chi1 + (
|
|
171
|
-
m2byM
|
|
172
|
-
* (
|
|
173
|
-
-17097.8035 / 4.8384
|
|
174
|
-
+ eta * 28764.25 / 6.72
|
|
175
|
-
+ eta * eta * 47.35 / 1.44
|
|
176
|
-
+ m2byM
|
|
177
|
-
* (
|
|
178
|
-
-7189.233785 / 1.524096
|
|
179
|
-
+ eta * 458.555 / 3.024
|
|
180
|
-
- eta * eta * 534.5 / 7.2
|
|
181
|
-
)
|
|
182
|
-
)
|
|
183
|
-
) * chi2
|
|
184
|
-
# construct power series
|
|
185
|
-
phasing = (v7.T * pfa_v7).T
|
|
186
|
-
phasing += (v6.T * pfa_v6 + v6_logv.T * pfa_v6logv).T
|
|
187
|
-
phasing += (v5.T * pfa_v5 + v5_logv.T * pfa_v5logv).T
|
|
188
|
-
phasing += (v4.T * pfa_v4).T
|
|
189
|
-
phasing += (v3.T * pfa_v3).T
|
|
190
|
-
phasing += (v2.T * pfa_v2).T
|
|
191
|
-
phasing += (v1.T * pfa_v1).T
|
|
192
|
-
phasing += (v0.T * pfa_v0).T
|
|
193
|
-
# Divide by 0PN v-dependence
|
|
194
|
-
phasing /= v5
|
|
195
|
-
# Multiply by 0PN coefficient
|
|
196
|
-
phasing = (phasing.T * pfaN).T
|
|
197
|
-
|
|
198
|
-
# Derivative of phase w.r.t Mf
|
|
199
|
-
# dPhi/dMf = dPhi/dv dv/dMf
|
|
200
|
-
Dphasing = (2.0 * v7.T * pfa_v7).T
|
|
201
|
-
Dphasing += (v6.T * (pfa_v6 + pfa_v6logv)).T
|
|
202
|
-
Dphasing += (v6_logv.T * pfa_v6logv).T
|
|
203
|
-
Dphasing += (v5.T * pfa_v5logv).T
|
|
204
|
-
Dphasing += (-1.0 * v4.T * pfa_v4).T
|
|
205
|
-
Dphasing += (-2.0 * v3.T * pfa_v3).T
|
|
206
|
-
Dphasing += (-3.0 * v2.T * pfa_v2).T
|
|
207
|
-
Dphasing += (-4.0 * v1.T * pfa_v1).T
|
|
208
|
-
Dphasing += -5.0 * v0
|
|
209
|
-
Dphasing /= 3.0 * v1 * v7
|
|
210
|
-
Dphasing *= PI
|
|
211
|
-
Dphasing = (Dphasing.T * pfaN).T
|
|
212
71
|
|
|
213
|
-
|
|
72
|
+
hp = (htilde.mT * pfac).mT
|
|
73
|
+
hc = -1j * (htilde.mT * cfac).mT
|
|
214
74
|
|
|
75
|
+
return hc, hp
|
|
215
76
|
|
|
216
|
-
def
|
|
217
|
-
|
|
218
|
-
|
|
219
|
-
|
|
220
|
-
|
|
221
|
-
|
|
222
|
-
|
|
77
|
+
def taylorf2_htilde(
|
|
78
|
+
self,
|
|
79
|
+
f: FrequencySeries1d,
|
|
80
|
+
mass1: BatchTensor,
|
|
81
|
+
mass2: BatchTensor,
|
|
82
|
+
chi1: BatchTensor,
|
|
83
|
+
chi2: BatchTensor,
|
|
84
|
+
distance: BatchTensor,
|
|
85
|
+
phic: BatchTensor,
|
|
86
|
+
f_ref: float,
|
|
87
|
+
) -> Float[FrequencySeries1d, " batch"]:
|
|
88
|
+
mass1_s = mass1 * MTSUN_SI
|
|
89
|
+
mass2_s = mass2 * MTSUN_SI
|
|
90
|
+
M_s = mass1_s + mass2_s
|
|
91
|
+
eta = mass1_s * mass2_s / M_s / M_s
|
|
223
92
|
|
|
224
|
-
|
|
225
|
-
|
|
226
|
-
dETaN = 2 * (-eta / 2.0)
|
|
93
|
+
Mf = torch.outer(M_s, f)
|
|
94
|
+
Mf_ref = torch.outer(M_s, f_ref * torch.ones_like(f))
|
|
227
95
|
|
|
228
|
-
|
|
96
|
+
Psi, _ = self.taylorf2_phase(Mf, mass1, mass2, chi1, chi2)
|
|
97
|
+
Psi_ref, _ = self.taylorf2_phase(Mf_ref, mass1, mass2, chi1, chi2)
|
|
229
98
|
|
|
230
|
-
|
|
231
|
-
|
|
232
|
-
dEnergy = (v.T * dETaN).T
|
|
233
|
-
amp = torch.sqrt(-dEnergy / flux) * v
|
|
234
|
-
amp = (amp.T * amp0).T
|
|
99
|
+
Psi = (Psi.mT - 2 * phic).mT
|
|
100
|
+
Psi -= Psi_ref
|
|
235
101
|
|
|
236
|
-
|
|
102
|
+
amp0 = self.taylorf2_amplitude(Mf, mass1, mass2, eta, distance)
|
|
103
|
+
h0 = amp0 * torch.exp(-1j * (Psi - PI / 4))
|
|
104
|
+
return h0
|
|
237
105
|
|
|
106
|
+
def taylorf2_amplitude(
|
|
107
|
+
self,
|
|
108
|
+
Mf: BatchTensor,
|
|
109
|
+
mass1: BatchTensor,
|
|
110
|
+
mass2: BatchTensor,
|
|
111
|
+
eta: BatchTensor,
|
|
112
|
+
distance: BatchTensor,
|
|
113
|
+
) -> Float[FrequencySeries1d, " batch"]:
|
|
114
|
+
mass1_s = mass1 * MTSUN_SI
|
|
115
|
+
mass2_s = mass2 * MTSUN_SI
|
|
116
|
+
v = (PI * Mf) ** (1.0 / 3.0)
|
|
117
|
+
v10 = v**10
|
|
238
118
|
|
|
239
|
-
|
|
240
|
-
|
|
241
|
-
|
|
242
|
-
mass2: TensorType,
|
|
243
|
-
chi1: TensorType,
|
|
244
|
-
chi2: TensorType,
|
|
245
|
-
distance: TensorType,
|
|
246
|
-
phic: TensorType,
|
|
247
|
-
f_ref: float,
|
|
248
|
-
):
|
|
249
|
-
mass1_s = mass1 * MTSUN_SI
|
|
250
|
-
mass2_s = mass2 * MTSUN_SI
|
|
251
|
-
M_s = mass1_s + mass2_s
|
|
252
|
-
eta = mass1_s * mass2_s / M_s / M_s
|
|
119
|
+
# Flux and energy coefficient at newtonian
|
|
120
|
+
FTaN = 32.0 * eta * eta / 5.0
|
|
121
|
+
dETaN = 2 * (-eta / 2.0)
|
|
253
122
|
|
|
254
|
-
|
|
255
|
-
Mf_ref = torch.outer(M_s, f_ref * torch.ones_like(f))
|
|
123
|
+
amp0 = -4.0 * mass1_s * mass2_s * (PI / 12.0) ** 0.5
|
|
256
124
|
|
|
257
|
-
|
|
258
|
-
|
|
125
|
+
amp0 /= distance * MPC_SEC
|
|
126
|
+
flux = (v10.mT * FTaN).mT
|
|
127
|
+
dEnergy = (v.mT * dETaN).mT
|
|
128
|
+
amp = torch.sqrt(-dEnergy / flux) * v
|
|
129
|
+
amp = (amp.mT * amp0).mT
|
|
259
130
|
|
|
260
|
-
|
|
261
|
-
Psi -= Psi_ref
|
|
131
|
+
return amp
|
|
262
132
|
|
|
263
|
-
|
|
264
|
-
|
|
265
|
-
|
|
133
|
+
def taylorf2_phase(
|
|
134
|
+
self,
|
|
135
|
+
Mf: BatchTensor,
|
|
136
|
+
mass1: BatchTensor,
|
|
137
|
+
mass2: BatchTensor,
|
|
138
|
+
chi1: BatchTensor,
|
|
139
|
+
chi2: BatchTensor,
|
|
140
|
+
) -> Float[FrequencySeries1d, " batch"]:
|
|
141
|
+
"""
|
|
142
|
+
Calculate the inspiral phase for the TaylorF2.
|
|
143
|
+
"""
|
|
144
|
+
M = mass1 + mass2
|
|
145
|
+
eta = mass1 * mass2 / M / M
|
|
146
|
+
m1byM = mass1 / M
|
|
147
|
+
m2byM = mass2 / M
|
|
148
|
+
chi1sq = chi1 * chi1
|
|
149
|
+
chi2sq = chi2 * chi2
|
|
266
150
|
|
|
151
|
+
v0 = torch.ones_like(Mf)
|
|
152
|
+
v1 = (PI * Mf) ** (1.0 / 3.0)
|
|
153
|
+
v2 = v1 * v1
|
|
154
|
+
v3 = v2 * v1
|
|
155
|
+
v4 = v3 * v1
|
|
156
|
+
v5 = v4 * v1
|
|
157
|
+
v6 = v5 * v1
|
|
158
|
+
v7 = v6 * v1
|
|
159
|
+
logv = torch.log(v1)
|
|
160
|
+
v5_logv = v5 * logv
|
|
161
|
+
v6_logv = v6 * logv
|
|
267
162
|
|
|
268
|
-
|
|
269
|
-
|
|
270
|
-
|
|
271
|
-
|
|
272
|
-
|
|
273
|
-
|
|
274
|
-
|
|
275
|
-
|
|
276
|
-
|
|
277
|
-
|
|
278
|
-
)
|
|
279
|
-
|
|
280
|
-
|
|
281
|
-
|
|
282
|
-
|
|
283
|
-
|
|
284
|
-
|
|
285
|
-
|
|
286
|
-
|
|
287
|
-
|
|
288
|
-
|
|
289
|
-
|
|
290
|
-
|
|
291
|
-
|
|
292
|
-
|
|
293
|
-
|
|
294
|
-
|
|
295
|
-
|
|
296
|
-
|
|
297
|
-
|
|
298
|
-
|
|
299
|
-
|
|
300
|
-
|
|
301
|
-
|
|
163
|
+
# Phase coeffeciencts from https://git.ligo.org/lscsoft/lalsuite/-/blob/master/lalsimulation/lib/LALSimInspiralPNCoefficients.c # noqa E501
|
|
164
|
+
pfaN = 3.0 / (128.0 * eta)
|
|
165
|
+
pfa_v0 = 1.0
|
|
166
|
+
pfa_v1 = 0.0
|
|
167
|
+
pfa_v2 = 5.0 * (74.3 / 8.4 + 11.0 * eta) / 9.0
|
|
168
|
+
pfa_v3 = -16.0 * PI
|
|
169
|
+
# SO contributions at 1.5 PN
|
|
170
|
+
pfa_v3 += (
|
|
171
|
+
m1byM * (25.0 + 38.0 / 3.0 * m1byM) * chi1
|
|
172
|
+
+ m2byM * (25.0 + 38.0 / 3.0 * m2byM) * chi2
|
|
173
|
+
)
|
|
174
|
+
pfa_v4 = (
|
|
175
|
+
5.0
|
|
176
|
+
* (3058.673 / 7.056 + 5429.0 / 7.0 * eta + 617.0 * eta * eta)
|
|
177
|
+
/ 72.0
|
|
178
|
+
)
|
|
179
|
+
# SO, SS, S1,2-squared contributions
|
|
180
|
+
pfa_v4 += (
|
|
181
|
+
247.0 / 4.8 * eta * chi1 * chi2
|
|
182
|
+
+ -721.0 / 4.8 * eta * chi1 * chi2
|
|
183
|
+
+ (-720.0 / 9.6 * m1byM * m1byM + 1.0 / 9.6 * m1byM * m1byM)
|
|
184
|
+
* chi1sq
|
|
185
|
+
+ (-720.0 / 9.6 * m2byM * m2byM + 1.0 / 9.6 * m2byM * m2byM)
|
|
186
|
+
* chi2sq
|
|
187
|
+
+ (240.0 / 9.6 * m1byM * m1byM + -7.0 / 9.6 * m1byM * m1byM)
|
|
188
|
+
* chi1sq
|
|
189
|
+
+ (240.0 / 9.6 * m2byM * m2byM + -7.0 / 9.6 * m2byM * m2byM)
|
|
190
|
+
* chi2sq
|
|
191
|
+
)
|
|
192
|
+
pfa_v5logv = 5.0 / 3.0 * (772.9 / 8.4 - 13.0 * eta) * PI
|
|
193
|
+
pfa_v5 = 5.0 / 9.0 * (772.9 / 8.4 - 13.0 * eta) * PI
|
|
194
|
+
# SO coefficient for 2.5 PN
|
|
195
|
+
pfa_v5logv += 3.0 * (
|
|
196
|
+
-m1byM
|
|
197
|
+
* (
|
|
198
|
+
1391.5 / 8.4
|
|
199
|
+
- 10.0 / 3.0 * m1byM * (1.0 - m1byM)
|
|
200
|
+
+ m1byM * (1276.0 / 8.1 + 170.0 / 9.0 * m1byM * (1.0 - m1byM))
|
|
201
|
+
)
|
|
202
|
+
* chi1
|
|
203
|
+
- m2byM
|
|
204
|
+
* (
|
|
205
|
+
1391.5 / 8.4
|
|
206
|
+
- 10.0 / 3.0 * m2byM * (1.0 - m2byM)
|
|
207
|
+
+ m2byM * (1276.0 / 8.1 + 170.0 / 9.0 * m2byM * (1.0 - m2byM))
|
|
208
|
+
)
|
|
209
|
+
* chi2
|
|
210
|
+
)
|
|
211
|
+
pfa_v5 += (
|
|
212
|
+
-m1byM
|
|
213
|
+
* (
|
|
214
|
+
1391.5 / 8.4
|
|
215
|
+
- 10.0 / 3.0 * m1byM * (1.0 - m1byM)
|
|
216
|
+
+ m1byM * (1276.0 / 8.1 + 170.0 / 9.0 * m1byM * (1.0 - m1byM))
|
|
217
|
+
)
|
|
218
|
+
* chi1
|
|
219
|
+
+ -m2byM
|
|
220
|
+
* (
|
|
221
|
+
1391.5 / 8.4
|
|
222
|
+
- 10.0 / 3.0 * m2byM * (1.0 - m2byM)
|
|
223
|
+
+ m2byM * (1276.0 / 8.1 + 170.0 / 9.0 * m2byM * (1.0 - m2byM))
|
|
224
|
+
)
|
|
225
|
+
* chi2
|
|
226
|
+
)
|
|
227
|
+
pfa_v6logv = -684.8 / 2.1
|
|
228
|
+
pfa_v6 = (
|
|
229
|
+
11583.231236531 / 4.694215680
|
|
230
|
+
- 640.0 / 3.0 * PI * PI
|
|
231
|
+
- 684.8 / 2.1 * GAMMA
|
|
232
|
+
+ eta * (-15737.765635 / 3.048192 + 225.5 / 1.2 * PI * PI)
|
|
233
|
+
+ eta * eta * 76.055 / 1.728
|
|
234
|
+
- eta * eta * eta * 127.825 / 1.296
|
|
235
|
+
+ pfa_v6logv * torch.log(torch.tensor(4.0))
|
|
236
|
+
)
|
|
237
|
+
# SO + S1-S2 + S-squared contribution at 3 PN
|
|
238
|
+
pfa_v6 += (
|
|
239
|
+
PI * m1byM * (1490.0 / 3.0 + m1byM * 260.0) * chi1
|
|
240
|
+
+ PI * m2byM * (1490.0 / 3.0 + m2byM * 260.0) * chi2
|
|
241
|
+
+ (326.75 / 1.12 + 557.5 / 1.8 * eta) * eta * chi1 * chi2
|
|
242
|
+
+ (
|
|
243
|
+
(4703.5 / 8.4 + 2935.0 / 6.0 * m1byM - 120.0 * m1byM * m1byM)
|
|
244
|
+
* m1byM
|
|
245
|
+
* m1byM
|
|
246
|
+
+ (
|
|
247
|
+
-4108.25 / 6.72
|
|
248
|
+
- 108.5 / 1.2 * m1byM
|
|
249
|
+
+ 125.5 / 3.6 * m1byM * m1byM
|
|
250
|
+
)
|
|
251
|
+
* m1byM
|
|
252
|
+
* m1byM
|
|
253
|
+
)
|
|
254
|
+
* chi1sq
|
|
255
|
+
+ (
|
|
256
|
+
(4703.5 / 8.4 + 2935.0 / 6.0 * m2byM - 120.0 * m2byM * m2byM)
|
|
257
|
+
* m2byM
|
|
258
|
+
* m2byM
|
|
259
|
+
+ (
|
|
260
|
+
-4108.25 / 6.72
|
|
261
|
+
- 108.5 / 1.2 * m2byM
|
|
262
|
+
+ 125.5 / 3.6 * m2byM * m2byM
|
|
263
|
+
)
|
|
264
|
+
* m2byM
|
|
265
|
+
* m2byM
|
|
266
|
+
)
|
|
267
|
+
* chi2sq
|
|
268
|
+
)
|
|
269
|
+
pfa_v7 = PI * (
|
|
270
|
+
770.96675 / 2.54016
|
|
271
|
+
+ 378.515 / 1.512 * eta
|
|
272
|
+
- 740.45 / 7.56 * eta * eta
|
|
273
|
+
)
|
|
274
|
+
# SO contribution at 3.5 PN
|
|
275
|
+
pfa_v7 += (
|
|
276
|
+
m1byM
|
|
277
|
+
* (
|
|
278
|
+
-17097.8035 / 4.8384
|
|
279
|
+
+ eta * 28764.25 / 6.72
|
|
280
|
+
+ eta * eta * 47.35 / 1.44
|
|
281
|
+
+ m1byM
|
|
282
|
+
* (
|
|
283
|
+
-7189.233785 / 1.524096
|
|
284
|
+
+ eta * 458.555 / 3.024
|
|
285
|
+
- eta * eta * 534.5 / 7.2
|
|
286
|
+
)
|
|
287
|
+
)
|
|
288
|
+
) * chi1 + (
|
|
289
|
+
m2byM
|
|
290
|
+
* (
|
|
291
|
+
-17097.8035 / 4.8384
|
|
292
|
+
+ eta * 28764.25 / 6.72
|
|
293
|
+
+ eta * eta * 47.35 / 1.44
|
|
294
|
+
+ m2byM
|
|
295
|
+
* (
|
|
296
|
+
-7189.233785 / 1.524096
|
|
297
|
+
+ eta * 458.555 / 3.024
|
|
298
|
+
- eta * eta * 534.5 / 7.2
|
|
299
|
+
)
|
|
300
|
+
)
|
|
301
|
+
) * chi2
|
|
302
|
+
# construct power series
|
|
303
|
+
phasing = (v7.mT * pfa_v7).mT
|
|
304
|
+
phasing += (v6.mT * pfa_v6 + v6_logv.mT * pfa_v6logv).mT
|
|
305
|
+
phasing += (v5.mT * pfa_v5 + v5_logv.mT * pfa_v5logv).mT
|
|
306
|
+
phasing += (v4.mT * pfa_v4).mT
|
|
307
|
+
phasing += (v3.mT * pfa_v3).mT
|
|
308
|
+
phasing += (v2.mT * pfa_v2).mT
|
|
309
|
+
phasing += (v1.mT * pfa_v1).mT
|
|
310
|
+
phasing += (v0.mT * pfa_v0).mT
|
|
311
|
+
# Divide by 0PN v-dependence
|
|
312
|
+
phasing /= v5
|
|
313
|
+
# Multiply by 0PN coefficient
|
|
314
|
+
phasing = (phasing.mT * pfaN).mT
|
|
302
315
|
|
|
303
|
-
|
|
304
|
-
|
|
316
|
+
# Derivative of phase w.r.t Mf
|
|
317
|
+
# dPhi/dMf = dPhi/dv dv/dMf
|
|
318
|
+
Dphasing = (2.0 * v7.mT * pfa_v7).mT
|
|
319
|
+
Dphasing += (v6.mT * (pfa_v6 + pfa_v6logv)).mT
|
|
320
|
+
Dphasing += (v6_logv.mT * pfa_v6logv).mT
|
|
321
|
+
Dphasing += (v5.mT * pfa_v5logv).mT
|
|
322
|
+
Dphasing += (-1.0 * v4.mT * pfa_v4).mT
|
|
323
|
+
Dphasing += (-2.0 * v3.mT * pfa_v3).mT
|
|
324
|
+
Dphasing += (-3.0 * v2.mT * pfa_v2).mT
|
|
325
|
+
Dphasing += (-4.0 * v1.mT * pfa_v1).mT
|
|
326
|
+
Dphasing += -5.0 * v0
|
|
327
|
+
Dphasing /= 3.0 * v1 * v7
|
|
328
|
+
Dphasing *= PI
|
|
329
|
+
Dphasing = (Dphasing.mT * pfaN).mT
|
|
305
330
|
|
|
306
|
-
|
|
331
|
+
return phasing, Dphasing
|
|
@@ -1,18 +1,20 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: ml4gw
|
|
3
|
-
Version: 0.
|
|
3
|
+
Version: 0.5.1
|
|
4
4
|
Summary: Tools for training torch models on gravitational wave data
|
|
5
5
|
Author: Alec Gunny
|
|
6
6
|
Author-email: alec.gunny@ligo.org
|
|
7
|
-
Requires-Python: >=3.8,<3.
|
|
7
|
+
Requires-Python: >=3.8,<3.13
|
|
8
8
|
Classifier: Programming Language :: Python :: 3
|
|
9
9
|
Classifier: Programming Language :: Python :: 3.8
|
|
10
10
|
Classifier: Programming Language :: Python :: 3.9
|
|
11
11
|
Classifier: Programming Language :: Python :: 3.10
|
|
12
12
|
Classifier: Programming Language :: Python :: 3.11
|
|
13
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
14
|
+
Requires-Dist: jaxtyping (>=0.2,<0.3)
|
|
15
|
+
Requires-Dist: numpy (<2.0.0)
|
|
13
16
|
Requires-Dist: torch (>=2.0,<3.0)
|
|
14
17
|
Requires-Dist: torchaudio (>=2.0,<3.0)
|
|
15
|
-
Requires-Dist: torchtyping (>=0.1,<0.2)
|
|
16
18
|
Description-Content-Type: text/markdown
|
|
17
19
|
|
|
18
20
|
# ML4GW
|
|
@@ -0,0 +1,47 @@
|
|
|
1
|
+
ml4gw/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
2
|
+
ml4gw/augmentations.py,sha256=pZH9tjEpXV0AIqvHHDkpUE-BorG02beOz2pmSipw2EY,1232
|
|
3
|
+
ml4gw/constants.py,sha256=W9beA9RDRdIug1I2H7VLPEPv_DFsQWWoYRmzxv7FWgM,891
|
|
4
|
+
ml4gw/dataloading/__init__.py,sha256=EHBBqU7y2-Np5iQ_xyufxamUEM1pPEquqFo7oaJnaJE,149
|
|
5
|
+
ml4gw/dataloading/chunked_dataset.py,sha256=FpDc4gFxt-PMyXs5qSWLuTGXMTuS1B-hH8gUOCOGxZk,5260
|
|
6
|
+
ml4gw/dataloading/hdf5_dataset.py,sha256=UB1Eog8l7m4M78Owst7oYQZICb0DRJer9WVLVn4hl_I,6645
|
|
7
|
+
ml4gw/dataloading/in_memory_dataset.py,sha256=kleMA9ABUKA6J0tCdz78tbX9lM6uxVSLhqgHbSa1iWY,9550
|
|
8
|
+
ml4gw/distributions.py,sha256=tUuaOiX5enjKLYWD7uiN8rdRVQcrIKps64xBkTl8fMs,4991
|
|
9
|
+
ml4gw/gw.py,sha256=To_hQz9tUp02ADllGLxFCPsNcfbb-kbvfgGpooxcOII,17693
|
|
10
|
+
ml4gw/nn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
11
|
+
ml4gw/nn/autoencoder/__init__.py,sha256=ZaT1XhJTHpMuPQqu5E__Jezeh9uwtjcXlT7IZ18byq4,161
|
|
12
|
+
ml4gw/nn/autoencoder/base.py,sha256=4d5Ej30IUzZh3XbldzWlCpp3p0_91YUvKeRID8ZEZGA,3225
|
|
13
|
+
ml4gw/nn/autoencoder/convolutional.py,sha256=2BXDuPWYC-151RO_FL0ogdrqSVTfo4YNrY80lPwrmFA,5419
|
|
14
|
+
ml4gw/nn/autoencoder/skip_connection.py,sha256=fpXxxIIl0CXY4mAfUZQuvI542pEBSwpg90TNG2rbZY8,1411
|
|
15
|
+
ml4gw/nn/autoencoder/utils.py,sha256=m_ivYGNwdrhA7cFxJVD4gqM8AHiWIGmlQI3pFNRklXQ,355
|
|
16
|
+
ml4gw/nn/norm.py,sha256=JIOMXQbUtoWlrhncGsqW6f1-DiGDx9zQH2O3CvQml3U,3594
|
|
17
|
+
ml4gw/nn/resnet/__init__.py,sha256=vBI0IftVP_EYAeDlqomtkGqUYE-RE_S4WNioUhniw9s,64
|
|
18
|
+
ml4gw/nn/resnet/resnet_1d.py,sha256=IQ-EIIzAXd-NWuLwt7JTXLWg5bO3FGJpuFAZwZ78jaI,13218
|
|
19
|
+
ml4gw/nn/resnet/resnet_2d.py,sha256=aK4I0FOZk62JxnYFz0t1O0s5s7J7yRNYSM1flRypvVc,13301
|
|
20
|
+
ml4gw/nn/streaming/__init__.py,sha256=zgjGR2L8t0txXLnil9ceZT0tM8Y2FC8yPxqIKYH0o1A,80
|
|
21
|
+
ml4gw/nn/streaming/online_average.py,sha256=aI8hkT7I3thXkda9tsXxYrzump9swelSXPdSTwPlJWY,4719
|
|
22
|
+
ml4gw/nn/streaming/snapshotter.py,sha256=B9qtbHxnPszAHQ5WQppWJLRuMnnYIxGk7MRUlgja7Is,4476
|
|
23
|
+
ml4gw/spectral.py,sha256=Mt3-yz4a83z0X7M1sVp00_vB947w-9OjU0iNdEkbQcU,19145
|
|
24
|
+
ml4gw/transforms/__init__.py,sha256=24pdP_hIg1wfrtZxxRBPhcEXsCbvVKtNKp7JL8SEogE,362
|
|
25
|
+
ml4gw/transforms/pearson.py,sha256=Ep3mMsY15AF55taRaWNjpHRTvtr1StShUDfqk0dN-qo,3235
|
|
26
|
+
ml4gw/transforms/qtransform.py,sha256=umBSpykfmPftjfyMqbniiP2mTh62q4hoYPA55qneJ4o,17702
|
|
27
|
+
ml4gw/transforms/scaler.py,sha256=fLZo-m6_yFY3UDoLEaS_YgCnYggxlcKstXcM7749TiU,2433
|
|
28
|
+
ml4gw/transforms/snr_rescaler.py,sha256=3XXCTaXc2dzzpXRZx7iqRwImvYtRSJLM5fHdBGfpoUs,2351
|
|
29
|
+
ml4gw/transforms/spectral.py,sha256=gTHUeC0gGYbzgBZHb_FxC_4zdhl5H-XCiLg1hrvKB70,4393
|
|
30
|
+
ml4gw/transforms/spectrogram.py,sha256=HS3Rf5iB7JjhlSESRDdFGUwCtIBdvUaJUDulkB4Lmos,6162
|
|
31
|
+
ml4gw/transforms/transform.py,sha256=BuzTbPFxp18OEGP9Tu9jBGtvqy3len1cqvqg5X37DiY,2512
|
|
32
|
+
ml4gw/transforms/waveforms.py,sha256=LkYCvxPqYhHa2yYZTvPE6j0E4HFy16b5ndCRQb7WfcA,3196
|
|
33
|
+
ml4gw/transforms/whitening.py,sha256=Aw_ogq93CYCATiHWBqSZ-qsUtaHAMA3k009ZRtQTtHA,9596
|
|
34
|
+
ml4gw/types.py,sha256=CcctqDcNajR7khGT6BD-WYsfRKpiP0udoSAB0k1qcFw,863
|
|
35
|
+
ml4gw/utils/interferometer.py,sha256=lRS0N3SwUTknhYXX57VACJ99jK1P9M19oUWN_i_nQN0,1814
|
|
36
|
+
ml4gw/utils/slicing.py,sha256=ilRz_5sJzwmd5VyBlrj81tvyC3uCnXYjd0TO2fzFMr8,13563
|
|
37
|
+
ml4gw/waveforms/__init__.py,sha256=dnxfRGX_B3zQPB3_3srLyjZXRxTn4miZqYIRe7PYyrU,170
|
|
38
|
+
ml4gw/waveforms/generator.py,sha256=dO6RQ96EC87p2q0tEkxA62XkkJc1xARFO1SKcGvyDhM,1272
|
|
39
|
+
ml4gw/waveforms/phenom_d.py,sha256=vA60SjOvWSIcsU83-KEw2hnU3ATo4eW8A2mMmuMXo7Y,46941
|
|
40
|
+
ml4gw/waveforms/phenom_d_data.py,sha256=WA1FBxUp9fo1IQaV_OLJ_5g5gI166mY1FtG9n25he9U,53447
|
|
41
|
+
ml4gw/waveforms/phenom_p.py,sha256=VybpPlc2_yMGywnPz5B79QAygAj-WAeHZTPiZHets28,26951
|
|
42
|
+
ml4gw/waveforms/ringdown.py,sha256=m8IBQTxKBBGFqBtWGEO4KG3DEYR8TTnNyGVdVLaMKa8,3316
|
|
43
|
+
ml4gw/waveforms/sine_gaussian.py,sha256=-MtrI7ydwBTk4K0O4tdkC8-w5OifQszdnWN9__I4XzY,3569
|
|
44
|
+
ml4gw/waveforms/taylorf2.py,sha256=ySYLGTT_c3k4NzPDsQ9v822kzvU6TwYpELJEWlCDGQE,10428
|
|
45
|
+
ml4gw-0.5.1.dist-info/METADATA,sha256=P2uoQtMX_K5SSwAzTY5tyNvWYszxaDADTS54iDOQYKw,5785
|
|
46
|
+
ml4gw-0.5.1.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
|
|
47
|
+
ml4gw-0.5.1.dist-info/RECORD,,
|