ml4gw 0.4.2__py3-none-any.whl → 0.5.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ml4gw might be problematic. Click here for more details.
- ml4gw/augmentations.py +8 -2
- ml4gw/constants.py +45 -0
- ml4gw/dataloading/chunked_dataset.py +4 -2
- ml4gw/dataloading/hdf5_dataset.py +1 -1
- ml4gw/dataloading/in_memory_dataset.py +8 -4
- ml4gw/distributions.py +18 -12
- ml4gw/gw.py +21 -27
- ml4gw/nn/autoencoder/base.py +11 -6
- ml4gw/nn/autoencoder/convolutional.py +7 -4
- ml4gw/nn/autoencoder/skip_connection.py +7 -6
- ml4gw/nn/autoencoder/utils.py +2 -1
- ml4gw/nn/norm.py +11 -1
- ml4gw/nn/streaming/online_average.py +7 -5
- ml4gw/nn/streaming/snapshotter.py +7 -5
- ml4gw/spectral.py +40 -36
- ml4gw/transforms/pearson.py +7 -3
- ml4gw/transforms/qtransform.py +20 -14
- ml4gw/transforms/scaler.py +6 -2
- ml4gw/transforms/snr_rescaler.py +6 -5
- ml4gw/transforms/spectral.py +25 -6
- ml4gw/transforms/spectrogram.py +7 -1
- ml4gw/transforms/transform.py +4 -3
- ml4gw/transforms/waveforms.py +10 -7
- ml4gw/transforms/whitening.py +12 -4
- ml4gw/types.py +25 -10
- ml4gw/utils/interferometer.py +7 -1
- ml4gw/utils/slicing.py +24 -16
- ml4gw/waveforms/__init__.py +2 -0
- ml4gw/waveforms/generator.py +9 -5
- ml4gw/waveforms/phenom_d.py +1338 -1256
- ml4gw/waveforms/phenom_p.py +796 -0
- ml4gw/waveforms/ringdown.py +109 -0
- ml4gw/waveforms/sine_gaussian.py +10 -11
- ml4gw/waveforms/taylorf2.py +304 -279
- {ml4gw-0.4.2.dist-info → ml4gw-0.5.1.dist-info}/METADATA +5 -3
- ml4gw-0.5.1.dist-info/RECORD +47 -0
- ml4gw-0.4.2.dist-info/RECORD +0 -44
- {ml4gw-0.4.2.dist-info → ml4gw-0.5.1.dist-info}/WHEEL +0 -0
ml4gw/waveforms/phenom_d.py
CHANGED
|
@@ -1,1361 +1,1443 @@
|
|
|
1
1
|
import torch
|
|
2
|
-
from
|
|
3
|
-
|
|
4
|
-
from . import
|
|
5
|
-
from .
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
2
|
+
from jaxtyping import Float
|
|
3
|
+
|
|
4
|
+
from ml4gw.constants import MTSUN_SI, PI
|
|
5
|
+
from ml4gw.types import BatchTensor, FrequencySeries1d
|
|
6
|
+
|
|
7
|
+
from .phenom_d_data import QNMData_a, QNMData_fdamp, QNMData_fring
|
|
8
|
+
from .taylorf2 import TaylorF2
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class IMRPhenomD(TaylorF2):
|
|
12
|
+
def __init__(self):
|
|
13
|
+
super().__init__()
|
|
14
|
+
self.register_buffer("qnmdata_a", QNMData_a)
|
|
15
|
+
self.register_buffer("qnmdata_fdamp", QNMData_fdamp)
|
|
16
|
+
self.register_buffer("qnmdata_fring", QNMData_fring)
|
|
17
|
+
|
|
18
|
+
def forward(
|
|
19
|
+
self,
|
|
20
|
+
f: FrequencySeries1d,
|
|
21
|
+
chirp_mass: BatchTensor,
|
|
22
|
+
mass_ratio: BatchTensor,
|
|
23
|
+
chi1: BatchTensor,
|
|
24
|
+
chi2: BatchTensor,
|
|
25
|
+
distance: BatchTensor,
|
|
26
|
+
phic: BatchTensor,
|
|
27
|
+
inclination: BatchTensor,
|
|
28
|
+
f_ref: float,
|
|
29
|
+
):
|
|
30
|
+
"""
|
|
31
|
+
IMRPhenomD waveform
|
|
32
|
+
|
|
33
|
+
Args:
|
|
34
|
+
f:
|
|
35
|
+
Frequency series in Hz.
|
|
36
|
+
chirp_mass:
|
|
37
|
+
Chirp mass in solar masses
|
|
38
|
+
mass_ratio:
|
|
39
|
+
Mass ratio m1/m2
|
|
40
|
+
chi1:
|
|
41
|
+
Spin of m1
|
|
42
|
+
chi2:
|
|
43
|
+
Spin of m2
|
|
44
|
+
distance:
|
|
45
|
+
Distance to source in Mpc
|
|
46
|
+
phic:
|
|
47
|
+
Phase at coalescence
|
|
48
|
+
inclination:
|
|
49
|
+
Inclination of the source
|
|
50
|
+
f_ref:
|
|
51
|
+
Reference frequency
|
|
52
|
+
|
|
53
|
+
Returns:
|
|
54
|
+
hc, hp: Tuple[torch.Tensor, torch.Tensor]
|
|
55
|
+
Cross and plus polarizations
|
|
56
|
+
"""
|
|
57
|
+
# shape assumed (n_batch, params)
|
|
58
|
+
if (
|
|
59
|
+
chirp_mass.shape[0] != mass_ratio.shape[0]
|
|
60
|
+
or mass_ratio.shape[0] != chi1.shape[0]
|
|
61
|
+
or chi1.shape[0] != chi2.shape[0]
|
|
62
|
+
or chi2.shape[0] != distance.shape[0]
|
|
63
|
+
or distance.shape[0] != phic.shape[0]
|
|
64
|
+
or phic.shape[0] != inclination.shape[0]
|
|
65
|
+
):
|
|
66
|
+
raise RuntimeError("Tensors should have same batch size")
|
|
67
|
+
cfac = torch.cos(inclination)
|
|
68
|
+
pfac = 0.5 * (1.0 + cfac * cfac)
|
|
69
|
+
|
|
70
|
+
htilde = self.phenom_d_htilde(
|
|
71
|
+
f, chirp_mass, mass_ratio, chi1, chi2, distance, phic, f_ref
|
|
31
72
|
)
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
73
|
+
|
|
74
|
+
hp = (htilde.mT * pfac).mT
|
|
75
|
+
hc = -1j * (htilde.mT * cfac).mT
|
|
76
|
+
|
|
77
|
+
return hc, hp
|
|
78
|
+
|
|
79
|
+
def phenom_d_htilde(
|
|
80
|
+
self,
|
|
81
|
+
f: FrequencySeries1d,
|
|
82
|
+
chirp_mass: BatchTensor,
|
|
83
|
+
mass_ratio: BatchTensor,
|
|
84
|
+
chi1: BatchTensor,
|
|
85
|
+
chi2: BatchTensor,
|
|
86
|
+
distance: BatchTensor,
|
|
87
|
+
phic: BatchTensor,
|
|
88
|
+
f_ref: float,
|
|
89
|
+
) -> Float[FrequencySeries1d, " batch"]:
|
|
90
|
+
total_mass = chirp_mass * (1 + mass_ratio) ** 1.2 / mass_ratio**0.6
|
|
91
|
+
mass_1 = total_mass / (1 + mass_ratio)
|
|
92
|
+
mass_2 = mass_1 * mass_ratio
|
|
93
|
+
eta = (chirp_mass / total_mass) ** (5 / 3)
|
|
94
|
+
eta2 = eta * eta
|
|
95
|
+
Seta = torch.sqrt(1.0 - 4.0 * eta)
|
|
96
|
+
chi = self.chiPN(Seta, eta, chi1, chi2)
|
|
97
|
+
chi22 = chi2 * chi2
|
|
98
|
+
chi12 = chi1 * chi1
|
|
99
|
+
xi = -1.0 + chi
|
|
100
|
+
M_s = total_mass * MTSUN_SI
|
|
101
|
+
|
|
102
|
+
gamma2 = self.gamma2_fun(eta, eta2, xi)
|
|
103
|
+
gamma3 = self.gamma3_fun(eta, eta2, xi)
|
|
104
|
+
|
|
105
|
+
fRD, fDM = self.fring_fdamp(eta, eta2, chi1, chi2)
|
|
106
|
+
Mf_peak = self.fmaxCalc(fRD, fDM, gamma2, gamma3)
|
|
107
|
+
_, t0 = self.phenom_d_mrd_phase(Mf_peak, eta, eta2, chi1, chi2, xi)
|
|
108
|
+
|
|
109
|
+
Mf = torch.outer(M_s, f)
|
|
110
|
+
Mf_ref = torch.outer(M_s, f_ref * torch.ones_like(f))
|
|
111
|
+
|
|
112
|
+
Psi, _ = self.phenom_d_phase(
|
|
113
|
+
Mf, mass_1, mass_2, eta, eta2, chi1, chi2, xi
|
|
57
114
|
)
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
def sigma3Fit(eta, eta2, xi):
|
|
63
|
-
return (
|
|
64
|
-
22933.658273436497
|
|
65
|
-
+ 230960.00814979506 * eta
|
|
66
|
-
+ (
|
|
67
|
-
14961.083974183695
|
|
68
|
-
+ 1.1940181342318142e6 * eta
|
|
69
|
-
- 3.1042239693052764e6 * eta2
|
|
70
|
-
+ (
|
|
71
|
-
-3038.166617199259
|
|
72
|
-
+ 1.8720322849093592e6 * eta
|
|
73
|
-
- 7.309145012085539e6 * eta2
|
|
74
|
-
)
|
|
75
|
-
* xi
|
|
76
|
-
+ (
|
|
77
|
-
42738.22871475411
|
|
78
|
-
+ 467502.018616601 * eta
|
|
79
|
-
- 3.064853498512499e6 * eta2
|
|
80
|
-
)
|
|
81
|
-
* xi
|
|
82
|
-
* xi
|
|
115
|
+
Psi_ref, _ = self.phenom_d_phase(
|
|
116
|
+
Mf_ref, mass_1, mass_2, eta, eta2, chi1, chi2, xi
|
|
83
117
|
)
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
+ (
|
|
103
|
-
-85360.30079034246
|
|
104
|
-
- 570025.3441737515 * eta
|
|
105
|
-
+ 4.396844346849777e6 * eta2
|
|
106
|
-
)
|
|
107
|
-
* xi
|
|
108
|
-
* xi
|
|
118
|
+
|
|
119
|
+
Psi = (Psi.mT - 2 * phic).mT
|
|
120
|
+
Psi -= Psi_ref
|
|
121
|
+
Psi -= ((Mf - Mf_ref).mT * t0).mT
|
|
122
|
+
|
|
123
|
+
amp, _ = self.phenom_d_amp(
|
|
124
|
+
Mf,
|
|
125
|
+
mass_1,
|
|
126
|
+
mass_2,
|
|
127
|
+
eta,
|
|
128
|
+
eta2,
|
|
129
|
+
Seta,
|
|
130
|
+
chi1,
|
|
131
|
+
chi2,
|
|
132
|
+
chi12,
|
|
133
|
+
chi22,
|
|
134
|
+
xi,
|
|
135
|
+
distance,
|
|
109
136
|
)
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
|
|
137
|
+
|
|
138
|
+
amp_0 = self.taylorf2_amplitude(
|
|
139
|
+
Mf, mass_1, mass_2, eta, distance
|
|
140
|
+
) # this includes f^(-7/6) dependence
|
|
141
|
+
|
|
142
|
+
h0 = -amp_0 * amp * torch.exp(-1j * Psi)
|
|
143
|
+
|
|
144
|
+
return h0
|
|
145
|
+
|
|
146
|
+
def phenom_d_amp(
|
|
147
|
+
self,
|
|
148
|
+
Mf,
|
|
149
|
+
mass_1,
|
|
150
|
+
mass_2,
|
|
151
|
+
eta,
|
|
152
|
+
eta2,
|
|
153
|
+
Seta,
|
|
154
|
+
chi1,
|
|
155
|
+
chi2,
|
|
156
|
+
chi12,
|
|
157
|
+
chi22,
|
|
158
|
+
xi,
|
|
159
|
+
distance,
|
|
160
|
+
):
|
|
161
|
+
ins_amp, ins_Damp = self.phenom_d_inspiral_amp(
|
|
162
|
+
Mf, eta, eta2, Seta, xi, chi1, chi2, chi12, chi22
|
|
163
|
+
)
|
|
164
|
+
int_amp, int_Damp = self.phenom_d_int_amp(
|
|
165
|
+
Mf, eta, eta2, Seta, chi1, chi2, chi12, chi22, xi
|
|
166
|
+
)
|
|
167
|
+
mrd_amp, mrd_Damp = self.phenom_d_mrd_amp(
|
|
168
|
+
Mf, eta, eta2, chi1, chi2, xi
|
|
169
|
+
)
|
|
170
|
+
|
|
171
|
+
gamma2 = self.gamma2_fun(eta, eta2, xi)
|
|
172
|
+
gamma3 = self.gamma3_fun(eta, eta2, xi)
|
|
173
|
+
fRD, fDM = self.fring_fdamp(eta, eta2, chi1, chi2)
|
|
174
|
+
Mf_peak = self.fmaxCalc(fRD, fDM, gamma2, gamma3)
|
|
175
|
+
# Geometric peak and joining frequencies
|
|
176
|
+
Mf_peak = (torch.ones_like(Mf).mT * Mf_peak).mT
|
|
177
|
+
Mf_join_ins = 0.014 * torch.ones_like(Mf)
|
|
178
|
+
|
|
179
|
+
# construct full IMR Amp
|
|
180
|
+
theta_minus_f1 = torch.heaviside(
|
|
181
|
+
Mf_join_ins - Mf, torch.tensor(0.0, device=Mf.device)
|
|
182
|
+
)
|
|
183
|
+
theta_plus_f1 = torch.heaviside(
|
|
184
|
+
Mf - Mf_join_ins, torch.tensor(1.0, device=Mf.device)
|
|
185
|
+
)
|
|
186
|
+
theta_minus_f2 = torch.heaviside(
|
|
187
|
+
Mf_peak - Mf, torch.tensor(0.0, device=Mf.device)
|
|
188
|
+
)
|
|
189
|
+
theta_plus_f2 = torch.heaviside(
|
|
190
|
+
Mf - Mf_peak, torch.tensor(1.0, device=Mf.device)
|
|
191
|
+
)
|
|
192
|
+
|
|
193
|
+
amp = theta_minus_f1 * ins_amp
|
|
194
|
+
amp += theta_plus_f1 * int_amp * theta_minus_f2
|
|
195
|
+
amp += theta_plus_f2 * mrd_amp
|
|
196
|
+
|
|
197
|
+
Damp = theta_minus_f1 * ins_Damp
|
|
198
|
+
Damp += theta_plus_f1 * int_Damp * theta_minus_f2
|
|
199
|
+
Damp += theta_plus_f2 * mrd_Damp
|
|
200
|
+
|
|
201
|
+
return amp, Damp
|
|
202
|
+
|
|
203
|
+
def phenom_d_int_amp(
|
|
204
|
+
self, Mf, eta, eta2, Seta, chi1, chi2, chi12, chi22, xi
|
|
205
|
+
):
|
|
206
|
+
# merger ringdown
|
|
207
|
+
fRD, fDM = self.fring_fdamp(eta, eta2, chi1, chi2)
|
|
208
|
+
# Geometric frequency definition from PhenomD header file
|
|
209
|
+
AMP_fJoin_INS = 0.014
|
|
210
|
+
|
|
211
|
+
Mf1 = AMP_fJoin_INS * torch.ones_like(Mf)
|
|
212
|
+
gamma2 = self.gamma2_fun(eta, eta2, xi)
|
|
213
|
+
gamma3 = self.gamma3_fun(eta, eta2, xi)
|
|
214
|
+
|
|
215
|
+
fpeak = self.fmaxCalc(fRD, fDM, gamma2, gamma3)
|
|
216
|
+
Mf3 = (torch.ones_like(Mf).mT * fpeak).mT
|
|
217
|
+
dfx = 0.5 * (Mf3 - Mf1)
|
|
218
|
+
Mf2 = Mf1 + dfx
|
|
219
|
+
|
|
220
|
+
v1, d1 = self.phenom_d_inspiral_amp(
|
|
221
|
+
Mf1, eta, eta2, Seta, xi, chi1, chi2, chi12, chi22
|
|
222
|
+
)
|
|
223
|
+
v3, d2 = self.phenom_d_mrd_amp(Mf3, eta, eta2, chi1, chi2, xi)
|
|
224
|
+
v2 = (
|
|
225
|
+
torch.ones_like(Mf).mT * self.AmpIntColFitCoeff(eta, eta2, xi)
|
|
226
|
+
).mT
|
|
227
|
+
|
|
228
|
+
delta_0, delta_1, delta_2, delta_3, delta_4 = self.delta_values(
|
|
229
|
+
f1=Mf1, f2=Mf2, f3=Mf3, v1=v1, v2=v2, v3=v3, d1=d1, d2=d2
|
|
230
|
+
)
|
|
231
|
+
|
|
232
|
+
amp = (
|
|
233
|
+
delta_0
|
|
234
|
+
+ Mf * delta_1
|
|
235
|
+
+ Mf**2 * (delta_2 + Mf * delta_3 + Mf**2 * delta_4)
|
|
236
|
+
)
|
|
237
|
+
Damp = delta_1 + Mf * (
|
|
238
|
+
2 * delta_2 + 3 * Mf * delta_3 + 4 * Mf**2 * delta_4
|
|
239
|
+
)
|
|
240
|
+
return amp, Damp
|
|
241
|
+
|
|
242
|
+
def phenom_d_mrd_amp(self, Mf, eta, eta2, chi1, chi2, xi):
|
|
243
|
+
# merger ringdown
|
|
244
|
+
fRD, fDM = self.fring_fdamp(eta, eta2, chi1, chi2)
|
|
245
|
+
|
|
246
|
+
gamma1 = self.gamma1_fun(eta, eta2, xi)
|
|
247
|
+
gamma2 = self.gamma2_fun(eta, eta2, xi)
|
|
248
|
+
gamma3 = self.gamma3_fun(eta, eta2, xi)
|
|
249
|
+
fDMgamma3 = fDM * gamma3
|
|
250
|
+
pow2_fDMgamma3 = (torch.ones_like(Mf).mT * fDMgamma3 * fDMgamma3).mT
|
|
251
|
+
fminfRD = Mf - (torch.ones_like(Mf).mT * fRD).mT
|
|
252
|
+
exp_times_lorentzian = torch.exp(fminfRD.mT * gamma2 / fDMgamma3).mT
|
|
253
|
+
exp_times_lorentzian *= fminfRD**2 + pow2_fDMgamma3
|
|
254
|
+
|
|
255
|
+
amp = (1 / exp_times_lorentzian.mT * gamma1 * gamma3 * fDM).mT
|
|
256
|
+
Damp = (fminfRD.mT * -2 * fDM * gamma1 * gamma3) / (
|
|
257
|
+
fminfRD * fminfRD + pow2_fDMgamma3
|
|
258
|
+
).mT - (gamma2 * gamma1)
|
|
259
|
+
Damp = Damp.mT / exp_times_lorentzian
|
|
260
|
+
return amp, Damp
|
|
261
|
+
|
|
262
|
+
def phenom_d_inspiral_amp(
|
|
263
|
+
self, Mf, eta, eta2, Seta, xi, chi1, chi2, chi12, chi22
|
|
264
|
+
):
|
|
265
|
+
SetaPlus1 = 1 + Seta
|
|
266
|
+
|
|
267
|
+
Mf_one_third = Mf ** (1.0 / 3.0)
|
|
268
|
+
Mf_two_third = Mf_one_third * Mf_one_third
|
|
269
|
+
Mf_four_third = Mf_two_third * Mf_two_third
|
|
270
|
+
Mf_five_third = Mf_four_third * Mf_one_third
|
|
271
|
+
Mf_seven_third = Mf_five_third * Mf_two_third
|
|
272
|
+
MF_eight_third = Mf_seven_third * Mf_one_third
|
|
273
|
+
Mf_two = Mf * Mf
|
|
274
|
+
Mf_three = Mf_two * Mf
|
|
275
|
+
|
|
276
|
+
prefactors_two_thirds = ((-969 + 1804 * eta) * PI ** (2.0 / 3.0)) / 672
|
|
277
|
+
prefactors_one = (
|
|
278
|
+
(
|
|
279
|
+
chi1 * (81 * SetaPlus1 - 44 * eta)
|
|
280
|
+
+ chi2 * (81 - 81 * Seta - 44 * eta)
|
|
126
281
|
)
|
|
127
|
-
*
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
|
|
282
|
+
* PI
|
|
283
|
+
) / 48.0
|
|
284
|
+
prefactors_four_thirds = (
|
|
285
|
+
(
|
|
286
|
+
-27312085.0
|
|
287
|
+
- 10287648 * chi22
|
|
288
|
+
- 10287648 * chi12 * SetaPlus1
|
|
289
|
+
+ 10287648 * chi22 * Seta
|
|
290
|
+
+ 24
|
|
291
|
+
* (
|
|
292
|
+
-1975055
|
|
293
|
+
+ 857304 * chi12
|
|
294
|
+
- 994896 * chi1 * chi2
|
|
295
|
+
+ 857304 * chi22
|
|
296
|
+
)
|
|
297
|
+
* eta
|
|
298
|
+
+ 35371056 * eta2
|
|
132
299
|
)
|
|
133
|
-
*
|
|
134
|
-
|
|
135
|
-
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
|
|
150
|
-
-
|
|
151
|
-
+ 24.784892370130475 * eta2
|
|
300
|
+
* PI ** (4.0 / 3.0)
|
|
301
|
+
) / 8.128512e6
|
|
302
|
+
prefactors_five_thirds = (
|
|
303
|
+
PI ** (5.0 / 3.0)
|
|
304
|
+
* (
|
|
305
|
+
chi2
|
|
306
|
+
* (
|
|
307
|
+
-285197 * (-1 + Seta)
|
|
308
|
+
+ 4 * (-91902 + 1579 * Seta) * eta
|
|
309
|
+
- 35632 * eta2
|
|
310
|
+
)
|
|
311
|
+
+ chi1
|
|
312
|
+
* (
|
|
313
|
+
285197 * SetaPlus1
|
|
314
|
+
- 4 * (91902 + 1579 * Seta) * eta
|
|
315
|
+
- 35632 * eta2
|
|
316
|
+
)
|
|
317
|
+
+ 42840 * (-1.0 + 4 * eta) * PI
|
|
152
318
|
)
|
|
153
|
-
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
319
|
+
) / 32256.0
|
|
320
|
+
prefactors_two = (
|
|
321
|
+
-(
|
|
322
|
+
PI**2
|
|
323
|
+
* (
|
|
324
|
+
-336
|
|
325
|
+
* (
|
|
326
|
+
-3248849057.0
|
|
327
|
+
+ 2943675504 * chi12
|
|
328
|
+
- 3339284256 * chi1 * chi2
|
|
329
|
+
+ 2943675504 * chi22
|
|
330
|
+
)
|
|
331
|
+
* eta2
|
|
332
|
+
- 324322727232 * eta2 * eta
|
|
333
|
+
- 7
|
|
334
|
+
* (
|
|
335
|
+
-177520268561
|
|
336
|
+
+ 107414046432 * chi22
|
|
337
|
+
+ 107414046432 * chi12 * SetaPlus1
|
|
338
|
+
- 107414046432 * chi22 * Seta
|
|
339
|
+
+ 11087290368
|
|
340
|
+
* (chi1 + chi2 + chi1 * Seta - chi2 * Seta)
|
|
341
|
+
* PI
|
|
342
|
+
)
|
|
343
|
+
+ 12
|
|
344
|
+
* eta
|
|
345
|
+
* (
|
|
346
|
+
-545384828789
|
|
347
|
+
- 176491177632 * chi1 * chi2
|
|
348
|
+
+ 202603761360 * chi22
|
|
349
|
+
+ 77616 * chi12 * (2610335 + 995766 * Seta)
|
|
350
|
+
- 77287373856 * chi22 * Seta
|
|
351
|
+
+ 5841690624 * (chi1 + chi2) * PI
|
|
352
|
+
+ 21384760320 * PI**2
|
|
353
|
+
)
|
|
354
|
+
)
|
|
158
355
|
)
|
|
159
|
-
|
|
160
|
-
|
|
356
|
+
/ 6.0085960704e10
|
|
357
|
+
)
|
|
358
|
+
prefactors_seven_thirds = self.rho1_fun(eta, eta2, xi)
|
|
359
|
+
prefactors_eight_thirds = self.rho2_fun(eta, eta2, xi)
|
|
360
|
+
prefactors_three = self.rho3_fun(eta, eta2, xi)
|
|
361
|
+
|
|
362
|
+
amp = torch.ones_like(Mf)
|
|
363
|
+
amp += (
|
|
364
|
+
Mf_two_third.mT * prefactors_two_thirds
|
|
365
|
+
+ Mf_four_third.mT * prefactors_four_thirds
|
|
366
|
+
+ Mf_five_third.mT * prefactors_five_thirds
|
|
367
|
+
+ Mf_seven_third.mT * prefactors_seven_thirds
|
|
368
|
+
+ MF_eight_third.mT * prefactors_eight_thirds
|
|
369
|
+
+ Mf.mT * prefactors_one
|
|
370
|
+
+ Mf_two.mT * prefactors_two
|
|
371
|
+
+ Mf_three.mT * prefactors_three
|
|
372
|
+
).mT
|
|
373
|
+
|
|
374
|
+
Damp = (
|
|
375
|
+
(2.0 / 3.0) / Mf_one_third.mT * prefactors_two_thirds
|
|
376
|
+
+ (4.0 / 3.0) * Mf_one_third.mT * prefactors_four_thirds
|
|
377
|
+
+ (5.0 / 3.0) * Mf_two_third.mT * prefactors_five_thirds
|
|
378
|
+
+ (7.0 / 3.0) * Mf_four_third.mT * prefactors_seven_thirds
|
|
379
|
+
+ (8.0 / 3.0) * Mf_five_third.mT * prefactors_eight_thirds
|
|
380
|
+
+ prefactors_one
|
|
381
|
+
+ 2.0 * Mf.mT * prefactors_two
|
|
382
|
+
+ 3.0 * Mf_two.mT * prefactors_three
|
|
383
|
+
).mT
|
|
384
|
+
|
|
385
|
+
return amp, Damp
|
|
386
|
+
|
|
387
|
+
def phenom_d_phase(self, Mf, mass_1, mass_2, eta, eta2, chi1, chi2, xi):
|
|
388
|
+
ins_phase, ins_Dphase = self.phenom_d_inspiral_phase(
|
|
389
|
+
Mf, mass_1, mass_2, eta, eta2, xi, chi1, chi2
|
|
390
|
+
)
|
|
391
|
+
int_phase, int_Dphase = self.phenom_d_int_phase(Mf, eta, eta2, xi)
|
|
392
|
+
mrd_phase, mrd_Dphase = self.phenom_d_mrd_phase(
|
|
393
|
+
Mf, eta, eta2, chi1, chi2, xi
|
|
394
|
+
)
|
|
395
|
+
|
|
396
|
+
# merger ringdown
|
|
397
|
+
fRD, fDM = self.fring_fdamp(eta, eta2, chi1, chi2)
|
|
398
|
+
# definitions in Eq. (35) of arXiv:1508.07253
|
|
399
|
+
# PHI_fJoin_INS in header LALSimIMRPhenomD.h
|
|
400
|
+
# C1 continuity at intermediate region i.e. f_1
|
|
401
|
+
PHI_fJoin_INS = 0.018 * torch.ones_like(Mf)
|
|
402
|
+
ins_phase_f1, ins_Dphase_f1 = self.phenom_d_inspiral_phase(
|
|
403
|
+
PHI_fJoin_INS, mass_1, mass_2, eta, eta2, xi, chi1, chi2
|
|
404
|
+
)
|
|
405
|
+
int_phase_f1, int_Dphase_f1 = self.phenom_d_int_phase(
|
|
406
|
+
PHI_fJoin_INS, eta, eta2, xi
|
|
407
|
+
)
|
|
408
|
+
C2Int = ins_Dphase_f1 - int_Dphase_f1
|
|
409
|
+
C1Int = (
|
|
410
|
+
ins_phase_f1 - (int_phase_f1.mT / eta).mT - C2Int * PHI_fJoin_INS
|
|
411
|
+
)
|
|
412
|
+
# C1 continuity at ringdown
|
|
413
|
+
fRDJoin = (0.5 * torch.ones_like(Mf).mT * fRD).mT
|
|
414
|
+
int_phase_rd, int_Dphase_rd = self.phenom_d_int_phase(
|
|
415
|
+
fRDJoin, eta, eta2, xi
|
|
161
416
|
)
|
|
162
|
-
|
|
163
|
-
|
|
164
|
-
|
|
165
|
-
|
|
166
|
-
|
|
167
|
-
|
|
168
|
-
|
|
169
|
-
|
|
170
|
-
|
|
171
|
-
|
|
172
|
-
|
|
173
|
-
|
|
417
|
+
mrd_phase_rd, mrd_Dphase_rd = self.phenom_d_mrd_phase(
|
|
418
|
+
fRDJoin, eta, eta2, chi1, chi2, xi
|
|
419
|
+
)
|
|
420
|
+
PhiIntTempVal = (int_phase_rd.mT / eta).mT + C1Int + C2Int * fRDJoin
|
|
421
|
+
# C2MRD = int_Dphase_rd - mrd_Dphase_rd
|
|
422
|
+
C2MRD = C2Int + int_Dphase_rd - mrd_Dphase_rd
|
|
423
|
+
C1MRD = PhiIntTempVal - (mrd_phase_rd.mT / eta).mT - C2MRD * fRDJoin
|
|
424
|
+
|
|
425
|
+
int_phase = (int_phase.mT / eta).mT
|
|
426
|
+
int_phase += C1Int
|
|
427
|
+
int_phase += Mf * C2Int
|
|
428
|
+
|
|
429
|
+
mrd_phase = (mrd_phase.mT / eta).mT
|
|
430
|
+
mrd_phase += C1MRD
|
|
431
|
+
mrd_phase += Mf * C2MRD
|
|
432
|
+
|
|
433
|
+
# construct full IMR phase
|
|
434
|
+
theta_minus_f1 = torch.heaviside(
|
|
435
|
+
PHI_fJoin_INS - Mf, torch.tensor(0.0, device=Mf.device)
|
|
436
|
+
)
|
|
437
|
+
theta_plus_f1 = torch.heaviside(
|
|
438
|
+
Mf - PHI_fJoin_INS, torch.tensor(1.0, device=Mf.device)
|
|
439
|
+
)
|
|
440
|
+
theta_minus_f2 = torch.heaviside(
|
|
441
|
+
fRDJoin - Mf, torch.tensor(0.0, device=Mf.device)
|
|
442
|
+
)
|
|
443
|
+
theta_plus_f2 = torch.heaviside(
|
|
444
|
+
Mf - fRDJoin, torch.tensor(1.0, device=Mf.device)
|
|
445
|
+
)
|
|
446
|
+
|
|
447
|
+
phasing = theta_minus_f1 * ins_phase
|
|
448
|
+
phasing += theta_plus_f1 * int_phase * theta_minus_f2
|
|
449
|
+
phasing += theta_plus_f2 * mrd_phase
|
|
450
|
+
|
|
451
|
+
Dphasing = theta_minus_f1 * ins_Dphase
|
|
452
|
+
Dphasing += theta_plus_f1 * int_Dphase * theta_minus_f2
|
|
453
|
+
Dphasing += theta_plus_f2 * mrd_Dphase
|
|
454
|
+
|
|
455
|
+
return phasing, Dphasing
|
|
456
|
+
|
|
457
|
+
def phenom_d_mrd_phase(self, Mf, eta, eta2, chi1, chi2, xi):
|
|
458
|
+
alpha1 = self.alpha1Fit(eta, eta2, xi)
|
|
459
|
+
alpha2 = self.alpha2Fit(eta, eta2, xi)
|
|
460
|
+
alpha3 = self.alpha3Fit(eta, eta2, xi)
|
|
461
|
+
alpha4 = self.alpha4Fit(eta, eta2, xi)
|
|
462
|
+
alpha5 = self.alpha5Fit(eta, eta2, xi)
|
|
463
|
+
|
|
464
|
+
# merger ringdown
|
|
465
|
+
fRD, fDM = self.fring_fdamp(eta, eta2, chi1, chi2)
|
|
466
|
+
f_minus_alpha5_fRD = (Mf.t() - alpha5 * fRD).t()
|
|
467
|
+
|
|
468
|
+
# Leading 1/eta is not multiplied at this stage
|
|
469
|
+
mrd_phasing = (Mf.t() * alpha1).t()
|
|
470
|
+
mrd_phasing -= (1 / Mf.t() * alpha2).t()
|
|
471
|
+
mrd_phasing += (4.0 / 3.0) * (Mf.t() ** (3.0 / 4.0) * alpha3).t()
|
|
472
|
+
mrd_phasing += (torch.atan(f_minus_alpha5_fRD.t() / fDM) * alpha4).t()
|
|
473
|
+
|
|
474
|
+
mrd_Dphasing = (
|
|
475
|
+
alpha4 * fDM / (f_minus_alpha5_fRD.t() ** 2 + fDM**2)
|
|
476
|
+
).t()
|
|
477
|
+
mrd_Dphasing += (Mf.t() ** (-1.0 / 4.0) * alpha3).t()
|
|
478
|
+
mrd_Dphasing += (Mf.t() ** (-2.0) * alpha2).t()
|
|
479
|
+
mrd_Dphasing = (mrd_Dphasing.t() + alpha1).t()
|
|
480
|
+
mrd_Dphasing = (mrd_Dphasing.t() / eta).t()
|
|
481
|
+
|
|
482
|
+
return mrd_phasing, mrd_Dphasing
|
|
483
|
+
|
|
484
|
+
def phenom_d_int_phase(self, Mf, eta, eta2, xi):
|
|
485
|
+
beta1 = self.beta1Fit(eta, eta2, xi)
|
|
486
|
+
beta2 = self.beta2Fit(eta, eta2, xi)
|
|
487
|
+
beta3 = self.beta3Fit(eta, eta2, xi)
|
|
488
|
+
# Merger phase
|
|
489
|
+
# Leading beta0 is not added here
|
|
490
|
+
# overall 1/eta is not multiplied
|
|
491
|
+
int_phasing = (Mf.mT * beta1).mT
|
|
492
|
+
int_phasing += (torch.log(Mf).mT * beta2).mT
|
|
493
|
+
int_phasing -= (Mf.mT ** (-3.0) / 3.0 * beta3).mT
|
|
494
|
+
|
|
495
|
+
# overall 1/eta is multiple in derivative of
|
|
496
|
+
# intermediate phase
|
|
497
|
+
int_Dphasing = (Mf.mT ** (-4.0) * beta3).mT
|
|
498
|
+
int_Dphasing += (Mf.mT ** (-1.0) * beta2).mT
|
|
499
|
+
int_Dphasing = (int_Dphasing.mT + beta1).mT
|
|
500
|
+
int_Dphasing = (int_Dphasing.mT / eta).mT
|
|
501
|
+
return int_phasing, int_Dphasing
|
|
502
|
+
|
|
503
|
+
def subtract3PNSS(self, Mf, mass1, mass2, eta, eta2, xi, chi1, chi2):
|
|
504
|
+
M = mass1 + mass2
|
|
505
|
+
eta = mass1 * mass2 / M / M
|
|
506
|
+
m1byM = mass1 / M
|
|
507
|
+
m2byM = mass2 / M
|
|
508
|
+
chi1sq = chi1 * chi1
|
|
509
|
+
chi2sq = chi2 * chi2
|
|
510
|
+
v1 = (PI * Mf) ** (1.0 / 3.0)
|
|
511
|
+
v5 = v1**5.0
|
|
512
|
+
v6 = v1**6.0
|
|
513
|
+
v7 = v1**7.0
|
|
514
|
+
pfaN = 3.0 / (128.0 * eta)
|
|
515
|
+
pn_ss3 = (
|
|
516
|
+
(326.75 / 1.12 + 557.5 / 1.8 * eta) * eta * chi1 * chi2
|
|
174
517
|
+ (
|
|
175
|
-
-0
|
|
176
|
-
|
|
177
|
-
|
|
518
|
+
(4703.5 / 8.4 + 2935.0 / 6.0 * m1byM - 120.0 * m1byM * m1byM)
|
|
519
|
+
* m1byM
|
|
520
|
+
* m1byM
|
|
521
|
+
+ (
|
|
522
|
+
-4108.25 / 6.72
|
|
523
|
+
- 108.5 / 1.2 * m1byM
|
|
524
|
+
+ 125.5 / 3.6 * m1byM * m1byM
|
|
525
|
+
)
|
|
526
|
+
* m1byM
|
|
527
|
+
* m1byM
|
|
178
528
|
)
|
|
179
|
-
*
|
|
529
|
+
* chi1sq
|
|
180
530
|
+ (
|
|
181
|
-
-0
|
|
182
|
-
|
|
183
|
-
|
|
531
|
+
(4703.5 / 8.4 + 2935.0 / 6.0 * m2byM - 120.0 * m2byM * m2byM)
|
|
532
|
+
* m2byM
|
|
533
|
+
* m2byM
|
|
534
|
+
+ (
|
|
535
|
+
-4108.25 / 6.72
|
|
536
|
+
- 108.5 / 1.2 * m2byM
|
|
537
|
+
+ 125.5 / 3.6 * m2byM * m2byM
|
|
538
|
+
)
|
|
539
|
+
* m2byM
|
|
540
|
+
* m2byM
|
|
184
541
|
)
|
|
185
|
-
*
|
|
186
|
-
* xi
|
|
542
|
+
* chi2sq
|
|
187
543
|
)
|
|
188
|
-
*
|
|
189
|
-
|
|
190
|
-
|
|
191
|
-
|
|
192
|
-
|
|
193
|
-
|
|
194
|
-
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
|
|
198
|
-
|
|
199
|
-
|
|
200
|
-
|
|
201
|
-
|
|
202
|
-
|
|
203
|
-
|
|
544
|
+
phase_pn_ss3 = (((v6.mT * pn_ss3).mT / v5).mT * pfaN).mT
|
|
545
|
+
Dphase_pn_ss3 = (
|
|
546
|
+
(PI * (v6.mT * pn_ss3).mT / (3.0 * v1 * v7)).mT * pfaN
|
|
547
|
+
).mT
|
|
548
|
+
return phase_pn_ss3, Dphase_pn_ss3
|
|
549
|
+
|
|
550
|
+
def phenom_d_inspiral_phase(
|
|
551
|
+
self, Mf, mass_1, mass_2, eta, eta2, xi, chi1, chi2
|
|
552
|
+
):
|
|
553
|
+
ins_phasing, ins_Dphasing = self.taylorf2_phase(
|
|
554
|
+
Mf, mass_1, mass_2, chi1, chi2
|
|
555
|
+
)
|
|
556
|
+
# subtract 3PN spin-spin term as this is in LAL's TaylorF2
|
|
557
|
+
# implementation, but was not available when PhenomD was tuned.
|
|
558
|
+
# refer https://git.ligo.org/lscsoft/lalsuite/-/blob/master/lalsimulation/lib/LALSimIMRPhenomD.c#L397-398 # noqa: E501
|
|
559
|
+
pn_ss3, Dpn_ss3 = self.subtract3PNSS(
|
|
560
|
+
Mf, mass_1, mass_2, eta, eta2, xi, chi1, chi2
|
|
561
|
+
)
|
|
562
|
+
ins_phasing -= pn_ss3
|
|
563
|
+
ins_Dphasing -= Dpn_ss3
|
|
564
|
+
|
|
565
|
+
sigma1 = self.sigma1Fit(eta, eta2, xi)
|
|
566
|
+
sigma2 = self.sigma2Fit(eta, eta2, xi)
|
|
567
|
+
sigma3 = self.sigma3Fit(eta, eta2, xi)
|
|
568
|
+
sigma4 = self.sigma4Fit(eta, eta2, xi)
|
|
569
|
+
|
|
570
|
+
ins_phasing += (Mf.mT * sigma1 / eta).mT
|
|
571
|
+
ins_phasing += (Mf.mT ** (4.0 / 3.0) * 0.75 * sigma2 / eta).mT
|
|
572
|
+
ins_phasing += (Mf.mT ** (5.0 / 3.0) * 0.6 * sigma3 / eta).mT
|
|
573
|
+
ins_phasing += (Mf.mT**2.0 * 0.5 * sigma4 / eta).mT
|
|
574
|
+
|
|
575
|
+
ins_Dphasing = (ins_Dphasing.mT + sigma1 / eta).mT
|
|
576
|
+
ins_Dphasing += (Mf.mT ** (1.0 / 3.0) * sigma2 / eta).mT
|
|
577
|
+
ins_Dphasing += (Mf.mT ** (2.0 / 3.0) * sigma3 / eta).mT
|
|
578
|
+
ins_Dphasing += (Mf.mT * sigma4 / eta).mT
|
|
579
|
+
|
|
580
|
+
return ins_phasing, ins_Dphasing
|
|
581
|
+
|
|
582
|
+
def fring_fdamp(self, eta, eta2, chi1, chi2):
|
|
583
|
+
finspin = self.FinalSpin0815(eta, eta2, chi1, chi2)
|
|
584
|
+
Erad = self.PhenomInternal_EradRational0815(eta, eta2, chi1, chi2)
|
|
585
|
+
|
|
586
|
+
fRD, fDM = self._linear_interp_finspin(finspin)
|
|
587
|
+
fRD /= 1.0 - Erad
|
|
588
|
+
fDM /= 1.0 - Erad
|
|
589
|
+
|
|
590
|
+
return fRD, fDM
|
|
591
|
+
|
|
592
|
+
def fmaxCalc(self, fRD, fDM, gamma2, gamma3):
|
|
593
|
+
res = torch.zeros_like(gamma2)
|
|
594
|
+
res = torch.abs(fRD + (-fDM * gamma3) / gamma2) * (gamma2 > 1).to(
|
|
595
|
+
torch.int
|
|
596
|
+
) + torch.abs(
|
|
597
|
+
fRD
|
|
598
|
+
+ (fDM * (-1 + torch.sqrt(1 - gamma2 * gamma2)) * gamma3) / gamma2
|
|
599
|
+
) * (
|
|
600
|
+
gamma2 <= 1
|
|
601
|
+
).to(
|
|
602
|
+
torch.int
|
|
603
|
+
)
|
|
604
|
+
return res
|
|
605
|
+
|
|
606
|
+
def _linear_interp_finspin(self, finspin):
|
|
607
|
+
# chi is a batch of final spins i.e. torch.Size([n])
|
|
608
|
+
right_spin_idx = torch.bucketize(finspin, self.qnmdata_a)
|
|
609
|
+
right_spin_val = self.qnmdata_a[right_spin_idx]
|
|
610
|
+
# QNMData_a is sorted, hence take the previous index
|
|
611
|
+
left_spin_idx = right_spin_idx - 1
|
|
612
|
+
left_spin_val = self.qnmdata_a[left_spin_idx]
|
|
613
|
+
|
|
614
|
+
if not torch.all(left_spin_val < right_spin_val):
|
|
615
|
+
raise RuntimeError(
|
|
616
|
+
"Left value in grid should be greater than right. "
|
|
617
|
+
"Maybe be caused for extremal spin values."
|
|
204
618
|
)
|
|
205
|
-
|
|
619
|
+
left_fring = self.qnmdata_fring[left_spin_idx]
|
|
620
|
+
right_fring = self.qnmdata_fring[right_spin_idx]
|
|
621
|
+
slope_fring = right_fring - left_fring
|
|
622
|
+
slope_fring /= right_spin_val - left_spin_val
|
|
623
|
+
|
|
624
|
+
left_fdamp = self.qnmdata_fdamp[left_spin_idx]
|
|
625
|
+
right_fdamp = self.qnmdata_fdamp[right_spin_idx]
|
|
626
|
+
slope_fdamp = right_fdamp - left_fdamp
|
|
627
|
+
slope_fdamp /= right_spin_val - left_spin_val
|
|
628
|
+
|
|
629
|
+
return (
|
|
630
|
+
slope_fring * (finspin - left_spin_val) + left_fring,
|
|
631
|
+
slope_fdamp * (finspin - left_spin_val) + left_fdamp,
|
|
632
|
+
)
|
|
633
|
+
|
|
634
|
+
# Utility functions taken from PhenomD utilities in lalsimulation
|
|
635
|
+
# https://git.ligo.org/lscsoft/lalsuite/-/blob/master/lalsimulation/lib/LALSimIMRPhenomD_internals.c
|
|
636
|
+
def sigma1Fit(self, eta, eta2, xi):
|
|
637
|
+
return (
|
|
638
|
+
2096.551999295543
|
|
639
|
+
+ 1463.7493168261553 * eta
|
|
206
640
|
+ (
|
|
207
|
-
|
|
208
|
-
|
|
209
|
-
|
|
641
|
+
1312.5493286098522
|
|
642
|
+
+ 18307.330017082117 * eta
|
|
643
|
+
- 43534.1440746107 * eta2
|
|
644
|
+
+ (
|
|
645
|
+
-833.2889543511114
|
|
646
|
+
+ 32047.31997183187 * eta
|
|
647
|
+
- 108609.45037520859 * eta2
|
|
648
|
+
)
|
|
649
|
+
* xi
|
|
650
|
+
+ (
|
|
651
|
+
452.25136398112204
|
|
652
|
+
+ 8353.439546391714 * eta
|
|
653
|
+
- 44531.3250037322 * eta2
|
|
654
|
+
)
|
|
655
|
+
* xi
|
|
656
|
+
* xi
|
|
210
657
|
)
|
|
211
658
|
* xi
|
|
212
|
-
* xi
|
|
213
659
|
)
|
|
214
|
-
|
|
215
|
-
)
|
|
216
|
-
|
|
217
|
-
|
|
218
|
-
|
|
219
|
-
return (
|
|
220
|
-
-3.282701958759534
|
|
221
|
-
- 9.051384468245866 * eta
|
|
222
|
-
+ (
|
|
223
|
-
-12.415449742258042
|
|
224
|
-
+ 55.4716447709787 * eta
|
|
225
|
-
- 106.05109938966335 * eta2
|
|
660
|
+
|
|
661
|
+
def sigma2Fit(self, eta, eta2, xi):
|
|
662
|
+
return (
|
|
663
|
+
-10114.056472621156
|
|
664
|
+
- 44631.01109458185 * eta
|
|
226
665
|
+ (
|
|
227
|
-
-
|
|
228
|
-
|
|
229
|
-
|
|
666
|
+
-6541.308761668722
|
|
667
|
+
- 266959.23419307504 * eta
|
|
668
|
+
+ 686328.3229317984 * eta2
|
|
669
|
+
+ (
|
|
670
|
+
3405.6372187679685
|
|
671
|
+
- 437507.7208209015 * eta
|
|
672
|
+
+ 1.6318171307344697e6 * eta2
|
|
673
|
+
)
|
|
674
|
+
* xi
|
|
675
|
+
+ (
|
|
676
|
+
-7462.648563007646
|
|
677
|
+
- 114585.25177153319 * eta
|
|
678
|
+
+ 674402.4689098676 * eta2
|
|
679
|
+
)
|
|
680
|
+
* xi
|
|
681
|
+
* xi
|
|
230
682
|
)
|
|
231
683
|
* xi
|
|
684
|
+
)
|
|
685
|
+
|
|
686
|
+
def sigma3Fit(self, eta, eta2, xi):
|
|
687
|
+
return (
|
|
688
|
+
22933.658273436497
|
|
689
|
+
+ 230960.00814979506 * eta
|
|
232
690
|
+ (
|
|
233
|
-
|
|
234
|
-
+
|
|
235
|
-
-
|
|
691
|
+
14961.083974183695
|
|
692
|
+
+ 1.1940181342318142e6 * eta
|
|
693
|
+
- 3.1042239693052764e6 * eta2
|
|
694
|
+
+ (
|
|
695
|
+
-3038.166617199259
|
|
696
|
+
+ 1.8720322849093592e6 * eta
|
|
697
|
+
- 7.309145012085539e6 * eta2
|
|
698
|
+
)
|
|
699
|
+
* xi
|
|
700
|
+
+ (
|
|
701
|
+
42738.22871475411
|
|
702
|
+
+ 467502.018616601 * eta
|
|
703
|
+
- 3.064853498512499e6 * eta2
|
|
704
|
+
)
|
|
705
|
+
* xi
|
|
706
|
+
* xi
|
|
236
707
|
)
|
|
237
708
|
* xi
|
|
238
|
-
* xi
|
|
239
709
|
)
|
|
240
|
-
|
|
241
|
-
)
|
|
242
|
-
|
|
243
|
-
|
|
244
|
-
|
|
245
|
-
return (
|
|
246
|
-
-0.000025156429818799565
|
|
247
|
-
+ 0.000019750256942201327 * eta
|
|
248
|
-
+ (
|
|
249
|
-
-0.000018370671469295915
|
|
250
|
-
+ 0.000021886317041311973 * eta
|
|
251
|
-
+ 0.00008250240316860033 * eta2
|
|
710
|
+
|
|
711
|
+
def sigma4Fit(self, eta, eta2, xi):
|
|
712
|
+
return (
|
|
713
|
+
-14621.71522218357
|
|
714
|
+
- 377812.8579387104 * eta
|
|
252
715
|
+ (
|
|
253
|
-
|
|
254
|
-
-
|
|
255
|
-
+
|
|
716
|
+
-9608.682631509726
|
|
717
|
+
- 1.7108925257214056e6 * eta
|
|
718
|
+
+ 4.332924601416521e6 * eta2
|
|
719
|
+
+ (
|
|
720
|
+
-22366.683262266528
|
|
721
|
+
- 2.5019716386377467e6 * eta
|
|
722
|
+
+ 1.0274495902259542e7 * eta2
|
|
723
|
+
)
|
|
724
|
+
* xi
|
|
725
|
+
+ (
|
|
726
|
+
-85360.30079034246
|
|
727
|
+
- 570025.3441737515 * eta
|
|
728
|
+
+ 4.396844346849777e6 * eta2
|
|
729
|
+
)
|
|
730
|
+
* xi
|
|
731
|
+
* xi
|
|
256
732
|
)
|
|
257
733
|
* xi
|
|
734
|
+
)
|
|
735
|
+
|
|
736
|
+
def gamma1_fun(self, eta, eta2, xi):
|
|
737
|
+
return (
|
|
738
|
+
0.006927402739328343
|
|
739
|
+
+ 0.03020474290328911 * eta
|
|
258
740
|
+ (
|
|
259
|
-
|
|
260
|
-
- 0.
|
|
261
|
-
+ 0.
|
|
741
|
+
0.006308024337706171
|
|
742
|
+
- 0.12074130661131138 * eta
|
|
743
|
+
+ 0.26271598905781324 * eta2
|
|
744
|
+
+ (
|
|
745
|
+
0.0034151773647198794
|
|
746
|
+
- 0.10779338611188374 * eta
|
|
747
|
+
+ 0.27098966966891747 * eta2
|
|
748
|
+
)
|
|
749
|
+
* xi
|
|
750
|
+
+ (
|
|
751
|
+
0.0007374185938559283
|
|
752
|
+
- 0.02749621038376281 * eta
|
|
753
|
+
+ 0.0733150789135702 * eta2
|
|
754
|
+
)
|
|
755
|
+
* xi
|
|
756
|
+
* xi
|
|
262
757
|
)
|
|
263
758
|
* xi
|
|
264
|
-
* xi
|
|
265
759
|
)
|
|
266
|
-
|
|
267
|
-
)
|
|
268
|
-
|
|
269
|
-
|
|
270
|
-
|
|
271
|
-
return (
|
|
272
|
-
43.31514709695348
|
|
273
|
-
+ 638.6332679188081 * eta
|
|
274
|
-
+ (
|
|
275
|
-
-32.85768747216059
|
|
276
|
-
+ 2415.8938269370315 * eta
|
|
277
|
-
- 5766.875169379177 * eta2
|
|
760
|
+
|
|
761
|
+
def gamma2_fun(self, eta, eta2, xi):
|
|
762
|
+
return (
|
|
763
|
+
1.010344404799477
|
|
764
|
+
+ 0.0008993122007234548 * eta
|
|
278
765
|
+ (
|
|
279
|
-
|
|
280
|
-
|
|
281
|
-
|
|
766
|
+
0.283949116804459
|
|
767
|
+
- 4.049752962958005 * eta
|
|
768
|
+
+ 13.207828172665366 * eta2
|
|
769
|
+
+ (
|
|
770
|
+
0.10396278486805426
|
|
771
|
+
- 7.025059158961947 * eta
|
|
772
|
+
+ 24.784892370130475 * eta2
|
|
773
|
+
)
|
|
774
|
+
* xi
|
|
775
|
+
+ (
|
|
776
|
+
0.03093202475605892
|
|
777
|
+
- 2.6924023896851663 * eta
|
|
778
|
+
+ 9.609374464684983 * eta2
|
|
779
|
+
)
|
|
780
|
+
* xi
|
|
781
|
+
* xi
|
|
282
782
|
)
|
|
283
783
|
* xi
|
|
784
|
+
)
|
|
785
|
+
|
|
786
|
+
def gamma3_fun(self, eta, eta2, xi):
|
|
787
|
+
return (
|
|
788
|
+
1.3081615607036106
|
|
789
|
+
- 0.005537729694807678 * eta
|
|
284
790
|
+ (
|
|
285
|
-
-
|
|
286
|
-
|
|
287
|
-
|
|
791
|
+
-0.06782917938621007
|
|
792
|
+
- 0.6689834970767117 * eta
|
|
793
|
+
+ 3.403147966134083 * eta2
|
|
794
|
+
+ (
|
|
795
|
+
-0.05296577374411866
|
|
796
|
+
- 0.9923793203111362 * eta
|
|
797
|
+
+ 4.820681208409587 * eta2
|
|
798
|
+
)
|
|
799
|
+
* xi
|
|
800
|
+
+ (
|
|
801
|
+
-0.006134139870393713
|
|
802
|
+
- 0.38429253308696365 * eta
|
|
803
|
+
+ 1.7561754421985984 * eta2
|
|
804
|
+
)
|
|
805
|
+
* xi
|
|
806
|
+
* xi
|
|
288
807
|
)
|
|
289
808
|
* xi
|
|
290
|
-
* xi
|
|
291
809
|
)
|
|
292
|
-
|
|
293
|
-
)
|
|
294
|
-
|
|
295
|
-
|
|
296
|
-
|
|
297
|
-
return (
|
|
298
|
-
-0.07020209449091723
|
|
299
|
-
- 0.16269798450687084 * eta
|
|
300
|
-
+ (
|
|
301
|
-
-0.1872514685185499
|
|
302
|
-
+ 1.138313650449945 * eta
|
|
303
|
-
- 2.8334196304430046 * eta2
|
|
810
|
+
|
|
811
|
+
def beta1Fit(self, eta, eta2, xi):
|
|
812
|
+
return (
|
|
813
|
+
97.89747327985583
|
|
814
|
+
- 42.659730877489224 * eta
|
|
304
815
|
+ (
|
|
305
|
-
|
|
306
|
-
|
|
307
|
-
|
|
816
|
+
153.48421037904913
|
|
817
|
+
- 1417.0620760768954 * eta
|
|
818
|
+
+ 2752.8614143665027 * eta2
|
|
819
|
+
+ (
|
|
820
|
+
138.7406469558649
|
|
821
|
+
- 1433.6585075135881 * eta
|
|
822
|
+
+ 2857.7418952430758 * eta2
|
|
823
|
+
)
|
|
824
|
+
* xi
|
|
825
|
+
+ (
|
|
826
|
+
41.025109467376126
|
|
827
|
+
- 423.680737974639 * eta
|
|
828
|
+
+ 850.3594335657173 * eta2
|
|
829
|
+
)
|
|
830
|
+
* xi
|
|
831
|
+
* xi
|
|
308
832
|
)
|
|
309
833
|
* xi
|
|
834
|
+
)
|
|
835
|
+
|
|
836
|
+
def beta2Fit(self, eta, eta2, xi):
|
|
837
|
+
return (
|
|
838
|
+
-3.282701958759534
|
|
839
|
+
- 9.051384468245866 * eta
|
|
310
840
|
+ (
|
|
311
|
-
-
|
|
312
|
-
+
|
|
313
|
-
-
|
|
841
|
+
-12.415449742258042
|
|
842
|
+
+ 55.4716447709787 * eta
|
|
843
|
+
- 106.05109938966335 * eta2
|
|
844
|
+
+ (
|
|
845
|
+
-11.953044553690658
|
|
846
|
+
+ 76.80704618365418 * eta
|
|
847
|
+
- 155.33172948098394 * eta2
|
|
848
|
+
)
|
|
849
|
+
* xi
|
|
850
|
+
+ (
|
|
851
|
+
-3.4129261592393263
|
|
852
|
+
+ 25.572377569952536 * eta
|
|
853
|
+
- 54.408036707740465 * eta2
|
|
854
|
+
)
|
|
855
|
+
* xi
|
|
856
|
+
* xi
|
|
314
857
|
)
|
|
315
858
|
* xi
|
|
316
|
-
* xi
|
|
317
859
|
)
|
|
318
|
-
|
|
319
|
-
)
|
|
320
|
-
|
|
321
|
-
|
|
322
|
-
|
|
323
|
-
return (
|
|
324
|
-
9.5988072383479
|
|
325
|
-
- 397.05438595557433 * eta
|
|
326
|
-
+ (
|
|
327
|
-
16.202126189517813
|
|
328
|
-
- 1574.8286986717037 * eta
|
|
329
|
-
+ 3600.3410843831093 * eta2
|
|
860
|
+
|
|
861
|
+
def beta3Fit(self, eta, eta2, xi):
|
|
862
|
+
return (
|
|
863
|
+
-0.000025156429818799565
|
|
864
|
+
+ 0.000019750256942201327 * eta
|
|
330
865
|
+ (
|
|
331
|
-
|
|
332
|
-
|
|
333
|
-
+
|
|
866
|
+
-0.000018370671469295915
|
|
867
|
+
+ 0.000021886317041311973 * eta
|
|
868
|
+
+ 0.00008250240316860033 * eta2
|
|
869
|
+
+ (
|
|
870
|
+
7.157371250566708e-6
|
|
871
|
+
- 0.000055780000112270685 * eta
|
|
872
|
+
+ 0.00019142082884072178 * eta2
|
|
873
|
+
)
|
|
874
|
+
* xi
|
|
875
|
+
+ (
|
|
876
|
+
5.447166261464217e-6
|
|
877
|
+
- 0.00003220610095021982 * eta
|
|
878
|
+
+ 0.00007974016714984341 * eta2
|
|
879
|
+
)
|
|
880
|
+
* xi
|
|
881
|
+
* xi
|
|
334
882
|
)
|
|
335
883
|
* xi
|
|
884
|
+
)
|
|
885
|
+
|
|
886
|
+
def alpha1Fit(self, eta, eta2, xi):
|
|
887
|
+
return (
|
|
888
|
+
43.31514709695348
|
|
889
|
+
+ 638.6332679188081 * eta
|
|
336
890
|
+ (
|
|
337
|
-
|
|
338
|
-
|
|
339
|
-
|
|
891
|
+
-32.85768747216059
|
|
892
|
+
+ 2415.8938269370315 * eta
|
|
893
|
+
- 5766.875169379177 * eta2
|
|
894
|
+
+ (
|
|
895
|
+
-61.85459307173841
|
|
896
|
+
+ 2953.967762459948 * eta
|
|
897
|
+
- 8986.29057591497 * eta2
|
|
898
|
+
)
|
|
899
|
+
* xi
|
|
900
|
+
+ (
|
|
901
|
+
-21.571435779762044
|
|
902
|
+
+ 981.2158224673428 * eta
|
|
903
|
+
- 3239.5664895930286 * eta2
|
|
904
|
+
)
|
|
905
|
+
* xi
|
|
906
|
+
* xi
|
|
340
907
|
)
|
|
341
908
|
* xi
|
|
342
|
-
* xi
|
|
343
909
|
)
|
|
344
|
-
|
|
345
|
-
)
|
|
346
|
-
|
|
347
|
-
|
|
348
|
-
|
|
349
|
-
return (
|
|
350
|
-
-0.02989487384493607
|
|
351
|
-
+ 1.4022106448583738 * eta
|
|
352
|
-
+ (
|
|
353
|
-
-0.07356049468633846
|
|
354
|
-
+ 0.8337006542278661 * eta
|
|
355
|
-
+ 0.2240008282397391 * eta2
|
|
910
|
+
|
|
911
|
+
def alpha2Fit(self, eta, eta2, xi):
|
|
912
|
+
return (
|
|
913
|
+
-0.07020209449091723
|
|
914
|
+
- 0.16269798450687084 * eta
|
|
356
915
|
+ (
|
|
357
|
-
-0.
|
|
358
|
-
+
|
|
359
|
-
|
|
916
|
+
-0.1872514685185499
|
|
917
|
+
+ 1.138313650449945 * eta
|
|
918
|
+
- 2.8334196304430046 * eta2
|
|
919
|
+
+ (
|
|
920
|
+
-0.17137955686840617
|
|
921
|
+
+ 1.7197549338119527 * eta
|
|
922
|
+
- 4.539717148261272 * eta2
|
|
923
|
+
)
|
|
924
|
+
* xi
|
|
925
|
+
+ (
|
|
926
|
+
-0.049983437357548705
|
|
927
|
+
+ 0.6062072055948309 * eta
|
|
928
|
+
- 1.682769616644546 * eta2
|
|
929
|
+
)
|
|
930
|
+
* xi
|
|
931
|
+
* xi
|
|
360
932
|
)
|
|
361
933
|
* xi
|
|
934
|
+
)
|
|
935
|
+
|
|
936
|
+
def alpha3Fit(self, eta, eta2, xi):
|
|
937
|
+
return (
|
|
938
|
+
9.5988072383479
|
|
939
|
+
- 397.05438595557433 * eta
|
|
362
940
|
+ (
|
|
363
|
-
|
|
364
|
-
|
|
365
|
-
+
|
|
941
|
+
16.202126189517813
|
|
942
|
+
- 1574.8286986717037 * eta
|
|
943
|
+
+ 3600.3410843831093 * eta2
|
|
944
|
+
+ (
|
|
945
|
+
27.092429659075467
|
|
946
|
+
- 1786.482357315139 * eta
|
|
947
|
+
+ 5152.919378666511 * eta2
|
|
948
|
+
)
|
|
949
|
+
* xi
|
|
950
|
+
+ (
|
|
951
|
+
11.175710130033895
|
|
952
|
+
- 577.7999423177481 * eta
|
|
953
|
+
+ 1808.730762932043 * eta2
|
|
954
|
+
)
|
|
955
|
+
* xi
|
|
956
|
+
* xi
|
|
366
957
|
)
|
|
367
958
|
* xi
|
|
368
|
-
* xi
|
|
369
959
|
)
|
|
370
|
-
|
|
371
|
-
)
|
|
372
|
-
|
|
373
|
-
|
|
374
|
-
|
|
375
|
-
return (
|
|
376
|
-
0.9974408278363099
|
|
377
|
-
- 0.007884449714907203 * eta
|
|
378
|
-
+ (
|
|
379
|
-
-0.059046901195591035
|
|
380
|
-
+ 1.3958712396764088 * eta
|
|
381
|
-
- 4.516631601676276 * eta2
|
|
960
|
+
|
|
961
|
+
def alpha4Fit(self, eta, eta2, xi):
|
|
962
|
+
return (
|
|
963
|
+
-0.02989487384493607
|
|
964
|
+
+ 1.4022106448583738 * eta
|
|
382
965
|
+ (
|
|
383
|
-
-0.
|
|
384
|
-
+
|
|
385
|
-
|
|
966
|
+
-0.07356049468633846
|
|
967
|
+
+ 0.8337006542278661 * eta
|
|
968
|
+
+ 0.2240008282397391 * eta2
|
|
969
|
+
+ (
|
|
970
|
+
-0.055202870001177226
|
|
971
|
+
+ 0.5667186343606578 * eta
|
|
972
|
+
+ 0.7186931973380503 * eta2
|
|
973
|
+
)
|
|
974
|
+
* xi
|
|
975
|
+
+ (
|
|
976
|
+
-0.015507437354325743
|
|
977
|
+
+ 0.15750322779277187 * eta
|
|
978
|
+
+ 0.21076815715176228 * eta2
|
|
979
|
+
)
|
|
980
|
+
* xi
|
|
981
|
+
* xi
|
|
386
982
|
)
|
|
387
983
|
* xi
|
|
984
|
+
)
|
|
985
|
+
|
|
986
|
+
def alpha5Fit(self, eta, eta2, xi):
|
|
987
|
+
return (
|
|
988
|
+
0.9974408278363099
|
|
989
|
+
- 0.007884449714907203 * eta
|
|
388
990
|
+ (
|
|
389
|
-
-0.
|
|
390
|
-
+
|
|
391
|
-
-
|
|
991
|
+
-0.059046901195591035
|
|
992
|
+
+ 1.3958712396764088 * eta
|
|
993
|
+
- 4.516631601676276 * eta2
|
|
994
|
+
+ (
|
|
995
|
+
-0.05585343136869692
|
|
996
|
+
+ 1.7516580039343603 * eta
|
|
997
|
+
- 5.990208965347804 * eta2
|
|
998
|
+
)
|
|
999
|
+
* xi
|
|
1000
|
+
+ (
|
|
1001
|
+
-0.017945336522161195
|
|
1002
|
+
+ 0.5965097794825992 * eta
|
|
1003
|
+
- 2.0608879367971804 * eta2
|
|
1004
|
+
)
|
|
1005
|
+
* xi
|
|
1006
|
+
* xi
|
|
392
1007
|
)
|
|
393
1008
|
* xi
|
|
394
|
-
* xi
|
|
395
1009
|
)
|
|
396
|
-
|
|
397
|
-
)
|
|
398
|
-
|
|
399
|
-
|
|
400
|
-
|
|
401
|
-
return (
|
|
402
|
-
3931.8979897196696
|
|
403
|
-
- 17395.758706812805 * eta
|
|
404
|
-
+ (
|
|
405
|
-
3132.375545898835
|
|
406
|
-
+ 343965.86092361377 * eta
|
|
407
|
-
- 1.2162565819981997e6 * eta2
|
|
1010
|
+
|
|
1011
|
+
def rho1_fun(self, eta, eta2, xi):
|
|
1012
|
+
return (
|
|
1013
|
+
3931.8979897196696
|
|
1014
|
+
- 17395.758706812805 * eta
|
|
408
1015
|
+ (
|
|
409
|
-
|
|
410
|
-
+
|
|
411
|
-
-
|
|
1016
|
+
3132.375545898835
|
|
1017
|
+
+ 343965.86092361377 * eta
|
|
1018
|
+
- 1.2162565819981997e6 * eta2
|
|
1019
|
+
+ (
|
|
1020
|
+
-70698.00600428853
|
|
1021
|
+
+ 1.383907177859705e6 * eta
|
|
1022
|
+
- 3.9662761890979446e6 * eta2
|
|
1023
|
+
)
|
|
1024
|
+
* xi
|
|
1025
|
+
+ (
|
|
1026
|
+
-60017.52423652596
|
|
1027
|
+
+ 803515.1181825735 * eta
|
|
1028
|
+
- 2.091710365941658e6 * eta2
|
|
1029
|
+
)
|
|
1030
|
+
* xi
|
|
1031
|
+
* xi
|
|
412
1032
|
)
|
|
413
1033
|
* xi
|
|
1034
|
+
)
|
|
1035
|
+
|
|
1036
|
+
def rho2_fun(self, eta, eta2, xi):
|
|
1037
|
+
return (
|
|
1038
|
+
-40105.47653771657
|
|
1039
|
+
+ 112253.0169706701 * eta
|
|
414
1040
|
+ (
|
|
415
|
-
|
|
416
|
-
|
|
417
|
-
|
|
1041
|
+
23561.696065836168
|
|
1042
|
+
- 3.476180699403351e6 * eta
|
|
1043
|
+
+ 1.137593670849482e7 * eta2
|
|
1044
|
+
+ (
|
|
1045
|
+
754313.1127166454
|
|
1046
|
+
- 1.308476044625268e7 * eta
|
|
1047
|
+
+ 3.6444584853928134e7 * eta2
|
|
1048
|
+
)
|
|
1049
|
+
* xi
|
|
1050
|
+
+ (
|
|
1051
|
+
596226.612472288
|
|
1052
|
+
- 7.4277901143564405e6 * eta
|
|
1053
|
+
+ 1.8928977514040343e7 * eta2
|
|
1054
|
+
)
|
|
1055
|
+
* xi
|
|
1056
|
+
* xi
|
|
418
1057
|
)
|
|
419
1058
|
* xi
|
|
420
|
-
* xi
|
|
421
1059
|
)
|
|
422
|
-
|
|
423
|
-
)
|
|
424
|
-
|
|
425
|
-
|
|
426
|
-
|
|
427
|
-
return (
|
|
428
|
-
-40105.47653771657
|
|
429
|
-
+ 112253.0169706701 * eta
|
|
430
|
-
+ (
|
|
431
|
-
23561.696065836168
|
|
432
|
-
- 3.476180699403351e6 * eta
|
|
433
|
-
+ 1.137593670849482e7 * eta2
|
|
1060
|
+
|
|
1061
|
+
def rho3_fun(self, eta, eta2, xi):
|
|
1062
|
+
return (
|
|
1063
|
+
83208.35471266537
|
|
1064
|
+
- 191237.7264145924 * eta
|
|
434
1065
|
+ (
|
|
435
|
-
|
|
436
|
-
|
|
437
|
-
|
|
1066
|
+
-210916.2454782992
|
|
1067
|
+
+ 8.71797508352568e6 * eta
|
|
1068
|
+
- 2.6914942420669552e7 * eta2
|
|
1069
|
+
+ (
|
|
1070
|
+
-1.9889806527362722e6
|
|
1071
|
+
+ 3.0888029960154563e7 * eta
|
|
1072
|
+
- 8.390870279256162e7 * eta2
|
|
1073
|
+
)
|
|
1074
|
+
* xi
|
|
1075
|
+
+ (
|
|
1076
|
+
-1.4535031953446497e6
|
|
1077
|
+
+ 1.7063528990822166e7 * eta
|
|
1078
|
+
- 4.2748659731120914e7 * eta2
|
|
1079
|
+
)
|
|
1080
|
+
* xi
|
|
1081
|
+
* xi
|
|
438
1082
|
)
|
|
439
1083
|
* xi
|
|
1084
|
+
)
|
|
1085
|
+
|
|
1086
|
+
def FinalSpin0815(self, eta, eta2, chi1, chi2):
|
|
1087
|
+
Seta = torch.sqrt(1.0 - 4.0 * eta)
|
|
1088
|
+
Seta = torch.nan_to_num(Seta) # avoid nan around eta = 0.25
|
|
1089
|
+
m1 = 0.5 * (1.0 + Seta)
|
|
1090
|
+
m2 = 0.5 * (1.0 - Seta)
|
|
1091
|
+
m1s = m1 * m1
|
|
1092
|
+
m2s = m2 * m2
|
|
1093
|
+
s = m1s * chi1 + m2s * chi2
|
|
1094
|
+
eta3 = eta2 * eta
|
|
1095
|
+
s2 = s * s
|
|
1096
|
+
s3 = s2 * s
|
|
1097
|
+
return eta * (
|
|
1098
|
+
3.4641016151377544
|
|
1099
|
+
- 4.399247300629289 * eta
|
|
1100
|
+
+ 9.397292189321194 * eta2
|
|
1101
|
+
- 13.180949901606242 * eta3
|
|
440
1102
|
+ (
|
|
441
|
-
|
|
442
|
-
-
|
|
443
|
-
+ 1.
|
|
1103
|
+
(1.0 / eta - 0.0850917821418767 - 5.837029316602263 * eta)
|
|
1104
|
+
+ (0.1014665242971878 - 2.0967746996832157 * eta) * s
|
|
1105
|
+
+ (-1.3546806617824356 + 4.108962025369336 * eta) * s2
|
|
1106
|
+
+ (-0.8676969352555539 + 2.064046835273906 * eta) * s3
|
|
444
1107
|
)
|
|
445
|
-
*
|
|
446
|
-
* xi
|
|
1108
|
+
* s
|
|
447
1109
|
)
|
|
448
|
-
|
|
449
|
-
)
|
|
450
|
-
|
|
451
|
-
|
|
452
|
-
|
|
453
|
-
|
|
454
|
-
|
|
455
|
-
|
|
456
|
-
|
|
457
|
-
|
|
458
|
-
|
|
459
|
-
|
|
460
|
-
|
|
461
|
-
|
|
462
|
-
|
|
463
|
-
|
|
1110
|
+
|
|
1111
|
+
def PhenomInternal_EradRational0815(self, eta, eta2, chi1, chi2):
|
|
1112
|
+
Seta = torch.sqrt(1.0 - 4.0 * eta)
|
|
1113
|
+
m1 = 0.5 * (1.0 + Seta)
|
|
1114
|
+
m2 = 0.5 * (1.0 - Seta)
|
|
1115
|
+
m1s = m1 * m1
|
|
1116
|
+
m2s = m2 * m2
|
|
1117
|
+
s = (m1s * chi1 + m2s * chi2) / (m1s + m2s)
|
|
1118
|
+
|
|
1119
|
+
eta3 = eta2 * eta
|
|
1120
|
+
|
|
1121
|
+
return (
|
|
1122
|
+
eta
|
|
1123
|
+
* (
|
|
1124
|
+
0.055974469826360077
|
|
1125
|
+
+ 0.5809510763115132 * eta
|
|
1126
|
+
- 0.9606726679372312 * eta2
|
|
1127
|
+
+ 3.352411249771192 * eta3
|
|
464
1128
|
)
|
|
465
|
-
*
|
|
466
|
-
|
|
467
|
-
|
|
468
|
-
|
|
469
|
-
|
|
1129
|
+
* (
|
|
1130
|
+
1.0
|
|
1131
|
+
+ (
|
|
1132
|
+
-0.0030302335878845507
|
|
1133
|
+
- 2.0066110851351073 * eta
|
|
1134
|
+
+ 7.7050567802399215 * eta2
|
|
1135
|
+
)
|
|
1136
|
+
* s
|
|
470
1137
|
)
|
|
471
|
-
|
|
472
|
-
* xi
|
|
473
|
-
)
|
|
474
|
-
* xi
|
|
475
|
-
)
|
|
476
|
-
|
|
477
|
-
|
|
478
|
-
def FinalSpin0815(eta, eta2, chi1, chi2):
|
|
479
|
-
Seta = torch.sqrt(1.0 - 4.0 * eta)
|
|
480
|
-
Seta = torch.nan_to_num(Seta) # avoid nan around eta = 0.25
|
|
481
|
-
m1 = 0.5 * (1.0 + Seta)
|
|
482
|
-
m2 = 0.5 * (1.0 - Seta)
|
|
483
|
-
m1s = m1 * m1
|
|
484
|
-
m2s = m2 * m2
|
|
485
|
-
s = m1s * chi1 + m2s * chi2
|
|
486
|
-
eta3 = eta2 * eta
|
|
487
|
-
s2 = s * s
|
|
488
|
-
s3 = s2 * s
|
|
489
|
-
return eta * (
|
|
490
|
-
3.4641016151377544
|
|
491
|
-
- 4.399247300629289 * eta
|
|
492
|
-
+ 9.397292189321194 * eta2
|
|
493
|
-
- 13.180949901606242 * eta3
|
|
494
|
-
+ (
|
|
495
|
-
(1.0 / eta - 0.0850917821418767 - 5.837029316602263 * eta)
|
|
496
|
-
+ (0.1014665242971878 - 2.0967746996832157 * eta) * s
|
|
497
|
-
+ (-1.3546806617824356 + 4.108962025369336 * eta) * s2
|
|
498
|
-
+ (-0.8676969352555539 + 2.064046835273906 * eta) * s3
|
|
499
|
-
)
|
|
500
|
-
* s
|
|
501
|
-
)
|
|
502
|
-
|
|
503
|
-
|
|
504
|
-
def PhenomInternal_EradRational0815(eta, eta2, chi1, chi2):
|
|
505
|
-
Seta = torch.sqrt(1.0 - 4.0 * eta)
|
|
506
|
-
m1 = 0.5 * (1.0 + Seta)
|
|
507
|
-
m2 = 0.5 * (1.0 - Seta)
|
|
508
|
-
m1s = m1 * m1
|
|
509
|
-
m2s = m2 * m2
|
|
510
|
-
s = (m1s * chi1 + m2s * chi2) / (m1s + m2s)
|
|
511
|
-
|
|
512
|
-
eta3 = eta2 * eta
|
|
513
|
-
|
|
514
|
-
return (
|
|
515
|
-
eta
|
|
516
|
-
* (
|
|
517
|
-
0.055974469826360077
|
|
518
|
-
+ 0.5809510763115132 * eta
|
|
519
|
-
- 0.9606726679372312 * eta2
|
|
520
|
-
+ 3.352411249771192 * eta3
|
|
521
|
-
)
|
|
522
|
-
* (
|
|
1138
|
+
) / (
|
|
523
1139
|
1.0
|
|
524
1140
|
+ (
|
|
525
|
-
-0.
|
|
526
|
-
-
|
|
527
|
-
+ 7.
|
|
1141
|
+
-0.6714403054720589
|
|
1142
|
+
- 1.4756929437702908 * eta
|
|
1143
|
+
+ 7.304676214885011 * eta2
|
|
528
1144
|
)
|
|
529
1145
|
* s
|
|
530
1146
|
)
|
|
531
|
-
|
|
532
|
-
|
|
533
|
-
|
|
534
|
-
|
|
535
|
-
|
|
536
|
-
+ 7.304676214885011 * eta2
|
|
537
|
-
)
|
|
538
|
-
* s
|
|
539
|
-
)
|
|
540
|
-
|
|
541
|
-
|
|
542
|
-
def AmpIntColFitCoeff(eta, eta2, xi):
|
|
543
|
-
return (
|
|
544
|
-
0.8149838730507785
|
|
545
|
-
+ 2.5747553517454658 * eta
|
|
546
|
-
+ (
|
|
547
|
-
1.1610198035496786
|
|
548
|
-
- 2.3627771785551537 * eta
|
|
549
|
-
+ 6.771038707057573 * eta2
|
|
550
|
-
+ (
|
|
551
|
-
0.7570782938606834
|
|
552
|
-
- 2.7256896890432474 * eta
|
|
553
|
-
+ 7.1140380397149965 * eta2
|
|
554
|
-
)
|
|
555
|
-
* xi
|
|
1147
|
+
|
|
1148
|
+
def AmpIntColFitCoeff(self, eta, eta2, xi):
|
|
1149
|
+
return (
|
|
1150
|
+
0.8149838730507785
|
|
1151
|
+
+ 2.5747553517454658 * eta
|
|
556
1152
|
+ (
|
|
557
|
-
|
|
558
|
-
-
|
|
559
|
-
+
|
|
1153
|
+
1.1610198035496786
|
|
1154
|
+
- 2.3627771785551537 * eta
|
|
1155
|
+
+ 6.771038707057573 * eta2
|
|
1156
|
+
+ (
|
|
1157
|
+
0.7570782938606834
|
|
1158
|
+
- 2.7256896890432474 * eta
|
|
1159
|
+
+ 7.1140380397149965 * eta2
|
|
1160
|
+
)
|
|
1161
|
+
* xi
|
|
1162
|
+
+ (
|
|
1163
|
+
0.1766934149293479
|
|
1164
|
+
- 0.7978690983168183 * eta
|
|
1165
|
+
+ 2.1162391502005153 * eta2
|
|
1166
|
+
)
|
|
1167
|
+
* xi
|
|
1168
|
+
* xi
|
|
560
1169
|
)
|
|
561
1170
|
* xi
|
|
562
|
-
* xi
|
|
563
|
-
)
|
|
564
|
-
* xi
|
|
565
|
-
)
|
|
566
|
-
|
|
567
|
-
|
|
568
|
-
def delta_values(f1, f2, f3, v1, v2, v3, d1, d2):
|
|
569
|
-
f12 = f1 * f1
|
|
570
|
-
f13 = f1 * f12
|
|
571
|
-
f14 = f1 * f13
|
|
572
|
-
f15 = f1 * f14
|
|
573
|
-
f22 = f2 * f2
|
|
574
|
-
f23 = f2 * f22
|
|
575
|
-
f24 = f2 * f23
|
|
576
|
-
f32 = f3 * f3
|
|
577
|
-
f33 = f3 * f32
|
|
578
|
-
f34 = f3 * f33
|
|
579
|
-
f35 = f3 * f34
|
|
580
|
-
delta_0 = -(
|
|
581
|
-
(
|
|
582
|
-
d2 * f15 * f22 * f3
|
|
583
|
-
- 2 * d2 * f14 * f23 * f3
|
|
584
|
-
+ d2 * f13 * f24 * f3
|
|
585
|
-
- d2 * f15 * f2 * f32
|
|
586
|
-
+ d2 * f14 * f22 * f32
|
|
587
|
-
- d1 * f13 * f23 * f32
|
|
588
|
-
+ d2 * f13 * f23 * f32
|
|
589
|
-
+ d1 * f12 * f24 * f32
|
|
590
|
-
- d2 * f12 * f24 * f32
|
|
591
|
-
+ d2 * f14 * f2 * f33
|
|
592
|
-
+ 2 * d1 * f13 * f22 * f33
|
|
593
|
-
- 2 * d2 * f13 * f22 * f33
|
|
594
|
-
- d1 * f12 * f23 * f33
|
|
595
|
-
+ d2 * f12 * f23 * f33
|
|
596
|
-
- d1 * f1 * f24 * f33
|
|
597
|
-
- d1 * f13 * f2 * f34
|
|
598
|
-
- d1 * f12 * f22 * f34
|
|
599
|
-
+ 2 * d1 * f1 * f23 * f34
|
|
600
|
-
+ d1 * f12 * f2 * f35
|
|
601
|
-
- d1 * f1 * f22 * f35
|
|
602
|
-
+ 4 * f12 * f23 * f32 * v1
|
|
603
|
-
- 3 * f1 * f24 * f32 * v1
|
|
604
|
-
- 8 * f12 * f22 * f33 * v1
|
|
605
|
-
+ 4 * f1 * f23 * f33 * v1
|
|
606
|
-
+ f24 * f33 * v1
|
|
607
|
-
+ 4 * f12 * f2 * f34 * v1
|
|
608
|
-
+ f1 * f22 * f34 * v1
|
|
609
|
-
- 2 * f23 * f34 * v1
|
|
610
|
-
- 2 * f1 * f2 * f35 * v1
|
|
611
|
-
+ f22 * f35 * v1
|
|
612
|
-
- f15 * f32 * v2
|
|
613
|
-
+ 3 * f14 * f33 * v2
|
|
614
|
-
- 3 * f13 * f34 * v2
|
|
615
|
-
+ f12 * f35 * v2
|
|
616
|
-
- f15 * f22 * v3
|
|
617
|
-
+ 2 * f14 * f23 * v3
|
|
618
|
-
- f13 * f24 * v3
|
|
619
|
-
+ 2 * f15 * f2 * f3 * v3
|
|
620
|
-
- f14 * f22 * f3 * v3
|
|
621
|
-
- 4 * f13 * f23 * f3 * v3
|
|
622
|
-
+ 3 * f12 * f24 * f3 * v3
|
|
623
|
-
- 4 * f14 * f2 * f32 * v3
|
|
624
|
-
+ 8 * f13 * f22 * f32 * v3
|
|
625
|
-
- 4 * f12 * f23 * f32 * v3
|
|
626
|
-
)
|
|
627
|
-
/ ((f1 - f2) ** 2 * (f1 - f3) ** 3 * (f3 - f2) ** 2)
|
|
628
|
-
)
|
|
629
|
-
|
|
630
|
-
delta_1 = -(
|
|
631
|
-
(
|
|
632
|
-
-(d2 * f15 * f22)
|
|
633
|
-
+ 2 * d2 * f14 * f23
|
|
634
|
-
- d2 * f13 * f24
|
|
635
|
-
- d2 * f14 * f22 * f3
|
|
636
|
-
+ 2 * d1 * f13 * f23 * f3
|
|
637
|
-
+ 2 * d2 * f13 * f23 * f3
|
|
638
|
-
- 2 * d1 * f12 * f24 * f3
|
|
639
|
-
- d2 * f12 * f24 * f3
|
|
640
|
-
+ d2 * f15 * f32
|
|
641
|
-
- 3 * d1 * f13 * f22 * f32
|
|
642
|
-
- d2 * f13 * f22 * f32
|
|
643
|
-
+ 2 * d1 * f12 * f23 * f32
|
|
644
|
-
- 2 * d2 * f12 * f23 * f32
|
|
645
|
-
+ d1 * f1 * f24 * f32
|
|
646
|
-
+ 2 * d2 * f1 * f24 * f32
|
|
647
|
-
- d2 * f14 * f33
|
|
648
|
-
+ d1 * f12 * f22 * f33
|
|
649
|
-
+ 3 * d2 * f12 * f22 * f33
|
|
650
|
-
- 2 * d1 * f1 * f23 * f33
|
|
651
|
-
- 2 * d2 * f1 * f23 * f33
|
|
652
|
-
+ d1 * f24 * f33
|
|
653
|
-
+ d1 * f13 * f34
|
|
654
|
-
+ d1 * f1 * f22 * f34
|
|
655
|
-
- 2 * d1 * f23 * f34
|
|
656
|
-
- d1 * f12 * f35
|
|
657
|
-
+ d1 * f22 * f35
|
|
658
|
-
- 8 * f12 * f23 * f3 * v1
|
|
659
|
-
+ 6 * f1 * f24 * f3 * v1
|
|
660
|
-
+ 12 * f12 * f22 * f32 * v1
|
|
661
|
-
- 8 * f1 * f23 * f32 * v1
|
|
662
|
-
- 4 * f12 * f34 * v1
|
|
663
|
-
+ 2 * f1 * f35 * v1
|
|
664
|
-
+ 2 * f15 * f3 * v2
|
|
665
|
-
- 4 * f14 * f32 * v2
|
|
666
|
-
+ 4 * f12 * f34 * v2
|
|
667
|
-
- 2 * f1 * f35 * v2
|
|
668
|
-
- 2 * f15 * f3 * v3
|
|
669
|
-
+ 8 * f12 * f23 * f3 * v3
|
|
670
|
-
- 6 * f1 * f24 * f3 * v3
|
|
671
|
-
+ 4 * f14 * f32 * v3
|
|
672
|
-
- 12 * f12 * f22 * f32 * v3
|
|
673
|
-
+ 8 * f1 * f23 * f32 * v3
|
|
674
|
-
)
|
|
675
|
-
/ ((f1 - f2) ** 2 * (f1 - f3) ** 3 * (-f2 + f3) ** 2)
|
|
676
|
-
)
|
|
677
|
-
|
|
678
|
-
delta_2 = -(
|
|
679
|
-
(
|
|
680
|
-
d2 * f15 * f2
|
|
681
|
-
- d1 * f13 * f23
|
|
682
|
-
- 3 * d2 * f13 * f23
|
|
683
|
-
+ d1 * f12 * f24
|
|
684
|
-
+ 2 * d2 * f12 * f24
|
|
685
|
-
- d2 * f15 * f3
|
|
686
|
-
+ d2 * f14 * f2 * f3
|
|
687
|
-
- d1 * f12 * f23 * f3
|
|
688
|
-
+ d2 * f12 * f23 * f3
|
|
689
|
-
+ d1 * f1 * f24 * f3
|
|
690
|
-
- d2 * f1 * f24 * f3
|
|
691
|
-
- d2 * f14 * f32
|
|
692
|
-
+ 3 * d1 * f13 * f2 * f32
|
|
693
|
-
+ d2 * f13 * f2 * f32
|
|
694
|
-
- d1 * f1 * f23 * f32
|
|
695
|
-
+ d2 * f1 * f23 * f32
|
|
696
|
-
- 2 * d1 * f24 * f32
|
|
697
|
-
- d2 * f24 * f32
|
|
698
|
-
- 2 * d1 * f13 * f33
|
|
699
|
-
+ 2 * d2 * f13 * f33
|
|
700
|
-
- d1 * f12 * f2 * f33
|
|
701
|
-
- 3 * d2 * f12 * f2 * f33
|
|
702
|
-
+ 3 * d1 * f23 * f33
|
|
703
|
-
+ d2 * f23 * f33
|
|
704
|
-
+ d1 * f12 * f34
|
|
705
|
-
- d1 * f1 * f2 * f34
|
|
706
|
-
+ d1 * f1 * f35
|
|
707
|
-
- d1 * f2 * f35
|
|
708
|
-
+ 4 * f12 * f23 * v1
|
|
709
|
-
- 3 * f1 * f24 * v1
|
|
710
|
-
+ 4 * f1 * f23 * f3 * v1
|
|
711
|
-
- 3 * f24 * f3 * v1
|
|
712
|
-
- 12 * f12 * f2 * f32 * v1
|
|
713
|
-
+ 4 * f23 * f32 * v1
|
|
714
|
-
+ 8 * f12 * f33 * v1
|
|
715
|
-
- f1 * f34 * v1
|
|
716
|
-
- f35 * v1
|
|
717
|
-
- f15 * v2
|
|
718
|
-
- f14 * f3 * v2
|
|
719
|
-
+ 8 * f13 * f32 * v2
|
|
720
|
-
- 8 * f12 * f33 * v2
|
|
721
|
-
+ f1 * f34 * v2
|
|
722
|
-
+ f35 * v2
|
|
723
|
-
+ f15 * v3
|
|
724
|
-
- 4 * f12 * f23 * v3
|
|
725
|
-
+ 3 * f1 * f24 * v3
|
|
726
|
-
+ f14 * f3 * v3
|
|
727
|
-
- 4 * f1 * f23 * f3 * v3
|
|
728
|
-
+ 3 * f24 * f3 * v3
|
|
729
|
-
- 8 * f13 * f32 * v3
|
|
730
|
-
+ 12 * f12 * f2 * f32 * v3
|
|
731
|
-
- 4 * f23 * f32 * v3
|
|
732
1171
|
)
|
|
733
|
-
/ ((f1 - f2) ** 2 * (f1 - f3) ** 3 * (-f2 + f3) ** 2)
|
|
734
|
-
)
|
|
735
|
-
|
|
736
|
-
delta_3 = -(
|
|
737
|
-
(
|
|
738
|
-
-2 * d2 * f14 * f2
|
|
739
|
-
+ d1 * f13 * f22
|
|
740
|
-
+ 3 * d2 * f13 * f22
|
|
741
|
-
- d1 * f1 * f24
|
|
742
|
-
- d2 * f1 * f24
|
|
743
|
-
+ 2 * d2 * f14 * f3
|
|
744
|
-
- 2 * d1 * f13 * f2 * f3
|
|
745
|
-
- 2 * d2 * f13 * f2 * f3
|
|
746
|
-
+ d1 * f12 * f22 * f3
|
|
747
|
-
- d2 * f12 * f22 * f3
|
|
748
|
-
+ d1 * f24 * f3
|
|
749
|
-
+ d2 * f24 * f3
|
|
750
|
-
+ d1 * f13 * f32
|
|
751
|
-
- d2 * f13 * f32
|
|
752
|
-
- 2 * d1 * f12 * f2 * f32
|
|
753
|
-
+ 2 * d2 * f12 * f2 * f32
|
|
754
|
-
+ d1 * f1 * f22 * f32
|
|
755
|
-
- d2 * f1 * f22 * f32
|
|
756
|
-
+ d1 * f12 * f33
|
|
757
|
-
- d2 * f12 * f33
|
|
758
|
-
+ 2 * d1 * f1 * f2 * f33
|
|
759
|
-
+ 2 * d2 * f1 * f2 * f33
|
|
760
|
-
- 3 * d1 * f22 * f33
|
|
761
|
-
- d2 * f22 * f33
|
|
762
|
-
- 2 * d1 * f1 * f34
|
|
763
|
-
+ 2 * d1 * f2 * f34
|
|
764
|
-
- 4 * f12 * f22 * v1
|
|
765
|
-
+ 2 * f24 * v1
|
|
766
|
-
+ 8 * f12 * f2 * f3 * v1
|
|
767
|
-
- 4 * f1 * f22 * f3 * v1
|
|
768
|
-
- 4 * f12 * f32 * v1
|
|
769
|
-
+ 8 * f1 * f2 * f32 * v1
|
|
770
|
-
- 4 * f22 * f32 * v1
|
|
771
|
-
- 4 * f1 * f33 * v1
|
|
772
|
-
+ 2 * f34 * v1
|
|
773
|
-
+ 2 * f14 * v2
|
|
774
|
-
- 4 * f13 * f3 * v2
|
|
775
|
-
+ 4 * f1 * f33 * v2
|
|
776
|
-
- 2 * f34 * v2
|
|
777
|
-
- 2 * f14 * v3
|
|
778
|
-
+ 4 * f12 * f22 * v3
|
|
779
|
-
- 2 * f24 * v3
|
|
780
|
-
+ 4 * f13 * f3 * v3
|
|
781
|
-
- 8 * f12 * f2 * f3 * v3
|
|
782
|
-
+ 4 * f1 * f22 * f3 * v3
|
|
783
|
-
+ 4 * f12 * f32 * v3
|
|
784
|
-
- 8 * f1 * f2 * f32 * v3
|
|
785
|
-
+ 4 * f22 * f32 * v3
|
|
786
|
-
)
|
|
787
|
-
/ ((f1 - f2) ** 2 * (f1 - f3) ** 3 * (-f2 + f3) ** 2)
|
|
788
|
-
)
|
|
789
|
-
|
|
790
|
-
delta_4 = -(
|
|
791
|
-
(
|
|
792
|
-
d2 * f13 * f2
|
|
793
|
-
- d1 * f12 * f22
|
|
794
|
-
- 2 * d2 * f12 * f22
|
|
795
|
-
+ d1 * f1 * f23
|
|
796
|
-
+ d2 * f1 * f23
|
|
797
|
-
- d2 * f13 * f3
|
|
798
|
-
+ 2 * d1 * f12 * f2 * f3
|
|
799
|
-
+ d2 * f12 * f2 * f3
|
|
800
|
-
- d1 * f1 * f22 * f3
|
|
801
|
-
+ d2 * f1 * f22 * f3
|
|
802
|
-
- d1 * f23 * f3
|
|
803
|
-
- d2 * f23 * f3
|
|
804
|
-
- d1 * f12 * f32
|
|
805
|
-
+ d2 * f12 * f32
|
|
806
|
-
- d1 * f1 * f2 * f32
|
|
807
|
-
- 2 * d2 * f1 * f2 * f32
|
|
808
|
-
+ 2 * d1 * f22 * f32
|
|
809
|
-
+ d2 * f22 * f32
|
|
810
|
-
+ d1 * f1 * f33
|
|
811
|
-
- d1 * f2 * f33
|
|
812
|
-
+ 3 * f1 * f22 * v1
|
|
813
|
-
- 2 * f23 * v1
|
|
814
|
-
- 6 * f1 * f2 * f3 * v1
|
|
815
|
-
+ 3 * f22 * f3 * v1
|
|
816
|
-
+ 3 * f1 * f32 * v1
|
|
817
|
-
- f33 * v1
|
|
818
|
-
- f13 * v2
|
|
819
|
-
+ 3 * f12 * f3 * v2
|
|
820
|
-
- 3 * f1 * f32 * v2
|
|
821
|
-
+ f33 * v2
|
|
822
|
-
+ f13 * v3
|
|
823
|
-
- 3 * f1 * f22 * v3
|
|
824
|
-
+ 2 * f23 * v3
|
|
825
|
-
- 3 * f12 * f3 * v3
|
|
826
|
-
+ 6 * f1 * f2 * f3 * v3
|
|
827
|
-
- 3 * f22 * f3 * v3
|
|
828
|
-
)
|
|
829
|
-
/ ((f1 - f2) ** 2 * (f1 - f3) ** 3 * (-f2 + f3) ** 2)
|
|
830
|
-
)
|
|
831
|
-
|
|
832
|
-
return delta_0, delta_1, delta_2, delta_3, delta_4
|
|
833
|
-
|
|
834
|
-
|
|
835
|
-
def chiPN(Seta, eta, chi1, chi2):
|
|
836
|
-
chi_s = chi1 + chi2
|
|
837
|
-
chi_a = chi1 - chi2
|
|
838
|
-
|
|
839
|
-
return 0.5 * (chi_s * (1.0 - eta * 76.0 / 113.0) + Seta * chi_a)
|
|
840
|
-
|
|
841
|
-
|
|
842
|
-
def _linear_interp_finspin(finspin):
|
|
843
|
-
# Put QNM data in same device as input
|
|
844
|
-
QNMData_a = phenom_d_data.QNMData_a.to(device=finspin.device)
|
|
845
|
-
QNMData_fdamp = phenom_d_data.QNMData_fdamp.to(device=finspin.device)
|
|
846
|
-
QNMData_fring = phenom_d_data.QNMData_fring.to(device=finspin.device)
|
|
847
|
-
# chi is a batch of final spins i.e. torch.Size([n])
|
|
848
|
-
right_spin_idx = torch.bucketize(finspin, QNMData_a)
|
|
849
|
-
right_spin_val = QNMData_a[right_spin_idx]
|
|
850
|
-
# QNMData_a is sorted, hence take the previous index
|
|
851
|
-
left_spin_idx = right_spin_idx - 1
|
|
852
|
-
left_spin_val = QNMData_a[left_spin_idx]
|
|
853
1172
|
|
|
854
|
-
|
|
855
|
-
|
|
856
|
-
|
|
857
|
-
|
|
858
|
-
|
|
859
|
-
|
|
860
|
-
|
|
861
|
-
|
|
862
|
-
|
|
863
|
-
|
|
864
|
-
|
|
865
|
-
|
|
866
|
-
|
|
867
|
-
|
|
868
|
-
|
|
869
|
-
|
|
870
|
-
|
|
871
|
-
|
|
872
|
-
|
|
873
|
-
|
|
874
|
-
|
|
875
|
-
|
|
876
|
-
|
|
877
|
-
|
|
878
|
-
|
|
879
|
-
|
|
880
|
-
|
|
881
|
-
|
|
882
|
-
|
|
883
|
-
|
|
884
|
-
|
|
885
|
-
|
|
886
|
-
|
|
887
|
-
|
|
888
|
-
|
|
889
|
-
|
|
890
|
-
|
|
891
|
-
|
|
892
|
-
|
|
893
|
-
|
|
894
|
-
|
|
895
|
-
|
|
896
|
-
|
|
897
|
-
|
|
898
|
-
|
|
899
|
-
|
|
900
|
-
|
|
901
|
-
|
|
902
|
-
|
|
903
|
-
|
|
904
|
-
|
|
905
|
-
|
|
906
|
-
|
|
907
|
-
|
|
908
|
-
|
|
909
|
-
|
|
910
|
-
|
|
911
|
-
|
|
912
|
-
|
|
913
|
-
|
|
914
|
-
ins_Dphasing += (Mf.mT ** (1.0 / 3.0) * sigma2 / eta).mT
|
|
915
|
-
ins_Dphasing += (Mf.mT ** (2.0 / 3.0) * sigma3 / eta).mT
|
|
916
|
-
ins_Dphasing += (Mf.mT * sigma4 / eta).mT
|
|
917
|
-
|
|
918
|
-
return ins_phasing, ins_Dphasing
|
|
919
|
-
|
|
920
|
-
|
|
921
|
-
def phenom_d_int_phase(Mf, eta, eta2, xi):
|
|
922
|
-
beta1 = beta1Fit(eta, eta2, xi)
|
|
923
|
-
beta2 = beta2Fit(eta, eta2, xi)
|
|
924
|
-
beta3 = beta3Fit(eta, eta2, xi)
|
|
925
|
-
# Merger phase
|
|
926
|
-
# Leading beta0 is not added here
|
|
927
|
-
# overall 1/eta is not multiplied
|
|
928
|
-
int_phasing = (Mf.mT * beta1).mT
|
|
929
|
-
int_phasing += (torch.log(Mf).mT * beta2).mT
|
|
930
|
-
int_phasing -= (Mf.mT ** (-3.0) / 3.0 * beta3).mT
|
|
931
|
-
|
|
932
|
-
# overall 1/eta is multiple in derivative of
|
|
933
|
-
# intermediate phase
|
|
934
|
-
int_Dphasing = (Mf.mT ** (-4.0) * beta3).mT
|
|
935
|
-
int_Dphasing += (Mf.mT ** (-1.0) * beta2).mT
|
|
936
|
-
int_Dphasing = (int_Dphasing.T + beta1).mT
|
|
937
|
-
int_Dphasing = (int_Dphasing.T / eta).mT
|
|
938
|
-
return int_phasing, int_Dphasing
|
|
939
|
-
|
|
940
|
-
|
|
941
|
-
def phenom_d_mrd_phase(Mf, eta, eta2, chi1, chi2, xi):
|
|
942
|
-
alpha1 = alpha1Fit(eta, eta2, xi)
|
|
943
|
-
alpha2 = alpha2Fit(eta, eta2, xi)
|
|
944
|
-
alpha3 = alpha3Fit(eta, eta2, xi)
|
|
945
|
-
alpha4 = alpha4Fit(eta, eta2, xi)
|
|
946
|
-
alpha5 = alpha5Fit(eta, eta2, xi)
|
|
947
|
-
|
|
948
|
-
# merger ringdown
|
|
949
|
-
fRD, fDM = fring_fdamp(eta, eta2, chi1, chi2)
|
|
950
|
-
f_minus_alpha5_fRD = (Mf.t() - alpha5 * fRD).t()
|
|
951
|
-
|
|
952
|
-
# Leading 1/eta is not multiplied at this stage
|
|
953
|
-
mrd_phasing = (Mf.t() * alpha1).t()
|
|
954
|
-
mrd_phasing -= (1 / Mf.t() * alpha2).t()
|
|
955
|
-
mrd_phasing += (4.0 / 3.0) * (Mf.t() ** (3.0 / 4.0) * alpha3).t()
|
|
956
|
-
mrd_phasing += (torch.atan(f_minus_alpha5_fRD.t() / fDM) * alpha4).t()
|
|
957
|
-
|
|
958
|
-
mrd_Dphasing = (
|
|
959
|
-
alpha4 * fDM / (f_minus_alpha5_fRD.t() ** 2 + fDM**2)
|
|
960
|
-
).t()
|
|
961
|
-
mrd_Dphasing += (Mf.t() ** (-1.0 / 4.0) * alpha3).t()
|
|
962
|
-
mrd_Dphasing += (Mf.t() ** (-2.0) * alpha2).t()
|
|
963
|
-
mrd_Dphasing = (mrd_Dphasing.t() + alpha1).t()
|
|
964
|
-
mrd_Dphasing = (mrd_Dphasing.t() / eta).t()
|
|
965
|
-
|
|
966
|
-
return mrd_phasing, mrd_Dphasing
|
|
967
|
-
|
|
968
|
-
|
|
969
|
-
def phenom_d_phase(Mf, mass_1, mass_2, eta, eta2, chi1, chi2, xi):
|
|
970
|
-
ins_phase, ins_Dphase = phenom_d_inspiral_phase(
|
|
971
|
-
Mf, mass_1, mass_2, eta, eta2, xi, chi1, chi2
|
|
972
|
-
)
|
|
973
|
-
int_phase, int_Dphase = phenom_d_int_phase(Mf, eta, eta2, xi)
|
|
974
|
-
mrd_phase, mrd_Dphase = phenom_d_mrd_phase(Mf, eta, eta2, chi1, chi2, xi)
|
|
975
|
-
|
|
976
|
-
# merger ringdown
|
|
977
|
-
fRD, fDM = fring_fdamp(eta, eta2, chi1, chi2)
|
|
978
|
-
# definitions in Eq. (35) of arXiv:1508.07253
|
|
979
|
-
# PHI_fJoin_INS in header LALSimIMRPhenomD.h
|
|
980
|
-
# C1 continuity at intermediate region i.e. f_1
|
|
981
|
-
PHI_fJoin_INS = 0.018 * torch.ones_like(Mf)
|
|
982
|
-
ins_phase_f1, ins_Dphase_f1 = phenom_d_inspiral_phase(
|
|
983
|
-
PHI_fJoin_INS, mass_1, mass_2, eta, eta2, xi, chi1, chi2
|
|
984
|
-
)
|
|
985
|
-
int_phase_f1, int_Dphase_f1 = phenom_d_int_phase(
|
|
986
|
-
PHI_fJoin_INS, eta, eta2, xi
|
|
987
|
-
)
|
|
988
|
-
C2Int = ins_Dphase_f1 - int_Dphase_f1
|
|
989
|
-
C1Int = ins_phase_f1 - (int_phase_f1.T / eta).mT - C2Int * PHI_fJoin_INS
|
|
990
|
-
# C1 continuity at ringdown
|
|
991
|
-
fRDJoin = (0.5 * torch.ones_like(Mf).mT * fRD).mT
|
|
992
|
-
int_phase_rd, int_Dphase_rd = phenom_d_int_phase(fRDJoin, eta, eta2, xi)
|
|
993
|
-
mrd_phase_rd, mrd_Dphase_rd = phenom_d_mrd_phase(
|
|
994
|
-
fRDJoin, eta, eta2, chi1, chi2, xi
|
|
995
|
-
)
|
|
996
|
-
PhiIntTempVal = (int_phase_rd.T / eta).mT + C1Int + C2Int * fRDJoin
|
|
997
|
-
# C2MRD = int_Dphase_rd - mrd_Dphase_rd
|
|
998
|
-
C2MRD = C2Int + int_Dphase_rd - mrd_Dphase_rd
|
|
999
|
-
C1MRD = PhiIntTempVal - (mrd_phase_rd.T / eta).mT - C2MRD * fRDJoin
|
|
1000
|
-
|
|
1001
|
-
int_phase = (int_phase.T / eta).mT
|
|
1002
|
-
int_phase += C1Int
|
|
1003
|
-
int_phase += Mf * C2Int
|
|
1004
|
-
|
|
1005
|
-
mrd_phase = (mrd_phase.T / eta).mT
|
|
1006
|
-
mrd_phase += C1MRD
|
|
1007
|
-
mrd_phase += Mf * C2MRD
|
|
1008
|
-
|
|
1009
|
-
# construct full IMR phase
|
|
1010
|
-
theta_minus_f1 = torch.heaviside(
|
|
1011
|
-
PHI_fJoin_INS - Mf, torch.tensor(0.0, device=Mf.device)
|
|
1012
|
-
)
|
|
1013
|
-
theta_plus_f1 = torch.heaviside(
|
|
1014
|
-
Mf - PHI_fJoin_INS, torch.tensor(1.0, device=Mf.device)
|
|
1015
|
-
)
|
|
1016
|
-
theta_minus_f2 = torch.heaviside(
|
|
1017
|
-
fRDJoin - Mf, torch.tensor(0.0, device=Mf.device)
|
|
1018
|
-
)
|
|
1019
|
-
theta_plus_f2 = torch.heaviside(
|
|
1020
|
-
Mf - fRDJoin, torch.tensor(1.0, device=Mf.device)
|
|
1021
|
-
)
|
|
1022
|
-
|
|
1023
|
-
phasing = theta_minus_f1 * ins_phase
|
|
1024
|
-
phasing += theta_plus_f1 * int_phase * theta_minus_f2
|
|
1025
|
-
phasing += theta_plus_f2 * mrd_phase
|
|
1026
|
-
|
|
1027
|
-
Dphasing = theta_minus_f1 * ins_Dphase
|
|
1028
|
-
Dphasing += theta_plus_f1 * int_Dphase * theta_minus_f2
|
|
1029
|
-
Dphasing += theta_plus_f2 * mrd_Dphase
|
|
1030
|
-
|
|
1031
|
-
return phasing, Dphasing
|
|
1032
|
-
|
|
1033
|
-
|
|
1034
|
-
def phenom_d_inspiral_amp(Mf, eta, eta2, Seta, xi, chi1, chi2, chi12, chi22):
|
|
1035
|
-
SetaPlus1 = 1 + Seta
|
|
1036
|
-
|
|
1037
|
-
Mf_one_third = Mf ** (1.0 / 3.0)
|
|
1038
|
-
Mf_two_third = Mf_one_third * Mf_one_third
|
|
1039
|
-
Mf_four_third = Mf_two_third * Mf_two_third
|
|
1040
|
-
Mf_five_third = Mf_four_third * Mf_one_third
|
|
1041
|
-
Mf_seven_third = Mf_five_third * Mf_two_third
|
|
1042
|
-
MF_eight_third = Mf_seven_third * Mf_one_third
|
|
1043
|
-
Mf_two = Mf * Mf
|
|
1044
|
-
Mf_three = Mf_two * Mf
|
|
1045
|
-
|
|
1046
|
-
prefactors_two_thirds = ((-969 + 1804 * eta) * PI ** (2.0 / 3.0)) / 672
|
|
1047
|
-
prefactors_one = (
|
|
1048
|
-
(
|
|
1049
|
-
chi1 * (81 * SetaPlus1 - 44 * eta)
|
|
1050
|
-
+ chi2 * (81 - 81 * Seta - 44 * eta)
|
|
1173
|
+
def delta_values(self, f1, f2, f3, v1, v2, v3, d1, d2):
|
|
1174
|
+
f12 = f1 * f1
|
|
1175
|
+
f13 = f1 * f12
|
|
1176
|
+
f14 = f1 * f13
|
|
1177
|
+
f15 = f1 * f14
|
|
1178
|
+
f22 = f2 * f2
|
|
1179
|
+
f23 = f2 * f22
|
|
1180
|
+
f24 = f2 * f23
|
|
1181
|
+
f32 = f3 * f3
|
|
1182
|
+
f33 = f3 * f32
|
|
1183
|
+
f34 = f3 * f33
|
|
1184
|
+
f35 = f3 * f34
|
|
1185
|
+
delta_0 = -(
|
|
1186
|
+
(
|
|
1187
|
+
d2 * f15 * f22 * f3
|
|
1188
|
+
- 2 * d2 * f14 * f23 * f3
|
|
1189
|
+
+ d2 * f13 * f24 * f3
|
|
1190
|
+
- d2 * f15 * f2 * f32
|
|
1191
|
+
+ d2 * f14 * f22 * f32
|
|
1192
|
+
- d1 * f13 * f23 * f32
|
|
1193
|
+
+ d2 * f13 * f23 * f32
|
|
1194
|
+
+ d1 * f12 * f24 * f32
|
|
1195
|
+
- d2 * f12 * f24 * f32
|
|
1196
|
+
+ d2 * f14 * f2 * f33
|
|
1197
|
+
+ 2 * d1 * f13 * f22 * f33
|
|
1198
|
+
- 2 * d2 * f13 * f22 * f33
|
|
1199
|
+
- d1 * f12 * f23 * f33
|
|
1200
|
+
+ d2 * f12 * f23 * f33
|
|
1201
|
+
- d1 * f1 * f24 * f33
|
|
1202
|
+
- d1 * f13 * f2 * f34
|
|
1203
|
+
- d1 * f12 * f22 * f34
|
|
1204
|
+
+ 2 * d1 * f1 * f23 * f34
|
|
1205
|
+
+ d1 * f12 * f2 * f35
|
|
1206
|
+
- d1 * f1 * f22 * f35
|
|
1207
|
+
+ 4 * f12 * f23 * f32 * v1
|
|
1208
|
+
- 3 * f1 * f24 * f32 * v1
|
|
1209
|
+
- 8 * f12 * f22 * f33 * v1
|
|
1210
|
+
+ 4 * f1 * f23 * f33 * v1
|
|
1211
|
+
+ f24 * f33 * v1
|
|
1212
|
+
+ 4 * f12 * f2 * f34 * v1
|
|
1213
|
+
+ f1 * f22 * f34 * v1
|
|
1214
|
+
- 2 * f23 * f34 * v1
|
|
1215
|
+
- 2 * f1 * f2 * f35 * v1
|
|
1216
|
+
+ f22 * f35 * v1
|
|
1217
|
+
- f15 * f32 * v2
|
|
1218
|
+
+ 3 * f14 * f33 * v2
|
|
1219
|
+
- 3 * f13 * f34 * v2
|
|
1220
|
+
+ f12 * f35 * v2
|
|
1221
|
+
- f15 * f22 * v3
|
|
1222
|
+
+ 2 * f14 * f23 * v3
|
|
1223
|
+
- f13 * f24 * v3
|
|
1224
|
+
+ 2 * f15 * f2 * f3 * v3
|
|
1225
|
+
- f14 * f22 * f3 * v3
|
|
1226
|
+
- 4 * f13 * f23 * f3 * v3
|
|
1227
|
+
+ 3 * f12 * f24 * f3 * v3
|
|
1228
|
+
- 4 * f14 * f2 * f32 * v3
|
|
1229
|
+
+ 8 * f13 * f22 * f32 * v3
|
|
1230
|
+
- 4 * f12 * f23 * f32 * v3
|
|
1231
|
+
)
|
|
1232
|
+
/ ((f1 - f2) ** 2 * (f1 - f3) ** 3 * (f3 - f2) ** 2)
|
|
1051
1233
|
)
|
|
1052
|
-
|
|
1053
|
-
|
|
1054
|
-
|
|
1055
|
-
|
|
1056
|
-
|
|
1057
|
-
|
|
1058
|
-
|
|
1059
|
-
|
|
1060
|
-
|
|
1061
|
-
|
|
1062
|
-
-
|
|
1063
|
-
+
|
|
1064
|
-
-
|
|
1065
|
-
|
|
1234
|
+
|
|
1235
|
+
delta_1 = -(
|
|
1236
|
+
(
|
|
1237
|
+
-(d2 * f15 * f22)
|
|
1238
|
+
+ 2 * d2 * f14 * f23
|
|
1239
|
+
- d2 * f13 * f24
|
|
1240
|
+
- d2 * f14 * f22 * f3
|
|
1241
|
+
+ 2 * d1 * f13 * f23 * f3
|
|
1242
|
+
+ 2 * d2 * f13 * f23 * f3
|
|
1243
|
+
- 2 * d1 * f12 * f24 * f3
|
|
1244
|
+
- d2 * f12 * f24 * f3
|
|
1245
|
+
+ d2 * f15 * f32
|
|
1246
|
+
- 3 * d1 * f13 * f22 * f32
|
|
1247
|
+
- d2 * f13 * f22 * f32
|
|
1248
|
+
+ 2 * d1 * f12 * f23 * f32
|
|
1249
|
+
- 2 * d2 * f12 * f23 * f32
|
|
1250
|
+
+ d1 * f1 * f24 * f32
|
|
1251
|
+
+ 2 * d2 * f1 * f24 * f32
|
|
1252
|
+
- d2 * f14 * f33
|
|
1253
|
+
+ d1 * f12 * f22 * f33
|
|
1254
|
+
+ 3 * d2 * f12 * f22 * f33
|
|
1255
|
+
- 2 * d1 * f1 * f23 * f33
|
|
1256
|
+
- 2 * d2 * f1 * f23 * f33
|
|
1257
|
+
+ d1 * f24 * f33
|
|
1258
|
+
+ d1 * f13 * f34
|
|
1259
|
+
+ d1 * f1 * f22 * f34
|
|
1260
|
+
- 2 * d1 * f23 * f34
|
|
1261
|
+
- d1 * f12 * f35
|
|
1262
|
+
+ d1 * f22 * f35
|
|
1263
|
+
- 8 * f12 * f23 * f3 * v1
|
|
1264
|
+
+ 6 * f1 * f24 * f3 * v1
|
|
1265
|
+
+ 12 * f12 * f22 * f32 * v1
|
|
1266
|
+
- 8 * f1 * f23 * f32 * v1
|
|
1267
|
+
- 4 * f12 * f34 * v1
|
|
1268
|
+
+ 2 * f1 * f35 * v1
|
|
1269
|
+
+ 2 * f15 * f3 * v2
|
|
1270
|
+
- 4 * f14 * f32 * v2
|
|
1271
|
+
+ 4 * f12 * f34 * v2
|
|
1272
|
+
- 2 * f1 * f35 * v2
|
|
1273
|
+
- 2 * f15 * f3 * v3
|
|
1274
|
+
+ 8 * f12 * f23 * f3 * v3
|
|
1275
|
+
- 6 * f1 * f24 * f3 * v3
|
|
1276
|
+
+ 4 * f14 * f32 * v3
|
|
1277
|
+
- 12 * f12 * f22 * f32 * v3
|
|
1278
|
+
+ 8 * f1 * f23 * f32 * v3
|
|
1066
1279
|
)
|
|
1067
|
-
*
|
|
1068
|
-
+ 35371056 * eta2 * PI ** (4.0 / 3.0)
|
|
1280
|
+
/ ((f1 - f2) ** 2 * (f1 - f3) ** 3 * (-f2 + f3) ** 2)
|
|
1069
1281
|
)
|
|
1070
|
-
|
|
1071
|
-
|
|
1072
|
-
|
|
1073
|
-
|
|
1074
|
-
|
|
1075
|
-
|
|
1076
|
-
|
|
1077
|
-
+
|
|
1078
|
-
-
|
|
1282
|
+
|
|
1283
|
+
delta_2 = -(
|
|
1284
|
+
(
|
|
1285
|
+
d2 * f15 * f2
|
|
1286
|
+
- d1 * f13 * f23
|
|
1287
|
+
- 3 * d2 * f13 * f23
|
|
1288
|
+
+ d1 * f12 * f24
|
|
1289
|
+
+ 2 * d2 * f12 * f24
|
|
1290
|
+
- d2 * f15 * f3
|
|
1291
|
+
+ d2 * f14 * f2 * f3
|
|
1292
|
+
- d1 * f12 * f23 * f3
|
|
1293
|
+
+ d2 * f12 * f23 * f3
|
|
1294
|
+
+ d1 * f1 * f24 * f3
|
|
1295
|
+
- d2 * f1 * f24 * f3
|
|
1296
|
+
- d2 * f14 * f32
|
|
1297
|
+
+ 3 * d1 * f13 * f2 * f32
|
|
1298
|
+
+ d2 * f13 * f2 * f32
|
|
1299
|
+
- d1 * f1 * f23 * f32
|
|
1300
|
+
+ d2 * f1 * f23 * f32
|
|
1301
|
+
- 2 * d1 * f24 * f32
|
|
1302
|
+
- d2 * f24 * f32
|
|
1303
|
+
- 2 * d1 * f13 * f33
|
|
1304
|
+
+ 2 * d2 * f13 * f33
|
|
1305
|
+
- d1 * f12 * f2 * f33
|
|
1306
|
+
- 3 * d2 * f12 * f2 * f33
|
|
1307
|
+
+ 3 * d1 * f23 * f33
|
|
1308
|
+
+ d2 * f23 * f33
|
|
1309
|
+
+ d1 * f12 * f34
|
|
1310
|
+
- d1 * f1 * f2 * f34
|
|
1311
|
+
+ d1 * f1 * f35
|
|
1312
|
+
- d1 * f2 * f35
|
|
1313
|
+
+ 4 * f12 * f23 * v1
|
|
1314
|
+
- 3 * f1 * f24 * v1
|
|
1315
|
+
+ 4 * f1 * f23 * f3 * v1
|
|
1316
|
+
- 3 * f24 * f3 * v1
|
|
1317
|
+
- 12 * f12 * f2 * f32 * v1
|
|
1318
|
+
+ 4 * f23 * f32 * v1
|
|
1319
|
+
+ 8 * f12 * f33 * v1
|
|
1320
|
+
- f1 * f34 * v1
|
|
1321
|
+
- f35 * v1
|
|
1322
|
+
- f15 * v2
|
|
1323
|
+
- f14 * f3 * v2
|
|
1324
|
+
+ 8 * f13 * f32 * v2
|
|
1325
|
+
- 8 * f12 * f33 * v2
|
|
1326
|
+
+ f1 * f34 * v2
|
|
1327
|
+
+ f35 * v2
|
|
1328
|
+
+ f15 * v3
|
|
1329
|
+
- 4 * f12 * f23 * v3
|
|
1330
|
+
+ 3 * f1 * f24 * v3
|
|
1331
|
+
+ f14 * f3 * v3
|
|
1332
|
+
- 4 * f1 * f23 * f3 * v3
|
|
1333
|
+
+ 3 * f24 * f3 * v3
|
|
1334
|
+
- 8 * f13 * f32 * v3
|
|
1335
|
+
+ 12 * f12 * f2 * f32 * v3
|
|
1336
|
+
- 4 * f23 * f32 * v3
|
|
1079
1337
|
)
|
|
1080
|
-
+
|
|
1081
|
-
|
|
1082
|
-
|
|
1083
|
-
|
|
1084
|
-
|
|
1338
|
+
/ ((f1 - f2) ** 2 * (f1 - f3) ** 3 * (-f2 + f3) ** 2)
|
|
1339
|
+
)
|
|
1340
|
+
|
|
1341
|
+
delta_3 = -(
|
|
1342
|
+
(
|
|
1343
|
+
-2 * d2 * f14 * f2
|
|
1344
|
+
+ d1 * f13 * f22
|
|
1345
|
+
+ 3 * d2 * f13 * f22
|
|
1346
|
+
- d1 * f1 * f24
|
|
1347
|
+
- d2 * f1 * f24
|
|
1348
|
+
+ 2 * d2 * f14 * f3
|
|
1349
|
+
- 2 * d1 * f13 * f2 * f3
|
|
1350
|
+
- 2 * d2 * f13 * f2 * f3
|
|
1351
|
+
+ d1 * f12 * f22 * f3
|
|
1352
|
+
- d2 * f12 * f22 * f3
|
|
1353
|
+
+ d1 * f24 * f3
|
|
1354
|
+
+ d2 * f24 * f3
|
|
1355
|
+
+ d1 * f13 * f32
|
|
1356
|
+
- d2 * f13 * f32
|
|
1357
|
+
- 2 * d1 * f12 * f2 * f32
|
|
1358
|
+
+ 2 * d2 * f12 * f2 * f32
|
|
1359
|
+
+ d1 * f1 * f22 * f32
|
|
1360
|
+
- d2 * f1 * f22 * f32
|
|
1361
|
+
+ d1 * f12 * f33
|
|
1362
|
+
- d2 * f12 * f33
|
|
1363
|
+
+ 2 * d1 * f1 * f2 * f33
|
|
1364
|
+
+ 2 * d2 * f1 * f2 * f33
|
|
1365
|
+
- 3 * d1 * f22 * f33
|
|
1366
|
+
- d2 * f22 * f33
|
|
1367
|
+
- 2 * d1 * f1 * f34
|
|
1368
|
+
+ 2 * d1 * f2 * f34
|
|
1369
|
+
- 4 * f12 * f22 * v1
|
|
1370
|
+
+ 2 * f24 * v1
|
|
1371
|
+
+ 8 * f12 * f2 * f3 * v1
|
|
1372
|
+
- 4 * f1 * f22 * f3 * v1
|
|
1373
|
+
- 4 * f12 * f32 * v1
|
|
1374
|
+
+ 8 * f1 * f2 * f32 * v1
|
|
1375
|
+
- 4 * f22 * f32 * v1
|
|
1376
|
+
- 4 * f1 * f33 * v1
|
|
1377
|
+
+ 2 * f34 * v1
|
|
1378
|
+
+ 2 * f14 * v2
|
|
1379
|
+
- 4 * f13 * f3 * v2
|
|
1380
|
+
+ 4 * f1 * f33 * v2
|
|
1381
|
+
- 2 * f34 * v2
|
|
1382
|
+
- 2 * f14 * v3
|
|
1383
|
+
+ 4 * f12 * f22 * v3
|
|
1384
|
+
- 2 * f24 * v3
|
|
1385
|
+
+ 4 * f13 * f3 * v3
|
|
1386
|
+
- 8 * f12 * f2 * f3 * v3
|
|
1387
|
+
+ 4 * f1 * f22 * f3 * v3
|
|
1388
|
+
+ 4 * f12 * f32 * v3
|
|
1389
|
+
- 8 * f1 * f2 * f32 * v3
|
|
1390
|
+
+ 4 * f22 * f32 * v3
|
|
1085
1391
|
)
|
|
1086
|
-
|
|
1392
|
+
/ ((f1 - f2) ** 2 * (f1 - f3) ** 3 * (-f2 + f3) ** 2)
|
|
1087
1393
|
)
|
|
1088
|
-
|
|
1089
|
-
|
|
1090
|
-
|
|
1091
|
-
|
|
1092
|
-
|
|
1093
|
-
-
|
|
1094
|
-
*
|
|
1095
|
-
|
|
1096
|
-
|
|
1097
|
-
|
|
1098
|
-
|
|
1099
|
-
|
|
1100
|
-
*
|
|
1101
|
-
-
|
|
1102
|
-
-
|
|
1103
|
-
*
|
|
1104
|
-
|
|
1105
|
-
|
|
1106
|
-
|
|
1107
|
-
|
|
1108
|
-
|
|
1109
|
-
|
|
1110
|
-
|
|
1111
|
-
|
|
1112
|
-
|
|
1113
|
-
*
|
|
1114
|
-
*
|
|
1115
|
-
|
|
1116
|
-
|
|
1117
|
-
|
|
1118
|
-
|
|
1119
|
-
|
|
1120
|
-
|
|
1121
|
-
|
|
1122
|
-
|
|
1394
|
+
|
|
1395
|
+
delta_4 = -(
|
|
1396
|
+
(
|
|
1397
|
+
d2 * f13 * f2
|
|
1398
|
+
- d1 * f12 * f22
|
|
1399
|
+
- 2 * d2 * f12 * f22
|
|
1400
|
+
+ d1 * f1 * f23
|
|
1401
|
+
+ d2 * f1 * f23
|
|
1402
|
+
- d2 * f13 * f3
|
|
1403
|
+
+ 2 * d1 * f12 * f2 * f3
|
|
1404
|
+
+ d2 * f12 * f2 * f3
|
|
1405
|
+
- d1 * f1 * f22 * f3
|
|
1406
|
+
+ d2 * f1 * f22 * f3
|
|
1407
|
+
- d1 * f23 * f3
|
|
1408
|
+
- d2 * f23 * f3
|
|
1409
|
+
- d1 * f12 * f32
|
|
1410
|
+
+ d2 * f12 * f32
|
|
1411
|
+
- d1 * f1 * f2 * f32
|
|
1412
|
+
- 2 * d2 * f1 * f2 * f32
|
|
1413
|
+
+ 2 * d1 * f22 * f32
|
|
1414
|
+
+ d2 * f22 * f32
|
|
1415
|
+
+ d1 * f1 * f33
|
|
1416
|
+
- d1 * f2 * f33
|
|
1417
|
+
+ 3 * f1 * f22 * v1
|
|
1418
|
+
- 2 * f23 * v1
|
|
1419
|
+
- 6 * f1 * f2 * f3 * v1
|
|
1420
|
+
+ 3 * f22 * f3 * v1
|
|
1421
|
+
+ 3 * f1 * f32 * v1
|
|
1422
|
+
- f33 * v1
|
|
1423
|
+
- f13 * v2
|
|
1424
|
+
+ 3 * f12 * f3 * v2
|
|
1425
|
+
- 3 * f1 * f32 * v2
|
|
1426
|
+
+ f33 * v2
|
|
1427
|
+
+ f13 * v3
|
|
1428
|
+
- 3 * f1 * f22 * v3
|
|
1429
|
+
+ 2 * f23 * v3
|
|
1430
|
+
- 3 * f12 * f3 * v3
|
|
1431
|
+
+ 6 * f1 * f2 * f3 * v3
|
|
1432
|
+
- 3 * f22 * f3 * v3
|
|
1123
1433
|
)
|
|
1434
|
+
/ ((f1 - f2) ** 2 * (f1 - f3) ** 3 * (-f2 + f3) ** 2)
|
|
1124
1435
|
)
|
|
1125
|
-
/ 6.0085960704e10
|
|
1126
|
-
)
|
|
1127
|
-
prefactors_seven_thirds = rho1_fun(eta, eta2, xi)
|
|
1128
|
-
prefactors_eight_thirds = rho2_fun(eta, eta2, xi)
|
|
1129
|
-
prefactors_three = rho3_fun(eta, eta2, xi)
|
|
1130
|
-
|
|
1131
|
-
amp = torch.ones_like(Mf)
|
|
1132
|
-
amp += (
|
|
1133
|
-
Mf_two_third.T * prefactors_two_thirds
|
|
1134
|
-
+ Mf_four_third.T * prefactors_four_thirds
|
|
1135
|
-
+ Mf_five_third.T * prefactors_five_thirds
|
|
1136
|
-
+ Mf_seven_third.T * prefactors_seven_thirds
|
|
1137
|
-
+ MF_eight_third.T * prefactors_eight_thirds
|
|
1138
|
-
+ Mf.mT * prefactors_one
|
|
1139
|
-
+ Mf_two.T * prefactors_two
|
|
1140
|
-
+ Mf_three.T * prefactors_three
|
|
1141
|
-
).mT
|
|
1142
|
-
|
|
1143
|
-
Damp = (
|
|
1144
|
-
(2.0 / 3.0) / Mf_one_third.T * prefactors_two_thirds
|
|
1145
|
-
+ (4.0 / 3.0) * Mf_one_third.T * prefactors_four_thirds
|
|
1146
|
-
+ (5.0 / 3.0) * Mf_two_third.T * prefactors_five_thirds
|
|
1147
|
-
+ (7.0 / 3.0) * Mf_four_third.T * prefactors_seven_thirds
|
|
1148
|
-
+ (8.0 / 3.0) * Mf_five_third.T * prefactors_eight_thirds
|
|
1149
|
-
+ prefactors_one
|
|
1150
|
-
+ 2.0 * Mf.mT * prefactors_two
|
|
1151
|
-
+ 3.0 * Mf_two.T * prefactors_three
|
|
1152
|
-
).mT
|
|
1153
|
-
|
|
1154
|
-
return amp, Damp
|
|
1155
|
-
|
|
1156
|
-
|
|
1157
|
-
def phenom_d_mrd_amp(Mf, eta, eta2, chi1, chi2, xi):
|
|
1158
|
-
# merger ringdown
|
|
1159
|
-
fRD, fDM = fring_fdamp(eta, eta2, chi1, chi2)
|
|
1160
|
-
|
|
1161
|
-
gamma1 = gamma1_fun(eta, eta2, xi)
|
|
1162
|
-
gamma2 = gamma2_fun(eta, eta2, xi)
|
|
1163
|
-
gamma3 = gamma3_fun(eta, eta2, xi)
|
|
1164
|
-
fDMgamma3 = fDM * gamma3
|
|
1165
|
-
pow2_fDMgamma3 = (torch.ones_like(Mf).mT * fDMgamma3 * fDMgamma3).mT
|
|
1166
|
-
fminfRD = Mf - (torch.ones_like(Mf).mT * fRD).mT
|
|
1167
|
-
exp_times_lorentzian = torch.exp(fminfRD.mT * gamma2 / fDMgamma3).mT
|
|
1168
|
-
exp_times_lorentzian *= fminfRD**2 + pow2_fDMgamma3
|
|
1169
|
-
|
|
1170
|
-
amp = (1 / exp_times_lorentzian.T * gamma1 * gamma3 * fDM).mT
|
|
1171
|
-
Damp = (fminfRD.mT * -2 * fDM * gamma1 * gamma3) / (
|
|
1172
|
-
fminfRD * fminfRD + pow2_fDMgamma3
|
|
1173
|
-
).mT - (gamma2 * gamma1)
|
|
1174
|
-
Damp = Damp.T / exp_times_lorentzian
|
|
1175
|
-
return amp, Damp
|
|
1176
|
-
|
|
1177
|
-
|
|
1178
|
-
def phenom_d_int_amp(Mf, eta, eta2, Seta, chi1, chi2, chi12, chi22, xi):
|
|
1179
|
-
# merger ringdown
|
|
1180
|
-
fRD, fDM = fring_fdamp(eta, eta2, chi1, chi2)
|
|
1181
|
-
# Geometric frequency definition from PhenomD header file
|
|
1182
|
-
AMP_fJoin_INS = 0.014
|
|
1183
|
-
|
|
1184
|
-
Mf1 = AMP_fJoin_INS * torch.ones_like(Mf)
|
|
1185
|
-
gamma2 = gamma2_fun(eta, eta2, xi)
|
|
1186
|
-
gamma3 = gamma3_fun(eta, eta2, xi)
|
|
1187
|
-
|
|
1188
|
-
fpeak = fmaxCalc(fRD, fDM, gamma2, gamma3)
|
|
1189
|
-
Mf3 = (torch.ones_like(Mf).mT * fpeak).mT
|
|
1190
|
-
dfx = 0.5 * (Mf3 - Mf1)
|
|
1191
|
-
Mf2 = Mf1 + dfx
|
|
1192
|
-
|
|
1193
|
-
v1, d1 = phenom_d_inspiral_amp(
|
|
1194
|
-
Mf1, eta, eta2, Seta, xi, chi1, chi2, chi12, chi22
|
|
1195
|
-
)
|
|
1196
|
-
v3, d2 = phenom_d_mrd_amp(Mf3, eta, eta2, chi1, chi2, xi)
|
|
1197
|
-
v2 = (torch.ones_like(Mf).mT * AmpIntColFitCoeff(eta, eta2, xi)).mT
|
|
1198
|
-
|
|
1199
|
-
delta_0, delta_1, delta_2, delta_3, delta_4 = delta_values(
|
|
1200
|
-
f1=Mf1, f2=Mf2, f3=Mf3, v1=v1, v2=v2, v3=v3, d1=d1, d2=d2
|
|
1201
|
-
)
|
|
1202
|
-
|
|
1203
|
-
amp = (
|
|
1204
|
-
delta_0
|
|
1205
|
-
+ Mf * delta_1
|
|
1206
|
-
+ Mf**2 * (delta_2 + Mf * delta_3 + Mf**2 * delta_4)
|
|
1207
|
-
)
|
|
1208
|
-
Damp = delta_1 + Mf * (
|
|
1209
|
-
2 * delta_2 + 3 * Mf * delta_3 + 4 * Mf**2 * delta_4
|
|
1210
|
-
)
|
|
1211
|
-
return amp, Damp
|
|
1212
|
-
|
|
1213
|
-
|
|
1214
|
-
def phenom_d_amp(
|
|
1215
|
-
Mf, mass_1, mass_2, eta, eta2, Seta, chi1, chi2, chi12, chi22, xi, distance
|
|
1216
|
-
):
|
|
1217
|
-
ins_amp, ins_Damp = phenom_d_inspiral_amp(
|
|
1218
|
-
Mf, eta, eta2, Seta, xi, chi1, chi2, chi12, chi22
|
|
1219
|
-
)
|
|
1220
|
-
int_amp, int_Damp = phenom_d_int_amp(
|
|
1221
|
-
Mf, eta, eta2, Seta, chi1, chi2, chi12, chi22, xi
|
|
1222
|
-
)
|
|
1223
|
-
mrd_amp, mrd_Damp = phenom_d_mrd_amp(Mf, eta, eta2, chi1, chi2, xi)
|
|
1224
|
-
|
|
1225
|
-
gamma2 = gamma2_fun(eta, eta2, xi)
|
|
1226
|
-
gamma3 = gamma3_fun(eta, eta2, xi)
|
|
1227
|
-
fRD, fDM = fring_fdamp(eta, eta2, chi1, chi2)
|
|
1228
|
-
Mf_peak = fmaxCalc(fRD, fDM, gamma2, gamma3)
|
|
1229
|
-
# Geometric peak and joining frequencies
|
|
1230
|
-
Mf_peak = (torch.ones_like(Mf).mT * Mf_peak).mT
|
|
1231
|
-
Mf_join_ins = 0.014 * torch.ones_like(Mf)
|
|
1232
|
-
|
|
1233
|
-
# construct full IMR Amp
|
|
1234
|
-
theta_minus_f1 = torch.heaviside(
|
|
1235
|
-
Mf_join_ins - Mf, torch.tensor(0.0, device=Mf.device)
|
|
1236
|
-
)
|
|
1237
|
-
theta_plus_f1 = torch.heaviside(
|
|
1238
|
-
Mf - Mf_join_ins, torch.tensor(1.0, device=Mf.device)
|
|
1239
|
-
)
|
|
1240
|
-
theta_minus_f2 = torch.heaviside(
|
|
1241
|
-
Mf_peak - Mf, torch.tensor(0.0, device=Mf.device)
|
|
1242
|
-
)
|
|
1243
|
-
theta_plus_f2 = torch.heaviside(
|
|
1244
|
-
Mf - Mf_peak, torch.tensor(1.0, device=Mf.device)
|
|
1245
|
-
)
|
|
1246
|
-
|
|
1247
|
-
amp = theta_minus_f1 * ins_amp
|
|
1248
|
-
amp += theta_plus_f1 * int_amp * theta_minus_f2
|
|
1249
|
-
amp += theta_plus_f2 * mrd_amp
|
|
1250
|
-
|
|
1251
|
-
Damp = theta_minus_f1 * ins_Damp
|
|
1252
|
-
Damp += theta_plus_f1 * int_Damp * theta_minus_f2
|
|
1253
|
-
Damp += theta_plus_f2 * mrd_Damp
|
|
1254
|
-
|
|
1255
|
-
return amp, Damp
|
|
1256
|
-
|
|
1257
|
-
|
|
1258
|
-
def phenom_d_htilde(
|
|
1259
|
-
f: TensorType,
|
|
1260
|
-
chirp_mass: TensorType,
|
|
1261
|
-
mass_ratio: TensorType,
|
|
1262
|
-
chi1: TensorType,
|
|
1263
|
-
chi2: TensorType,
|
|
1264
|
-
distance: TensorType,
|
|
1265
|
-
phic: TensorType,
|
|
1266
|
-
f_ref: float,
|
|
1267
|
-
):
|
|
1268
|
-
total_mass = chirp_mass * (1 + mass_ratio) ** 1.2 / mass_ratio**0.6
|
|
1269
|
-
mass_1 = total_mass / (1 + mass_ratio)
|
|
1270
|
-
mass_2 = mass_1 * mass_ratio
|
|
1271
|
-
eta = (chirp_mass / total_mass) ** (5 / 3)
|
|
1272
|
-
eta2 = eta * eta
|
|
1273
|
-
Seta = torch.sqrt(1.0 - 4.0 * eta)
|
|
1274
|
-
chi = chiPN(Seta, eta, chi1, chi2)
|
|
1275
|
-
chi22 = chi2 * chi2
|
|
1276
|
-
chi12 = chi1 * chi1
|
|
1277
|
-
xi = -1.0 + chi
|
|
1278
|
-
M_s = total_mass * MTSUN_SI
|
|
1279
|
-
|
|
1280
|
-
gamma2 = gamma2_fun(eta, eta2, xi)
|
|
1281
|
-
gamma3 = gamma3_fun(eta, eta2, xi)
|
|
1282
|
-
|
|
1283
|
-
fRD, fDM = fring_fdamp(eta, eta2, chi1, chi2)
|
|
1284
|
-
Mf_peak = fmaxCalc(fRD, fDM, gamma2, gamma3)
|
|
1285
|
-
_, t0 = phenom_d_mrd_phase(Mf_peak, eta, eta2, chi1, chi2, xi)
|
|
1286
|
-
|
|
1287
|
-
Mf = torch.outer(M_s, f)
|
|
1288
|
-
Mf_ref = torch.outer(M_s, f_ref * torch.ones_like(f))
|
|
1289
|
-
|
|
1290
|
-
Psi, _ = phenom_d_phase(Mf, mass_1, mass_2, eta, eta2, chi1, chi2, xi)
|
|
1291
|
-
Psi_ref, _ = phenom_d_phase(
|
|
1292
|
-
Mf_ref, mass_1, mass_2, eta, eta2, chi1, chi2, xi
|
|
1293
|
-
)
|
|
1294
|
-
|
|
1295
|
-
Psi = (Psi.T - 2 * phic).mT
|
|
1296
|
-
Psi -= Psi_ref
|
|
1297
|
-
Psi -= ((Mf - Mf_ref).mT * t0).mT
|
|
1298
|
-
|
|
1299
|
-
amp, _ = phenom_d_amp(
|
|
1300
|
-
Mf,
|
|
1301
|
-
mass_1,
|
|
1302
|
-
mass_2,
|
|
1303
|
-
eta,
|
|
1304
|
-
eta2,
|
|
1305
|
-
Seta,
|
|
1306
|
-
chi1,
|
|
1307
|
-
chi2,
|
|
1308
|
-
chi12,
|
|
1309
|
-
chi22,
|
|
1310
|
-
xi,
|
|
1311
|
-
distance,
|
|
1312
|
-
)
|
|
1313
|
-
|
|
1314
|
-
amp_0 = taylorf2_amplitude(
|
|
1315
|
-
Mf, mass_1, mass_2, eta, distance
|
|
1316
|
-
) # this includes f^(-7/6) dependence
|
|
1317
|
-
|
|
1318
|
-
h0 = -amp_0 * amp * torch.exp(-1j * Psi)
|
|
1319
|
-
|
|
1320
|
-
return h0
|
|
1321
|
-
|
|
1322
|
-
|
|
1323
|
-
def IMRPhenomD(
|
|
1324
|
-
f: TensorType,
|
|
1325
|
-
chirp_mass: TensorType,
|
|
1326
|
-
mass_ratio: TensorType,
|
|
1327
|
-
chi1: TensorType,
|
|
1328
|
-
chi2: TensorType,
|
|
1329
|
-
distance: TensorType,
|
|
1330
|
-
phic: TensorType,
|
|
1331
|
-
inclination: TensorType,
|
|
1332
|
-
f_ref: float,
|
|
1333
|
-
):
|
|
1334
|
-
"""
|
|
1335
|
-
IMRPhenomD waveform
|
|
1336
|
-
|
|
1337
|
-
Returns:
|
|
1338
|
-
--------
|
|
1339
|
-
hp, hc
|
|
1340
|
-
"""
|
|
1341
|
-
# shape assumed (n_batch, params)
|
|
1342
|
-
if (
|
|
1343
|
-
chirp_mass.shape[0] != mass_ratio.shape[0]
|
|
1344
|
-
or mass_ratio.shape[0] != chi1.shape[0]
|
|
1345
|
-
or chi1.shape[0] != chi2.shape[0]
|
|
1346
|
-
or chi2.shape[0] != distance.shape[0]
|
|
1347
|
-
or distance.shape[0] != phic.shape[0]
|
|
1348
|
-
or phic.shape[0] != inclination.shape[0]
|
|
1349
|
-
):
|
|
1350
|
-
raise RuntimeError("Tensors should have same batch size")
|
|
1351
|
-
cfac = torch.cos(inclination)
|
|
1352
|
-
pfac = 0.5 * (1.0 + cfac * cfac)
|
|
1353
1436
|
|
|
1354
|
-
|
|
1355
|
-
f, chirp_mass, mass_ratio, chi1, chi2, distance, phic, f_ref
|
|
1356
|
-
)
|
|
1437
|
+
return delta_0, delta_1, delta_2, delta_3, delta_4
|
|
1357
1438
|
|
|
1358
|
-
|
|
1359
|
-
|
|
1439
|
+
def chiPN(self, Seta, eta, chi1, chi2):
|
|
1440
|
+
chi_s = chi1 + chi2
|
|
1441
|
+
chi_a = chi1 - chi2
|
|
1360
1442
|
|
|
1361
|
-
|
|
1443
|
+
return 0.5 * (chi_s * (1.0 - eta * 76.0 / 113.0) + Seta * chi_a)
|