mindspore 2.6.0rc1__cp310-cp310-win_amd64.whl → 2.7.0rc1__cp310-cp310-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (407) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/Microsoft.VisualStudio.Telemetry.dll +0 -0
  3. mindspore/Newtonsoft.Json.dll +0 -0
  4. mindspore/__init__.py +1 -1
  5. mindspore/_c_dataengine.cp310-win_amd64.pyd +0 -0
  6. mindspore/_c_expression.cp310-win_amd64.pyd +0 -0
  7. mindspore/_c_mindrecord.cp310-win_amd64.pyd +0 -0
  8. mindspore/_checkparam.py +40 -9
  9. mindspore/{_deprecated → _extends/optimize}/__init__.py +9 -3
  10. mindspore/_extends/optimize/cell_utils.py +96 -0
  11. mindspore/_extends/parse/__init__.py +2 -2
  12. mindspore/_extends/parse/compile_config.py +44 -22
  13. mindspore/_extends/parse/deprecated/deprecated_tensor_method.py +1 -1
  14. mindspore/_extends/parse/parser.py +37 -62
  15. mindspore/_extends/parse/resources.py +39 -0
  16. mindspore/_extends/parse/standard_method.py +43 -13
  17. mindspore/_extends/parse/trope.py +8 -1
  18. mindspore/_extends/pijit/__init__.py +1 -2
  19. mindspore/amp.py +4 -4
  20. mindspore/atlprov.dll +0 -0
  21. mindspore/avcodec-59.dll +0 -0
  22. mindspore/avdevice-59.dll +0 -0
  23. mindspore/avfilter-8.dll +0 -0
  24. mindspore/avformat-59.dll +0 -0
  25. mindspore/avutil-57.dll +0 -0
  26. mindspore/boost/adasum.py +1 -1
  27. mindspore/boost/boost_cell_wrapper.py +4 -4
  28. mindspore/c1.dll +0 -0
  29. mindspore/c1xx.dll +0 -0
  30. mindspore/c2.dll +0 -0
  31. mindspore/common/__init__.py +27 -2
  32. mindspore/common/_grad_function.py +2 -1
  33. mindspore/common/_pijit_context.py +28 -7
  34. mindspore/common/_stub_tensor.py +1 -209
  35. mindspore/common/_tensor_cpp_method.py +1 -1
  36. mindspore/common/_tensor_docs.py +77 -16
  37. mindspore/common/api.py +238 -113
  38. mindspore/common/dtype.py +21 -11
  39. mindspore/common/dump.py +10 -15
  40. mindspore/common/generator.py +5 -3
  41. mindspore/common/hook_handle.py +11 -2
  42. mindspore/common/jit_config.py +1 -1
  43. mindspore/common/jit_trace.py +84 -105
  44. mindspore/common/parameter.py +26 -12
  45. mindspore/common/recompute.py +3 -3
  46. mindspore/common/sparse_tensor.py +0 -3
  47. mindspore/common/symbol.py +0 -1
  48. mindspore/common/tensor.py +81 -81
  49. mindspore/communication/_comm_helper.py +46 -4
  50. mindspore/communication/management.py +79 -7
  51. mindspore/context.py +58 -40
  52. mindspore/dataset/core/config.py +3 -3
  53. mindspore/dataset/engine/datasets.py +20 -7
  54. mindspore/dataset/engine/datasets_user_defined.py +33 -3
  55. mindspore/dataset/engine/iterators.py +2 -2
  56. mindspore/dataset/engine/obs/config_loader.py +2 -2
  57. mindspore/dataset/engine/obs/obs_mindrecord_dataset.py +8 -0
  58. mindspore/dataset/transforms/py_transforms.py +7 -3
  59. mindspore/dataset/transforms/transforms.py +7 -3
  60. mindspore/dataset/vision/validators.py +1 -0
  61. mindspore/device_context/ascend/device.py +1 -1
  62. mindspore/device_context/gpu/__init__.py +2 -2
  63. mindspore/device_context/gpu/device.py +1 -1
  64. mindspore/device_context/gpu/op_precision.py +4 -2
  65. mindspore/device_context/gpu/op_tuning.py +6 -3
  66. mindspore/device_manager.py +16 -9
  67. mindspore/dnnl.dll +0 -0
  68. mindspore/dpcmi.dll +0 -0
  69. mindspore/experimental/llm_boost/ascend_native/llama_boost_ascend_native.py +3 -7
  70. mindspore/experimental/llm_boost/atb/boost_base.py +2 -3
  71. mindspore/experimental/optim/adadelta.py +13 -20
  72. mindspore/experimental/optim/adagrad.py +15 -22
  73. mindspore/experimental/optim/adam.py +17 -24
  74. mindspore/experimental/optim/adamax.py +14 -22
  75. mindspore/experimental/optim/adamw.py +28 -34
  76. mindspore/experimental/optim/asgd.py +15 -25
  77. mindspore/experimental/optim/lr_scheduler.py +27 -45
  78. mindspore/experimental/optim/nadam.py +14 -24
  79. mindspore/experimental/optim/optimizer.py +13 -23
  80. mindspore/experimental/optim/radam.py +18 -24
  81. mindspore/experimental/optim/rmsprop.py +14 -25
  82. mindspore/experimental/optim/rprop.py +15 -26
  83. mindspore/experimental/optim/sgd.py +9 -19
  84. mindspore/hal/__init__.py +4 -4
  85. mindspore/hal/contiguous_tensors_handle.py +2 -2
  86. mindspore/hal/memory.py +27 -7
  87. mindspore/include/api/cell.h +37 -1
  88. mindspore/include/api/delegate.h +10 -0
  89. mindspore/include/api/model.h +3 -0
  90. mindspore/include/api/types.h +2 -2
  91. mindspore/include/c_api/model_c.h +0 -58
  92. mindspore/include/c_api/tensor_c.h +0 -26
  93. mindspore/include/dataset/vision_ascend.h +1 -1
  94. mindspore/jpeg62.dll +0 -0
  95. mindspore/mindrecord/tools/cifar10.py +60 -11
  96. mindspore/mindrecord/tools/cifar10_to_mr.py +5 -0
  97. mindspore/mindspore_backend_common.dll +0 -0
  98. mindspore/mindspore_backend_manager.dll +0 -0
  99. mindspore/mindspore_common.dll +0 -0
  100. mindspore/mindspore_core.dll +0 -0
  101. mindspore/mindspore_cpu_res_manager.dll +0 -0
  102. mindspore/mindspore_dump.dll +0 -0
  103. mindspore/mindspore_frontend.dll +0 -0
  104. mindspore/mindspore_glog.dll +0 -0
  105. mindspore/mindspore_memory_pool.dll +0 -0
  106. mindspore/mindspore_ms_backend.dll +0 -0
  107. mindspore/mindspore_ops.dll +0 -0
  108. mindspore/mindspore_ops_host.dll +0 -0
  109. mindspore/mindspore_ops_kernel_common.dll +0 -0
  110. mindspore/mindspore_profiler.dll +0 -0
  111. mindspore/mindspore_pyboost.dll +0 -0
  112. mindspore/mindspore_pynative.dll +0 -0
  113. mindspore/mindspore_res_manager.dll +0 -0
  114. mindspore/mindspore_runtime_pipeline.dll +0 -0
  115. mindspore/mint/__init__.py +6 -46
  116. mindspore/mint/distributed/__init__.py +1 -0
  117. mindspore/mint/distributed/distributed.py +212 -9
  118. mindspore/mint/nn/__init__.py +1 -1
  119. mindspore/mint/nn/functional.py +53 -6
  120. mindspore/mint/nn/layer/_functions.py +164 -294
  121. mindspore/mint/nn/layer/activation.py +8 -6
  122. mindspore/mint/nn/layer/conv.py +137 -101
  123. mindspore/mint/nn/layer/normalization.py +8 -22
  124. mindspore/mint/optim/adam.py +19 -18
  125. mindspore/mint/optim/adamw.py +14 -8
  126. mindspore/mint/optim/sgd.py +5 -5
  127. mindspore/msobj140.dll +0 -0
  128. mindspore/mspdb140.dll +0 -0
  129. mindspore/mspdbcore.dll +0 -0
  130. mindspore/mspdbst.dll +0 -0
  131. mindspore/mspft140.dll +0 -0
  132. mindspore/msvcdis140.dll +0 -0
  133. mindspore/msvcp140_1.dll +0 -0
  134. mindspore/msvcp140_2.dll +0 -0
  135. mindspore/msvcp140_atomic_wait.dll +0 -0
  136. mindspore/msvcp140_codecvt_ids.dll +0 -0
  137. mindspore/nn/cell.py +328 -502
  138. mindspore/nn/grad/cell_grad.py +11 -12
  139. mindspore/nn/layer/activation.py +32 -34
  140. mindspore/nn/layer/basic.py +67 -64
  141. mindspore/nn/layer/channel_shuffle.py +4 -4
  142. mindspore/nn/layer/combined.py +4 -2
  143. mindspore/nn/layer/conv.py +117 -110
  144. mindspore/nn/layer/dense.py +9 -7
  145. mindspore/nn/layer/embedding.py +50 -52
  146. mindspore/nn/layer/image.py +37 -39
  147. mindspore/nn/layer/math.py +111 -112
  148. mindspore/nn/layer/normalization.py +56 -44
  149. mindspore/nn/layer/pooling.py +58 -63
  150. mindspore/nn/layer/rnn_cells.py +33 -33
  151. mindspore/nn/layer/rnns.py +56 -56
  152. mindspore/nn/layer/thor_layer.py +74 -73
  153. mindspore/nn/layer/transformer.py +11 -1
  154. mindspore/nn/learning_rate_schedule.py +20 -20
  155. mindspore/nn/loss/loss.py +79 -81
  156. mindspore/nn/optim/adam.py +3 -3
  157. mindspore/nn/optim/adasum.py +2 -2
  158. mindspore/nn/optim/asgd.py +2 -0
  159. mindspore/nn/optim/optimizer.py +1 -1
  160. mindspore/nn/optim/thor.py +2 -2
  161. mindspore/nn/probability/distribution/exponential.py +2 -1
  162. mindspore/nn/probability/distribution/poisson.py +2 -1
  163. mindspore/nn/sparse/sparse.py +3 -3
  164. mindspore/nn/wrap/cell_wrapper.py +34 -37
  165. mindspore/nn/wrap/grad_reducer.py +37 -37
  166. mindspore/nn/wrap/loss_scale.py +72 -74
  167. mindspore/numpy/array_creations.py +5 -5
  168. mindspore/numpy/fft.py +1 -1
  169. mindspore/numpy/math_ops.py +5 -5
  170. mindspore/opencv_core452.dll +0 -0
  171. mindspore/opencv_imgcodecs452.dll +0 -0
  172. mindspore/opencv_imgproc452.dll +0 -0
  173. mindspore/ops/_grad_experimental/grad_comm_ops.py +51 -13
  174. mindspore/ops/_grad_experimental/grad_debug_ops.py +14 -0
  175. mindspore/ops/_vmap/vmap_array_ops.py +31 -13
  176. mindspore/ops/_vmap/vmap_nn_ops.py +8 -16
  177. mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +42 -11
  178. mindspore/ops/auto_generate/gen_extend_func.py +23 -141
  179. mindspore/ops/auto_generate/gen_ops_def.py +727 -321
  180. mindspore/ops/auto_generate/gen_ops_prim.py +1721 -984
  181. mindspore/ops/auto_generate/pyboost_inner_prim.py +31 -1
  182. mindspore/ops/composite/__init__.py +10 -0
  183. mindspore/ops/composite/base.py +8 -4
  184. mindspore/ops/composite/multitype_ops/__init__.py +12 -1
  185. mindspore/ops/composite/multitype_ops/_compile_utils.py +133 -109
  186. mindspore/ops/composite/multitype_ops/add_impl.py +70 -2
  187. mindspore/ops/composite/multitype_ops/div_impl.py +49 -0
  188. mindspore/ops/composite/multitype_ops/floordiv_impl.py +29 -0
  189. mindspore/ops/composite/multitype_ops/getitem_impl.py +11 -0
  190. mindspore/ops/composite/multitype_ops/mod_impl.py +5 -3
  191. mindspore/ops/composite/multitype_ops/mul_impl.py +49 -0
  192. mindspore/ops/composite/multitype_ops/setitem_impl.py +57 -0
  193. mindspore/ops/composite/multitype_ops/sub_impl.py +34 -0
  194. mindspore/ops/composite/multitype_ops/zeros_like_impl.py +14 -0
  195. mindspore/ops/function/__init__.py +3 -1
  196. mindspore/ops/function/_add_attr_func.py +11 -6
  197. mindspore/ops/function/array_func.py +9 -96
  198. mindspore/ops/function/debug_func.py +4 -3
  199. mindspore/ops/function/grad/grad_func.py +1 -1
  200. mindspore/ops/function/math_func.py +33 -540
  201. mindspore/ops/function/nn_func.py +28 -74
  202. mindspore/ops/function/other_func.py +4 -1
  203. mindspore/ops/function/random_func.py +44 -5
  204. mindspore/ops/function/vmap_func.py +2 -1
  205. mindspore/ops/functional.py +2 -3
  206. mindspore/ops/functional_overload.py +571 -6
  207. mindspore/ops/op_info_register.py +21 -0
  208. mindspore/ops/operations/__init__.py +16 -11
  209. mindspore/ops/operations/_custom_ops_utils.py +689 -34
  210. mindspore/ops/operations/_inner_ops.py +3 -6
  211. mindspore/ops/operations/_sequence_ops.py +1 -1
  212. mindspore/ops/operations/array_ops.py +2 -2
  213. mindspore/ops/operations/comm_ops.py +185 -26
  214. mindspore/ops/operations/custom_ops.py +294 -174
  215. mindspore/ops/operations/debug_ops.py +59 -4
  216. mindspore/ops/operations/image_ops.py +13 -13
  217. mindspore/ops/operations/manually_defined/ops_def.py +15 -16
  218. mindspore/ops/operations/math_ops.py +3 -4
  219. mindspore/ops/operations/nn_ops.py +7 -39
  220. mindspore/ops/primitive.py +6 -10
  221. mindspore/ops/tensor_method.py +47 -8
  222. mindspore/ops_generate/api/cpp_create_prim_instance_helper_generator.py +1 -1
  223. mindspore/ops_generate/api/functional_map_cpp_generator.py +10 -9
  224. mindspore/ops_generate/api/functions_cc_generator.py +58 -10
  225. mindspore/ops_generate/api/tensor_func_reg_cpp_generator.py +1 -1
  226. mindspore/ops_generate/common/base_generator.py +14 -0
  227. mindspore/ops_generate/common/gen_constants.py +8 -3
  228. mindspore/ops_generate/common/gen_utils.py +0 -19
  229. mindspore/ops_generate/common/op_proto.py +11 -4
  230. mindspore/ops_generate/common/template.py +88 -11
  231. mindspore/ops_generate/gen_ops.py +1 -1
  232. mindspore/ops_generate/op_def/lite_ops_cpp_generator.py +4 -4
  233. mindspore/ops_generate/op_def/ops_def_cc_generator.py +0 -3
  234. mindspore/ops_generate/op_def/ops_name_h_generator.py +0 -3
  235. mindspore/ops_generate/op_def/ops_primitive_h_generator.py +0 -4
  236. mindspore/ops_generate/op_def_py/op_prim_py_generator.py +5 -2
  237. mindspore/ops_generate/pyboost/auto_grad_impl_cc_generator.py +49 -8
  238. mindspore/ops_generate/pyboost/auto_grad_reg_cc_generator.py +2 -2
  239. mindspore/ops_generate/pyboost/gen_pyboost_func.py +31 -0
  240. mindspore/ops_generate/pyboost/op_template_parser.py +98 -72
  241. mindspore/ops_generate/pyboost/pyboost_functions_cpp_generator.py +70 -273
  242. mindspore/ops_generate/pyboost/pyboost_functions_h_generator.py +14 -6
  243. mindspore/ops_generate/pyboost/pyboost_functions_impl_cpp_generator.py +316 -0
  244. mindspore/ops_generate/pyboost/pyboost_functions_py_generator.py +1 -1
  245. mindspore/ops_generate/pyboost/pyboost_grad_function_cpp_generator.py +5 -3
  246. mindspore/ops_generate/pyboost/pyboost_inner_prim_generator.py +1 -1
  247. mindspore/ops_generate/pyboost/pyboost_internal_functions_cpp_generator.py +76 -0
  248. mindspore/ops_generate/pyboost/pyboost_internal_functions_h_generator.py +76 -0
  249. mindspore/ops_generate/pyboost/pyboost_internal_kernel_info_adapter_generator.py +125 -0
  250. mindspore/ops_generate/pyboost/pyboost_native_grad_functions_generator.py +4 -3
  251. mindspore/ops_generate/pyboost/pyboost_op_cpp_code_generator.py +348 -61
  252. mindspore/ops_generate/pyboost/pyboost_overload_functions_cpp_generator.py +1 -1
  253. mindspore/ops_generate/pyboost/pyboost_utils.py +118 -9
  254. mindspore/ops_generate/tensor_py_cc_generator.py +1 -24
  255. mindspore/parallel/_auto_parallel_context.py +11 -8
  256. mindspore/parallel/_cell_wrapper.py +113 -45
  257. mindspore/parallel/_parallel_serialization.py +1 -1
  258. mindspore/parallel/_ps_context.py +4 -6
  259. mindspore/parallel/_tensor.py +167 -12
  260. mindspore/parallel/_transformer/moe.py +1 -1
  261. mindspore/parallel/_transformer/transformer.py +13 -8
  262. mindspore/parallel/auto_parallel.py +14 -7
  263. mindspore/parallel/checkpoint_convert.py +3 -3
  264. mindspore/parallel/checkpoint_transform.py +11 -7
  265. mindspore/parallel/cluster/process_entity/_api.py +84 -48
  266. mindspore/parallel/cluster/process_entity/_utils.py +95 -7
  267. mindspore/parallel/cluster/run.py +43 -4
  268. mindspore/parallel/function/__init__.py +8 -1
  269. mindspore/parallel/function/reshard_func.py +6 -7
  270. mindspore/parallel/nn/__init__.py +15 -2
  271. mindspore/parallel/nn/parallel_cell_wrapper.py +9 -10
  272. mindspore/parallel/nn/parallel_grad_reducer.py +7 -6
  273. mindspore/parallel/shard.py +3 -4
  274. mindspore/parallel/transform_safetensors.py +463 -174
  275. mindspore/pgodb140.dll +0 -0
  276. mindspore/pgort140.dll +0 -0
  277. mindspore/profiler/__init__.py +2 -1
  278. mindspore/profiler/analysis/parser/timeline_assembly_factory/ascend_timeline_assembler.py +7 -7
  279. mindspore/profiler/analysis/parser/timeline_assembly_factory/base_timeline_assembler.py +3 -0
  280. mindspore/profiler/analysis/parser/timeline_assembly_factory/trace_view_container.py +12 -6
  281. mindspore/profiler/analysis/parser/timeline_creator/cpu_op_timeline_creator.py +3 -3
  282. mindspore/profiler/analysis/parser/timeline_creator/fwk_timeline_creator.py +3 -3
  283. mindspore/profiler/analysis/parser/timeline_creator/msprof_timeline_creator.py +4 -4
  284. mindspore/profiler/analysis/parser/timeline_creator/scope_layer_timeline_creator.py +3 -3
  285. mindspore/profiler/analysis/parser/timeline_event/fwk_event.py +4 -1
  286. mindspore/profiler/analysis/parser/timeline_event/timeline_event_pool.py +2 -1
  287. mindspore/profiler/analysis/task_manager.py +1 -1
  288. mindspore/profiler/analysis/viewer/ascend_communication_viewer.py +5 -1
  289. mindspore/profiler/analysis/viewer/ascend_integrate_viewer.py +2 -1
  290. mindspore/profiler/analysis/viewer/ascend_op_memory_viewer.py +42 -22
  291. mindspore/profiler/analysis/viewer/ascend_step_trace_time_viewer.py +3 -2
  292. mindspore/profiler/analysis/viewer/ms_minddata_viewer.py +9 -5
  293. mindspore/profiler/analysis/viewer/ms_operator_details_viewer.py +132 -0
  294. mindspore/profiler/common/constant.py +16 -0
  295. mindspore/profiler/common/profiler_context.py +25 -27
  296. mindspore/profiler/common/profiler_info.py +0 -16
  297. mindspore/profiler/common/profiler_op_analyse.py +235 -0
  298. mindspore/profiler/common/profiler_output_path.py +23 -8
  299. mindspore/profiler/common/profiler_parameters.py +128 -35
  300. mindspore/profiler/dynamic_profile/__init__.py +0 -0
  301. mindspore/profiler/dynamic_profile/dynamic_monitor_proxy.py +39 -0
  302. mindspore/profiler/dynamic_profile/dynamic_profiler_config_context.py +666 -0
  303. mindspore/profiler/dynamic_profile/dynamic_profiler_utils.py +62 -0
  304. mindspore/profiler/dynamic_profiler.py +305 -314
  305. mindspore/profiler/envprofiler.py +12 -7
  306. mindspore/profiler/experimental_config.py +96 -6
  307. mindspore/profiler/mstx.py +33 -12
  308. mindspore/profiler/platform/__init__.py +2 -3
  309. mindspore/profiler/platform/npu_profiler.py +29 -19
  310. mindspore/profiler/profiler.py +35 -19
  311. mindspore/profiler/profiler_action_controller.py +64 -76
  312. mindspore/profiler/schedule.py +10 -4
  313. mindspore/rewrite/common/config.py +1 -0
  314. mindspore/rewrite/common/namer.py +1 -0
  315. mindspore/rewrite/common/namespace.py +1 -0
  316. mindspore/rewrite/node/node.py +31 -11
  317. mindspore/rewrite/parsers/assign_parser.py +1 -1
  318. mindspore/rewrite/symbol_tree/symbol_tree.py +1 -1
  319. mindspore/run_check/_check_version.py +7 -10
  320. mindspore/runtime/__init__.py +5 -5
  321. mindspore/runtime/event.py +10 -4
  322. mindspore/runtime/executor.py +60 -45
  323. mindspore/runtime/memory.py +30 -32
  324. mindspore/runtime/thread_bind_core.py +298 -164
  325. mindspore/safeguard/rewrite_obfuscation.py +12 -13
  326. mindspore/swresample-4.dll +0 -0
  327. mindspore/swscale-6.dll +0 -0
  328. mindspore/tbbmalloc.dll +0 -0
  329. mindspore/tinyxml2.dll +0 -0
  330. mindspore/train/_utils.py +14 -4
  331. mindspore/train/amp.py +43 -20
  332. mindspore/train/callback/__init__.py +5 -5
  333. mindspore/train/callback/_checkpoint.py +3 -6
  334. mindspore/train/callback/_flops_collector.py +1 -1
  335. mindspore/train/callback/_landscape.py +0 -1
  336. mindspore/train/callback/_train_fault_tolerance.py +97 -16
  337. mindspore/train/data_sink.py +11 -2
  338. mindspore/train/dataset_helper.py +9 -0
  339. mindspore/train/model.py +135 -55
  340. mindspore/train/serialization.py +133 -111
  341. mindspore/train/summary/summary_record.py +13 -2
  342. mindspore/turbojpeg.dll +0 -0
  343. mindspore/utils/__init__.py +3 -2
  344. mindspore/utils/dryrun.py +0 -6
  345. mindspore/utils/runtime_execution_order_check.py +163 -77
  346. mindspore/utils/sdc_detect.py +68 -0
  347. mindspore/utils/utils.py +6 -9
  348. mindspore/vcmeta.dll +0 -0
  349. mindspore/vcruntime140.dll +0 -0
  350. mindspore/vcruntime140_1.dll +0 -0
  351. mindspore/version.py +1 -1
  352. {mindspore-2.6.0rc1.dist-info → mindspore-2.7.0rc1.dist-info}/METADATA +5 -4
  353. {mindspore-2.6.0rc1.dist-info → mindspore-2.7.0rc1.dist-info}/RECORD +356 -394
  354. mindspore/_deprecated/jit.py +0 -198
  355. mindspore/experimental/es/__init__.py +0 -22
  356. mindspore/experimental/es/embedding_service.py +0 -891
  357. mindspore/experimental/es/embedding_service_layer.py +0 -581
  358. mindspore/profiler/parser/__init__.py +0 -14
  359. mindspore/profiler/parser/aicpu_data_parser.py +0 -272
  360. mindspore/profiler/parser/ascend_analysis/__init__.py +0 -14
  361. mindspore/profiler/parser/ascend_analysis/constant.py +0 -71
  362. mindspore/profiler/parser/ascend_analysis/file_manager.py +0 -180
  363. mindspore/profiler/parser/ascend_analysis/function_event.py +0 -185
  364. mindspore/profiler/parser/ascend_analysis/fwk_cann_parser.py +0 -136
  365. mindspore/profiler/parser/ascend_analysis/fwk_file_parser.py +0 -131
  366. mindspore/profiler/parser/ascend_analysis/msprof_timeline_parser.py +0 -104
  367. mindspore/profiler/parser/ascend_analysis/path_manager.py +0 -313
  368. mindspore/profiler/parser/ascend_analysis/profiler_info_parser.py +0 -123
  369. mindspore/profiler/parser/ascend_analysis/tlv_decoder.py +0 -86
  370. mindspore/profiler/parser/ascend_analysis/trace_event_manager.py +0 -75
  371. mindspore/profiler/parser/ascend_cluster_generator.py +0 -116
  372. mindspore/profiler/parser/ascend_communicate_generator.py +0 -314
  373. mindspore/profiler/parser/ascend_flops_generator.py +0 -116
  374. mindspore/profiler/parser/ascend_fpbp_generator.py +0 -82
  375. mindspore/profiler/parser/ascend_hccl_generator.py +0 -271
  376. mindspore/profiler/parser/ascend_integrate_generator.py +0 -42
  377. mindspore/profiler/parser/ascend_memory_generator.py +0 -185
  378. mindspore/profiler/parser/ascend_msprof_exporter.py +0 -282
  379. mindspore/profiler/parser/ascend_msprof_generator.py +0 -187
  380. mindspore/profiler/parser/ascend_op_generator.py +0 -334
  381. mindspore/profiler/parser/ascend_steptrace_generator.py +0 -94
  382. mindspore/profiler/parser/ascend_timeline_generator.py +0 -545
  383. mindspore/profiler/parser/base_timeline_generator.py +0 -483
  384. mindspore/profiler/parser/container.py +0 -229
  385. mindspore/profiler/parser/cpu_gpu_timeline_generator.py +0 -697
  386. mindspore/profiler/parser/flops_parser.py +0 -531
  387. mindspore/profiler/parser/framework_enum.py +0 -111
  388. mindspore/profiler/parser/framework_parser.py +0 -464
  389. mindspore/profiler/parser/framework_struct.py +0 -61
  390. mindspore/profiler/parser/gpu_analysis/__init__.py +0 -14
  391. mindspore/profiler/parser/gpu_analysis/function_event.py +0 -44
  392. mindspore/profiler/parser/gpu_analysis/fwk_file_parser.py +0 -89
  393. mindspore/profiler/parser/gpu_analysis/profiler_info_parser.py +0 -72
  394. mindspore/profiler/parser/hccl_parser.py +0 -573
  395. mindspore/profiler/parser/hwts_log_parser.py +0 -122
  396. mindspore/profiler/parser/integrator.py +0 -526
  397. mindspore/profiler/parser/memory_usage_parser.py +0 -277
  398. mindspore/profiler/parser/minddata_analyzer.py +0 -800
  399. mindspore/profiler/parser/minddata_parser.py +0 -186
  400. mindspore/profiler/parser/minddata_pipeline_parser.py +0 -299
  401. mindspore/profiler/parser/op_intermediate_parser.py +0 -149
  402. mindspore/profiler/parser/optime_parser.py +0 -250
  403. mindspore/profiler/parser/profiler_info.py +0 -213
  404. mindspore/profiler/parser/step_trace_parser.py +0 -666
  405. {mindspore-2.6.0rc1.dist-info → mindspore-2.7.0rc1.dist-info}/WHEEL +0 -0
  406. {mindspore-2.6.0rc1.dist-info → mindspore-2.7.0rc1.dist-info}/entry_points.txt +0 -0
  407. {mindspore-2.6.0rc1.dist-info → mindspore-2.7.0rc1.dist-info}/top_level.txt +0 -0
@@ -1,16 +1,6 @@
1
- # Copyright 2023 Huawei Technologies Co., Ltd
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
1
+ # The code implementation refers to the following files from pytorch:
2
+ # - https://github.com/pytorch/pytorch/blob/v1.13.0/torch/optim/lr_scheduler.py
3
+ # Additional modifications are made by Huawei Technologies Co., Ltd in 2023.
14
4
  # ============================================================================
15
5
  """LRScheduler."""
16
6
  from collections import Counter
@@ -20,8 +10,6 @@ from mindspore import ops, Tensor, Parameter
20
10
  from mindspore.experimental.optim.optimizer import Optimizer
21
11
  from mindspore.common.api import jit_class
22
12
  import mindspore.common.dtype as mstype
23
- from mindspore.ops import functional as F
24
- from mindspore.ops import operations as P
25
13
  from mindspore import _checkparam as Validator
26
14
 
27
15
  __all__ = ['StepLR', 'LinearLR', 'LRScheduler', 'ExponentialLR', 'PolynomialLR',
@@ -143,9 +131,12 @@ class LRScheduler:
143
131
 
144
132
  @jit_class
145
133
  class StepLR(LRScheduler):
146
- """Decays the learning rate of each parameter group by gamma every
147
- step_size epochs. Notice that such decay can happen simultaneously with
148
- other changes to the learning rate from outside this scheduler.
134
+ """
135
+ During training, when calling `StepLR.step()` , if the current epoch number is an integer multiple of `step_size` ,
136
+ the learning rate will be decayed by multiplying it with `gamma` . The adjustment of the learning rate and
137
+ the parameter update of the optimizer are synergistically performed. The optimizer executes parameter optimization
138
+ operations based on the currently adjusted learning rate. The learning rate decay of StepLR may occur simultaneously
139
+ with external changes to the learning rate.
149
140
 
150
141
  .. warning::
151
142
  This is an experimental lr scheduler module that is subject to change.
@@ -431,8 +422,8 @@ class PolynomialLR(LRScheduler):
431
422
  raise TypeError(f"For 'PolynomialLR', the type of total_iters must be int, but got {type(total_iters)}.")
432
423
  self.total_iters = total_iters
433
424
  self.power = power
434
- self.min = P.Minimum()
435
- self.cast = P.Cast()
425
+ self.min = ops.Minimum()
426
+ self.cast = ops.Cast()
436
427
  super(PolynomialLR, self).__init__(optimizer, last_epoch)
437
428
 
438
429
  def get_lr(self):
@@ -804,7 +795,7 @@ class SequentialLR:
804
795
 
805
796
  @jit_class
806
797
  class ReduceLROnPlateau:
807
- """
798
+ r"""
808
799
  Reduce learning rate when a metric has stopped improving.
809
800
  Models often benefit from reducing the learning rate by a factor
810
801
  of 2-10 once learning stagnates. The scheduler reads the metrics `metrics` during execution
@@ -886,7 +877,7 @@ class ReduceLROnPlateau:
886
877
  [Tensor(shape=[], dtype=Float32, value= 0.001)]
887
878
  [Tensor(shape=[], dtype=Float32, value= 0.001)]
888
879
  [Tensor(shape=[], dtype=Float32, value= 0.0001)]
889
- """
880
+ """
890
881
 
891
882
  def __init__(self, optimizer, mode='min', factor=0.1, patience=10,
892
883
  threshold=1e-4, threshold_mode='rel', cooldown=0,
@@ -915,8 +906,8 @@ class ReduceLROnPlateau:
915
906
  self.cooldown_counter = 0
916
907
  self.eps = eps
917
908
  self.mode_worse = None
918
- self.assign = P.Assign()
919
- self.cast = P.Cast()
909
+ self.assign = ops.Assign()
910
+ self.cast = ops.Cast()
920
911
  self.last_epoch = Parameter(Tensor(0, dtype=mstype.int32),
921
912
  name='last_epoch_' + self.__class__.__name__)
922
913
 
@@ -1079,17 +1070,8 @@ class CyclicLR(LRScheduler):
1079
1070
  [Tensor(shape=[], dtype=Float32, value= 0.010225)]
1080
1071
  """
1081
1072
 
1082
- def __init__(self,
1083
- optimizer,
1084
- base_lr,
1085
- max_lr,
1086
- step_size_up=2000,
1087
- step_size_down=None,
1088
- mode='triangular',
1089
- gamma=1.,
1090
- scale_fn=None,
1091
- scale_mode='cycle',
1092
- last_epoch=-1):
1073
+ def __init__(self, optimizer, base_lr, max_lr, step_size_up=2000, step_size_down=None, mode='triangular',
1074
+ gamma=1.0, scale_fn=None, scale_mode='cycle', last_epoch=-1):
1093
1075
 
1094
1076
  base_lrs = self._preprocess_input_param(optimizer, base_lr, 'base_lr')
1095
1077
 
@@ -1117,7 +1099,7 @@ class CyclicLR(LRScheduler):
1117
1099
  self._scale_fn_custom = scale_fn
1118
1100
  self.scale_mode = scale_mode
1119
1101
  self._init_scale_fn()
1120
- self.floor = P.Floor()
1102
+ self.floor = ops.Floor()
1121
1103
 
1122
1104
  super(CyclicLR, self).__init__(optimizer, last_epoch)
1123
1105
  self.base_lrs = [Tensor(lr) for lr in base_lrs]
@@ -1252,12 +1234,12 @@ class CosineAnnealingWarmRestarts(LRScheduler):
1252
1234
  self.zero_tensor = Tensor(0, mstype.int32)
1253
1235
 
1254
1236
  self.math_pi = math.pi
1255
- self.cos = P.Cos()
1256
- self.cast = P.Cast()
1257
- self.log = P.Log()
1258
- self.cast = P.Cast()
1259
- self.assign = P.Assign()
1260
- self.floor = P.Floor()
1237
+ self.cos = ops.Cos()
1238
+ self.cast = ops.Cast()
1239
+ self.log = ops.Log()
1240
+ self.cast = ops.Cast()
1241
+ self.assign = ops.Assign()
1242
+ self.floor = ops.Floor()
1261
1243
  self._last_lr = [group["lr"] for group in optimizer.param_groups]
1262
1244
  super(CosineAnnealingWarmRestarts, self).__init__(optimizer, last_epoch)
1263
1245
 
@@ -1306,7 +1288,7 @@ class CosineAnnealingWarmRestarts(LRScheduler):
1306
1288
 
1307
1289
  for i, data in enumerate(zip(self.optimizer.param_groups, self.get_lr())):
1308
1290
  _, lr = data
1309
- F.assign(self.optimizer.param_groups[i]["lr"], lr)
1291
+ ops.assign(self.optimizer.param_groups[i]["lr"], lr)
1310
1292
 
1311
1293
 
1312
1294
  @jit_class
@@ -1371,8 +1353,8 @@ class CosineAnnealingLR(LRScheduler):
1371
1353
  self.T_max = T_max
1372
1354
  self.eta_min = eta_min
1373
1355
  self.math_pi = math.pi
1374
- self.cos = P.Cos()
1375
- self.cast = P.Cast()
1356
+ self.cos = ops.Cos()
1357
+ self.cast = ops.Cast()
1376
1358
  super(CosineAnnealingLR, self).__init__(optimizer, last_epoch)
1377
1359
 
1378
1360
  def get_lr(self):
@@ -1,30 +1,20 @@
1
- # Copyright 2023 Huawei Technologies Co., Ltd
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
1
+ # The code implementation refers to the following files from pytorch:
2
+ # - https://github.com/pytorch/pytorch/blob/v1.13.0/torch/optim/nadam.py
3
+ # Additional modifications are made by Huawei Technologies Co., Ltd in 2023.
14
4
  # ============================================================================
15
5
  """nadam"""
16
6
  from __future__ import absolute_import
17
7
 
18
- from mindspore.ops import functional as F, composite as C, operations as P
8
+ from mindspore import ops
19
9
  from mindspore.common import Parameter, Tensor
20
10
  import mindspore.common.dtype as mstype
21
11
  from mindspore import _checkparam as validator
22
12
  from mindspore.experimental.optim.optimizer import Optimizer, check_not_less_than, check_not_less_than_without_equal
23
13
  from mindspore import jit
24
14
 
25
- _nadam_opt = C.MultitypeFuncGraph("nadam_opt")
15
+ _nadam_opt = ops.MultitypeFuncGraph("nadam_opt")
26
16
 
27
- op_sqrt = P.Sqrt()
17
+ op_sqrt = ops.Sqrt()
28
18
 
29
19
 
30
20
  @_nadam_opt.register("Number", "Number", "Number", "Number", "Tensor", "Tensor", "Tensor",
@@ -34,15 +24,15 @@ def _tensor_run_opt(beta1, beta2, momentum_decay, eps, step_t, lr, param, grad,
34
24
  bias_correction2 = 1 - beta2 ** step_t
35
25
  mu = beta1 * (1. - 0.5 * (0.96 ** (step_t * momentum_decay)))
36
26
  mu_next = beta1 * (1. - 0.5 * (0.96 ** ((step_t + 1) * momentum_decay)))
37
- F.assign(mu_product, mu_product * mu)
38
- F.assign(exp_avg, exp_avg * beta1 + grad * (1 - beta1))
39
- F.assign(exp_avg_sq, exp_avg_sq * beta2 + grad * grad * (1 - beta2))
27
+ ops.assign(mu_product, mu_product * mu)
28
+ ops.assign(exp_avg, exp_avg * beta1 + grad * (1 - beta1))
29
+ ops.assign(exp_avg_sq, exp_avg_sq * beta2 + grad * grad * (1 - beta2))
40
30
 
41
31
  denom = op_sqrt(exp_avg_sq / bias_correction2) + eps
42
32
 
43
33
  mu_product_next = mu_product * mu_next
44
- F.assign(param, param - lr * (1. - mu) / (1. - mu_product) * grad / denom)
45
- F.assign(param, param - (lr * mu_next) / (1. - mu_product_next) * exp_avg / denom)
34
+ ops.assign(param, param - lr * (1. - mu) / (1. - mu_product) * grad / denom)
35
+ ops.assign(param, param - (lr * mu_next) / (1. - mu_product_next) * exp_avg / denom)
46
36
 
47
37
  return True
48
38
 
@@ -122,8 +112,8 @@ class NAdam(Optimizer):
122
112
  self.mu_product = [Parameter(Tensor(1.), "mu_product_" + param.name) for param in self.parameters]
123
113
 
124
114
  self.increase_tensor = Tensor(1, mstype.int32)
125
- self.assignadd = P.AssignAdd()
126
- self.op_cast = P.Cast()
115
+ self.assignadd = ops.AssignAdd()
116
+ self.op_cast = ops.Cast()
127
117
 
128
118
  @jit
129
119
  def implementation(self, lr, beta1, beta2, weight_decay, momentum_decay, eps, start_id, end_id, gradients):
@@ -135,7 +125,7 @@ class NAdam(Optimizer):
135
125
  exp_avg_sq = self.exp_avg_sq[start_id: end_id]
136
126
  mu_product = self.mu_product[start_id: end_id]
137
127
 
138
- self.hyper_map(F.partial(_nadam_opt, beta1, beta2, momentum_decay, eps, self.step_t, lr),
128
+ self.hyper_map(ops.partial(_nadam_opt, beta1, beta2, momentum_decay, eps, self.step_t, lr),
139
129
  params, grads, exp_avg, exp_avg_sq, mu_product)
140
130
  return True
141
131
 
@@ -1,22 +1,12 @@
1
- # Copyright 2023 Huawei Technologies Co., Ltd
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
1
+ # The code implementation refers to the following files from pytorch:
2
+ # - https://github.com/pytorch/pytorch/blob/v1.13.0/torch/optim/optimizer.py
3
+ # Additional modifications are made by Huawei Technologies Co., Ltd in 2023.
14
4
  # ============================================================================
15
5
  """optimizer"""
16
6
  from __future__ import absolute_import
17
7
  from collections import defaultdict
18
8
  from typing import Iterable
19
- from mindspore.ops import functional as F, composite as C, operations as P
9
+ from mindspore import ops
20
10
 
21
11
  from mindspore.nn.cell import Cell
22
12
  from mindspore.common.parameter import Parameter, ParameterTuple
@@ -98,7 +88,7 @@ class Optimizer(Cell):
98
88
  self.param_groups = []
99
89
  self.parameters = []
100
90
  self.lrs = []
101
- self.map_ = C.Map()
91
+ self.map_ = ops.Map()
102
92
  self.group_start_id = [0]
103
93
  if not isinstance(param_groups[0], dict):
104
94
  param_groups = [{'params': param_groups}]
@@ -106,7 +96,7 @@ class Optimizer(Cell):
106
96
  for param_group in param_groups:
107
97
  self.add_param_group(param_group)
108
98
  self.parameters = ParameterTuple(self.parameters)
109
- self.hyper_map = C.HyperMap()
99
+ self.hyper_map = ops.HyperMap()
110
100
  self.enable_tuple_broaden = True
111
101
 
112
102
  def __repr__(self):
@@ -167,7 +157,7 @@ class Optimizer(Cell):
167
157
  """Apply weight decay."""
168
158
  if weight_decay != 0.:
169
159
  weight_decay = Tensor(weight_decay, mstype.float32)
170
- gradients = self.map_(F.partial(_apply_decay, weight_decay), params, gradients)
160
+ gradients = self.map_(ops.partial(_apply_decay, weight_decay), params, gradients)
171
161
  return gradients
172
162
 
173
163
  def _preprocess_param_group(self, param_group):
@@ -228,18 +218,18 @@ class Optimizer(Cell):
228
218
  def construct(self, *hyper_params):
229
219
  raise NotImplementedError
230
220
 
231
- op_add = P.AddN()
232
- op_gather = P.Gather()
233
- op_mul = P.Mul()
221
+ op_add = ops.AddN()
222
+ op_gather = ops.Gather()
223
+ op_mul = ops.Mul()
234
224
 
235
- _apply_decay = C.MultitypeFuncGraph("apply_decay")
225
+ _apply_decay = ops.MultitypeFuncGraph("apply_decay")
236
226
 
237
227
 
238
228
  @_apply_decay.register("Tensor", "Tensor", "RowTensor")
239
229
  def _tensor_apply_decay_with_sparse(weight_decay, weight, gradient):
240
230
  """Get grad with weight_decay."""
241
231
  indices = gradient.indices
242
- values = op_add((op_gather(weight, indices, 0) * F.cast(weight_decay, F.dtype(weight)), gradient.values))
232
+ values = op_add((op_gather(weight, indices, 0) * ops.cast(weight_decay, ops.dtype(weight)), gradient.values))
243
233
  shape = gradient.dense_shape
244
234
  return RowTensorInner(indices, values, shape)
245
235
 
@@ -247,7 +237,7 @@ def _tensor_apply_decay_with_sparse(weight_decay, weight, gradient):
247
237
  @_apply_decay.register("Tensor", "Tensor", "Tensor")
248
238
  def _tensor_apply_decay(weight_decay, weight, gradient):
249
239
  """Get grad with weight_decay."""
250
- return op_add((op_mul(weight, F.cast(weight_decay, F.dtype(weight))), gradient))
240
+ return op_add((op_mul(weight, ops.cast(weight_decay, ops.dtype(weight))), gradient))
251
241
 
252
242
 
253
243
  def check_not_less_than(arg_value, arg_name, prim, value=0.0):
@@ -1,32 +1,22 @@
1
- # Copyright 2023 Huawei Technologies Co., Ltd
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
1
+ # The code implementation refers to the following files from pytorch:
2
+ # - https://github.com/pytorch/pytorch/blob/v1.13.0/torch/optim/radam.py
3
+ # Additional modifications are made by Huawei Technologies Co., Ltd in 2023.
14
4
  # ============================================================================
15
5
  """radam"""
16
6
  from __future__ import absolute_import
17
7
 
18
- from mindspore.ops import functional as F, composite as C, operations as P
8
+ from mindspore import ops
19
9
  from mindspore.common import Tensor, Parameter
20
10
  import mindspore.common.dtype as mstype
21
11
  from mindspore import _checkparam as validator
22
12
  from mindspore.experimental.optim.optimizer import Optimizer, check_not_less_than, check_not_less_than_without_equal
23
13
  from mindspore import jit
24
14
 
25
- _radam_opt = C.MultitypeFuncGraph("radam_opt")
15
+ _radam_opt = ops.MultitypeFuncGraph("radam_opt")
26
16
 
27
- op_pow = P.Pow()
28
- op_sqrt = P.Sqrt()
29
- op_cast = P.Cast()
17
+ op_pow = ops.Pow()
18
+ op_sqrt = ops.Sqrt()
19
+ op_cast = ops.Cast()
30
20
 
31
21
 
32
22
  @_radam_opt.register("Number", "Number", "Number", "Tensor", "Number", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor",
@@ -35,17 +25,17 @@ def _tensor_run_opt(beta1, beta2, eps, lr, rho_inf, rho_t, bias_correction1, bia
35
25
  exp_avg_sq):
36
26
  """Apply radam optimizer to the weight parameter."""
37
27
 
38
- F.assign(exp_avg, exp_avg * beta1 + grad * (1 - beta1))
39
- F.assign(exp_avg_sq, exp_avg_sq * beta2 + grad * grad * (1 - beta2))
28
+ ops.assign(exp_avg, exp_avg * beta1 + grad * (1 - beta1))
29
+ ops.assign(exp_avg_sq, exp_avg_sq * beta2 + grad * grad * (1 - beta2))
40
30
  bias_corrected_exp_avg = exp_avg / bias_correction1
41
31
 
42
32
  if rho_t > 5.0:
43
33
  rect = op_sqrt((rho_t - 4) * (rho_t - 2) * rho_inf / ((rho_inf - 4) * (rho_inf - 2) * rho_t))
44
34
  exp_avg_sq_sqrt = op_sqrt(exp_avg_sq) + eps
45
35
  adaptive_lr = op_sqrt(bias_correction2) / exp_avg_sq_sqrt
46
- F.assign(param, param - bias_corrected_exp_avg * lr * adaptive_lr * rect)
36
+ ops.assign(param, param - bias_corrected_exp_avg * lr * adaptive_lr * rect)
47
37
  else:
48
- F.assign(param, param - bias_corrected_exp_avg * lr)
38
+ ops.assign(param, param - bias_corrected_exp_avg * lr)
49
39
 
50
40
  return True
51
41
 
@@ -89,6 +79,9 @@ class RAdam(Optimizer):
89
79
  &\rule{180mm}{0.4pt}
90
80
  \end{align*}
91
81
 
82
+ For more details about RAdam algorithm, please refer to `On the Variance of the Adaptive Learning Rate and Beyond
83
+ <https://arxiv.org/abs/1908.03265>`_.
84
+
92
85
  .. warning::
93
86
  This is an experimental optimizer API that is subject to change.
94
87
  This module must be used with lr scheduler module in `LRScheduler Class
@@ -155,7 +148,7 @@ class RAdam(Optimizer):
155
148
  self.exp_avg = self.parameters.clone(prefix="exp_avg", init='zeros')
156
149
  self.exp_avg_sq = self.parameters.clone(prefix="exp_avg_sq", init='zeros')
157
150
  self.increase_tensor = Tensor(1, mstype.int32)
158
- self.assignadd = P.AssignAdd()
151
+ self.assignadd = ops.AssignAdd()
159
152
 
160
153
  @jit(backend="ms_backend")
161
154
  def implementation(self, lr, beta1, beta2, weight_decay, eps, start_id, end_id, gradients):
@@ -175,7 +168,8 @@ class RAdam(Optimizer):
175
168
 
176
169
  rho_t = rho_inf - right
177
170
 
178
- self.hyper_map(F.partial(_radam_opt, beta1, beta2, eps, lr, rho_inf, rho_t, bias_correction1, bias_correction2),
171
+ self.hyper_map(ops.partial(_radam_opt, beta1, beta2, eps, lr, rho_inf,
172
+ rho_t, bias_correction1, bias_correction2),
179
173
  params, grads, exp_avg, exp_avg_sq)
180
174
  return True
181
175
 
@@ -1,48 +1,37 @@
1
- # Copyright 2023 Huawei Technologies Co., Ltd
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
1
+ # The code implementation refers to the following files from pytorch:
2
+ # - https://github.com/pytorch/pytorch/blob/v1.13.0/torch/optim/rmsprop.py
3
+ # Additional modifications are made by Huawei Technologies Co., Ltd in 2023.
14
4
  # ============================================================================
15
5
  """rmsprop"""
16
6
  from __future__ import absolute_import
17
7
 
18
- from mindspore.ops import functional as F, composite as C, operations as P
19
8
  import mindspore.common.dtype as mstype
20
9
  from mindspore.experimental.optim.optimizer import Optimizer, check_not_less_than, check_not_less_than_without_equal
21
10
  from mindspore import ops
22
11
  from mindspore import jit
23
12
 
24
- _rmsprop_opt = C.MultitypeFuncGraph("rmsprop_opt")
13
+ _rmsprop_opt = ops.MultitypeFuncGraph("rmsprop_opt")
25
14
 
26
- op_mul = P.Mul()
27
- op_sqrt = P.Sqrt()
15
+ op_mul = ops.Mul()
16
+ op_sqrt = ops.Sqrt()
28
17
 
29
18
 
30
19
  @_rmsprop_opt.register("Bool", "Number", "Number", "Number", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor")
31
20
  def _run_rmsprop_opt(centered, alpha, eps, momentum, lr, weight, mean_square, mean_grad, mom, grad):
32
21
  """Apply rmsprop optimizer to the weight parameter using dynamic learning rate."""
33
- F.assign(mean_square, ops.addcmul(op_mul(mean_square, alpha), grad, grad, 1 - alpha))
22
+ ops.assign(mean_square, ops.addcmul(op_mul(mean_square, alpha), grad, grad, 1 - alpha))
34
23
 
35
24
  if centered:
36
- F.assign(mean_grad, op_mul(mean_grad, alpha) + op_mul(grad, 1 - alpha))
25
+ ops.assign(mean_grad, op_mul(mean_grad, alpha) + op_mul(grad, 1 - alpha))
37
26
  avg = op_sqrt(ops.addcmul(mean_square, mean_grad, mean_grad, -1.)) + eps
38
27
  else:
39
28
  avg = op_sqrt(mean_square) + eps
40
29
 
41
30
  if momentum > 0:
42
- F.assign(mom, op_mul(mom, momentum) + grad / avg)
43
- F.assign(weight, weight - mom * lr)
31
+ ops.assign(mom, op_mul(mom, momentum) + grad / avg)
32
+ ops.assign(weight, weight - mom * lr)
44
33
  else:
45
- F.assign(weight, weight - lr * grad / avg)
34
+ ops.assign(weight, weight - lr * grad / avg)
46
35
  return True
47
36
 
48
37
 
@@ -124,7 +113,7 @@ class RMSprop(Optimizer):
124
113
  self.mean_grad = self.parameters.clone(prefix="mean_grad", init='zeros')
125
114
  self.mean_square = self.parameters.clone(prefix="mean_square", init='zeros')
126
115
  self.moment = self.parameters.clone(prefix="moment", init='zeros')
127
- self.op_cast = P.Cast()
116
+ self.op_cast = ops.Cast()
128
117
 
129
118
  @jit
130
119
  def implementation(self, group_id, lr, gradients, maximize, weight_decay, centered, alpha, eps, momentum):
@@ -132,12 +121,12 @@ class RMSprop(Optimizer):
132
121
  start_id = self.group_start_id[group_id]
133
122
  end_id = self.group_start_id[group_id + 1]
134
123
  params = self.parameters[start_id: end_id]
135
- grads = tuple([grad if not maximize else F.neg(grad) for grad in gradients[start_id: end_id]])
124
+ grads = tuple([grad if not maximize else ops.neg(grad) for grad in gradients[start_id: end_id]])
136
125
  grads = self._decay_weight(weight_decay, params, grads)
137
126
  mean_grad = self.mean_grad[start_id: end_id]
138
127
  mean_square = self.mean_square[start_id: end_id]
139
128
  moment = self.moment[start_id: end_id]
140
- self.hyper_map(F.partial(_rmsprop_opt, centered, alpha, eps, momentum, lr),
129
+ self.hyper_map(ops.partial(_rmsprop_opt, centered, alpha, eps, momentum, lr),
141
130
  params, mean_square, mean_grad, moment, grads)
142
131
  return True
143
132
 
@@ -1,37 +1,26 @@
1
- # Copyright 2023 Huawei Technologies Co., Ltd
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
1
+ # The code implementation refers to the following files from pytorch:
2
+ # - https://github.com/pytorch/pytorch/blob/v1.13.0/torch/optim/rprop.py
3
+ # Additional modifications are made by Huawei Technologies Co., Ltd in 2023.
14
4
  # ============================================================================
15
5
  """rprop"""
16
6
  from __future__ import absolute_import
17
7
 
18
- from mindspore.ops import functional as F, composite as C, operations as P
8
+ from mindspore import ops
19
9
  from mindspore.common import Tensor, Parameter
20
10
  import mindspore.common.dtype as mstype
21
11
  from mindspore import _checkparam as validator
22
12
  from mindspore.experimental.optim.optimizer import Optimizer, check_not_less_than_without_equal
23
- from mindspore import ops
24
13
  from mindspore import jit
25
14
 
26
- _rprop_opt = C.MultitypeFuncGraph("rprop_opt")
15
+ _rprop_opt = ops.MultitypeFuncGraph("rprop_opt")
27
16
 
28
- op_sign = P.Sign()
29
- op_fill = P.FillV2()
30
- op_assign = P.Assign()
31
- op_assignadd = P.AssignAdd()
32
- op_cast = P.Cast()
33
- op_select = P.Select()
34
- op_oneslike = P.OnesLike()
17
+ op_sign = ops.Sign()
18
+ op_fill = ops.FillV2()
19
+ op_assign = ops.Assign()
20
+ op_assignadd = ops.AssignAdd()
21
+ op_cast = ops.Cast()
22
+ op_select = ops.Select()
23
+ op_oneslike = ops.OnesLike()
35
24
 
36
25
 
37
26
  @_rprop_opt.register("Tensor", "Tensor", "Number", "Number", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor")
@@ -131,7 +120,7 @@ class Rprop(Optimizer):
131
120
  self.step_size = self.parameters.clone(prefix="step_size", init='zeros')
132
121
  self.step_t = Parameter(Tensor(0, mstype.int32), "step_t")
133
122
  self.increase_tensor = Tensor(1, mstype.int32)
134
- self.op_cast = P.Cast()
123
+ self.op_cast = ops.Cast()
135
124
 
136
125
  @jit(backend="ms_backend")
137
126
  def implementation(self, etaminus, etaplus, group_id, lr, gradients, maximize, step_size_min, step_size_max):
@@ -141,10 +130,10 @@ class Rprop(Optimizer):
141
130
  end_id = self.group_start_id[group_id + 1]
142
131
 
143
132
  params = self.parameters[start_id: end_id]
144
- grads = tuple([grad if not maximize else F.neg(grad) for grad in gradients[start_id: end_id]])
133
+ grads = tuple([grad if not maximize else ops.neg(grad) for grad in gradients[start_id: end_id]])
145
134
  prev = self.prev[start_id: end_id]
146
135
  step_size = self.step_size[start_id: end_id]
147
- self.hyper_map(F.partial(_rprop_opt, etaminus, etaplus, step_size_min, step_size_max, self.step_t, lr),
136
+ self.hyper_map(ops.partial(_rprop_opt, etaminus, etaplus, step_size_min, step_size_max, self.step_t, lr),
148
137
  params, prev, step_size, grads)
149
138
  return True
150
139
 
@@ -1,28 +1,18 @@
1
- # Copyright 2023 Huawei Technologies Co., Ltd
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
1
+ # The code implementation refers to the following files from pytorch:
2
+ # - https://github.com/pytorch/pytorch/blob/v1.13.0/torch/optim/sgd.py
3
+ # Additional modifications are made by Huawei Technologies Co., Ltd in 2023.
14
4
  # ============================================================================
15
5
  """sgd"""
16
6
  from __future__ import absolute_import
17
7
 
18
- from mindspore.ops import functional as F, composite as C, operations as P
8
+ from mindspore import ops
19
9
  from mindspore.common.tensor import Tensor
20
10
  import mindspore.common.dtype as mstype
21
11
  from mindspore import _checkparam as Validator
22
12
  from mindspore.experimental.optim.optimizer import Optimizer
23
13
  from mindspore import jit
24
14
 
25
- _sgd_opt = C.MultitypeFuncGraph("sgd_opt")
15
+ _sgd_opt = ops.MultitypeFuncGraph("sgd_opt")
26
16
 
27
17
 
28
18
  @_sgd_opt.register("Function", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor")
@@ -129,7 +119,7 @@ class SGD(Optimizer):
129
119
  "equal to 0.0, but got 'momentum' {}, 'dampening' {}".format(momentum, dampening))
130
120
  self.accum = self.parameters.clone(prefix="accum", init='zeros')
131
121
  self.stat = self.parameters.clone(prefix="stat", init='ones')
132
- self.op_cast = P.Cast()
122
+ self.op_cast = ops.Cast()
133
123
 
134
124
  @jit
135
125
  def implementation(self, momentum, lr, group_id, gradients, maximize, dampening, weight_decay, nesterov):
@@ -137,9 +127,9 @@ class SGD(Optimizer):
137
127
  start_id = self.group_start_id[group_id]
138
128
  end_id = self.group_start_id[group_id + 1]
139
129
  momentum = self.op_cast(momentum, mstype.float32)
140
- opt = P.SGD(dampening, weight_decay, nesterov)
141
- grads = tuple([grad if not maximize else F.neg(grad) for grad in gradients[start_id: end_id]])
142
- self.hyper_map(F.partial(_sgd_opt, opt, momentum, lr), grads,
130
+ opt = ops.SGD(dampening, weight_decay, nesterov)
131
+ grads = tuple([grad if not maximize else ops.neg(grad) for grad in gradients[start_id: end_id]])
132
+ self.hyper_map(ops.partial(_sgd_opt, opt, momentum, lr), grads,
143
133
  self.parameters[start_id: end_id], self.accum[start_id: end_id],
144
134
  self.stat[start_id: end_id])
145
135
  return True
mindspore/hal/__init__.py CHANGED
@@ -19,13 +19,13 @@ MindSpore abstracts the preceding modules from different backends and allows use
19
19
  resources at the Python layer. Currently, these interfaces take effect only in PyNative mode.
20
20
  """
21
21
 
22
- from mindspore.hal.device import is_initialized, is_available, device_count, get_device_capability,\
22
+ from mindspore.hal.device import is_initialized, is_available, device_count, get_device_capability, \
23
23
  get_device_properties, get_device_name, get_arch_list
24
- from mindspore.hal.stream import Stream, synchronize, set_cur_stream, current_stream, default_stream,\
24
+ from mindspore.hal.stream import Stream, synchronize, set_cur_stream, current_stream, default_stream, \
25
25
  communication_stream, StreamCtx
26
26
  from mindspore.hal.event import Event
27
- from mindspore.hal.memory import memory_stats, memory_reserved, max_memory_reserved, empty_cache,\
28
- reset_peak_memory_stats, memory_summary, memory_allocated,\
27
+ from mindspore.hal.memory import memory_stats, memory_reserved, max_memory_reserved, empty_cache, \
28
+ reset_peak_memory_stats, memory_summary, memory_allocated, \
29
29
  max_memory_allocated, reset_max_memory_reserved, reset_max_memory_allocated
30
30
 
31
31
  __all__ = [
@@ -27,7 +27,7 @@ def combine_tensor_list_contiguous(tensor_list, enable_mem_align=True):
27
27
  Return a contiguous memory handle where contiguous memory has been requested and slicing functionality is provided.
28
28
 
29
29
  Args:
30
- tensor_list (list[Tensor], Tuple[Tensor]): The tensor list to be stored.
30
+ tensor_list (list[Tensor], tuple[Tensor]): The tensor list to be stored.
31
31
  enable_mem_align (bool, optional): Whether to enable the memory alignment function.
32
32
  False is not supported. Default ``True`` .
33
33
 
@@ -57,7 +57,7 @@ class ContiguousTensorsHandle:
57
57
  ContiguousTensorsHandle is a handle manage continuous memory.
58
58
 
59
59
  Args:
60
- tensor_list (list[Tensor], Tuple[Tensor]): The tensor list to be stored.
60
+ tensor_list (list[Tensor], tuple[Tensor]): The tensor list to be stored.
61
61
  enable_mem_align (bool, optional): Whether to enable the memory alignment function.
62
62
  False is not supported. Default ``True`` .
63
63