mindspore 2.6.0rc1__cp310-cp310-win_amd64.whl → 2.7.0rc1__cp310-cp310-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (407) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/Microsoft.VisualStudio.Telemetry.dll +0 -0
  3. mindspore/Newtonsoft.Json.dll +0 -0
  4. mindspore/__init__.py +1 -1
  5. mindspore/_c_dataengine.cp310-win_amd64.pyd +0 -0
  6. mindspore/_c_expression.cp310-win_amd64.pyd +0 -0
  7. mindspore/_c_mindrecord.cp310-win_amd64.pyd +0 -0
  8. mindspore/_checkparam.py +40 -9
  9. mindspore/{_deprecated → _extends/optimize}/__init__.py +9 -3
  10. mindspore/_extends/optimize/cell_utils.py +96 -0
  11. mindspore/_extends/parse/__init__.py +2 -2
  12. mindspore/_extends/parse/compile_config.py +44 -22
  13. mindspore/_extends/parse/deprecated/deprecated_tensor_method.py +1 -1
  14. mindspore/_extends/parse/parser.py +37 -62
  15. mindspore/_extends/parse/resources.py +39 -0
  16. mindspore/_extends/parse/standard_method.py +43 -13
  17. mindspore/_extends/parse/trope.py +8 -1
  18. mindspore/_extends/pijit/__init__.py +1 -2
  19. mindspore/amp.py +4 -4
  20. mindspore/atlprov.dll +0 -0
  21. mindspore/avcodec-59.dll +0 -0
  22. mindspore/avdevice-59.dll +0 -0
  23. mindspore/avfilter-8.dll +0 -0
  24. mindspore/avformat-59.dll +0 -0
  25. mindspore/avutil-57.dll +0 -0
  26. mindspore/boost/adasum.py +1 -1
  27. mindspore/boost/boost_cell_wrapper.py +4 -4
  28. mindspore/c1.dll +0 -0
  29. mindspore/c1xx.dll +0 -0
  30. mindspore/c2.dll +0 -0
  31. mindspore/common/__init__.py +27 -2
  32. mindspore/common/_grad_function.py +2 -1
  33. mindspore/common/_pijit_context.py +28 -7
  34. mindspore/common/_stub_tensor.py +1 -209
  35. mindspore/common/_tensor_cpp_method.py +1 -1
  36. mindspore/common/_tensor_docs.py +77 -16
  37. mindspore/common/api.py +238 -113
  38. mindspore/common/dtype.py +21 -11
  39. mindspore/common/dump.py +10 -15
  40. mindspore/common/generator.py +5 -3
  41. mindspore/common/hook_handle.py +11 -2
  42. mindspore/common/jit_config.py +1 -1
  43. mindspore/common/jit_trace.py +84 -105
  44. mindspore/common/parameter.py +26 -12
  45. mindspore/common/recompute.py +3 -3
  46. mindspore/common/sparse_tensor.py +0 -3
  47. mindspore/common/symbol.py +0 -1
  48. mindspore/common/tensor.py +81 -81
  49. mindspore/communication/_comm_helper.py +46 -4
  50. mindspore/communication/management.py +79 -7
  51. mindspore/context.py +58 -40
  52. mindspore/dataset/core/config.py +3 -3
  53. mindspore/dataset/engine/datasets.py +20 -7
  54. mindspore/dataset/engine/datasets_user_defined.py +33 -3
  55. mindspore/dataset/engine/iterators.py +2 -2
  56. mindspore/dataset/engine/obs/config_loader.py +2 -2
  57. mindspore/dataset/engine/obs/obs_mindrecord_dataset.py +8 -0
  58. mindspore/dataset/transforms/py_transforms.py +7 -3
  59. mindspore/dataset/transforms/transforms.py +7 -3
  60. mindspore/dataset/vision/validators.py +1 -0
  61. mindspore/device_context/ascend/device.py +1 -1
  62. mindspore/device_context/gpu/__init__.py +2 -2
  63. mindspore/device_context/gpu/device.py +1 -1
  64. mindspore/device_context/gpu/op_precision.py +4 -2
  65. mindspore/device_context/gpu/op_tuning.py +6 -3
  66. mindspore/device_manager.py +16 -9
  67. mindspore/dnnl.dll +0 -0
  68. mindspore/dpcmi.dll +0 -0
  69. mindspore/experimental/llm_boost/ascend_native/llama_boost_ascend_native.py +3 -7
  70. mindspore/experimental/llm_boost/atb/boost_base.py +2 -3
  71. mindspore/experimental/optim/adadelta.py +13 -20
  72. mindspore/experimental/optim/adagrad.py +15 -22
  73. mindspore/experimental/optim/adam.py +17 -24
  74. mindspore/experimental/optim/adamax.py +14 -22
  75. mindspore/experimental/optim/adamw.py +28 -34
  76. mindspore/experimental/optim/asgd.py +15 -25
  77. mindspore/experimental/optim/lr_scheduler.py +27 -45
  78. mindspore/experimental/optim/nadam.py +14 -24
  79. mindspore/experimental/optim/optimizer.py +13 -23
  80. mindspore/experimental/optim/radam.py +18 -24
  81. mindspore/experimental/optim/rmsprop.py +14 -25
  82. mindspore/experimental/optim/rprop.py +15 -26
  83. mindspore/experimental/optim/sgd.py +9 -19
  84. mindspore/hal/__init__.py +4 -4
  85. mindspore/hal/contiguous_tensors_handle.py +2 -2
  86. mindspore/hal/memory.py +27 -7
  87. mindspore/include/api/cell.h +37 -1
  88. mindspore/include/api/delegate.h +10 -0
  89. mindspore/include/api/model.h +3 -0
  90. mindspore/include/api/types.h +2 -2
  91. mindspore/include/c_api/model_c.h +0 -58
  92. mindspore/include/c_api/tensor_c.h +0 -26
  93. mindspore/include/dataset/vision_ascend.h +1 -1
  94. mindspore/jpeg62.dll +0 -0
  95. mindspore/mindrecord/tools/cifar10.py +60 -11
  96. mindspore/mindrecord/tools/cifar10_to_mr.py +5 -0
  97. mindspore/mindspore_backend_common.dll +0 -0
  98. mindspore/mindspore_backend_manager.dll +0 -0
  99. mindspore/mindspore_common.dll +0 -0
  100. mindspore/mindspore_core.dll +0 -0
  101. mindspore/mindspore_cpu_res_manager.dll +0 -0
  102. mindspore/mindspore_dump.dll +0 -0
  103. mindspore/mindspore_frontend.dll +0 -0
  104. mindspore/mindspore_glog.dll +0 -0
  105. mindspore/mindspore_memory_pool.dll +0 -0
  106. mindspore/mindspore_ms_backend.dll +0 -0
  107. mindspore/mindspore_ops.dll +0 -0
  108. mindspore/mindspore_ops_host.dll +0 -0
  109. mindspore/mindspore_ops_kernel_common.dll +0 -0
  110. mindspore/mindspore_profiler.dll +0 -0
  111. mindspore/mindspore_pyboost.dll +0 -0
  112. mindspore/mindspore_pynative.dll +0 -0
  113. mindspore/mindspore_res_manager.dll +0 -0
  114. mindspore/mindspore_runtime_pipeline.dll +0 -0
  115. mindspore/mint/__init__.py +6 -46
  116. mindspore/mint/distributed/__init__.py +1 -0
  117. mindspore/mint/distributed/distributed.py +212 -9
  118. mindspore/mint/nn/__init__.py +1 -1
  119. mindspore/mint/nn/functional.py +53 -6
  120. mindspore/mint/nn/layer/_functions.py +164 -294
  121. mindspore/mint/nn/layer/activation.py +8 -6
  122. mindspore/mint/nn/layer/conv.py +137 -101
  123. mindspore/mint/nn/layer/normalization.py +8 -22
  124. mindspore/mint/optim/adam.py +19 -18
  125. mindspore/mint/optim/adamw.py +14 -8
  126. mindspore/mint/optim/sgd.py +5 -5
  127. mindspore/msobj140.dll +0 -0
  128. mindspore/mspdb140.dll +0 -0
  129. mindspore/mspdbcore.dll +0 -0
  130. mindspore/mspdbst.dll +0 -0
  131. mindspore/mspft140.dll +0 -0
  132. mindspore/msvcdis140.dll +0 -0
  133. mindspore/msvcp140_1.dll +0 -0
  134. mindspore/msvcp140_2.dll +0 -0
  135. mindspore/msvcp140_atomic_wait.dll +0 -0
  136. mindspore/msvcp140_codecvt_ids.dll +0 -0
  137. mindspore/nn/cell.py +328 -502
  138. mindspore/nn/grad/cell_grad.py +11 -12
  139. mindspore/nn/layer/activation.py +32 -34
  140. mindspore/nn/layer/basic.py +67 -64
  141. mindspore/nn/layer/channel_shuffle.py +4 -4
  142. mindspore/nn/layer/combined.py +4 -2
  143. mindspore/nn/layer/conv.py +117 -110
  144. mindspore/nn/layer/dense.py +9 -7
  145. mindspore/nn/layer/embedding.py +50 -52
  146. mindspore/nn/layer/image.py +37 -39
  147. mindspore/nn/layer/math.py +111 -112
  148. mindspore/nn/layer/normalization.py +56 -44
  149. mindspore/nn/layer/pooling.py +58 -63
  150. mindspore/nn/layer/rnn_cells.py +33 -33
  151. mindspore/nn/layer/rnns.py +56 -56
  152. mindspore/nn/layer/thor_layer.py +74 -73
  153. mindspore/nn/layer/transformer.py +11 -1
  154. mindspore/nn/learning_rate_schedule.py +20 -20
  155. mindspore/nn/loss/loss.py +79 -81
  156. mindspore/nn/optim/adam.py +3 -3
  157. mindspore/nn/optim/adasum.py +2 -2
  158. mindspore/nn/optim/asgd.py +2 -0
  159. mindspore/nn/optim/optimizer.py +1 -1
  160. mindspore/nn/optim/thor.py +2 -2
  161. mindspore/nn/probability/distribution/exponential.py +2 -1
  162. mindspore/nn/probability/distribution/poisson.py +2 -1
  163. mindspore/nn/sparse/sparse.py +3 -3
  164. mindspore/nn/wrap/cell_wrapper.py +34 -37
  165. mindspore/nn/wrap/grad_reducer.py +37 -37
  166. mindspore/nn/wrap/loss_scale.py +72 -74
  167. mindspore/numpy/array_creations.py +5 -5
  168. mindspore/numpy/fft.py +1 -1
  169. mindspore/numpy/math_ops.py +5 -5
  170. mindspore/opencv_core452.dll +0 -0
  171. mindspore/opencv_imgcodecs452.dll +0 -0
  172. mindspore/opencv_imgproc452.dll +0 -0
  173. mindspore/ops/_grad_experimental/grad_comm_ops.py +51 -13
  174. mindspore/ops/_grad_experimental/grad_debug_ops.py +14 -0
  175. mindspore/ops/_vmap/vmap_array_ops.py +31 -13
  176. mindspore/ops/_vmap/vmap_nn_ops.py +8 -16
  177. mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +42 -11
  178. mindspore/ops/auto_generate/gen_extend_func.py +23 -141
  179. mindspore/ops/auto_generate/gen_ops_def.py +727 -321
  180. mindspore/ops/auto_generate/gen_ops_prim.py +1721 -984
  181. mindspore/ops/auto_generate/pyboost_inner_prim.py +31 -1
  182. mindspore/ops/composite/__init__.py +10 -0
  183. mindspore/ops/composite/base.py +8 -4
  184. mindspore/ops/composite/multitype_ops/__init__.py +12 -1
  185. mindspore/ops/composite/multitype_ops/_compile_utils.py +133 -109
  186. mindspore/ops/composite/multitype_ops/add_impl.py +70 -2
  187. mindspore/ops/composite/multitype_ops/div_impl.py +49 -0
  188. mindspore/ops/composite/multitype_ops/floordiv_impl.py +29 -0
  189. mindspore/ops/composite/multitype_ops/getitem_impl.py +11 -0
  190. mindspore/ops/composite/multitype_ops/mod_impl.py +5 -3
  191. mindspore/ops/composite/multitype_ops/mul_impl.py +49 -0
  192. mindspore/ops/composite/multitype_ops/setitem_impl.py +57 -0
  193. mindspore/ops/composite/multitype_ops/sub_impl.py +34 -0
  194. mindspore/ops/composite/multitype_ops/zeros_like_impl.py +14 -0
  195. mindspore/ops/function/__init__.py +3 -1
  196. mindspore/ops/function/_add_attr_func.py +11 -6
  197. mindspore/ops/function/array_func.py +9 -96
  198. mindspore/ops/function/debug_func.py +4 -3
  199. mindspore/ops/function/grad/grad_func.py +1 -1
  200. mindspore/ops/function/math_func.py +33 -540
  201. mindspore/ops/function/nn_func.py +28 -74
  202. mindspore/ops/function/other_func.py +4 -1
  203. mindspore/ops/function/random_func.py +44 -5
  204. mindspore/ops/function/vmap_func.py +2 -1
  205. mindspore/ops/functional.py +2 -3
  206. mindspore/ops/functional_overload.py +571 -6
  207. mindspore/ops/op_info_register.py +21 -0
  208. mindspore/ops/operations/__init__.py +16 -11
  209. mindspore/ops/operations/_custom_ops_utils.py +689 -34
  210. mindspore/ops/operations/_inner_ops.py +3 -6
  211. mindspore/ops/operations/_sequence_ops.py +1 -1
  212. mindspore/ops/operations/array_ops.py +2 -2
  213. mindspore/ops/operations/comm_ops.py +185 -26
  214. mindspore/ops/operations/custom_ops.py +294 -174
  215. mindspore/ops/operations/debug_ops.py +59 -4
  216. mindspore/ops/operations/image_ops.py +13 -13
  217. mindspore/ops/operations/manually_defined/ops_def.py +15 -16
  218. mindspore/ops/operations/math_ops.py +3 -4
  219. mindspore/ops/operations/nn_ops.py +7 -39
  220. mindspore/ops/primitive.py +6 -10
  221. mindspore/ops/tensor_method.py +47 -8
  222. mindspore/ops_generate/api/cpp_create_prim_instance_helper_generator.py +1 -1
  223. mindspore/ops_generate/api/functional_map_cpp_generator.py +10 -9
  224. mindspore/ops_generate/api/functions_cc_generator.py +58 -10
  225. mindspore/ops_generate/api/tensor_func_reg_cpp_generator.py +1 -1
  226. mindspore/ops_generate/common/base_generator.py +14 -0
  227. mindspore/ops_generate/common/gen_constants.py +8 -3
  228. mindspore/ops_generate/common/gen_utils.py +0 -19
  229. mindspore/ops_generate/common/op_proto.py +11 -4
  230. mindspore/ops_generate/common/template.py +88 -11
  231. mindspore/ops_generate/gen_ops.py +1 -1
  232. mindspore/ops_generate/op_def/lite_ops_cpp_generator.py +4 -4
  233. mindspore/ops_generate/op_def/ops_def_cc_generator.py +0 -3
  234. mindspore/ops_generate/op_def/ops_name_h_generator.py +0 -3
  235. mindspore/ops_generate/op_def/ops_primitive_h_generator.py +0 -4
  236. mindspore/ops_generate/op_def_py/op_prim_py_generator.py +5 -2
  237. mindspore/ops_generate/pyboost/auto_grad_impl_cc_generator.py +49 -8
  238. mindspore/ops_generate/pyboost/auto_grad_reg_cc_generator.py +2 -2
  239. mindspore/ops_generate/pyboost/gen_pyboost_func.py +31 -0
  240. mindspore/ops_generate/pyboost/op_template_parser.py +98 -72
  241. mindspore/ops_generate/pyboost/pyboost_functions_cpp_generator.py +70 -273
  242. mindspore/ops_generate/pyboost/pyboost_functions_h_generator.py +14 -6
  243. mindspore/ops_generate/pyboost/pyboost_functions_impl_cpp_generator.py +316 -0
  244. mindspore/ops_generate/pyboost/pyboost_functions_py_generator.py +1 -1
  245. mindspore/ops_generate/pyboost/pyboost_grad_function_cpp_generator.py +5 -3
  246. mindspore/ops_generate/pyboost/pyboost_inner_prim_generator.py +1 -1
  247. mindspore/ops_generate/pyboost/pyboost_internal_functions_cpp_generator.py +76 -0
  248. mindspore/ops_generate/pyboost/pyboost_internal_functions_h_generator.py +76 -0
  249. mindspore/ops_generate/pyboost/pyboost_internal_kernel_info_adapter_generator.py +125 -0
  250. mindspore/ops_generate/pyboost/pyboost_native_grad_functions_generator.py +4 -3
  251. mindspore/ops_generate/pyboost/pyboost_op_cpp_code_generator.py +348 -61
  252. mindspore/ops_generate/pyboost/pyboost_overload_functions_cpp_generator.py +1 -1
  253. mindspore/ops_generate/pyboost/pyboost_utils.py +118 -9
  254. mindspore/ops_generate/tensor_py_cc_generator.py +1 -24
  255. mindspore/parallel/_auto_parallel_context.py +11 -8
  256. mindspore/parallel/_cell_wrapper.py +113 -45
  257. mindspore/parallel/_parallel_serialization.py +1 -1
  258. mindspore/parallel/_ps_context.py +4 -6
  259. mindspore/parallel/_tensor.py +167 -12
  260. mindspore/parallel/_transformer/moe.py +1 -1
  261. mindspore/parallel/_transformer/transformer.py +13 -8
  262. mindspore/parallel/auto_parallel.py +14 -7
  263. mindspore/parallel/checkpoint_convert.py +3 -3
  264. mindspore/parallel/checkpoint_transform.py +11 -7
  265. mindspore/parallel/cluster/process_entity/_api.py +84 -48
  266. mindspore/parallel/cluster/process_entity/_utils.py +95 -7
  267. mindspore/parallel/cluster/run.py +43 -4
  268. mindspore/parallel/function/__init__.py +8 -1
  269. mindspore/parallel/function/reshard_func.py +6 -7
  270. mindspore/parallel/nn/__init__.py +15 -2
  271. mindspore/parallel/nn/parallel_cell_wrapper.py +9 -10
  272. mindspore/parallel/nn/parallel_grad_reducer.py +7 -6
  273. mindspore/parallel/shard.py +3 -4
  274. mindspore/parallel/transform_safetensors.py +463 -174
  275. mindspore/pgodb140.dll +0 -0
  276. mindspore/pgort140.dll +0 -0
  277. mindspore/profiler/__init__.py +2 -1
  278. mindspore/profiler/analysis/parser/timeline_assembly_factory/ascend_timeline_assembler.py +7 -7
  279. mindspore/profiler/analysis/parser/timeline_assembly_factory/base_timeline_assembler.py +3 -0
  280. mindspore/profiler/analysis/parser/timeline_assembly_factory/trace_view_container.py +12 -6
  281. mindspore/profiler/analysis/parser/timeline_creator/cpu_op_timeline_creator.py +3 -3
  282. mindspore/profiler/analysis/parser/timeline_creator/fwk_timeline_creator.py +3 -3
  283. mindspore/profiler/analysis/parser/timeline_creator/msprof_timeline_creator.py +4 -4
  284. mindspore/profiler/analysis/parser/timeline_creator/scope_layer_timeline_creator.py +3 -3
  285. mindspore/profiler/analysis/parser/timeline_event/fwk_event.py +4 -1
  286. mindspore/profiler/analysis/parser/timeline_event/timeline_event_pool.py +2 -1
  287. mindspore/profiler/analysis/task_manager.py +1 -1
  288. mindspore/profiler/analysis/viewer/ascend_communication_viewer.py +5 -1
  289. mindspore/profiler/analysis/viewer/ascend_integrate_viewer.py +2 -1
  290. mindspore/profiler/analysis/viewer/ascend_op_memory_viewer.py +42 -22
  291. mindspore/profiler/analysis/viewer/ascend_step_trace_time_viewer.py +3 -2
  292. mindspore/profiler/analysis/viewer/ms_minddata_viewer.py +9 -5
  293. mindspore/profiler/analysis/viewer/ms_operator_details_viewer.py +132 -0
  294. mindspore/profiler/common/constant.py +16 -0
  295. mindspore/profiler/common/profiler_context.py +25 -27
  296. mindspore/profiler/common/profiler_info.py +0 -16
  297. mindspore/profiler/common/profiler_op_analyse.py +235 -0
  298. mindspore/profiler/common/profiler_output_path.py +23 -8
  299. mindspore/profiler/common/profiler_parameters.py +128 -35
  300. mindspore/profiler/dynamic_profile/__init__.py +0 -0
  301. mindspore/profiler/dynamic_profile/dynamic_monitor_proxy.py +39 -0
  302. mindspore/profiler/dynamic_profile/dynamic_profiler_config_context.py +666 -0
  303. mindspore/profiler/dynamic_profile/dynamic_profiler_utils.py +62 -0
  304. mindspore/profiler/dynamic_profiler.py +305 -314
  305. mindspore/profiler/envprofiler.py +12 -7
  306. mindspore/profiler/experimental_config.py +96 -6
  307. mindspore/profiler/mstx.py +33 -12
  308. mindspore/profiler/platform/__init__.py +2 -3
  309. mindspore/profiler/platform/npu_profiler.py +29 -19
  310. mindspore/profiler/profiler.py +35 -19
  311. mindspore/profiler/profiler_action_controller.py +64 -76
  312. mindspore/profiler/schedule.py +10 -4
  313. mindspore/rewrite/common/config.py +1 -0
  314. mindspore/rewrite/common/namer.py +1 -0
  315. mindspore/rewrite/common/namespace.py +1 -0
  316. mindspore/rewrite/node/node.py +31 -11
  317. mindspore/rewrite/parsers/assign_parser.py +1 -1
  318. mindspore/rewrite/symbol_tree/symbol_tree.py +1 -1
  319. mindspore/run_check/_check_version.py +7 -10
  320. mindspore/runtime/__init__.py +5 -5
  321. mindspore/runtime/event.py +10 -4
  322. mindspore/runtime/executor.py +60 -45
  323. mindspore/runtime/memory.py +30 -32
  324. mindspore/runtime/thread_bind_core.py +298 -164
  325. mindspore/safeguard/rewrite_obfuscation.py +12 -13
  326. mindspore/swresample-4.dll +0 -0
  327. mindspore/swscale-6.dll +0 -0
  328. mindspore/tbbmalloc.dll +0 -0
  329. mindspore/tinyxml2.dll +0 -0
  330. mindspore/train/_utils.py +14 -4
  331. mindspore/train/amp.py +43 -20
  332. mindspore/train/callback/__init__.py +5 -5
  333. mindspore/train/callback/_checkpoint.py +3 -6
  334. mindspore/train/callback/_flops_collector.py +1 -1
  335. mindspore/train/callback/_landscape.py +0 -1
  336. mindspore/train/callback/_train_fault_tolerance.py +97 -16
  337. mindspore/train/data_sink.py +11 -2
  338. mindspore/train/dataset_helper.py +9 -0
  339. mindspore/train/model.py +135 -55
  340. mindspore/train/serialization.py +133 -111
  341. mindspore/train/summary/summary_record.py +13 -2
  342. mindspore/turbojpeg.dll +0 -0
  343. mindspore/utils/__init__.py +3 -2
  344. mindspore/utils/dryrun.py +0 -6
  345. mindspore/utils/runtime_execution_order_check.py +163 -77
  346. mindspore/utils/sdc_detect.py +68 -0
  347. mindspore/utils/utils.py +6 -9
  348. mindspore/vcmeta.dll +0 -0
  349. mindspore/vcruntime140.dll +0 -0
  350. mindspore/vcruntime140_1.dll +0 -0
  351. mindspore/version.py +1 -1
  352. {mindspore-2.6.0rc1.dist-info → mindspore-2.7.0rc1.dist-info}/METADATA +5 -4
  353. {mindspore-2.6.0rc1.dist-info → mindspore-2.7.0rc1.dist-info}/RECORD +356 -394
  354. mindspore/_deprecated/jit.py +0 -198
  355. mindspore/experimental/es/__init__.py +0 -22
  356. mindspore/experimental/es/embedding_service.py +0 -891
  357. mindspore/experimental/es/embedding_service_layer.py +0 -581
  358. mindspore/profiler/parser/__init__.py +0 -14
  359. mindspore/profiler/parser/aicpu_data_parser.py +0 -272
  360. mindspore/profiler/parser/ascend_analysis/__init__.py +0 -14
  361. mindspore/profiler/parser/ascend_analysis/constant.py +0 -71
  362. mindspore/profiler/parser/ascend_analysis/file_manager.py +0 -180
  363. mindspore/profiler/parser/ascend_analysis/function_event.py +0 -185
  364. mindspore/profiler/parser/ascend_analysis/fwk_cann_parser.py +0 -136
  365. mindspore/profiler/parser/ascend_analysis/fwk_file_parser.py +0 -131
  366. mindspore/profiler/parser/ascend_analysis/msprof_timeline_parser.py +0 -104
  367. mindspore/profiler/parser/ascend_analysis/path_manager.py +0 -313
  368. mindspore/profiler/parser/ascend_analysis/profiler_info_parser.py +0 -123
  369. mindspore/profiler/parser/ascend_analysis/tlv_decoder.py +0 -86
  370. mindspore/profiler/parser/ascend_analysis/trace_event_manager.py +0 -75
  371. mindspore/profiler/parser/ascend_cluster_generator.py +0 -116
  372. mindspore/profiler/parser/ascend_communicate_generator.py +0 -314
  373. mindspore/profiler/parser/ascend_flops_generator.py +0 -116
  374. mindspore/profiler/parser/ascend_fpbp_generator.py +0 -82
  375. mindspore/profiler/parser/ascend_hccl_generator.py +0 -271
  376. mindspore/profiler/parser/ascend_integrate_generator.py +0 -42
  377. mindspore/profiler/parser/ascend_memory_generator.py +0 -185
  378. mindspore/profiler/parser/ascend_msprof_exporter.py +0 -282
  379. mindspore/profiler/parser/ascend_msprof_generator.py +0 -187
  380. mindspore/profiler/parser/ascend_op_generator.py +0 -334
  381. mindspore/profiler/parser/ascend_steptrace_generator.py +0 -94
  382. mindspore/profiler/parser/ascend_timeline_generator.py +0 -545
  383. mindspore/profiler/parser/base_timeline_generator.py +0 -483
  384. mindspore/profiler/parser/container.py +0 -229
  385. mindspore/profiler/parser/cpu_gpu_timeline_generator.py +0 -697
  386. mindspore/profiler/parser/flops_parser.py +0 -531
  387. mindspore/profiler/parser/framework_enum.py +0 -111
  388. mindspore/profiler/parser/framework_parser.py +0 -464
  389. mindspore/profiler/parser/framework_struct.py +0 -61
  390. mindspore/profiler/parser/gpu_analysis/__init__.py +0 -14
  391. mindspore/profiler/parser/gpu_analysis/function_event.py +0 -44
  392. mindspore/profiler/parser/gpu_analysis/fwk_file_parser.py +0 -89
  393. mindspore/profiler/parser/gpu_analysis/profiler_info_parser.py +0 -72
  394. mindspore/profiler/parser/hccl_parser.py +0 -573
  395. mindspore/profiler/parser/hwts_log_parser.py +0 -122
  396. mindspore/profiler/parser/integrator.py +0 -526
  397. mindspore/profiler/parser/memory_usage_parser.py +0 -277
  398. mindspore/profiler/parser/minddata_analyzer.py +0 -800
  399. mindspore/profiler/parser/minddata_parser.py +0 -186
  400. mindspore/profiler/parser/minddata_pipeline_parser.py +0 -299
  401. mindspore/profiler/parser/op_intermediate_parser.py +0 -149
  402. mindspore/profiler/parser/optime_parser.py +0 -250
  403. mindspore/profiler/parser/profiler_info.py +0 -213
  404. mindspore/profiler/parser/step_trace_parser.py +0 -666
  405. {mindspore-2.6.0rc1.dist-info → mindspore-2.7.0rc1.dist-info}/WHEEL +0 -0
  406. {mindspore-2.6.0rc1.dist-info → mindspore-2.7.0rc1.dist-info}/entry_points.txt +0 -0
  407. {mindspore-2.6.0rc1.dist-info → mindspore-2.7.0rc1.dist-info}/top_level.txt +0 -0
@@ -2068,14 +2068,15 @@ def get_sparse_apply_adagrad_vmap_rule(prim, axis_size):
2068
2068
  indices, indices_dim = indices_bdim
2069
2069
  if var_dim is None:
2070
2070
  if any(dim is not None for dim in [accum_dim, grad_dim, indices_dim]):
2071
- ValueError("The source axis of `var` is None, but the source "
2072
- "axis of `accum/grad/indices` is not None. The execution order of "
2073
- "operator `{}` cannot be guaranteed.".format(prim_name))
2071
+ _raise_value_error("The source axis of `var` is None, but the source "
2072
+ "axis of `accum/grad/indices` is not None. The execution "
2073
+ "order of operator `{}` cannot be guaranteed.".format(prim_name))
2074
2074
  var, accum = prim(var, accum, grad, indices, u_monad)
2075
2075
  return (var, None), (accum, None)
2076
2076
  if var_dim != 0 or accum_dim != var_dim:
2077
- ValueError("For `{}`, the source axis of `var` must be equal to `accum`, and not equal to 0, "
2078
- "but got the source axis of `var`: {}, `accum`: {}.".format(prim_name, var_dim, accum_dim))
2077
+ _raise_value_error("For `{}`, the source axis of `var` must be equal to `accum`, "
2078
+ "and not equal to 0, but got the source axis of `var`: {}, "
2079
+ "`accum`: {}.".format(prim_name, var_dim, accum_dim))
2079
2080
 
2080
2081
  grad = _bdim_at_front(grad, grad_dim, axis_size)
2081
2082
  indices = _bdim_at_front(indices, indices_dim, axis_size)
@@ -2094,27 +2095,18 @@ def get_sparse_apply_ftrl_vmap_rule(prim, axis_size):
2094
2095
  else:
2095
2096
  batch_rank = 1
2096
2097
 
2097
- prim_name = prim.name
2098
2098
  batch_prim = _vmap_clone_prim(prim)
2099
2099
  batch_prim.add_prim_attr('batch_rank', batch_rank)
2100
2100
 
2101
2101
  def vmap_rule(var_bdim, accum_bdim, linear_bdim, grad_bdim, indices_bdim, u_monad):
2102
2102
  var, var_dim = var_bdim
2103
- accum, accum_dim = accum_bdim
2104
- linear, linear_dim = linear_bdim
2103
+ accum, _ = accum_bdim
2104
+ linear, _ = linear_bdim
2105
2105
  grad, grad_dim = grad_bdim
2106
2106
  indices, indices_dim = indices_bdim
2107
2107
  if var_dim is None:
2108
- if any(dim is not None for dim in [accum_dim, linear_dim, grad_dim, indices_dim]):
2109
- ValueError("The source axis of `var` is None, but the source "
2110
- "axis of `accum/linear/grad/indices` is not None. The execution order of "
2111
- "operator `{}` cannot be guaranteed.".format(prim_name))
2112
2108
  var, accum, linear = prim(var, accum, linear, grad, indices, u_monad)
2113
2109
  return (var, None), (accum, None), (linear, None)
2114
- if var_dim != 0 or accum_dim != var_dim or linear_dim != var_dim:
2115
- ValueError("For `{}`, the source axis of `var`, `accum` and `linear` must be equal, and "
2116
- "not equal to 0, but got the source axis of `var`: {}, `accum`: {}, "
2117
- "`linear`:{}.".format(prim_name, var_dim, accum_dim, linear_dim))
2118
2110
 
2119
2111
  grad = _bdim_at_front(grad, grad_dim, axis_size)
2120
2112
  indices = _bdim_at_front(indices, indices_dim, axis_size)
@@ -53,9 +53,9 @@ op_args_default_value = {
53
53
  "Baddbmm": {"beta": 1, "alpha": 1},
54
54
  "BatchMatMul": {"transpose_a": False, "transpose_b": False},
55
55
  "BatchNormElemt": {"weight": None, "bias": None, "mean": None, "invstd": None, "eps": 1e-5},
56
- "BatchNormExt": {"running_mean": None, "runnning_var": None, "training": False, "momentum": 0.1, "epsilon": 1e-5},
56
+ "BatchNormExt": {"weight": None, "bias": None, "running_mean": None, "runnning_var": None, "training": False, "momentum": 0.1, "epsilon": 1e-5},
57
57
  "BatchNormGatherStatsWithCounts": {"running_mean": None, "running_var": None, "momentum": 1e-1, "eps": 1e-5, "counts": None},
58
- "BatchNormGradExt": {"running_mean": None, "running_var": None, "saved_mean": None, "saved_rstd": None, "training": False, "eps": 1e-5, "output_mask": (1, 1, 1)},
58
+ "BatchNormGradExt": {"weight": None, "running_mean": None, "running_var": None, "saved_mean": None, "saved_rstd": None, "training": False, "eps": 1e-5, "output_mask": (1, 1, 1)},
59
59
  "BatchNormGradGrad": {"is_training": False, "epsilon": 1e-5, "data_format": 'NCHW'},
60
60
  "BatchNormGrad": {"is_training": False, "epsilon": 1e-5, "data_format": 'NCHW'},
61
61
  "BatchNormGradWithActivation": {"is_training": False, "epsilon": 1e-5, "data_format": 'NCHW'},
@@ -76,6 +76,7 @@ op_args_default_value = {
76
76
  "CholeskyInverse": {"upper": False},
77
77
  "Cholesky": {"upper": False},
78
78
  "Chunk": {"dim": 0},
79
+ "ChunkView": {"dim": 0},
79
80
  "ClampScalar": {"min": None, "max": None},
80
81
  "ClampTensor": {"min": None, "max": None},
81
82
  "Col2ImExt": {"dilation": 1, "padding": 0, "stride": 1},
@@ -103,6 +104,7 @@ op_args_default_value = {
103
104
  "DCT": {"type": 2, "n": None, "axis": -1, "norm": None},
104
105
  "Dense": {"bias": None},
105
106
  "Diagonal": {"offset": 0, "dim1": 0, "dim2": 1},
107
+ "DiagonalView": {"offset": 0, "dim1": 0, "dim2": 1},
106
108
  "DiagExt": {"diagonal": 0},
107
109
  "DivMods": {"rounding_mode": None},
108
110
  "DivMod": {"rounding_mode": None},
@@ -140,13 +142,12 @@ op_args_default_value = {
140
142
  "FlashAttentionScore": {"real_shift": None, "drop_mask": None, "padding_mask": None, "attn_mask": None, "prefix": None, "actual_seq_qlen": None, "actual_seq_kvlen": None, "keep_prob": 1.0, "scale_value": 1.0, "pre_tokens": 2147483647, "next_tokens": 2147483647, "inner_precise": 0, "input_layout": 'BSH', "sparse_mode": 0},
141
143
  "FlattenExt": {"start_dim": 0, "end_dim": -1},
142
144
  "FullLike": {"dtype": None},
145
+ "FusedAddTopKDiv": {"activate_type": 0, "is_norm": True, "scale": 2.5, "mapping_num": None, "mapping_table": None, "enable_expert_mapping": False},
143
146
  "Gather": {"batch_dims": 0},
144
147
  "GeluExt": {"approximate": 'none'},
145
148
  "GeluGradExt": {"approximate": 'none'},
146
149
  "GenerateEodMaskV2": {"start": 0, "steps": 1, "error_mode": 'cycle', "flip_mode": 'bitflip', "multiply_factor": 0.0, "bit_pos": 0, "flip_probability": 0.0},
147
150
  "GLU": {"axis": -1},
148
- "GmmBackward": {"group_list": None},
149
- "GmmV2Backward": {"group_list": None, "group_list_type": 0},
150
151
  "GridSampler2DGrad": {"interpolation_mode": 'bilinear', "padding_mode": 'zeros', "align_corners": False, "output_mask": (1, 1)},
151
152
  "GridSampler2D": {"interpolation_mode": 'bilinear', "padding_mode": 'zeros', "align_corners": False},
152
153
  "GridSampler3DGrad": {"interpolation_mode": 'bilinear', "padding_mode": 'zeros', "align_corners": False, "output_mask": (1, 1)},
@@ -175,6 +176,7 @@ op_args_default_value = {
175
176
  "IncreFlashAttention": {"attn_mask": None, "actual_seq_lengths": None, "pse_shift": None, "dequant_scale1": None, "quant_scale1": None, "dequant_scale2": None, "quant_scale2": None, "quant_offset2": None, "antiquant_scale": None, "antiquant_offset": None, "block_table": None, "kv_padding_size": None, "num_heads": 1, "input_layout": 'BSH', "scale_value": 1.0, "num_key_value_heads": 0, "block_size": 0, "inner_precise": 1},
176
177
  "IndexAddExt": {"alpha": 1},
177
178
  "InnerInplaceIndexPut": {"accumulate": False},
179
+ "InnerMoeTokenUnpermute": {"probs": None, "padded_mode": False, "restore_shape": None},
178
180
  "InplaceAddmm": {"beta": 1, "alpha": 1},
179
181
  "InplaceAddsExt": {"alpha": 1},
180
182
  "InplaceAddExt": {"alpha": 1},
@@ -237,15 +239,17 @@ op_args_default_value = {
237
239
  "Meshgrid": {"indexing": 'xy'},
238
240
  "MinimumGrad": {"grad_x": True, "grad_y": True},
239
241
  "MinDim": {"keepdim": False},
242
+ "MoeDistributeCombine": {"tp_send_counts": None, "x_active_mask": None, "activate_scale": None, "weight_scale": None, "group_list": None, "expand_scales": None, "group_ep": None, "group_tp": None, "tp_world_size": 0, "tp_rank_id": 0, "expert_shard_type": 0, "shared_expert_num": 0, "shared_export_rank_num": 0, "global_bs": 0, "out_dtype": 0, "common_quant_mode": 0, "group_list_type": 0},
243
+ "MoeDistributeDispatch": {"expert_scales": None, "scales": None, "x_active_mask": None, "group_ep": None, "group_tp": None, "tp_world_size": 0, "tp_rank_id": 0, "expert_shard_type": 0, "shared_expert_num": 0, "shared_expert_rank_num": 0, "quant_mode": 0, "global_bs": 0, "expert_token_nums_type": 0},
240
244
  "MoeTokenPermuteGrad": {"num_topk": 1, "padded_mode": False},
241
245
  "MoeTokenPermute": {"num_out_tokens": None, "padded_mode": False},
242
246
  "MoeTokenUnpermuteGrad": {"probs": None, "padded_mode": False, "restore_shape": None},
243
- "MoeTokenUnpermute": {"probs": None, "padded_mode": False, "restore_shape": None},
244
247
  "MSELossExt": {"reduction": 'mean'},
245
248
  "MSELossGradExt": {"reduction": 'mean'},
246
249
  "Nansum": {"dim": None, "keepdim": False, "dtype": None},
247
250
  "NanToNum": {"nan": None, "posinf": None, "neginf": None},
248
251
  "NewEmpty": {"dtype": None, "device": None},
252
+ "NewFull": {"dtype": None},
249
253
  "NewOnes": {"dtype": None},
250
254
  "NewZeros": {"dtype": None},
251
255
  "NLLLoss2d": {"reduction": 'mean', "ignore_index": -100},
@@ -257,10 +261,9 @@ op_args_default_value = {
257
261
  "OneHotExt": {"axis": -1},
258
262
  "OneHot": {"axis": -1},
259
263
  "PagedAttentionMask": {"antiquant_scale": None, "antiquant_offset": None, "alibi_mask": None, "kv_cache_quant_mode": 'DEFAULT'},
260
- "PagedAttention": {"antiquant_scale": None, "antiquant_offset": None, "attn_mask": None, "q_seq_lens": None, "alibi_mask": None, "kv_cache_quant_mode": 'DEFAULT', "mask_mode": 'MASK_DEFAULT', "mla_v_dim": 0},
264
+ "PagedAttention": {"value_cache": None, "block_tables": None, "context_lens": None, "antiquant_scale": None, "antiquant_offset": None, "attn_mask": None, "q_seq_lens": None, "alibi_mask": None, "kv_cache_quant_mode": 'DEFAULT', "mask_mode": 'MASK_DEFAULT', "mla_v_dim": 0},
261
265
  "ProdExt": {"dim": None, "keepdim": False, "dtype": None},
262
266
  "PromptFlashAttention": {"attn_mask": None, "actual_seq_lengths": None, "actual_seq_lengths_kv": None, "pse_shift": None, "deq_scale1": None, "quant_scale1": None, "deq_scale2": None, "quant_scale2": None, "quant_offset2": None, "num_heads": 1, "scale_value": 1.0, "pre_tokens": 2147483647, "next_tokens": 0, "input_layout": 'BSH', "num_key_value_heads": 0, "sparse_mode": 0, "inner_precise": 1},
263
- "PromptKVCache": {"align_mode": 'LEFT'},
264
267
  "Qr": {"full_matrices": False},
265
268
  "RandIntLike": {"dtype": None},
266
269
  "RandInt": {"dtype": None},
@@ -326,7 +329,9 @@ op_args_default_value = {
326
329
  "SpeedFusionAttention": {"pse": None, "padding_mask": None, "atten_mask": None, "scale": 1.0, "keep_prob": 1.0, "pre_tokens": 2147483647, "next_tokens": 2147483647, "inner_precise": 0, "prefix": None, "actual_seq_qlen": None, "actual_seq_kvlen": None, "sparse_mode": 0, "gen_mask_parallel": True, "sync": False, "pse_type": 1, "q_start_idx": None, "kv_start_idx": None},
327
330
  "Split": {"axis": 0, "output_num": 1},
328
331
  "SplitTensor": {"dim": 0},
332
+ "SplitTensorView": {"dim": 0},
329
333
  "SplitWithSize": {"dim": 0},
334
+ "SplitWithSizeView": {"dim": 0},
330
335
  "Squeeze": {"axis": ()},
331
336
  "StackExt": {"dim": 0},
332
337
  "StdMean": {"dim": None, "correction": 1, "keepdim": False},
@@ -341,6 +346,7 @@ op_args_default_value = {
341
346
  "TensorScatterElements": {"axis": 0, "reduce": 'none'},
342
347
  "TopKRouter": {"drop_type": 0},
343
348
  "TopkExt": {"dim": -1, "largest": True, "sorted": True},
349
+ "TopPRouter": {"drop_type": 0, "threshold": 0.0, "router_prob": 0.0},
344
350
  "TraceV2Grad": {"offset": 0, "axis1": 1, "axis2": 0},
345
351
  "TraceV2": {"offset": 0, "axis1": 1, "axis2": 0, "dtype": None},
346
352
  "TriangularSolve": {"upper": True, "transpose": False, "unitriangular": False},
@@ -349,7 +355,7 @@ op_args_default_value = {
349
355
  "TupleToTensor": {"dtype": None},
350
356
  "Unique2": {"sorted": True, "return_inverse": False, "return_counts": False},
351
357
  "UniqueConsecutive": {"return_inverse": False, "return_counts": False, "dim": None},
352
- "UnstackExt": {"dim": 0},
358
+ "UnstackExtView": {"dim": 0},
353
359
  "UpsampleBicubic2DGrad": {"output_size": None, "scales": None, "align_corners": False},
354
360
  "UpsampleBicubic2D": {"output_size": None, "scales": None, "align_corners": False},
355
361
  "UpsampleBilinear2DGrad": {"output_size": None, "scales": None, "align_corners": False},
@@ -370,6 +376,7 @@ op_args_default_value = {
370
376
  "Zeros": {"dtype": None},
371
377
  "AddRmsNormDynamicQuant": {"smooth_scale2": None, "epsilon": 1e-5},
372
378
  "AddRmsNormQuantV2": {"epsilon": 1e-5},
379
+ "DynamicNTK": {"dtype": mstype.float16},
373
380
  "DynamicQuantExt": {"smooth_scales": None},
374
381
  "FusedInferAttentionScore": {"pse_shift": None, "attn_mask": None, "actual_seq_lengths": None, "actual_seq_lengths_kv": None, "dequant_scale1": None, "quant_scale1": None, "dequant_scale2": None, "quant_scale2": None, "quant_offset2": None, "antiquant_scale": None, "antiquant_offset": None, "block_table": None, "query_padding_size": None, "kv_padding_size": None, "key_antiquant_scale": None, "key_antiquant_offset": None, "value_antiquant_scale": None, "value_antiquant_offset": None, "key_shared_prefix": None, "value_shared_prefix": None, "actual_shared_prefix_len": None, "num_heads": 1, "scale_value": 1.0, "pre_tokens": 2147483647, "next_tokens": 2147483647, "input_layout": 'BSH', "num_key_value_heads": 0, "sparse_mode": 0, "inner_precise": 1, "block_size": 0, "antiquant_mode": 0, "softmax_lse_flag": False, "key_antiquant_mode": 0, "value_antiquant_mode": 0},
375
382
  "GroupedMatmul": {"bias": None, "scale": None, "offset": None, "antiquant_scale": None, "antiquant_offset": None, "group_list": None, "split_item": 0, "group_type": -1, "transpose_a": False, "transpose_b": False},
@@ -379,18 +386,29 @@ op_args_default_value = {
379
386
  "MatmulAllReduceAddRmsNorm": {"reduce_op": 'sum', "comm_turn": 0, "stream_mode": 1},
380
387
  "MoeFinalizeRouting": {"x2": None, "bias": None, "scales": None, "expanded_row_idx": None, "expanded_expert_idx": None},
381
388
  "MoeGatingTopKSoftmax": {"finished": None, "k": 1},
389
+ "MoeInitRoutingQuantV2": {"scale": None, "offset": None},
382
390
  "QuantBatchMatmul": {"offset": None, "bias": None, "pertokenScaleOptional": None, "transpose_x1": False, "transpose_x2": False, "dtype": mstype.float16},
391
+ "QuantMatmul": {"offset": None, "pertoken_scale": None, "bias": None, "output_dtype": None, "x1_dtype": None, "x2_dtype": None, "pertoken_scale_dtype": None, "scale_dtype": None, "group_sizes": None},
383
392
  "QuantV2": {"sqrt_mode": False, "rounding_mode": 'ROUND', "dst_type": mstype.int8},
384
393
  "RmsNormQuant": {"beta": None, "epsilon": 1e-6},
394
+ "SwiGLUDynamicQuant": {"smooth_scale": None},
385
395
  "TransposeBatchMatmulTranspose": {"transpose_a": False, "transpose_b": False},
386
396
  "WeightQuantBatchMatmul": {"antiquant_offset": None, "quant_scale": None, "quant_offset": None, "bias": None, "transpose_x": False, "transpose_weight": False, "antiquant_group_size": 0},
397
+ "AnyExt": {"keepdim": False},
398
+ "FuncMaxPool2D": {"stride": None, "padding": 0, "dilation": (1, 1), "ceil_mode": False, "return_indices": False},
399
+ "GmmBackwardFusion": {"group_list": None, "group_list_type": 0},
400
+ "GmmBackward": {"group_list": None, "group_list_type": 0},
401
+ "Gmm": {"bias": None, "group_list": None, "group_type": 0, "group_list_type": 0},
402
+ "GmmV2BackwardFusion": {"group_list": None, "group_list_type": 0},
403
+ "GmmV2Backward": {"group_list": None, "group_list_type": 0},
404
+ "GmmV2": {"bias": None, "group_list": None, "group_type": 0, "group_list_type": 0},
405
+ "MoeTokenUnpermute": {"probs": None, "padded_mode": False, "restore_shape": None},
387
406
  "DeprecatedAddbmm": {"beta": 1, "alpha": 1},
388
407
  "DeprecatedAddmm": {"beta": 1, "alpha": 1},
389
408
  "DeprecatedAddmv": {"beta": 1, "alpha": 1},
390
409
  "DeprecatedReduceAll": {"dim": None, "keepdim": False},
391
410
  "DeprecatedAllclose": {"rtol": 1e-05, "atol": 1e-08, "equal_nan": False},
392
411
  "DeprecatedReduceAny": {"axis": None, "keep_dims": False},
393
- "DeprecatedAny": {"dim": None, "keepdim": False},
394
412
  "DeprecatedArgmax": {"axis": -1, "keepdims": False},
395
413
  "DeprecatedArgmin": {"axis": None, "keepdims": False},
396
414
  "DeprecatedArgsort": {"axis": -1, "descending": False},
@@ -437,7 +455,9 @@ op_labels = {
437
455
  "AssignSub": {"side_effect_mem": True},
438
456
  "BatchNormElemt": {"side_effect_mem": True},
439
457
  "BatchNormGatherStatsWithCounts": {"side_effect_mem": True},
440
- "DecoderKVCache": {"side_effect_mem": True},
458
+ "BroadcastToView": {"side_effect_mem": True},
459
+ "ChunkView": {"side_effect_mem": True},
460
+ "DiagonalView": {"side_effect_mem": True},
441
461
  "DistCommAllReduce": {"side_effect_mem": True},
442
462
  "DistCommReduce": {"side_effect_mem": True},
443
463
  "DropoutExt": {"side_effect_hidden": True},
@@ -451,6 +471,7 @@ op_labels = {
451
471
  "EmbeddingApplySgd": {"_process_node_engine_id": 'PS'},
452
472
  "Embedding": {"side_effect_mem": True},
453
473
  "EmbeddingTableEvict": {"_process_node_engine_id": 'PS'},
474
+ "ExpandDimsView": {"side_effect_mem": True},
454
475
  "Generator": {"side_effect_mem": True},
455
476
  "GroupTopk": {"side_effect_mem": True},
456
477
  "InnerInplaceIndexPut": {"side_effect_mem": True},
@@ -478,6 +499,7 @@ op_labels = {
478
499
  "InplaceLog": {"side_effect_mem": True},
479
500
  "InplaceMaskedFillScalar": {"side_effect_mem": True},
480
501
  "InplaceMaskedFillTensor": {"side_effect_mem": True},
502
+ "InplaceMatmulAdd": {"side_effect_mem": True},
481
503
  "InplaceMuls": {"side_effect_mem": True},
482
504
  "InplaceMul": {"side_effect_mem": True},
483
505
  "InplaceNormal": {"side_effect_mem": True},
@@ -489,17 +511,26 @@ op_labels = {
489
511
  "InplaceScatterSrcReduce": {"side_effect_mem": True},
490
512
  "InplaceScatterValue": {"side_effect_mem": True},
491
513
  "InplaceScatterValueReduce": {"side_effect_mem": True},
514
+ "InplaceSiLU": {"side_effect_mem": True},
492
515
  "InplaceSubExt": {"side_effect_mem": True},
493
516
  "InplaceSubScalar": {"side_effect_mem": True},
494
517
  "InplaceTanh": {"side_effect_mem": True},
495
518
  "InplaceThreshold": {"side_effect_mem": True},
496
519
  "InplaceUniform": {"side_effect_mem": True},
497
520
  "Log": {"cust_aicpu": 'Log', "base": -1.0, "scale": 1.0, "shift": 0.0},
498
- "PromptKVCache": {"side_effect_mem": True},
521
+ "NarrowView": {"side_effect_mem": True},
499
522
  "ReshapeAndCache": {"side_effect_mem": True},
500
523
  "ResizeD": {"mode": 'linear'},
524
+ "SelectExtView": {"side_effect_mem": True},
501
525
  "SilentCheckV2": {"side_effect_mem": True},
502
526
  "SilentCheckV3": {"side_effect_mem": True},
527
+ "SliceExtView": {"side_effect_mem": True},
528
+ "SplitTensorView": {"side_effect_mem": True},
529
+ "SplitWithSizeView": {"side_effect_mem": True},
530
+ "TransposeExtView": {"side_effect_mem": True},
531
+ "TransposeView": {"side_effect_mem": True},
532
+ "UnstackExtView": {"side_effect_mem": True},
503
533
  "KVCacheScatterUpdate": {"side_effect_mem": True},
534
+ "InplaceExponential": {"side_effect_mem": True},
504
535
  "DeprecatedInplaceCopy": {"side_effect_mem": True},
505
536
  }
@@ -237,9 +237,9 @@ def argmin(input, dim=None, keepdim=False):
237
237
  Examples:
238
238
  >>> import numpy as np
239
239
  >>> from mindspore import Tensor
240
- >>> from mindspore import mint
240
+ >>> from mindspore import ops
241
241
  >>> x = Tensor(np.array([[1, 20, 5], [67, 8, 9], [130, 24, 15]]).astype(np.float32))
242
- >>> output = mint.argmin(x, dim=-1)
242
+ >>> output = ops.auto_generate.argmin_ext(x, dim=-1)
243
243
  >>> print(output)
244
244
  [0 1 2]
245
245
  """
@@ -276,14 +276,13 @@ def argsort(input, dim=-1, descending=False, stable=False):
276
276
  Examples:
277
277
  >>> import mindspore
278
278
  >>> import numpy as np
279
- >>> from mindspore import Tensor
280
- >>> import mindspore.mint as mint
279
+ >>> from mindspore import Tensor, ops
281
280
  >>> x = Tensor(np.array([[8, 2, 1], [5, 9, 3], [4, 6, 7]]), mindspore.float16)
282
- >>> sort = mint.argsort(x)
281
+ >>> sort = ops.auto_generate.argsort_ext(x)
283
282
  >>> print(sort)
284
283
  [[2 1 0]
285
- [2 0 1]
286
- [0 1 2]]
284
+ [2 0 1]
285
+ [0 1 2]]
287
286
  """
288
287
  return argsort_impl(input, dim, descending, stable)
289
288
 
@@ -389,7 +388,7 @@ def atan2(input, other):
389
388
  >>> from mindspore import Tensor, ops
390
389
  >>> input = Tensor(np.array([0, 1]), mindspore.float32)
391
390
  >>> other = Tensor(np.array([1, 1]), mindspore.float32)
392
- >>> output = mint.atan2(input, other)
391
+ >>> output = ops.auto_generate.atan2_ext(input, other)
393
392
  >>> print(output)
394
393
  [0. 0.7853982]
395
394
  """
@@ -470,9 +469,9 @@ def avg_pool1d(input, kernel_size, stride=None, padding=0, ceil_mode=False, coun
470
469
  Examples:
471
470
  >>> import mindspore
472
471
  >>> import numpy as np
473
- >>> from mindspore import Tensor, mint
472
+ >>> from mindspore import Tensor, ops
474
473
  >>> input_x = Tensor(np.random.randint(0, 10, [1, 3, 6]), mindspore.float32)
475
- >>> output = mint.nn.functional.avg_pool1d(input_x, kernel_size=6, stride=1)
474
+ >>> output = ops.auto_generate.avg_pool1d_ext(input_x, kernel_size=6, stride=1)
476
475
  >>> print(output.shape)
477
476
  (1, 3, 1)
478
477
  """
@@ -512,14 +511,14 @@ def bincount(input, weights=None, minlength=0):
512
511
  ``Ascend``
513
512
 
514
513
  Examples:
515
- >>> from mindspore import mint, Tensor
516
- >>> print(mint.bincount(Tensor(np.arange(5))))
514
+ >>> from mindspore import ops, Tensor
515
+ >>> print(ops.auto_generate.bincount_ext(Tensor(np.arange(5))))
517
516
  [1 1 1 1 1]
518
- >>> print(mint.bincount(Tensor(np.array([0, 1, 1, 3, 2, 1, 7]))))
517
+ >>> print(ops.auto_generate.bincount_ext(Tensor(np.array([0, 1, 1, 3, 2, 1, 7]))))
519
518
  [1 3 1 1 0 0 0 1]
520
519
  >>> w = Tensor(np.array([0.3, 0.5, 0.2, 0.7, 1., -0.6])) # weights
521
520
  >>> x = Tensor(np.array([0, 1, 1, 2, 2, 2]))
522
- >>> print(mint.bincount(x, weights=w, minlength=5))
521
+ >>> print(ops.auto_generate.bincount_ext(x, weights=w, minlength=5))
523
522
  [0.3 0.7 1.1 0. 0. ]
524
523
  """
525
524
  return bincount_impl(input, weights, minlength)
@@ -643,7 +642,7 @@ def cummin(input, dim):
643
642
  \end{array}
644
643
 
645
644
  .. note::
646
- O2 mode is not supported in Ascend.
645
+ GE backend is not supported in Ascend.
647
646
 
648
647
  Args:
649
648
  input (Tensor): The input Tensor, The dimension must be greater than 0.
@@ -759,9 +758,9 @@ def diag(input, diagonal=0):
759
758
  ``Ascend``
760
759
 
761
760
  Examples:
762
- >>> from mindspore import Tensor, mint
761
+ >>> from mindspore import Tensor, ops
763
762
  >>> input = Tensor([1, 2, 3, 4]).astype('int32')
764
- >>> output = mint.diag(input)
763
+ >>> output = ops.auto_generate.diag_ext(input)
765
764
  >>> print(output)
766
765
  [[1 0 0 0]
767
766
  [0 2 0 0]
@@ -1011,56 +1010,6 @@ def unfold(input, kernel_size, dilation=1, padding=0, stride=1):
1011
1010
  return unfold_impl(input, converted_kernel_size, converted_dilation, converted_padding, converted_stride)
1012
1011
 
1013
1012
 
1014
- def index_add(input, dim, index, source, alpha=1):
1015
- r"""
1016
- Accumulate the elements of `alpha` times `source` into the `input` by adding to the index in the order given in `index`. For example, if ``dim == 0`` , ``index[i] == j`` , and ``alpha = -1`` , then the `i` th row of `source` is subtracted from the `j` th row of `input` . The `dim` th dimension of `source` must have the same size as the length of `index` , and all other dimensions must match `input`, or an error will be raised. For a 3-D tensor, the output is defined as follows:
1017
-
1018
- .. math::
1019
- \begin{array}{ll}
1020
- input[index[i],\ :,\ :]\ +=\ alpha * source[i,\ :,\ :] \qquad \#if\ dim == 0 \\
1021
- input[:,\ \ index[i],\ :]\ +=\ alpha * source[:,\ \ i,\ :] \qquad \#if\ dim == 1 \\
1022
- input[:,\ :,\ \ index[i]]\ +=\ alpha * source[:,\ :,\ \ i] \qquad\#if\ dim == 2 \\
1023
- \end{array}
1024
-
1025
- .. warning::
1026
- This is an experimental API that is subject to change or deletion.
1027
-
1028
- Args:
1029
- input (Tensor): The input Tensor.
1030
- dim (int): The dimension along which to index.
1031
- index (Tensor): Add the value of "input Tensor" and `source` along the dimension of the `dim` according to the specified index value, with data type int32. The `index` must be 1D with the same size as the size of `source` in the `dim` dimension. The values of `index` should be in [0, b), where the b is the size of "input Tensor" in the `dim` dimension.
1032
- source (Tensor): The input tensor with the value to add. Must have same data type as "input Tensor". The shape must be the same as "input Tensor" except the `dim` th dimension.
1033
- alpha (number, optional): The scalar multiplier for source. Default: ``1``.
1034
-
1035
- Returns:
1036
- Tensor, has the same shape and dtype as `input`.
1037
-
1038
- Raises:
1039
- TypeError: If neither `index` nor `source` is a Tensor.
1040
- ValueError: If the value of `dim` is out of the dimension range of `source` shape.
1041
- ValueError: If `index` rank is not the same as `source` rank.
1042
- ValueError: If shape of `index` is not 1D or size of `index` is not equal to dimension of source[dim].
1043
- ValueError: If the shape of `source` is not the same as that of `input` except the `dim` axis.
1044
-
1045
- Supported Platforms:
1046
- ``Ascend``
1047
-
1048
- Examples:
1049
- >>> import numpy as np
1050
- >>> import mindspore
1051
- >>> from mindspore import Tensor, ops
1052
- >>> x = Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), mindspore.float32)
1053
- >>> index = Tensor(np.array([0, 2]), mindspore.int32)
1054
- >>> y = Tensor(np.array([[0.5, 1.0], [1.0, 1.5], [2.0, 2.5]]), mindspore.float32)
1055
- >>> output = ops.auto_generate.index_add_ext(x, 1, index, y, alpha=1)
1056
- >>> print(output)
1057
- [[ 1.5 2. 4. ]
1058
- [ 5. 5. 7.5]
1059
- [ 9. 8. 11.5]]
1060
- """
1061
- return index_add_impl(input, dim, index, source, alpha)
1062
-
1063
-
1064
1013
  def index_select(input, dim, index):
1065
1014
  r"""
1066
1015
  Generates a new Tensor that accesses the values of `input` along the specified `dim` dimension
@@ -1294,9 +1243,9 @@ def log10(input):
1294
1243
  Examples:
1295
1244
  >>> import mindspore
1296
1245
  >>> import numpy as np
1297
- >>> from mindspore import Tensor, mint
1246
+ >>> from mindspore import Tensor, ops
1298
1247
  >>> x = Tensor(np.array([3.0, 5.0, 7.0]), mindspore.float32)
1299
- >>> output = mint.log10(x)
1248
+ >>> output = ops.auto_generate.log10_ext(x)
1300
1249
  >>> print(output)
1301
1250
  [0.47712136 0.69897 0.845098 ]
1302
1251
  """
@@ -1330,9 +1279,9 @@ def log2(input):
1330
1279
  Examples:
1331
1280
  >>> import mindspore
1332
1281
  >>> import numpy as np
1333
- >>> from mindspore import Tensor, mint
1282
+ >>> from mindspore import Tensor, ops
1334
1283
  >>> x = Tensor(np.array([3.0, 5.0, 7.0]), mindspore.float32)
1335
- >>> output = mint.log2(x)
1284
+ >>> output = ops.auto_generate.log2_ext(x)
1336
1285
  >>> print(output)
1337
1286
  [1.5849625 2.321928 2.807355 ]
1338
1287
  """
@@ -1898,38 +1847,6 @@ def prod(input, dim=None, keepdim=False, dtype=None):
1898
1847
  return prod_impl(input, dim, keepdim, dtype)
1899
1848
 
1900
1849
 
1901
- def select(input, dim, index):
1902
- r"""
1903
- Slices the input tensor along the selected dimension at the given index.
1904
-
1905
- .. warning::
1906
- This is an experimental API that is subject to change or deletion.
1907
-
1908
- Args:
1909
- input (Tensor): the input tensor.
1910
- dim (int): the dimension to slice.
1911
- index (int): the index to select with.
1912
-
1913
- Returns:
1914
- Tensor.
1915
-
1916
- Raises:
1917
- TypeError: If input is not a Tensor.
1918
-
1919
- Supported Platforms:
1920
- ``Ascend``
1921
-
1922
- Examples:
1923
- >>> import mindspore
1924
- >>> from mindspore import Tensor, mint
1925
- >>> input = Tensor([[2, 3, 4, 5],[3, 2, 4, 5]])
1926
- >>> y = mint.select(input, 0, 0)
1927
- >>> print(y)
1928
- [2 3 4 5]
1929
- """
1930
- return select_impl(input, dim, index)
1931
-
1932
-
1933
1850
  def selu(input):
1934
1851
  r"""
1935
1852
  Activation function SELU (Scaled exponential Linear Unit).
@@ -1969,13 +1886,13 @@ def selu(input):
1969
1886
 
1970
1887
  Examples:
1971
1888
  >>> import mindspore
1972
- >>> from mindspore import Tensor, mint
1889
+ >>> from mindspore import Tensor, ops
1973
1890
  >>> import numpy as np
1974
1891
  >>> input = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
1975
- >>> output = mint.nn.functional.selu(input)
1892
+ >>> output = ops.auto_generate.selu_ext(input)
1976
1893
  >>> print(output)
1977
1894
  [[-1.1113307 4.202804 -1.7575096]
1978
- [ 2.101402 -1.7462534 9.456309 ]]
1895
+ [ 2.101402 -1.7462534 9.456309 ]]
1979
1896
  """
1980
1897
  return selu_impl(input)
1981
1898
 
@@ -2296,41 +2213,6 @@ def trace(input):
2296
2213
  return trace_impl(input)
2297
2214
 
2298
2215
 
2299
- def transpose(input, dim0, dim1):
2300
- r"""
2301
- Interchange two axes of a tensor.
2302
-
2303
- .. warning::
2304
- This is an experimental API that is subject to change or deletion.
2305
-
2306
- Args:
2307
- input(Tensor): Input tensor.
2308
- dim0 (int): First axis.
2309
- dim1 (int): Second axis.
2310
-
2311
- Returns:
2312
- Transposed tensor, has the same data type as `input`.
2313
-
2314
- Raises:
2315
- TypeError: If argument `input` is not Tensor.
2316
- TypeError: If `dim0` or `dim1` is not integer.
2317
- ValueError: If `dim0` or `dim1` is not in the range of :math:`[-ndim, ndim-1]`.
2318
-
2319
- Supported Platforms:
2320
- ``Ascend``
2321
-
2322
- Examples:
2323
- >>> import numpy as np
2324
- >>> from mindspore import mint
2325
- >>> from mindspore import Tensor
2326
- >>> input = Tensor(np.ones((2,3,4), dtype=np.float32))
2327
- >>> output = mint.transpose(input, 0, 2)
2328
- >>> print(output.shape)
2329
- (4, 3, 2)
2330
- """
2331
- return transpose_impl(input, dim0, dim1)
2332
-
2333
-
2334
2216
  def tril(input, diagonal=0):
2335
2217
  r"""
2336
2218
  None