mindspore 2.4.10__cp311-cp311-win_amd64.whl → 2.6.0rc1__cp311-cp311-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (602) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/Microsoft.VisualStudio.Telemetry.dll +0 -0
  3. mindspore/Newtonsoft.Json.dll +0 -0
  4. mindspore/__init__.py +13 -6
  5. mindspore/_c_dataengine.cp311-win_amd64.pyd +0 -0
  6. mindspore/_c_expression.cp311-win_amd64.pyd +0 -0
  7. mindspore/_c_mindrecord.cp311-win_amd64.pyd +0 -0
  8. mindspore/_check_jit_forbidden_api.py +3 -0
  9. mindspore/_checkparam.py +3 -38
  10. mindspore/_deprecated/__init__.py +17 -0
  11. mindspore/_deprecated/jit.py +198 -0
  12. mindspore/_extends/builtin_operations.py +1 -1
  13. mindspore/_extends/parallel_compile/akg_compiler/gen_custom_op_files.py +1 -1
  14. mindspore/_extends/parse/__init__.py +6 -7
  15. mindspore/_extends/parse/compile_config.py +83 -0
  16. mindspore/_extends/parse/deprecated/__init__.py +0 -0
  17. mindspore/_extends/parse/deprecated/deprecated_tensor_method.py +394 -0
  18. mindspore/_extends/parse/jit_fallback_modules/__init__.py +0 -0
  19. mindspore/_extends/parse/jit_fallback_modules/check_utils.py +123 -0
  20. mindspore/_extends/parse/jit_fallback_modules/third_party_modules.py +50 -0
  21. mindspore/_extends/parse/parser.py +46 -197
  22. mindspore/_extends/parse/resources.py +1 -5
  23. mindspore/_extends/parse/standard_method.py +217 -98
  24. mindspore/_extends/pijit/__init__.py +2 -2
  25. mindspore/_extends/pijit/pijit_func_white_list.py +17 -12
  26. mindspore/_extends/pijit/tensor_func_list.py +27 -0
  27. mindspore/_extends/utils.py +1 -1
  28. mindspore/amp.py +11 -5
  29. mindspore/atlprov.dll +0 -0
  30. mindspore/avcodec-59.dll +0 -0
  31. mindspore/avdevice-59.dll +0 -0
  32. mindspore/avfilter-8.dll +0 -0
  33. mindspore/avformat-59.dll +0 -0
  34. mindspore/avutil-57.dll +0 -0
  35. mindspore/boost/__init__.py +2 -2
  36. mindspore/boost/base.py +3 -7
  37. mindspore/boost/boost_cell_wrapper.py +138 -43
  38. mindspore/c1.dll +0 -0
  39. mindspore/c1xx.dll +0 -0
  40. mindspore/c2.dll +0 -0
  41. mindspore/common/__init__.py +6 -3
  42. mindspore/common/_grad_function.py +56 -0
  43. mindspore/common/_pijit_context.py +14 -5
  44. mindspore/common/_register_for_tensor.py +1 -2
  45. mindspore/common/_stub_tensor.py +30 -14
  46. mindspore/common/_tensor_cpp_method.py +17 -0
  47. mindspore/common/_tensor_docs.py +4760 -0
  48. mindspore/common/api.py +435 -371
  49. mindspore/common/auto_dynamic_shape.py +41 -44
  50. mindspore/common/dtype.py +39 -36
  51. mindspore/common/dump.py +9 -6
  52. mindspore/common/file_system.py +9 -1
  53. mindspore/common/generator.py +2 -0
  54. mindspore/common/hook_handle.py +6 -2
  55. mindspore/common/initializer.py +13 -10
  56. mindspore/common/jit_begin_end.py +94 -0
  57. mindspore/common/jit_config.py +6 -1
  58. mindspore/common/jit_context.py +76 -0
  59. mindspore/common/jit_trace.py +378 -0
  60. mindspore/common/lazy_inline.py +9 -3
  61. mindspore/common/mindir_util.py +10 -2
  62. mindspore/common/mutable.py +5 -4
  63. mindspore/common/parameter.py +135 -52
  64. mindspore/common/seed.py +2 -2
  65. mindspore/common/sparse_tensor.py +23 -17
  66. mindspore/common/tensor.py +951 -1992
  67. mindspore/communication/__init__.py +7 -5
  68. mindspore/communication/_comm_helper.py +52 -2
  69. mindspore/communication/comm_func.py +240 -181
  70. mindspore/communication/management.py +95 -26
  71. mindspore/context.py +314 -566
  72. mindspore/dataset/__init__.py +65 -37
  73. mindspore/dataset/audio/__init__.py +2 -8
  74. mindspore/dataset/audio/transforms.py +3 -17
  75. mindspore/dataset/callback/ds_callback.py +2 -1
  76. mindspore/dataset/core/config.py +87 -6
  77. mindspore/dataset/engine/cache_admin.py +3 -3
  78. mindspore/dataset/engine/cache_client.py +6 -5
  79. mindspore/dataset/engine/datasets.py +292 -267
  80. mindspore/dataset/engine/datasets_audio.py +22 -8
  81. mindspore/dataset/engine/datasets_standard_format.py +46 -27
  82. mindspore/dataset/engine/datasets_text.py +78 -48
  83. mindspore/dataset/engine/datasets_user_defined.py +182 -116
  84. mindspore/dataset/engine/datasets_vision.py +120 -44
  85. mindspore/dataset/engine/iterators.py +283 -63
  86. mindspore/dataset/engine/obs/obs_mindrecord_dataset.py +1 -1
  87. mindspore/dataset/engine/obs/util.py +8 -0
  88. mindspore/dataset/engine/queue.py +40 -0
  89. mindspore/dataset/engine/samplers.py +289 -43
  90. mindspore/dataset/engine/serializer_deserializer.py +3 -2
  91. mindspore/dataset/engine/validators.py +53 -11
  92. mindspore/dataset/text/__init__.py +7 -6
  93. mindspore/dataset/text/transforms.py +6 -5
  94. mindspore/dataset/text/utils.py +3 -3
  95. mindspore/dataset/transforms/__init__.py +0 -9
  96. mindspore/dataset/transforms/py_transforms_util.py +17 -0
  97. mindspore/dataset/transforms/transforms.py +31 -14
  98. mindspore/dataset/utils/browse_dataset.py +1 -1
  99. mindspore/dataset/vision/__init__.py +2 -9
  100. mindspore/dataset/vision/transforms.py +202 -158
  101. mindspore/dataset/vision/utils.py +7 -5
  102. mindspore/dataset/vision/validators.py +1 -2
  103. mindspore/device_context/__init__.py +21 -0
  104. mindspore/device_context/ascend/__init__.py +25 -0
  105. mindspore/device_context/ascend/device.py +72 -0
  106. mindspore/device_context/ascend/op_debug.py +153 -0
  107. mindspore/device_context/ascend/op_precision.py +193 -0
  108. mindspore/device_context/ascend/op_tuning.py +123 -0
  109. mindspore/{ops_generate/gen_constants.py → device_context/cpu/__init__.py} +6 -17
  110. mindspore/device_context/cpu/device.py +62 -0
  111. mindspore/device_context/cpu/op_tuning.py +43 -0
  112. mindspore/device_context/gpu/__init__.py +21 -0
  113. mindspore/device_context/gpu/device.py +70 -0
  114. mindspore/device_context/gpu/op_precision.py +67 -0
  115. mindspore/device_context/gpu/op_tuning.py +175 -0
  116. mindspore/device_manager.py +170 -0
  117. mindspore/dnnl.dll +0 -0
  118. mindspore/dpcmi.dll +0 -0
  119. mindspore/experimental/es/embedding_service.py +35 -27
  120. mindspore/experimental/llm_boost/__init__.py +1 -0
  121. mindspore/experimental/llm_boost/ascend_native/__init__.py +22 -0
  122. mindspore/experimental/llm_boost/ascend_native/llama_boost_ascend_native.py +211 -0
  123. mindspore/experimental/llm_boost/ascend_native/llm_boost.py +52 -0
  124. mindspore/experimental/llm_boost/atb/boost_base.py +2 -3
  125. mindspore/experimental/llm_boost/atb/llama_boost.py +6 -1
  126. mindspore/experimental/llm_boost/register.py +1 -0
  127. mindspore/experimental/map_parameter.py +4 -4
  128. mindspore/experimental/optim/adadelta.py +6 -6
  129. mindspore/experimental/optim/adagrad.py +4 -4
  130. mindspore/experimental/optim/adam.py +7 -0
  131. mindspore/experimental/optim/adamax.py +4 -4
  132. mindspore/experimental/optim/adamw.py +4 -0
  133. mindspore/experimental/optim/asgd.py +1 -1
  134. mindspore/experimental/optim/lr_scheduler.py +73 -46
  135. mindspore/experimental/optim/radam.py +34 -31
  136. mindspore/experimental/optim/rprop.py +1 -1
  137. mindspore/experimental/optim/sgd.py +1 -1
  138. mindspore/hal/contiguous_tensors_handle.py +6 -10
  139. mindspore/hal/device.py +55 -53
  140. mindspore/hal/event.py +52 -52
  141. mindspore/hal/memory.py +157 -117
  142. mindspore/hal/stream.py +150 -109
  143. mindspore/include/api/context.h +0 -1
  144. mindspore/include/dataset/constants.h +7 -4
  145. mindspore/include/dataset/execute.h +2 -2
  146. mindspore/jpeg62.dll +0 -0
  147. mindspore/log.py +50 -0
  148. mindspore/mindrecord/__init__.py +21 -8
  149. mindspore/mindrecord/config.py +17 -316
  150. mindspore/mindrecord/filereader.py +1 -9
  151. mindspore/mindrecord/filewriter.py +5 -15
  152. mindspore/mindrecord/mindpage.py +1 -9
  153. mindspore/mindspore_backend_common.dll +0 -0
  154. mindspore/mindspore_backend_manager.dll +0 -0
  155. mindspore/mindspore_common.dll +0 -0
  156. mindspore/mindspore_core.dll +0 -0
  157. mindspore/mindspore_dump.dll +0 -0
  158. mindspore/mindspore_frontend.dll +0 -0
  159. mindspore/mindspore_glog.dll +0 -0
  160. mindspore/mindspore_memory_pool.dll +0 -0
  161. mindspore/mindspore_ms_backend.dll +0 -0
  162. mindspore/mindspore_ops.dll +0 -0
  163. mindspore/{mindspore_backend.dll → mindspore_ops_host.dll} +0 -0
  164. mindspore/mindspore_ops_kernel_common.dll +0 -0
  165. mindspore/mindspore_profiler.dll +0 -0
  166. mindspore/mindspore_pyboost.dll +0 -0
  167. mindspore/mindspore_pynative.dll +0 -0
  168. mindspore/mindspore_res_manager.dll +0 -0
  169. mindspore/mindspore_runtime_pipeline.dll +0 -0
  170. mindspore/mint/__init__.py +796 -759
  171. mindspore/mint/distributed/__init__.py +70 -4
  172. mindspore/mint/distributed/distributed.py +2679 -44
  173. mindspore/mint/linalg/__init__.py +8 -0
  174. mindspore/mint/nn/__init__.py +743 -22
  175. mindspore/mint/nn/functional.py +716 -23
  176. mindspore/mint/nn/layer/__init__.py +21 -4
  177. mindspore/mint/nn/layer/_functions.py +334 -0
  178. mindspore/mint/nn/layer/activation.py +276 -1
  179. mindspore/mint/nn/layer/basic.py +123 -0
  180. mindspore/mint/nn/layer/conv.py +921 -0
  181. mindspore/mint/nn/layer/normalization.py +223 -28
  182. mindspore/mint/nn/layer/padding.py +797 -0
  183. mindspore/mint/nn/layer/pooling.py +235 -0
  184. mindspore/mint/optim/__init__.py +3 -1
  185. mindspore/mint/optim/adam.py +223 -0
  186. mindspore/mint/optim/adamw.py +26 -19
  187. mindspore/mint/optim/sgd.py +171 -0
  188. mindspore/mint/special/__init__.py +2 -1
  189. mindspore/msobj140.dll +0 -0
  190. mindspore/mspdb140.dll +0 -0
  191. mindspore/mspdbcore.dll +0 -0
  192. mindspore/mspdbst.dll +0 -0
  193. mindspore/mspft140.dll +0 -0
  194. mindspore/msvcdis140.dll +0 -0
  195. mindspore/msvcp140_1.dll +0 -0
  196. mindspore/msvcp140_2.dll +0 -0
  197. mindspore/msvcp140_atomic_wait.dll +0 -0
  198. mindspore/msvcp140_codecvt_ids.dll +0 -0
  199. mindspore/multiprocessing/__init__.py +5 -0
  200. mindspore/nn/__init__.py +4 -1
  201. mindspore/nn/cell.py +1370 -189
  202. mindspore/nn/dynamic_lr.py +2 -1
  203. mindspore/nn/layer/activation.py +29 -27
  204. mindspore/nn/layer/basic.py +51 -35
  205. mindspore/nn/layer/channel_shuffle.py +3 -3
  206. mindspore/nn/layer/container.py +1 -1
  207. mindspore/nn/layer/conv.py +22 -17
  208. mindspore/nn/layer/embedding.py +12 -11
  209. mindspore/nn/layer/normalization.py +56 -49
  210. mindspore/nn/layer/padding.py +4 -3
  211. mindspore/nn/layer/pooling.py +120 -42
  212. mindspore/nn/layer/rnn_cells.py +1 -1
  213. mindspore/nn/layer/rnns.py +2 -1
  214. mindspore/nn/layer/timedistributed.py +5 -5
  215. mindspore/nn/layer/transformer.py +59 -36
  216. mindspore/nn/learning_rate_schedule.py +8 -4
  217. mindspore/nn/loss/loss.py +58 -55
  218. mindspore/nn/optim/ada_grad.py +7 -5
  219. mindspore/nn/optim/adadelta.py +11 -9
  220. mindspore/nn/optim/adafactor.py +1 -1
  221. mindspore/nn/optim/adam.py +17 -13
  222. mindspore/nn/optim/adamax.py +8 -7
  223. mindspore/nn/optim/adasum.py +5 -5
  224. mindspore/nn/optim/asgd.py +1 -1
  225. mindspore/nn/optim/ftrl.py +11 -9
  226. mindspore/nn/optim/lamb.py +1 -1
  227. mindspore/nn/optim/lars.py +1 -4
  228. mindspore/nn/optim/lazyadam.py +12 -10
  229. mindspore/nn/optim/momentum.py +7 -6
  230. mindspore/nn/optim/optimizer.py +3 -3
  231. mindspore/nn/optim/proximal_ada_grad.py +12 -10
  232. mindspore/nn/optim/rmsprop.py +13 -12
  233. mindspore/nn/optim/rprop.py +11 -9
  234. mindspore/nn/optim/sgd.py +9 -6
  235. mindspore/nn/optim/tft_wrapper.py +5 -2
  236. mindspore/nn/optim/thor.py +2 -1
  237. mindspore/nn/probability/bijector/bijector.py +17 -11
  238. mindspore/nn/probability/bijector/gumbel_cdf.py +5 -5
  239. mindspore/nn/probability/bijector/invert.py +2 -2
  240. mindspore/nn/probability/bijector/scalar_affine.py +3 -3
  241. mindspore/nn/probability/bijector/softplus.py +3 -2
  242. mindspore/nn/probability/distribution/beta.py +3 -3
  243. mindspore/nn/probability/distribution/categorical.py +1 -1
  244. mindspore/nn/probability/distribution/cauchy.py +4 -2
  245. mindspore/nn/probability/distribution/exponential.py +6 -7
  246. mindspore/nn/probability/distribution/gamma.py +2 -2
  247. mindspore/nn/probability/distribution/gumbel.py +2 -2
  248. mindspore/nn/probability/distribution/half_normal.py +5 -3
  249. mindspore/nn/probability/distribution/logistic.py +5 -3
  250. mindspore/nn/probability/distribution/poisson.py +1 -1
  251. mindspore/nn/probability/distribution/uniform.py +5 -3
  252. mindspore/nn/reinforcement/_tensors_queue.py +1 -1
  253. mindspore/nn/reinforcement/tensor_array.py +1 -1
  254. mindspore/nn/utils/init.py +13 -11
  255. mindspore/nn/wrap/__init__.py +6 -6
  256. mindspore/nn/wrap/cell_wrapper.py +181 -122
  257. mindspore/nn/wrap/grad_reducer.py +45 -36
  258. mindspore/nn/wrap/loss_scale.py +6 -7
  259. mindspore/numpy/array_creations.py +63 -65
  260. mindspore/numpy/array_ops.py +149 -144
  261. mindspore/numpy/logic_ops.py +41 -42
  262. mindspore/numpy/math_ops.py +365 -363
  263. mindspore/numpy/utils.py +17 -18
  264. mindspore/numpy/utils_const.py +5 -6
  265. mindspore/opencv_core452.dll +0 -0
  266. mindspore/opencv_imgcodecs452.dll +0 -0
  267. mindspore/opencv_imgproc452.dll +0 -0
  268. mindspore/ops/__init__.py +5 -3
  269. mindspore/ops/_grad_experimental/grad_comm_ops.py +112 -16
  270. mindspore/ops/_grad_experimental/grad_debug_ops.py +14 -2
  271. mindspore/ops/_grad_experimental/grad_inner_ops.py +9 -0
  272. mindspore/ops/_grad_experimental/grad_math_ops.py +2 -1
  273. mindspore/ops/_grad_experimental/taylor_rule.py +29 -0
  274. mindspore/ops/_op_impl/cpu/__init__.py +1 -0
  275. mindspore/ops/_op_impl/cpu/raise_op.py +28 -0
  276. mindspore/ops/_register_for_op.py +0 -11
  277. mindspore/{ops_generate → ops/_utils}/arg_dtype_cast.py +123 -4
  278. mindspore/{ops_generate → ops/_utils}/arg_handler.py +3 -65
  279. mindspore/ops/_vmap/vmap_array_ops.py +27 -25
  280. mindspore/ops/_vmap/vmap_base.py +0 -2
  281. mindspore/ops/_vmap/vmap_grad_nn_ops.py +21 -14
  282. mindspore/ops/_vmap/vmap_math_ops.py +15 -16
  283. mindspore/ops/_vmap/vmap_nn_ops.py +29 -42
  284. mindspore/ops/auto_generate/__init__.py +4 -3
  285. mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +236 -46
  286. mindspore/ops/auto_generate/gen_extend_func.py +764 -124
  287. mindspore/ops/auto_generate/gen_ops_def.py +4018 -2264
  288. mindspore/ops/auto_generate/gen_ops_prim.py +15463 -5037
  289. mindspore/ops/auto_generate/pyboost_inner_prim.py +221 -87
  290. mindspore/ops/composite/__init__.py +2 -1
  291. mindspore/ops/composite/base.py +20 -25
  292. mindspore/ops/composite/math_ops.py +6 -16
  293. mindspore/ops/composite/multitype_ops/__init__.py +5 -2
  294. mindspore/ops/composite/multitype_ops/_compile_utils.py +228 -30
  295. mindspore/ops/composite/multitype_ops/_constexpr_utils.py +1 -2
  296. mindspore/ops/composite/multitype_ops/add_impl.py +2 -1
  297. mindspore/ops/composite/multitype_ops/bitwise_and_impl.py +2 -1
  298. mindspore/ops/composite/multitype_ops/bitwise_or_impl.py +2 -1
  299. mindspore/ops/composite/multitype_ops/bitwise_xor_impl.py +2 -1
  300. mindspore/ops/composite/multitype_ops/div_impl.py +6 -4
  301. mindspore/ops/composite/multitype_ops/equal_impl.py +4 -3
  302. mindspore/ops/composite/multitype_ops/floordiv_impl.py +2 -1
  303. mindspore/ops/composite/multitype_ops/getitem_impl.py +3 -2
  304. mindspore/ops/composite/multitype_ops/greater_equal_impl.py +4 -3
  305. mindspore/ops/composite/multitype_ops/greater_impl.py +4 -3
  306. mindspore/ops/composite/multitype_ops/in_impl.py +2 -1
  307. mindspore/ops/composite/multitype_ops/invert_impl.py +50 -0
  308. mindspore/ops/composite/multitype_ops/left_shift_impl.py +2 -1
  309. mindspore/ops/composite/multitype_ops/less_equal_impl.py +4 -3
  310. mindspore/ops/composite/multitype_ops/less_impl.py +4 -3
  311. mindspore/ops/composite/multitype_ops/logic_not_impl.py +3 -2
  312. mindspore/ops/composite/multitype_ops/logical_and_impl.py +2 -1
  313. mindspore/ops/composite/multitype_ops/logical_or_impl.py +2 -1
  314. mindspore/ops/composite/multitype_ops/mod_impl.py +2 -1
  315. mindspore/ops/composite/multitype_ops/mul_impl.py +3 -2
  316. mindspore/ops/composite/multitype_ops/negative_impl.py +2 -1
  317. mindspore/ops/composite/multitype_ops/not_equal_impl.py +2 -1
  318. mindspore/ops/composite/multitype_ops/not_in_impl.py +2 -1
  319. mindspore/ops/composite/multitype_ops/ones_like_impl.py +18 -0
  320. mindspore/ops/composite/multitype_ops/pow_impl.py +2 -30
  321. mindspore/ops/composite/multitype_ops/right_shift_impl.py +2 -1
  322. mindspore/ops/composite/multitype_ops/setitem_impl.py +2 -1
  323. mindspore/ops/composite/multitype_ops/sub_impl.py +2 -1
  324. mindspore/ops/function/__init__.py +40 -2
  325. mindspore/ops/function/_add_attr_func.py +58 -0
  326. mindspore/ops/function/array_func.py +2089 -2403
  327. mindspore/ops/function/clip_func.py +80 -23
  328. mindspore/ops/function/debug_func.py +57 -57
  329. mindspore/ops/function/grad/__init__.py +1 -0
  330. mindspore/ops/function/grad/grad_func.py +104 -71
  331. mindspore/ops/function/image_func.py +2 -2
  332. mindspore/ops/function/linalg_func.py +47 -78
  333. mindspore/ops/function/math_func.py +4501 -3802
  334. mindspore/ops/function/nn_func.py +1726 -620
  335. mindspore/ops/function/other_func.py +159 -1
  336. mindspore/ops/function/parameter_func.py +18 -84
  337. mindspore/ops/function/random_func.py +440 -387
  338. mindspore/ops/function/reshard_func.py +4 -70
  339. mindspore/ops/function/sparse_func.py +3 -3
  340. mindspore/ops/function/sparse_unary_func.py +6 -6
  341. mindspore/ops/function/spectral_func.py +25 -58
  342. mindspore/ops/function/vmap_func.py +24 -17
  343. mindspore/ops/functional.py +22 -7
  344. mindspore/ops/functional_overload.py +1440 -0
  345. mindspore/ops/op_info_register.py +32 -244
  346. mindspore/ops/operations/__init__.py +13 -7
  347. mindspore/ops/operations/_custom_ops_utils.py +247 -0
  348. mindspore/ops/operations/_embedding_cache_ops.py +4 -4
  349. mindspore/ops/operations/_grad_ops.py +2 -43
  350. mindspore/ops/operations/_infer_ops.py +2 -1
  351. mindspore/ops/operations/_inner_ops.py +43 -84
  352. mindspore/ops/operations/_ms_kernel.py +4 -10
  353. mindspore/ops/operations/_rl_inner_ops.py +1 -1
  354. mindspore/ops/operations/_scalar_ops.py +3 -2
  355. mindspore/ops/operations/_sequence_ops.py +1 -1
  356. mindspore/ops/operations/_tensor_array.py +1 -1
  357. mindspore/ops/operations/array_ops.py +81 -324
  358. mindspore/ops/operations/comm_ops.py +154 -108
  359. mindspore/ops/operations/custom_ops.py +232 -78
  360. mindspore/ops/operations/debug_ops.py +153 -59
  361. mindspore/ops/operations/inner_ops.py +7 -5
  362. mindspore/ops/operations/linalg_ops.py +1 -57
  363. mindspore/ops/operations/manually_defined/_inner.py +1 -1
  364. mindspore/ops/operations/manually_defined/ops_def.py +928 -180
  365. mindspore/ops/operations/math_ops.py +32 -234
  366. mindspore/ops/operations/nn_ops.py +210 -498
  367. mindspore/ops/operations/other_ops.py +62 -9
  368. mindspore/ops/operations/random_ops.py +13 -7
  369. mindspore/ops/operations/reshard_ops.py +1 -1
  370. mindspore/ops/operations/sparse_ops.py +2 -2
  371. mindspore/ops/primitive.py +66 -53
  372. mindspore/ops/tensor_method.py +1888 -0
  373. mindspore/ops_generate/__init__.py +0 -5
  374. mindspore/ops_generate/aclnn/__init__.py +0 -0
  375. mindspore/ops_generate/aclnn/aclnn_kernel_register_auto_cc_generator.py +135 -0
  376. mindspore/ops_generate/aclnn/gen_aclnn_implement.py +257 -0
  377. mindspore/ops_generate/api/__init__.py +0 -0
  378. mindspore/ops_generate/api/add_tensor_docs_generator.py +56 -0
  379. mindspore/ops_generate/api/cpp_create_prim_instance_helper_generator.py +105 -0
  380. mindspore/ops_generate/api/functional_map_cpp_generator.py +504 -0
  381. mindspore/ops_generate/api/functional_overload_py_generator.py +112 -0
  382. mindspore/ops_generate/api/functions_cc_generator.py +237 -0
  383. mindspore/ops_generate/api/gen_api.py +103 -0
  384. mindspore/ops_generate/api/op_api_proto.py +235 -0
  385. mindspore/ops_generate/api/tensor_func_reg_cpp_generator.py +461 -0
  386. mindspore/ops_generate/common/__init__.py +0 -0
  387. mindspore/ops_generate/common/base_generator.py +11 -0
  388. mindspore/ops_generate/common/gen_constants.py +91 -0
  389. mindspore/ops_generate/common/gen_utils.py +348 -0
  390. mindspore/ops_generate/common/op_proto.py +473 -0
  391. mindspore/ops_generate/common/template.py +523 -0
  392. mindspore/ops_generate/gen_ops.py +22 -1069
  393. mindspore/ops_generate/op_def/__init__.py +0 -0
  394. mindspore/ops_generate/op_def/gen_op_def.py +90 -0
  395. mindspore/ops_generate/op_def/lite_ops_cpp_generator.py +191 -0
  396. mindspore/ops_generate/op_def/ops_def_cc_generator.py +299 -0
  397. mindspore/ops_generate/op_def/ops_def_h_generator.py +74 -0
  398. mindspore/ops_generate/op_def/ops_name_h_generator.py +83 -0
  399. mindspore/ops_generate/op_def/ops_primitive_h_generator.py +125 -0
  400. mindspore/ops_generate/op_def_py/__init__.py +0 -0
  401. mindspore/ops_generate/op_def_py/gen_op_def_py.py +47 -0
  402. mindspore/ops_generate/op_def_py/op_def_py_generator.py +132 -0
  403. mindspore/ops_generate/op_def_py/op_prim_py_generator.py +489 -0
  404. mindspore/ops_generate/pyboost/__init__.py +0 -0
  405. mindspore/ops_generate/pyboost/auto_grad_impl_cc_generator.py +139 -0
  406. mindspore/ops_generate/pyboost/auto_grad_reg_cc_generator.py +93 -0
  407. mindspore/ops_generate/pyboost/gen_pyboost_func.py +175 -0
  408. mindspore/ops_generate/pyboost/op_template_parser.py +517 -0
  409. mindspore/ops_generate/pyboost/pyboost_functions_cpp_generator.py +407 -0
  410. mindspore/ops_generate/pyboost/pyboost_functions_h_generator.py +100 -0
  411. mindspore/ops_generate/pyboost/pyboost_functions_py_generator.py +148 -0
  412. mindspore/ops_generate/pyboost/pyboost_grad_function_cpp_generator.py +155 -0
  413. mindspore/ops_generate/pyboost/pyboost_inner_prim_generator.py +132 -0
  414. mindspore/ops_generate/pyboost/pyboost_native_grad_functions_generator.py +272 -0
  415. mindspore/ops_generate/pyboost/pyboost_op_cpp_code_generator.py +938 -0
  416. mindspore/ops_generate/pyboost/pyboost_overload_functions_cpp_generator.py +357 -0
  417. mindspore/ops_generate/{pyboost_utils.py → pyboost/pyboost_utils.py} +179 -36
  418. mindspore/ops_generate/resources/__init__.py +0 -0
  419. mindspore/ops_generate/resources/resource_list.py +30 -0
  420. mindspore/ops_generate/resources/resource_loader.py +36 -0
  421. mindspore/ops_generate/resources/resource_manager.py +64 -0
  422. mindspore/ops_generate/resources/yaml_loader.py +88 -0
  423. mindspore/ops_generate/tensor_py_cc_generator.py +122 -0
  424. mindspore/parallel/__init__.py +7 -3
  425. mindspore/parallel/_auto_parallel_context.py +152 -34
  426. mindspore/parallel/_cell_wrapper.py +130 -15
  427. mindspore/parallel/_parallel_serialization.py +107 -5
  428. mindspore/parallel/_ps_context.py +1 -1
  429. mindspore/parallel/_recovery_context.py +7 -2
  430. mindspore/parallel/_tensor.py +142 -18
  431. mindspore/parallel/_utils.py +199 -23
  432. mindspore/parallel/algo_parameter_config.py +4 -4
  433. mindspore/parallel/auto_parallel.py +732 -0
  434. mindspore/parallel/checkpoint_convert.py +159 -0
  435. mindspore/parallel/checkpoint_transform.py +698 -35
  436. mindspore/parallel/cluster/process_entity/_api.py +276 -50
  437. mindspore/parallel/cluster/process_entity/_utils.py +41 -6
  438. mindspore/parallel/cluster/run.py +21 -4
  439. mindspore/parallel/function/__init__.py +24 -0
  440. mindspore/parallel/function/reshard_func.py +259 -0
  441. mindspore/parallel/nn/__init__.py +25 -0
  442. mindspore/parallel/nn/parallel_cell_wrapper.py +263 -0
  443. mindspore/parallel/nn/parallel_grad_reducer.py +169 -0
  444. mindspore/parallel/parameter_broadcast.py +25 -14
  445. mindspore/parallel/shard.py +137 -58
  446. mindspore/parallel/transform_safetensors.py +363 -305
  447. mindspore/pgodb140.dll +0 -0
  448. mindspore/pgort140.dll +0 -0
  449. mindspore/profiler/__init__.py +22 -5
  450. mindspore/profiler/analysis/__init__.py +0 -0
  451. mindspore/profiler/analysis/parser/__init__.py +0 -0
  452. mindspore/profiler/analysis/parser/ascend_cann_parser.py +170 -0
  453. mindspore/profiler/analysis/parser/base_parser.py +158 -0
  454. mindspore/profiler/analysis/parser/framework_cann_relation_parser.py +45 -0
  455. mindspore/profiler/analysis/parser/ms_framework_parser.py +142 -0
  456. mindspore/profiler/analysis/parser/ms_minddata_parser.py +145 -0
  457. mindspore/profiler/analysis/parser/timeline_assembly_factory/__init__.py +0 -0
  458. mindspore/profiler/analysis/parser/timeline_assembly_factory/ascend_timeline_assembler.py +264 -0
  459. mindspore/profiler/analysis/parser/timeline_assembly_factory/base_timeline_assembler.py +40 -0
  460. mindspore/profiler/analysis/parser/timeline_assembly_factory/trace_view_container.py +106 -0
  461. mindspore/profiler/analysis/parser/timeline_creator/__init__.py +0 -0
  462. mindspore/profiler/analysis/parser/timeline_creator/base_timeline_creator.py +44 -0
  463. mindspore/profiler/analysis/parser/timeline_creator/cpu_op_timeline_creator.py +90 -0
  464. mindspore/profiler/analysis/parser/timeline_creator/fwk_timeline_creator.py +76 -0
  465. mindspore/profiler/analysis/parser/timeline_creator/msprof_timeline_creator.py +103 -0
  466. mindspore/profiler/analysis/parser/timeline_creator/scope_layer_timeline_creator.py +134 -0
  467. mindspore/profiler/analysis/parser/timeline_event/__init__.py +0 -0
  468. mindspore/profiler/analysis/parser/timeline_event/base_event.py +233 -0
  469. mindspore/profiler/analysis/parser/timeline_event/cpu_op_event.py +47 -0
  470. mindspore/profiler/analysis/parser/timeline_event/flow_event.py +36 -0
  471. mindspore/profiler/analysis/parser/timeline_event/fwk_event.py +415 -0
  472. mindspore/profiler/analysis/parser/timeline_event/msprof_event.py +73 -0
  473. mindspore/profiler/analysis/parser/timeline_event/scope_layer_event.py +53 -0
  474. mindspore/profiler/analysis/parser/timeline_event/timeline_event_pool.py +146 -0
  475. mindspore/profiler/analysis/task_manager.py +131 -0
  476. mindspore/profiler/analysis/time_converter.py +84 -0
  477. mindspore/profiler/analysis/viewer/__init__.py +0 -0
  478. mindspore/profiler/analysis/viewer/ascend_communication_viewer.py +372 -0
  479. mindspore/profiler/analysis/viewer/ascend_integrate_viewer.py +87 -0
  480. mindspore/profiler/analysis/viewer/ascend_kernel_details_viewer.py +250 -0
  481. mindspore/profiler/analysis/viewer/ascend_memory_viewer.py +320 -0
  482. mindspore/profiler/analysis/viewer/ascend_op_memory_viewer.py +327 -0
  483. mindspore/profiler/analysis/viewer/ascend_step_trace_time_viewer.py +376 -0
  484. mindspore/profiler/analysis/viewer/ascend_timeline_viewer.py +58 -0
  485. mindspore/profiler/analysis/viewer/base_viewer.py +26 -0
  486. mindspore/profiler/analysis/viewer/ms_dataset_viewer.py +96 -0
  487. mindspore/profiler/analysis/viewer/ms_minddata_viewer.py +581 -0
  488. mindspore/profiler/analysis/work_flow.py +73 -0
  489. mindspore/profiler/common/ascend_msprof_exporter.py +139 -0
  490. mindspore/profiler/common/command_executor.py +90 -0
  491. mindspore/profiler/common/constant.py +186 -3
  492. mindspore/profiler/common/file_manager.py +208 -0
  493. mindspore/profiler/common/log.py +130 -0
  494. mindspore/profiler/common/msprof_cmd_tool.py +221 -0
  495. mindspore/profiler/common/path_manager.py +395 -0
  496. mindspore/profiler/common/process_bar.py +168 -0
  497. mindspore/profiler/common/process_pool.py +9 -3
  498. mindspore/profiler/common/profiler_context.py +500 -0
  499. mindspore/profiler/common/profiler_info.py +304 -0
  500. mindspore/profiler/common/profiler_meta_data.py +74 -0
  501. mindspore/profiler/common/profiler_output_path.py +284 -0
  502. mindspore/profiler/common/profiler_parameters.py +251 -0
  503. mindspore/profiler/common/profiler_path_manager.py +179 -0
  504. mindspore/profiler/common/record_function.py +76 -0
  505. mindspore/profiler/common/tlv_decoder.py +76 -0
  506. mindspore/profiler/common/util.py +75 -2
  507. mindspore/profiler/dynamic_profiler.py +341 -75
  508. mindspore/profiler/envprofiler.py +163 -0
  509. mindspore/profiler/experimental_config.py +197 -0
  510. mindspore/profiler/mstx.py +242 -0
  511. mindspore/profiler/platform/__init__.py +21 -0
  512. mindspore/profiler/platform/base_profiler.py +40 -0
  513. mindspore/profiler/platform/cpu_profiler.py +124 -0
  514. mindspore/profiler/platform/gpu_profiler.py +74 -0
  515. mindspore/profiler/platform/npu_profiler.py +335 -0
  516. mindspore/profiler/profiler.py +1073 -90
  517. mindspore/profiler/profiler_action_controller.py +187 -0
  518. mindspore/profiler/profiler_interface.py +118 -0
  519. mindspore/profiler/schedule.py +243 -0
  520. mindspore/rewrite/api/node.py +15 -13
  521. mindspore/rewrite/api/symbol_tree.py +2 -3
  522. mindspore/run_check/_check_version.py +27 -20
  523. mindspore/run_check/run_check.py +1 -1
  524. mindspore/runtime/__init__.py +37 -0
  525. mindspore/runtime/device.py +27 -0
  526. mindspore/runtime/event.py +209 -0
  527. mindspore/runtime/executor.py +177 -0
  528. mindspore/runtime/memory.py +409 -0
  529. mindspore/runtime/stream.py +460 -0
  530. mindspore/runtime/thread_bind_core.py +401 -0
  531. mindspore/safeguard/rewrite_obfuscation.py +12 -9
  532. mindspore/swresample-4.dll +0 -0
  533. mindspore/swscale-6.dll +0 -0
  534. mindspore/tbbmalloc.dll +0 -0
  535. mindspore/tinyxml2.dll +0 -0
  536. mindspore/train/__init__.py +8 -8
  537. mindspore/train/_utils.py +88 -25
  538. mindspore/train/amp.py +9 -5
  539. mindspore/train/callback/__init__.py +2 -2
  540. mindspore/train/callback/_callback.py +2 -16
  541. mindspore/train/callback/_checkpoint.py +53 -55
  542. mindspore/train/callback/_cluster_monitor.py +14 -18
  543. mindspore/train/callback/_early_stop.py +1 -1
  544. mindspore/train/callback/_flops_collector.py +103 -68
  545. mindspore/train/callback/_history.py +8 -5
  546. mindspore/train/callback/_lambda_callback.py +2 -2
  547. mindspore/train/callback/_landscape.py +0 -3
  548. mindspore/train/callback/_loss_monitor.py +2 -1
  549. mindspore/train/callback/_on_request_exit.py +6 -5
  550. mindspore/train/callback/_reduce_lr_on_plateau.py +11 -6
  551. mindspore/train/callback/_summary_collector.py +52 -19
  552. mindspore/train/callback/_time_monitor.py +2 -1
  553. mindspore/train/callback/{_tft_register.py → _train_fault_tolerance.py} +204 -107
  554. mindspore/train/data_sink.py +25 -2
  555. mindspore/train/dataset_helper.py +15 -16
  556. mindspore/train/loss_scale_manager.py +8 -7
  557. mindspore/train/metrics/accuracy.py +3 -3
  558. mindspore/train/metrics/confusion_matrix.py +9 -9
  559. mindspore/train/metrics/error.py +3 -3
  560. mindspore/train/metrics/hausdorff_distance.py +4 -4
  561. mindspore/train/metrics/mean_surface_distance.py +3 -3
  562. mindspore/train/metrics/metric.py +0 -12
  563. mindspore/train/metrics/occlusion_sensitivity.py +4 -2
  564. mindspore/train/metrics/precision.py +11 -10
  565. mindspore/train/metrics/recall.py +9 -9
  566. mindspore/train/metrics/root_mean_square_surface_distance.py +2 -2
  567. mindspore/train/mind_ir_pb2.py +174 -46
  568. mindspore/train/model.py +184 -113
  569. mindspore/train/serialization.py +622 -978
  570. mindspore/train/summary/_summary_adapter.py +2 -2
  571. mindspore/train/summary/summary_record.py +2 -3
  572. mindspore/train/train_thor/model_thor.py +1 -1
  573. mindspore/turbojpeg.dll +0 -0
  574. mindspore/utils/__init__.py +6 -3
  575. mindspore/utils/dryrun.py +140 -0
  576. mindspore/utils/hooks.py +81 -0
  577. mindspore/utils/runtime_execution_order_check.py +550 -0
  578. mindspore/utils/utils.py +138 -4
  579. mindspore/vcmeta.dll +0 -0
  580. mindspore/vcruntime140.dll +0 -0
  581. mindspore/vcruntime140_1.dll +0 -0
  582. mindspore/version.py +1 -1
  583. {mindspore-2.4.10.dist-info → mindspore-2.6.0rc1.dist-info}/METADATA +3 -3
  584. {mindspore-2.4.10.dist-info → mindspore-2.6.0rc1.dist-info}/RECORD +587 -418
  585. {mindspore-2.4.10.dist-info → mindspore-2.6.0rc1.dist-info}/entry_points.txt +1 -1
  586. mindspore/_install_custom.py +0 -43
  587. mindspore/common/_register_for_adapter.py +0 -74
  588. mindspore/common/_tensor_overload.py +0 -139
  589. mindspore/mindspore_np_dtype.dll +0 -0
  590. mindspore/ops/auto_generate/gen_arg_dtype_cast.py +0 -252
  591. mindspore/ops/auto_generate/gen_arg_handler.py +0 -197
  592. mindspore/ops/operations/_opaque_predicate_registry.py +0 -41
  593. mindspore/ops_generate/gen_aclnn_implement.py +0 -263
  594. mindspore/ops_generate/gen_ops_inner_prim.py +0 -131
  595. mindspore/ops_generate/gen_pyboost_func.py +0 -1052
  596. mindspore/ops_generate/gen_utils.py +0 -209
  597. mindspore/ops_generate/op_proto.py +0 -145
  598. mindspore/ops_generate/template.py +0 -261
  599. mindspore/profiler/envprofiling.py +0 -254
  600. mindspore/profiler/profiling.py +0 -1926
  601. {mindspore-2.4.10.dist-info → mindspore-2.6.0rc1.dist-info}/WHEEL +0 -0
  602. {mindspore-2.4.10.dist-info → mindspore-2.6.0rc1.dist-info}/top_level.txt +0 -0
@@ -15,6 +15,10 @@
15
15
  """mint nn functional."""
16
16
  from __future__ import absolute_import
17
17
  import mindspore.ops as ops
18
+ import mindspore.mint as mint
19
+ from mindspore import log as logger
20
+ from mindspore import _checkparam as validator
21
+ from mindspore.ops.primitive import constexpr
18
22
  from mindspore.ops.function.nn_func import max_pool2d_ext as max_pool2d
19
23
  from mindspore.ops.functional import (
20
24
  conv_transpose2d,
@@ -42,6 +46,9 @@ from mindspore.ops.functional import layer_norm
42
46
 
43
47
  # 11
44
48
  from mindspore.ops.functional import relu
49
+
50
+ from mindspore.ops.function.nn_func import relu_
51
+
45
52
  # 12
46
53
 
47
54
  # 13
@@ -49,7 +56,8 @@ from mindspore.ops.functional import relu
49
56
  # 14
50
57
  from mindspore.ops.function.nn_func import dropout_ext as dropout
51
58
  # 15
52
-
59
+ from mindspore.ops.function.nn_func import conv1d_ext as conv1d
60
+ from mindspore.ops.function.nn_func import conv2d_ext as conv2d
53
61
  # 16
54
62
  from mindspore.ops.function.nn_func import log_softmax_ext as log_softmax
55
63
  # 18
@@ -59,7 +67,7 @@ from mindspore.ops.auto_generate import prelu
59
67
  # 20
60
68
 
61
69
  # 21
62
-
70
+ from mindspore.ops.function.nn_func import conv3d_ext as conv3d
63
71
  # 22
64
72
 
65
73
  # 23
@@ -90,7 +98,7 @@ from mindspore.ops.function.nn_func import batch_norm_ext as batch_norm
90
98
  # 35
91
99
 
92
100
  # 36
93
- from mindspore.ops.functional import gelu
101
+ from mindspore.ops.functional_overload import gelu
94
102
  # 37
95
103
 
96
104
  # 38
@@ -106,7 +114,7 @@ from mindspore.ops.functional import group_norm
106
114
  # 43
107
115
 
108
116
  # 44
109
-
117
+ from mindspore.ops.auto_generate import soft_margin_loss
110
118
  # 45
111
119
 
112
120
  # 46
@@ -126,7 +134,7 @@ from mindspore.ops.functional import embedding
126
134
  # 53
127
135
 
128
136
  # 54
129
-
137
+ from mindspore.ops.functional_overload import pixel_shuffle
130
138
  # 55
131
139
 
132
140
  # 56
@@ -168,7 +176,7 @@ from mindspore.ops.functional import embedding
168
176
  # 74
169
177
 
170
178
  # 75
171
-
179
+ from mindspore.ops.function.nn_func import adaptive_max_pool2d
172
180
  # 76
173
181
 
174
182
  # 77
@@ -196,11 +204,11 @@ from mindspore.ops.functional import embedding
196
204
  # 88
197
205
 
198
206
  # 89
199
-
207
+ from mindspore.ops.auto_generate import avg_pool1d_ext as avg_pool1d
200
208
  # 90
201
209
  from mindspore.ops.function.nn_func import avg_pool2d_ext as avg_pool2d
202
210
  # 91
203
-
211
+ from mindspore.ops.function.nn_func import avg_pool3d_ext as avg_pool3d
204
212
  # 92
205
213
  from mindspore.ops.auto_generate import leaky_relu_ext as leaky_relu
206
214
  # 93
@@ -219,6 +227,8 @@ from mindspore.ops.function.math_func import tanh
219
227
  from mindspore.ops.auto_generate import selu_ext as selu # pylint: disable=W0611
220
228
  # 100
221
229
  from mindspore.ops.auto_generate import softshrink # pylint: disable=W0611
230
+ # 152
231
+ from mindspore.ops.auto_generate import adaptive_avg_pool3d_ext
222
232
  # 220
223
233
  from mindspore.ops.function.nn_func import hardshrink # pylint: disable=W0611
224
234
  # 221
@@ -230,6 +240,12 @@ from mindspore.ops.auto_generate import mish_ext as mish # pylint: disable=W061
230
240
  # 238
231
241
  from mindspore.ops.auto_generate import l1_loss_ext as l1_loss # pylint: disable=W0611
232
242
 
243
+ #254
244
+ from mindspore.ops.auto_generate import max_unpool2d_ext as max_unpool2d
245
+
246
+ # 256
247
+ from mindspore.ops.auto_generate import inplace_threshold as threshold_
248
+ from mindspore.ops.auto_generate import threshold as threshold_op
233
249
  # 257
234
250
 
235
251
  # 258
@@ -239,14 +255,236 @@ from mindspore.ops.function.nn_func import mse_loss_ext as mse_loss
239
255
  # 323
240
256
 
241
257
  # 324
242
- from mindspore.ops.auto_generate import elu_ext as elu
243
-
258
+ from mindspore.ops.auto_generate import elu_ext
259
+ from mindspore.ops.auto_generate import inplace_elu
260
+
261
+ # 421
262
+ from mindspore.ops.auto_generate import flatten_ext as flatten
263
+
264
+ # 426
265
+ from mindspore.ops.function.clip_func import clamp
266
+ # 427
267
+ from mindspore.ops.function.math_func import norm_ext
268
+ # 428
269
+ from mindspore.ops.functional import broadcast_to
270
+ # 536
271
+ from mindspore.ops.function.nn_func import glu_ext as glu
272
+ # 537
273
+ from mindspore.ops.auto_generate import hardtanh as hardtanh_op
274
+ from mindspore.ops.auto_generate import inplace_hardtanh as hardtanh_
275
+ # 548
276
+ from mindspore.ops.function.nn_func import kl_div_ext as kl_div
244
277
  # 556
245
278
  from mindspore.ops.function.nn_func import logsigmoid_ext as logsigmoid
246
279
 
247
280
  from mindspore.ops.auto_generate import adaptive_avg_pool1d
248
281
 
249
282
  from mindspore.ops.functional import adaptive_avg_pool2d_ext as adaptive_avg_pool2d
283
+ from mindspore.ops.function.nn_func import cross_entropy_ext as cross_entropy
284
+ from mindspore.ops.function.nn_func import nll_loss_ext as nll_loss
285
+
286
+
287
+ def elu(input, alpha=1.0, inplace=False):
288
+ r"""
289
+ Exponential Linear Unit activation function
290
+
291
+ Applies the exponential linear unit function element-wise. The activation function is defined as:
292
+
293
+ .. math::
294
+ ELU_{i} =
295
+ \begin{cases}
296
+ x_i, &\text{if } x_i \geq 0; \cr
297
+ \alpha * (\exp(x_i) - 1), &\text{otherwise.}
298
+ \end{cases}
299
+
300
+ where :math:`x_i` represents the element of the input and :math:`\alpha` represents the `alpha` parameter, and
301
+ `alpha` represents the smoothness of the ELU.
302
+
303
+ ELU Activation Function Graph:
304
+
305
+ .. image:: ../images/ELU.png
306
+ :align: center
307
+
308
+ .. warning::
309
+ This is an experimental API that is subject to change or deletion.
310
+
311
+ Args:
312
+ input (Tensor): The input of ELU is a Tensor of any dimension.
313
+ alpha (float, optional): The alpha value of ELU, the data type is float. Default: ``1.0``.
314
+ inplace (bool, optional): Whether to use inplace mode, the data type is bool. Default: ``False``.
315
+
316
+ Returns:
317
+ Tensor, with the same shape and type as the `input`.
318
+
319
+ Raises:
320
+ RuntimeError: If the dtype of `input` is not float16, float32 or bfloat16.
321
+ TypeError: If the dtype of `alpha` is not float.
322
+
323
+ Supported Platforms:
324
+ ``Ascend``
325
+
326
+ Examples:
327
+ >>> import mindspore
328
+ >>> from mindspore import Tensor, mint
329
+ >>> import numpy as np
330
+ >>> input = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float32)
331
+ >>> output = mint.nn.functional.elu(input)
332
+ >>> print(output)
333
+ [-0.63212055 -0.86466473 0. 2. 1.]
334
+ """
335
+ if inplace:
336
+ return inplace_elu(input, alpha)
337
+ return elu_ext(input, alpha)
338
+
339
+
340
+ def elu_(input, alpha=1.0):
341
+ r"""
342
+ Exponential Linear Unit activation function
343
+
344
+ Applies the exponential linear unit function inplace element-wise. The activation function is defined as:
345
+
346
+ .. math::
347
+ ELU_{i} =
348
+ \begin{cases}
349
+ x_i, &\text{if } x_i \geq 0; \cr
350
+ \alpha * (\exp(x_i) - 1), &\text{otherwise.}
351
+ \end{cases}
352
+
353
+ where :math:`x_i` represents the element of the input and :math:`\alpha` represents the `alpha` parameter, and
354
+ `alpha` represents the smoothness of the ELU.
355
+
356
+ ELU Activation Function Graph:
357
+
358
+ .. image:: ../images/ELU.png
359
+ :align: center
360
+
361
+ .. warning::
362
+ This is an experimental API that is subject to change or deletion.
363
+
364
+ Args:
365
+ input (Tensor): The input of ELU is a Tensor of any dimension.
366
+ alpha (float, optional): The alpha value of ELU, the data type is float and `alpha` should be
367
+ greater than 0. Default: ``1.0``.
368
+
369
+ Returns:
370
+ Tensor, with the same shape and type as the `input`.
371
+
372
+ Raises:
373
+ RuntimeError: If the dtype of `input` is not float16, float32 or bfloat16.
374
+ TypeError: If the dtype of `alpha` is not float.
375
+
376
+ Supported Platforms:
377
+ ``Ascend``
378
+
379
+ Examples:
380
+ >>> import mindspore
381
+ >>> from mindspore import Tensor, mint
382
+ >>> import numpy as np
383
+ >>> input = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float32)
384
+ >>> mint.nn.functional.elu_(input)
385
+ >>> print(input)
386
+ [-0.63212055 -0.86466473 0. 2. 1.]
387
+ """
388
+ return inplace_elu(input, alpha)
389
+
390
+
391
+ def hardtanh(input, min_val=-1.0, max_val=1.0, inplace=False):
392
+ r"""
393
+ Applies the hardtanh activation function element-wise. The activation function is defined as:
394
+
395
+ .. math::
396
+ \text{hardtanh}(input) = \begin{cases}
397
+ max\_val, & \text{ if } input > max\_val \\
398
+ min\_val, & \text{ if } input < min\_val \\
399
+ input, & \text{ otherwise. }
400
+ \end{cases}
401
+
402
+ Linear region range :math:`[min\_val, max\_val]` can be adjusted using `min_val` and `max_val`.
403
+
404
+ Hardtanh Activation Function Graph:
405
+
406
+ .. image:: ../images/Hardtanh.png
407
+ :align: center
408
+
409
+ .. warning::
410
+ This is an experimental optimizer API that is subject to change.
411
+
412
+ Args:
413
+ input (Tensor): Input Tensor.
414
+ min_val (Union[bool, int, float], optional): Minimum value of the linear region range. Default: ``-1.0`` .
415
+ max_val (Union[bool, int, float], optional): Maximum value of the linear region range. Default: ``1.0`` .
416
+ inplace (bool, optional): Whether to apply erasing inplace. Default: ``False``.
417
+
418
+ Returns:
419
+ Tensor, with the same dtype and shape as `input`.
420
+
421
+ Raises:
422
+ TypeError: If `input` is not a Tensor.
423
+ TypeError: If dtype of `input` is not one of: int8, int16, int32, int64, uint8, float16, float32, bfloat16.
424
+ TypeError: If dtype of `min_val` is neither float nor int.
425
+ TypeError: If dtype of `max_val` is neither float nor int.
426
+
427
+ Supported Platforms:
428
+ ``Ascend``
429
+
430
+ Examples:
431
+ >>> import mindspore
432
+ >>> from mindspore import Tensor, mint
433
+ >>> x = Tensor([-1, -2, 0, 2, 1], mindspore.float16)
434
+ >>> output = mint.nn.functional.hardtanh(x, min_val=-1.0, max_val=1.0, inplace=False)
435
+ >>> print(output)
436
+ [-1. -1. 0. 1. 1.]
437
+ """
438
+ if inplace:
439
+ return hardtanh_(input, min_val, max_val)
440
+ return hardtanh_op(input, min_val, max_val)
441
+
442
+
443
+ def relu6(input, inplace=False):
444
+ r"""
445
+ Computes ReLU (Rectified Linear Unit) upper bounded by 6 of input tensors element-wise.
446
+
447
+ .. math::
448
+
449
+ \text{ReLU6}(input) = \min(\max(0,input), 6)
450
+
451
+ It returns :math:`\min(\max(0,input), 6)` element-wise.
452
+
453
+ ReLU6 Activation Function Graph:
454
+
455
+ .. image:: ../images/ReLU6.png
456
+ :align: center
457
+
458
+ .. warning::
459
+ This is an experimental optimizer API that is subject to change.
460
+
461
+ Args:
462
+ input (Tensor): input Tensor. Dtype is in int8, int16, int32, int64, uint8, float16, float32, bfloat16.
463
+ inplace (bool, optional): Whether to apply erasing inplace. Default: ``False``.
464
+
465
+ Returns:
466
+ Tensor, with the same dtype and shape as the `input`.
467
+
468
+ Raises:
469
+ TypeError: If `input` is not a Tensor.
470
+ TypeError: If dtype of `input` is not one of: int8, int16, int32, int64, uint8, float16, float32, bfloat16.
471
+
472
+ Supported Platforms:
473
+ ``Ascend``
474
+
475
+ Examples:
476
+ >>> import mindspore
477
+ >>> import numpy as np
478
+ >>> from mindspore import Tensor, mint
479
+ >>> x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
480
+ >>> result = mint.nn.functional.relu6(x)
481
+ >>> print(result)
482
+ [[0. 4. 0.]
483
+ [2. 0. 6.]]
484
+ """
485
+ if inplace:
486
+ return hardtanh_(input, 0, 6)
487
+ return hardtanh_op(input, 0, 6)
250
488
 
251
489
 
252
490
  def binary_cross_entropy(input, target, weight=None, reduction='mean'):
@@ -323,7 +561,7 @@ def binary_cross_entropy_with_logits(input, target, weight=None, reduction='mean
323
561
  r"""
324
562
  Adds sigmoid activation function to `input` as logits, and uses this logits to compute binary cross entropy
325
563
  between the logits and the target.
326
- Consistent with the function of `mindspore.ops.binary_cross_entropy_with_logits` .
564
+ Consistent with the function of :func:`mindspore.ops.binary_cross_entropy_with_logits` .
327
565
 
328
566
  Sets input `input` as :math:`X`, input `target` as :math:`Y`, input `weight` as :math:`W`, output as :math:`L`.
329
567
  Then,
@@ -424,8 +662,8 @@ def one_hot(tensor, num_classes=-1):
424
662
 
425
663
  Args:
426
664
  tensor (Tensor): A tensor of indices. Tensor of shape :math:`(X_0, \ldots, X_n)`.
427
- Data type must be int32 or int64.
428
- num_classes (int): A scalar defining the depth of the one-hot dimension, default: ``-1``.
665
+ Data type must be int32 or int64. Dimension cannot be greater than 7.
666
+ num_classes (int, optional): A scalar defining the depth of the one-hot dimension, default: ``-1``.
429
667
 
430
668
  Returns:
431
669
  Tensor, one-hot tensor.
@@ -453,6 +691,427 @@ def one_hot(tensor, num_classes=-1):
453
691
  return ops.function.array_func.one_hot_ext(tensor, num_classes)
454
692
 
455
693
 
694
+ def smooth_l1_loss(input, target, reduction='mean', beta=1.0):
695
+ r"""
696
+ Computes smooth L1 loss, a robust L1 loss.
697
+
698
+ SmoothL1Loss is a Loss similar to MSELoss but less sensitive to outliers as described in the
699
+ `Fast R-CNN <https://arxiv.org/abs/1504.08083>`_ by Ross Girshick.
700
+
701
+ Given two inputs :math:`x,\ y` of length :math:`N`, the SmoothL1Loss can be described
702
+ as follows:
703
+
704
+ .. math::
705
+ L_{i} =
706
+ \begin{cases}
707
+ \frac{0.5 (x_i - y_i)^{2}}{\text{beta}}, & \text{if } |x_i - y_i| < \text{beta} \\
708
+ |x_i - y_i| - 0.5 * \text{beta}, & \text{otherwise. }
709
+ \end{cases}
710
+
711
+ If `reduction` is not `none`, then:
712
+
713
+ .. math::
714
+ L =
715
+ \begin{cases}
716
+ \operatorname{mean}(L_{i}), & \text{if reduction} = \text{'mean';}\\
717
+ \operatorname{sum}(L_{i}), & \text{if reduction} = \text{'sum'.}
718
+ \end{cases}
719
+
720
+ Here :math:`\text{beta}` controls the point where the loss function changes from quadratic to linear.
721
+ :math:`\text{beta} \geq 0` , its default value is ``1.0`` . :math:`N` is the batch size.
722
+
723
+ .. warning::
724
+ This is an experimental optimizer API that is subject to change.
725
+
726
+ Note:
727
+ - Arg `input` and `target` comply with the implicit type conversion rules to make the data types consistent.
728
+ If they have different data types, the lower precision data type will be converted to relatively the
729
+ highest precision data type.
730
+
731
+ Args:
732
+ input (Tensor): Tensor of shape :math:`(N, *)` where :math:`*` means, any number of additional dimensions.
733
+ Supported dtypes:
734
+
735
+ - Ascend: float16, float32, bfloat16.
736
+
737
+ target (Tensor): Ground truth data, tensor of shape :math:`(N, *)`, same shape as the `input`.
738
+ Supported dtypes:
739
+
740
+ - Ascend: float16, float32, bfloat16.
741
+
742
+ reduction (str, optional): Apply specific reduction method to the output: ``'none'`` , ``'mean'`` ,
743
+ ``'sum'`` . Default: ``'mean'`` .
744
+
745
+ - ``'none'``: no reduction will be applied.
746
+ - ``'mean'``: compute the mean of elements in the output.
747
+ - ``'sum'``: the output elements will be summed.
748
+ beta (number, optional): A parameter used to control the point where the function will change between
749
+ L1 to L2 loss. The value should be greater than or equal to zero. Default: ``1.0`` .
750
+
751
+ Returns:
752
+ Tensor, the data type is the same as `input`.
753
+ If `reduction` is ``'none'``, then output is a tensor with the same shape as `input`.
754
+ Otherwise, the shape of output tensor is :math:`()`.
755
+
756
+ Raises:
757
+ TypeError: If `input` or `target` is not a Tensor.
758
+ RuntimeError: If dtype of `input` or `target` is not one of float16, float32, bfloat16.
759
+ ValueError: If shape of `input` is not the same as `target`.
760
+ ValueError: If `reduction` is not one of ``'none'``, ``'mean'``, ``'sum'``.
761
+ TypeError: If `beta` is not a float, int or bool.
762
+ RuntimeError: If `beta` is less than 0.
763
+
764
+ Supported Platforms:
765
+ ``Ascend``
766
+
767
+ Examples:
768
+ >>> import mindspore
769
+ >>> import numpy as np
770
+ >>> from mindspore import Tensor, ops
771
+ >>> input = Tensor(np.array([2, 2, 3]), mindspore.float32)
772
+ >>> target = Tensor(np.array([2, 2, 2]), mindspore.float32)
773
+ >>> beta = 1.0
774
+ >>> reduction_1 = 'none'
775
+ >>> output = ops.nn.functional.smooth_l1_loss(input, target, reduction_1, beta)
776
+ >>> print(output)
777
+ [0. 0. 0.5]
778
+ >>> reduction_2 = 'mean'
779
+ >>> output = ops.nn.functional.smooth_l1_loss(input, target, reduction_2, beta)
780
+ >>> print(output)
781
+ 0.16666667
782
+ >>> reduction_3 = 'sum'
783
+ >>> output = ops.nn.functional.smooth_l1_loss(input, target, reduction_3, beta)
784
+ >>> print(output)
785
+ 0.5
786
+ """
787
+ return ops.function.smooth_l1_loss(input, target, beta, reduction)
788
+
789
+
790
+ @constexpr
791
+ def log_warning(msg):
792
+ """Adds warning to logger."""
793
+ logger.warning(msg)
794
+
795
+
796
+ def dropout2d(input, p=0.5, training=True):
797
+ r"""
798
+ During training, randomly zeroes some channels of the input tensor with probability `p`
799
+ from a Bernoulli distribution (For a 4-dimensional tensor with a shape of :math:`(N, C, H, W)`,
800
+ the channel feature map refers to a 2-dimensional feature map with the shape of :math:`(H, W)`).
801
+
802
+ For example, the :math:`j\_th` channel of the :math:`i\_th` sample in the batched input is a to-be-processed
803
+ `2D` tensor input[i,j].
804
+ Each channel will be zeroed out independently on every forward call which based on Bernoulli distribution
805
+ probability `p`.
806
+ The parper `Dropout: A Simple Way to Prevent Neural Networks from Overfitting
807
+ <http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf>`_ mentioned this technology, and it is proved that
808
+ it can effectively reduce over fitting and prevent neuronal coadaptation.
809
+ For more details, refer to `Improving neural networks by preventing co-adaptation of feature detectors
810
+ <https://arxiv.org/pdf/1207.0580.pdf>`_ .
811
+
812
+ `dropout2d` can improve the independence between channel feature maps.
813
+
814
+ .. warning::
815
+ This is an experimental API that is subject to change or deletion.
816
+
817
+ Args:
818
+ input (Tensor): A `4D` tensor with shape :math:`(N, C, H, W)`, where `N` is the batch size, `C` is the number
819
+ of channels, `H` is the feature height, and `W` is the feature width.
820
+ p (float, optional): The dropping probability of a channel, between 0 and 1, e.g. `p` = 0.8,
821
+ which means dropping out 80% of channels. Default: ``0.5`` .
822
+ training(bool, optional): If `training` is True, applying dropout, otherwise, not applying. Default: ``True`` .
823
+
824
+ Returns:
825
+ Tensor, output, with the same shape and data type as `input`.
826
+
827
+ Raises:
828
+ TypeError: If `input` is not a Tensor.
829
+ TypeError: If the data type of `p` is not float.
830
+ ValueError: If `p` is out of the range `[0.0, 1.0]`.
831
+
832
+ Supported Platforms:
833
+ ``Ascend``
834
+
835
+ Examples:
836
+ >>> import mindspore
837
+ >>> import numpy as np
838
+ >>> from mindspore import Tensor, mint
839
+ >>> input = Tensor(np.ones([2, 1, 2, 3]), mindspore.float32)
840
+ >>> output = mint.nn.functional.dropout2d(input, 0.5)
841
+ >>> print(output.shape)
842
+ (2, 1, 2, 3)
843
+ """
844
+ def dropout2d_impl_(input, p, training):
845
+ if p == 0 or not training or input.numel() == 0:
846
+ return input
847
+
848
+ if p == 1:
849
+ return mint.mul(input, mint.zeros((), dtype=input.dtype))
850
+
851
+ if input.ndim < 2:
852
+ raise ValueError(f'For dropout2d, input size after unsqueeze must be greater or equal to 2')
853
+
854
+ if ops.is_sequence_shape_unknown(input.shape):
855
+ input_tensor_shape = ops.TensorShape()(input)
856
+ nosie_tensor_shape = mint.ones_like(input_tensor_shape)
857
+ nosie_tensor_shape[0] = input_tensor_shape[0]
858
+ nosie_tensor_shape[1] = input_tensor_shape[1]
859
+ nosie_shape = ops.TensorToTuple()(nosie_tensor_shape)
860
+ else:
861
+ nosie_shape = input.shape[:2] + tuple(1 for _ in range(len(input.shape) - 2))
862
+ nosie = mint.full(nosie_shape, 1 - p, dtype=input.dtype)
863
+ nosie = mint.bernoulli(nosie)
864
+ nosie = mint.div(nosie, 1 - p)
865
+
866
+ return mint.mul(input, nosie)
867
+
868
+ validator.check_float_range(p, 0.0, 1.0, validator.INC_BOTH, "p", "dropout2d")
869
+ validator.check_bool(training, "training", "dropout2d")
870
+
871
+ if input.ndim not in (3, 4):
872
+ log_warning(f"dropout2d receviced a {input.ndim}-D input which is not recommended. Please use dropout instead.")
873
+
874
+ is_batched = input.ndim == 4
875
+ if not is_batched:
876
+ input_shape = input.shape
877
+ if ops.is_sequence_shape_unknown(input.shape):
878
+ input_shape = ops.TensorToTuple()(ops.TensorShape()(input))
879
+ input = input.reshape((1, *input_shape))
880
+ result = dropout2d_impl_(input, p, training)
881
+ result = result.reshape(input_shape)
882
+ else:
883
+ result = dropout2d_impl_(input, p, training)
884
+
885
+ return result
886
+
887
+
888
+ def normalize(input, p=2.0, dim=1, eps=1e-12):
889
+ r"""
890
+ Perform normalization of inputs over specified dimension
891
+
892
+ For a tensor input of sizes :math:`(n_{0},..., n_{dim},..., n_{k})`, each :math:`n_{dim}` -element vector `v`
893
+ along dimension `dim` is transformed as
894
+
895
+ .. math::
896
+ v=\frac{v}{\max(\left \| v \right \| _{p},\in )}
897
+
898
+ With the default arguments it uses the Euclidean norm over vectors along dimension ``1`` for normalization.
899
+
900
+ .. warning::
901
+ This is an experimental API that is subject to change or deletion.
902
+
903
+ Args:
904
+ input (Tensor): input tensor of any shape.
905
+ p (float): the exponent value in the norm formulation. default: ``2``.
906
+ dim (int): the dimension to reduce. default: ``1``.
907
+ eps (float): small value to avoid division by zero. default: ``1e-12``.
908
+
909
+ Returns:
910
+ Tensor, shape and data type are the same as input.
911
+
912
+ Supported Platforms:
913
+ ``Ascend``
914
+
915
+ Examples:
916
+ >>> import mindspore
917
+ >>> import numpy as np
918
+ >>> from mindspore import Tensor, mint
919
+ >>> tensor = Tensor(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]), mindspore.float32)
920
+ >>> output = mint.nn.functional.normalize(tensor)
921
+ >>> print(output)
922
+ [[0.0000 0.4472 0.8944]
923
+ [0.4243 0.5657 0.7071]
924
+ [0.4915 0.5735 0.6554]]
925
+ """
926
+ denom = broadcast_to(clamp(norm_ext(input, p, dim, keepdim=True), min=eps), input.shape)
927
+ return input / denom
928
+
929
+
930
+ def upsample(input, size=None, scale_factor=None, mode="nearest", align_corners=None):
931
+ r"""
932
+ Samples `input` by the given `size` or `scale_factor`.
933
+
934
+ .. warning::
935
+ This is an experimental API that is subject to change or deletion.
936
+
937
+ Refer to :func:`mindspore.mint.nn.functional.interpolate` for more details.
938
+
939
+ Supported Platforms:
940
+ ``Ascend``
941
+ """
942
+ return interpolate(input, size, scale_factor, mode, align_corners)
943
+
944
+
945
+ def threshold(input, threshold, value, inplace=False): # pylint: disable=W0621
946
+ r"""
947
+ Compute the Threshold activation function element-wise.
948
+
949
+ The Threshold is defined as:
950
+
951
+ .. math::
952
+ y =
953
+ \begin{cases}
954
+ x, &\text{ if } x > \text{threshold} \\
955
+ \text{value}, &\text{ otherwise }
956
+ \end{cases}
957
+
958
+ .. warning::
959
+ This is an experimental API that is subject to change or deletion.
960
+
961
+ Args:
962
+ input (Tensor): The input Tensor.
963
+ threshold (Union[int, float]): The value of the threshold.
964
+ value (Union[int, float]): The value to replace with when element is less than threshold.
965
+ inplace (bool, optional): Whether to apply erasing inplace. Default: ``False``.
966
+
967
+ Returns:
968
+ Tensor, the same shape and data type as the input.
969
+
970
+ Raises:
971
+ TypeError: If `input` is not a Tensor.
972
+ TypeError: If `threshold` is not a float or an int.
973
+ TypeError: If `value` is not a float or an int.
974
+
975
+ Supported Platforms:
976
+ ``Ascend``
977
+
978
+ Examples:
979
+ >>> import mindspore
980
+ >>> from mindspore import Tensor, mint
981
+ >>> inputs = mindspore.Tensor([0.0, 2, 3], mindspore.float32)
982
+ >>> outputs = mint.nn.functional.threshold(inputs, 1, 100)
983
+ >>> print(outputs)
984
+ [100. 2. 3.]
985
+ """
986
+ if inplace is True:
987
+ return threshold_(input, threshold, value)
988
+ return threshold_op(input, threshold, value)
989
+
990
+
991
+ def adaptive_avg_pool3d(input, output_size):
992
+ r"""
993
+ Performs 3D adaptive average pooling on a multi-plane input signal.
994
+ That is, for any input size, the size of the specified output is :math:`(D, H, W)`.
995
+ The number of output features is equal to the number of input planes.
996
+
997
+ Suppose the last 3 dimension size of x is :math:`(D_{in}, H_{in}, W_{in})`, the last 3 dimension size of output is
998
+ :math:`(D_{out}, H_{out}, W_{out})`.
999
+
1000
+ .. math::
1001
+ \begin{array}{ll} \\
1002
+ \forall \quad od \in [0, D_{out}-1], oh \in [0, H_{out}-1], ow \in [0, W_{out}-1] \\
1003
+ output[od,oh,ow] = \\
1004
+ \qquad mean(x[D_{istart}:D_{iend}+1,H_{istart}:H_{iend}+1,W_{istart}:W_{iend}+1]) \\
1005
+ where, \\
1006
+ \qquad D_{istart}= \left\lceil \frac{od * D_{in}}{D_{out}} \right\rceil \\
1007
+ \qquad D_{iend}=\left\lfloor \frac{(od+1)* D_{in}}{D_{out}} \right\rfloor \\
1008
+ \qquad H_{istart}=\left\lceil \frac{oh * H_{in}}{H_{out}} \right\rceil \\
1009
+ \qquad H_{iend}=\left\lfloor \frac{(oh+1) * H_{in}}{H_{out}} \right\rfloor \\
1010
+ \qquad W_{istart}=\left\lceil \frac{ow * W_{in}}{W_{out}} \right\rceil \\
1011
+ \qquad W_{iend}=\left\lfloor \frac{(ow+1) * W_{in}}{W_{out}} \right\rfloor
1012
+ \end{array}
1013
+
1014
+ .. warning::
1015
+ For Ascend, it is only supported on Atlas A2 Training Series Products.
1016
+ This is an experimental optimizer API that is subject to change or deletion.
1017
+
1018
+ Args:
1019
+ input (Tensor): The input of adaptive_avg_pool3d, which is a 4D or 5D Tensor.
1020
+ output_size (Union[int, tuple]): The target output size. `output_size` can be a tuple :math:`(D, H, W)`,
1021
+ or an int D for :math:`(D, D, D)`. :math:`D`, :math:`H` and :math:`W` can be int or None
1022
+ which means the output size is the same as that of the input.
1023
+
1024
+ Returns:
1025
+ Tensor, with the same type as the `input`.
1026
+
1027
+ Raises:
1028
+ TypeError: If `input` is not a Tensor.
1029
+ ValueError: If the dimension of `input` is not 4D or 5D.
1030
+ ValueError: If `output_size` value is not positive.
1031
+
1032
+ Supported Platforms:
1033
+ ``Ascend``
1034
+
1035
+ Examples:
1036
+ >>> import mindspore
1037
+ >>> import numpy as np
1038
+ >>> from mindspore import Tensor, mint
1039
+ >>> # case 1: output_size=(3, 3, 4)
1040
+ >>> output_size=(3, 3, 4)
1041
+ >>> input_val = np.random.randn(4, 3, 5, 6, 7)
1042
+ >>> input = Tensor(input_val, mindspore.float32)
1043
+ >>> output = mint.nn.functional.adaptive_avg_pool3d(input, output_size)
1044
+ >>> print(output.shape)
1045
+ (4, 3, 3, 3, 4)
1046
+ >>> # case 2: output_size=4
1047
+ >>> output_size=5
1048
+ >>> input_val = np.random.randn(2, 3, 8, 6, 12)
1049
+ >>> input = Tensor(input_val, mindspore.float32)
1050
+ >>> output = mint.nn.functional.adaptive_avg_pool3d(input, output_size)
1051
+ >>> print(output.shape)
1052
+ (2, 3, 5, 5, 5)
1053
+ >>> # case 3: output_size=(None, 4, 5)
1054
+ >>> output_size=(None, 4, 5)
1055
+ >>> input_val = np.random.randn(4, 1, 9, 10, 8)
1056
+ >>> input = Tensor(input_val, mindspore.float32)
1057
+ >>> output = mint.nn.functional.adaptive_avg_pool3d(input, output_size)
1058
+ >>> print(output.shape)
1059
+ (4, 1, 9, 4, 5)
1060
+ """
1061
+ validator.check_value_type("output_size", output_size, [int, tuple, list], "adaptive_avg_pool3d")
1062
+ if isinstance(output_size, int):
1063
+ output_size = (output_size, output_size, output_size)
1064
+ output_size = tuple(-1 if val is None else val for val in output_size)
1065
+ return adaptive_avg_pool3d_ext(input, output_size)
1066
+
1067
+
1068
+ def adaptive_max_pool1d(input, output_size, return_indices=False):
1069
+ r"""
1070
+ Performs 1D adaptive max pooling on a multi-plane input signal.
1071
+ That is, for any input size, the size of the specified output is L.
1072
+ The number of output features is equal to the number of input features.
1073
+
1074
+ .. warning::
1075
+ This is an experimental API that is subject to change or deletion.
1076
+
1077
+ Args:
1078
+ input (Tensor): The input of adaptive_max_pool1d, which is a 2D or 3D tensor,
1079
+ with float16, float32 or float64 data type.
1080
+ output_size (int): The target output feature size. `output_size` is an integer.
1081
+ return_indices (bool, optional): Whether to return the index of the maximum value. Default: ``False`` .
1082
+
1083
+ Returns:
1084
+ Union(Tensor, tuple(Tensor, Tensor)).
1085
+
1086
+ - If `return_indices` is False, output is a Tensor, with shape :math:`(N, C, L_{out})`. It has the same data
1087
+ type as `input`.
1088
+ - If `return_indices` is True, output is a Tuple of 2 Tensors, representing the result and where the max
1089
+ values are generated.
1090
+
1091
+ Raises:
1092
+ TypeError: If `input` is not a tensor.
1093
+ TypeError: If dtype of `input` is not float16, float32 or float64.
1094
+ TypeError: If `output_size` is not int or tuple.
1095
+ TypeError: If `return_indices` is not a bool.
1096
+ ValueError: If `output_size` is a tuple and the length of `output_size` is not 1.
1097
+
1098
+ Supported Platforms:
1099
+ ``Ascend``
1100
+
1101
+ Examples:
1102
+ >>> import mindspore
1103
+ >>> from mindspore import Tensor, mint
1104
+ >>> input = Tensor([[2,3],[3,4]],dtype=mindspore.float16)
1105
+ >>> output = mint.nn.functional.adaptive_max_pool1d(input, 3)
1106
+ >>> print(output)
1107
+ [[2. 3. 3. ]
1108
+ [3. 4. 4. ]]
1109
+ """
1110
+ if return_indices:
1111
+ return ops.auto_generate.gen_ops_prim.adaptive_max_pool1d_op(input, output_size)
1112
+ return ops.auto_generate.gen_ops_prim.adaptive_max_pool1d_op(input, output_size)[0]
1113
+
1114
+
456
1115
  __all__ = [
457
1116
  'conv_transpose2d',
458
1117
  'max_pool2d',
@@ -473,11 +1132,14 @@ __all__ = [
473
1132
  # 8
474
1133
  'layer_norm',
475
1134
  # 9
476
-
1135
+ 'upsample',
477
1136
  # 10
478
1137
 
479
1138
  # 11
480
1139
  'relu',
1140
+
1141
+ 'relu_',
1142
+
481
1143
  # 12
482
1144
 
483
1145
  # 13
@@ -485,7 +1147,8 @@ __all__ = [
485
1147
  # 14
486
1148
  'dropout',
487
1149
  # 15
488
-
1150
+ 'conv1d',
1151
+ 'conv2d',
489
1152
  # 16
490
1153
  'log_softmax',
491
1154
  # 17
@@ -495,9 +1158,10 @@ __all__ = [
495
1158
  # 19
496
1159
  'binary_cross_entropy',
497
1160
  # 20
498
-
1161
+ 'cross_entropy',
499
1162
  # 21
500
-
1163
+ 'conv3d',
1164
+ 'nll_loss',
501
1165
  # 22
502
1166
 
503
1167
  # 23
@@ -543,7 +1207,7 @@ __all__ = [
543
1207
  # 43
544
1208
 
545
1209
  # 44
546
-
1210
+ 'soft_margin_loss',
547
1211
  # 45
548
1212
 
549
1213
  # 46
@@ -563,7 +1227,7 @@ __all__ = [
563
1227
  # 53
564
1228
 
565
1229
  # 54
566
-
1230
+ 'pixel_shuffle',
567
1231
  # 55
568
1232
 
569
1233
  # 56
@@ -631,9 +1295,9 @@ __all__ = [
631
1295
  # 87
632
1296
 
633
1297
  # 88
634
-
1298
+ 'avg_pool3d',
635
1299
  # 89
636
-
1300
+ 'avg_pool1d',
637
1301
  # 90
638
1302
  'avg_pool2d',
639
1303
  # 91
@@ -656,17 +1320,32 @@ __all__ = [
656
1320
 
657
1321
  # 100
658
1322
 
1323
+ # 152
1324
+ 'adaptive_avg_pool3d',
1325
+ # 254
1326
+ 'max_unpool2d',
1327
+ # 256
1328
+ 'threshold',
1329
+ 'threshold_',
1330
+
1331
+ # 288
1332
+ 'adaptive_max_pool2d',
1333
+
1334
+ # 312
1335
+ 'normalize',
1336
+
659
1337
  # 323
660
1338
 
661
1339
  # 324
662
1340
  'elu',
1341
+ 'elu_',
663
1342
  # 325
664
1343
 
665
1344
  #556
666
1345
  'logsigmoid',
667
1346
 
668
1347
  # 257
669
-
1348
+ 'adaptive_max_pool1d',
670
1349
  # 258
671
1350
  'mse_loss',
672
1351
  # 259
@@ -675,5 +1354,19 @@ __all__ = [
675
1354
 
676
1355
  'adaptive_avg_pool2d',
677
1356
 
678
-
1357
+ # 350
1358
+ 'conv1d',
1359
+
1360
+ # 393
1361
+ 'dropout2d',
1362
+ # 421
1363
+ 'flatten',
1364
+ # 536
1365
+ 'glu',
1366
+ # 537
1367
+ 'hardtanh',
1368
+ 'hardtanh_',
1369
+ 'relu6',
1370
+ # 548
1371
+ 'kl_div',
679
1372
  ]