mindspore 2.4.10__cp310-cp310-win_amd64.whl → 2.6.0rc1__cp310-cp310-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (602) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/Microsoft.VisualStudio.Telemetry.dll +0 -0
  3. mindspore/Newtonsoft.Json.dll +0 -0
  4. mindspore/__init__.py +13 -6
  5. mindspore/_c_dataengine.cp310-win_amd64.pyd +0 -0
  6. mindspore/_c_expression.cp310-win_amd64.pyd +0 -0
  7. mindspore/_c_mindrecord.cp310-win_amd64.pyd +0 -0
  8. mindspore/_check_jit_forbidden_api.py +3 -0
  9. mindspore/_checkparam.py +3 -38
  10. mindspore/_deprecated/__init__.py +17 -0
  11. mindspore/_deprecated/jit.py +198 -0
  12. mindspore/_extends/builtin_operations.py +1 -1
  13. mindspore/_extends/parallel_compile/akg_compiler/gen_custom_op_files.py +1 -1
  14. mindspore/_extends/parse/__init__.py +6 -7
  15. mindspore/_extends/parse/compile_config.py +83 -0
  16. mindspore/_extends/parse/deprecated/__init__.py +0 -0
  17. mindspore/_extends/parse/deprecated/deprecated_tensor_method.py +394 -0
  18. mindspore/_extends/parse/jit_fallback_modules/__init__.py +0 -0
  19. mindspore/_extends/parse/jit_fallback_modules/check_utils.py +123 -0
  20. mindspore/_extends/parse/jit_fallback_modules/third_party_modules.py +50 -0
  21. mindspore/_extends/parse/parser.py +46 -197
  22. mindspore/_extends/parse/resources.py +1 -5
  23. mindspore/_extends/parse/standard_method.py +217 -98
  24. mindspore/_extends/pijit/__init__.py +2 -2
  25. mindspore/_extends/pijit/pijit_func_white_list.py +17 -12
  26. mindspore/_extends/pijit/tensor_func_list.py +27 -0
  27. mindspore/_extends/utils.py +1 -1
  28. mindspore/amp.py +11 -5
  29. mindspore/atlprov.dll +0 -0
  30. mindspore/avcodec-59.dll +0 -0
  31. mindspore/avdevice-59.dll +0 -0
  32. mindspore/avfilter-8.dll +0 -0
  33. mindspore/avformat-59.dll +0 -0
  34. mindspore/avutil-57.dll +0 -0
  35. mindspore/boost/__init__.py +2 -2
  36. mindspore/boost/base.py +3 -7
  37. mindspore/boost/boost_cell_wrapper.py +138 -43
  38. mindspore/c1.dll +0 -0
  39. mindspore/c1xx.dll +0 -0
  40. mindspore/c2.dll +0 -0
  41. mindspore/common/__init__.py +6 -3
  42. mindspore/common/_grad_function.py +56 -0
  43. mindspore/common/_pijit_context.py +14 -5
  44. mindspore/common/_register_for_tensor.py +1 -2
  45. mindspore/common/_stub_tensor.py +30 -14
  46. mindspore/common/_tensor_cpp_method.py +17 -0
  47. mindspore/common/_tensor_docs.py +4760 -0
  48. mindspore/common/api.py +435 -371
  49. mindspore/common/auto_dynamic_shape.py +41 -44
  50. mindspore/common/dtype.py +39 -36
  51. mindspore/common/dump.py +9 -6
  52. mindspore/common/file_system.py +9 -1
  53. mindspore/common/generator.py +2 -0
  54. mindspore/common/hook_handle.py +6 -2
  55. mindspore/common/initializer.py +13 -10
  56. mindspore/common/jit_begin_end.py +94 -0
  57. mindspore/common/jit_config.py +6 -1
  58. mindspore/common/jit_context.py +76 -0
  59. mindspore/common/jit_trace.py +378 -0
  60. mindspore/common/lazy_inline.py +9 -3
  61. mindspore/common/mindir_util.py +10 -2
  62. mindspore/common/mutable.py +5 -4
  63. mindspore/common/parameter.py +135 -52
  64. mindspore/common/seed.py +2 -2
  65. mindspore/common/sparse_tensor.py +23 -17
  66. mindspore/common/tensor.py +951 -1992
  67. mindspore/communication/__init__.py +7 -5
  68. mindspore/communication/_comm_helper.py +52 -2
  69. mindspore/communication/comm_func.py +240 -181
  70. mindspore/communication/management.py +95 -26
  71. mindspore/context.py +314 -566
  72. mindspore/dataset/__init__.py +65 -37
  73. mindspore/dataset/audio/__init__.py +2 -8
  74. mindspore/dataset/audio/transforms.py +3 -17
  75. mindspore/dataset/callback/ds_callback.py +2 -1
  76. mindspore/dataset/core/config.py +87 -6
  77. mindspore/dataset/engine/cache_admin.py +3 -3
  78. mindspore/dataset/engine/cache_client.py +6 -5
  79. mindspore/dataset/engine/datasets.py +292 -267
  80. mindspore/dataset/engine/datasets_audio.py +22 -8
  81. mindspore/dataset/engine/datasets_standard_format.py +46 -27
  82. mindspore/dataset/engine/datasets_text.py +78 -48
  83. mindspore/dataset/engine/datasets_user_defined.py +182 -116
  84. mindspore/dataset/engine/datasets_vision.py +120 -44
  85. mindspore/dataset/engine/iterators.py +283 -63
  86. mindspore/dataset/engine/obs/obs_mindrecord_dataset.py +1 -1
  87. mindspore/dataset/engine/obs/util.py +8 -0
  88. mindspore/dataset/engine/queue.py +40 -0
  89. mindspore/dataset/engine/samplers.py +289 -43
  90. mindspore/dataset/engine/serializer_deserializer.py +3 -2
  91. mindspore/dataset/engine/validators.py +53 -11
  92. mindspore/dataset/text/__init__.py +7 -6
  93. mindspore/dataset/text/transforms.py +6 -5
  94. mindspore/dataset/text/utils.py +3 -3
  95. mindspore/dataset/transforms/__init__.py +0 -9
  96. mindspore/dataset/transforms/py_transforms_util.py +17 -0
  97. mindspore/dataset/transforms/transforms.py +31 -14
  98. mindspore/dataset/utils/browse_dataset.py +1 -1
  99. mindspore/dataset/vision/__init__.py +2 -9
  100. mindspore/dataset/vision/transforms.py +202 -158
  101. mindspore/dataset/vision/utils.py +7 -5
  102. mindspore/dataset/vision/validators.py +1 -2
  103. mindspore/device_context/__init__.py +21 -0
  104. mindspore/device_context/ascend/__init__.py +25 -0
  105. mindspore/device_context/ascend/device.py +72 -0
  106. mindspore/device_context/ascend/op_debug.py +153 -0
  107. mindspore/device_context/ascend/op_precision.py +193 -0
  108. mindspore/device_context/ascend/op_tuning.py +123 -0
  109. mindspore/{ops_generate/gen_constants.py → device_context/cpu/__init__.py} +6 -17
  110. mindspore/device_context/cpu/device.py +62 -0
  111. mindspore/device_context/cpu/op_tuning.py +43 -0
  112. mindspore/device_context/gpu/__init__.py +21 -0
  113. mindspore/device_context/gpu/device.py +70 -0
  114. mindspore/device_context/gpu/op_precision.py +67 -0
  115. mindspore/device_context/gpu/op_tuning.py +175 -0
  116. mindspore/device_manager.py +170 -0
  117. mindspore/dnnl.dll +0 -0
  118. mindspore/dpcmi.dll +0 -0
  119. mindspore/experimental/es/embedding_service.py +35 -27
  120. mindspore/experimental/llm_boost/__init__.py +1 -0
  121. mindspore/experimental/llm_boost/ascend_native/__init__.py +22 -0
  122. mindspore/experimental/llm_boost/ascend_native/llama_boost_ascend_native.py +211 -0
  123. mindspore/experimental/llm_boost/ascend_native/llm_boost.py +52 -0
  124. mindspore/experimental/llm_boost/atb/boost_base.py +2 -3
  125. mindspore/experimental/llm_boost/atb/llama_boost.py +6 -1
  126. mindspore/experimental/llm_boost/register.py +1 -0
  127. mindspore/experimental/map_parameter.py +4 -4
  128. mindspore/experimental/optim/adadelta.py +6 -6
  129. mindspore/experimental/optim/adagrad.py +4 -4
  130. mindspore/experimental/optim/adam.py +7 -0
  131. mindspore/experimental/optim/adamax.py +4 -4
  132. mindspore/experimental/optim/adamw.py +4 -0
  133. mindspore/experimental/optim/asgd.py +1 -1
  134. mindspore/experimental/optim/lr_scheduler.py +73 -46
  135. mindspore/experimental/optim/radam.py +34 -31
  136. mindspore/experimental/optim/rprop.py +1 -1
  137. mindspore/experimental/optim/sgd.py +1 -1
  138. mindspore/hal/contiguous_tensors_handle.py +6 -10
  139. mindspore/hal/device.py +55 -53
  140. mindspore/hal/event.py +52 -52
  141. mindspore/hal/memory.py +157 -117
  142. mindspore/hal/stream.py +150 -109
  143. mindspore/include/api/context.h +0 -1
  144. mindspore/include/dataset/constants.h +7 -4
  145. mindspore/include/dataset/execute.h +2 -2
  146. mindspore/jpeg62.dll +0 -0
  147. mindspore/log.py +50 -0
  148. mindspore/mindrecord/__init__.py +21 -8
  149. mindspore/mindrecord/config.py +17 -316
  150. mindspore/mindrecord/filereader.py +1 -9
  151. mindspore/mindrecord/filewriter.py +5 -15
  152. mindspore/mindrecord/mindpage.py +1 -9
  153. mindspore/mindspore_backend_common.dll +0 -0
  154. mindspore/mindspore_backend_manager.dll +0 -0
  155. mindspore/mindspore_common.dll +0 -0
  156. mindspore/mindspore_core.dll +0 -0
  157. mindspore/mindspore_dump.dll +0 -0
  158. mindspore/mindspore_frontend.dll +0 -0
  159. mindspore/mindspore_glog.dll +0 -0
  160. mindspore/mindspore_memory_pool.dll +0 -0
  161. mindspore/mindspore_ms_backend.dll +0 -0
  162. mindspore/mindspore_ops.dll +0 -0
  163. mindspore/{mindspore_backend.dll → mindspore_ops_host.dll} +0 -0
  164. mindspore/mindspore_ops_kernel_common.dll +0 -0
  165. mindspore/mindspore_profiler.dll +0 -0
  166. mindspore/mindspore_pyboost.dll +0 -0
  167. mindspore/mindspore_pynative.dll +0 -0
  168. mindspore/mindspore_res_manager.dll +0 -0
  169. mindspore/mindspore_runtime_pipeline.dll +0 -0
  170. mindspore/mint/__init__.py +796 -759
  171. mindspore/mint/distributed/__init__.py +70 -4
  172. mindspore/mint/distributed/distributed.py +2679 -44
  173. mindspore/mint/linalg/__init__.py +8 -0
  174. mindspore/mint/nn/__init__.py +743 -22
  175. mindspore/mint/nn/functional.py +716 -23
  176. mindspore/mint/nn/layer/__init__.py +21 -4
  177. mindspore/mint/nn/layer/_functions.py +334 -0
  178. mindspore/mint/nn/layer/activation.py +276 -1
  179. mindspore/mint/nn/layer/basic.py +123 -0
  180. mindspore/mint/nn/layer/conv.py +921 -0
  181. mindspore/mint/nn/layer/normalization.py +223 -28
  182. mindspore/mint/nn/layer/padding.py +797 -0
  183. mindspore/mint/nn/layer/pooling.py +235 -0
  184. mindspore/mint/optim/__init__.py +3 -1
  185. mindspore/mint/optim/adam.py +223 -0
  186. mindspore/mint/optim/adamw.py +26 -19
  187. mindspore/mint/optim/sgd.py +171 -0
  188. mindspore/mint/special/__init__.py +2 -1
  189. mindspore/msobj140.dll +0 -0
  190. mindspore/mspdb140.dll +0 -0
  191. mindspore/mspdbcore.dll +0 -0
  192. mindspore/mspdbst.dll +0 -0
  193. mindspore/mspft140.dll +0 -0
  194. mindspore/msvcdis140.dll +0 -0
  195. mindspore/msvcp140_1.dll +0 -0
  196. mindspore/msvcp140_2.dll +0 -0
  197. mindspore/msvcp140_atomic_wait.dll +0 -0
  198. mindspore/msvcp140_codecvt_ids.dll +0 -0
  199. mindspore/multiprocessing/__init__.py +5 -0
  200. mindspore/nn/__init__.py +4 -1
  201. mindspore/nn/cell.py +1370 -189
  202. mindspore/nn/dynamic_lr.py +2 -1
  203. mindspore/nn/layer/activation.py +29 -27
  204. mindspore/nn/layer/basic.py +51 -35
  205. mindspore/nn/layer/channel_shuffle.py +3 -3
  206. mindspore/nn/layer/container.py +1 -1
  207. mindspore/nn/layer/conv.py +22 -17
  208. mindspore/nn/layer/embedding.py +12 -11
  209. mindspore/nn/layer/normalization.py +56 -49
  210. mindspore/nn/layer/padding.py +4 -3
  211. mindspore/nn/layer/pooling.py +120 -42
  212. mindspore/nn/layer/rnn_cells.py +1 -1
  213. mindspore/nn/layer/rnns.py +2 -1
  214. mindspore/nn/layer/timedistributed.py +5 -5
  215. mindspore/nn/layer/transformer.py +59 -36
  216. mindspore/nn/learning_rate_schedule.py +8 -4
  217. mindspore/nn/loss/loss.py +58 -55
  218. mindspore/nn/optim/ada_grad.py +7 -5
  219. mindspore/nn/optim/adadelta.py +11 -9
  220. mindspore/nn/optim/adafactor.py +1 -1
  221. mindspore/nn/optim/adam.py +17 -13
  222. mindspore/nn/optim/adamax.py +8 -7
  223. mindspore/nn/optim/adasum.py +5 -5
  224. mindspore/nn/optim/asgd.py +1 -1
  225. mindspore/nn/optim/ftrl.py +11 -9
  226. mindspore/nn/optim/lamb.py +1 -1
  227. mindspore/nn/optim/lars.py +1 -4
  228. mindspore/nn/optim/lazyadam.py +12 -10
  229. mindspore/nn/optim/momentum.py +7 -6
  230. mindspore/nn/optim/optimizer.py +3 -3
  231. mindspore/nn/optim/proximal_ada_grad.py +12 -10
  232. mindspore/nn/optim/rmsprop.py +13 -12
  233. mindspore/nn/optim/rprop.py +11 -9
  234. mindspore/nn/optim/sgd.py +9 -6
  235. mindspore/nn/optim/tft_wrapper.py +5 -2
  236. mindspore/nn/optim/thor.py +2 -1
  237. mindspore/nn/probability/bijector/bijector.py +17 -11
  238. mindspore/nn/probability/bijector/gumbel_cdf.py +5 -5
  239. mindspore/nn/probability/bijector/invert.py +2 -2
  240. mindspore/nn/probability/bijector/scalar_affine.py +3 -3
  241. mindspore/nn/probability/bijector/softplus.py +3 -2
  242. mindspore/nn/probability/distribution/beta.py +3 -3
  243. mindspore/nn/probability/distribution/categorical.py +1 -1
  244. mindspore/nn/probability/distribution/cauchy.py +4 -2
  245. mindspore/nn/probability/distribution/exponential.py +6 -7
  246. mindspore/nn/probability/distribution/gamma.py +2 -2
  247. mindspore/nn/probability/distribution/gumbel.py +2 -2
  248. mindspore/nn/probability/distribution/half_normal.py +5 -3
  249. mindspore/nn/probability/distribution/logistic.py +5 -3
  250. mindspore/nn/probability/distribution/poisson.py +1 -1
  251. mindspore/nn/probability/distribution/uniform.py +5 -3
  252. mindspore/nn/reinforcement/_tensors_queue.py +1 -1
  253. mindspore/nn/reinforcement/tensor_array.py +1 -1
  254. mindspore/nn/utils/init.py +13 -11
  255. mindspore/nn/wrap/__init__.py +6 -6
  256. mindspore/nn/wrap/cell_wrapper.py +181 -122
  257. mindspore/nn/wrap/grad_reducer.py +45 -36
  258. mindspore/nn/wrap/loss_scale.py +6 -7
  259. mindspore/numpy/array_creations.py +63 -65
  260. mindspore/numpy/array_ops.py +149 -144
  261. mindspore/numpy/logic_ops.py +41 -42
  262. mindspore/numpy/math_ops.py +365 -363
  263. mindspore/numpy/utils.py +17 -18
  264. mindspore/numpy/utils_const.py +5 -6
  265. mindspore/opencv_core452.dll +0 -0
  266. mindspore/opencv_imgcodecs452.dll +0 -0
  267. mindspore/opencv_imgproc452.dll +0 -0
  268. mindspore/ops/__init__.py +5 -3
  269. mindspore/ops/_grad_experimental/grad_comm_ops.py +112 -16
  270. mindspore/ops/_grad_experimental/grad_debug_ops.py +14 -2
  271. mindspore/ops/_grad_experimental/grad_inner_ops.py +9 -0
  272. mindspore/ops/_grad_experimental/grad_math_ops.py +2 -1
  273. mindspore/ops/_grad_experimental/taylor_rule.py +29 -0
  274. mindspore/ops/_op_impl/cpu/__init__.py +1 -0
  275. mindspore/ops/_op_impl/cpu/raise_op.py +28 -0
  276. mindspore/ops/_register_for_op.py +0 -11
  277. mindspore/{ops_generate → ops/_utils}/arg_dtype_cast.py +123 -4
  278. mindspore/{ops_generate → ops/_utils}/arg_handler.py +3 -65
  279. mindspore/ops/_vmap/vmap_array_ops.py +27 -25
  280. mindspore/ops/_vmap/vmap_base.py +0 -2
  281. mindspore/ops/_vmap/vmap_grad_nn_ops.py +21 -14
  282. mindspore/ops/_vmap/vmap_math_ops.py +15 -16
  283. mindspore/ops/_vmap/vmap_nn_ops.py +29 -42
  284. mindspore/ops/auto_generate/__init__.py +4 -3
  285. mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +236 -46
  286. mindspore/ops/auto_generate/gen_extend_func.py +764 -124
  287. mindspore/ops/auto_generate/gen_ops_def.py +4018 -2264
  288. mindspore/ops/auto_generate/gen_ops_prim.py +15463 -5037
  289. mindspore/ops/auto_generate/pyboost_inner_prim.py +221 -87
  290. mindspore/ops/composite/__init__.py +2 -1
  291. mindspore/ops/composite/base.py +20 -25
  292. mindspore/ops/composite/math_ops.py +6 -16
  293. mindspore/ops/composite/multitype_ops/__init__.py +5 -2
  294. mindspore/ops/composite/multitype_ops/_compile_utils.py +228 -30
  295. mindspore/ops/composite/multitype_ops/_constexpr_utils.py +1 -2
  296. mindspore/ops/composite/multitype_ops/add_impl.py +2 -1
  297. mindspore/ops/composite/multitype_ops/bitwise_and_impl.py +2 -1
  298. mindspore/ops/composite/multitype_ops/bitwise_or_impl.py +2 -1
  299. mindspore/ops/composite/multitype_ops/bitwise_xor_impl.py +2 -1
  300. mindspore/ops/composite/multitype_ops/div_impl.py +6 -4
  301. mindspore/ops/composite/multitype_ops/equal_impl.py +4 -3
  302. mindspore/ops/composite/multitype_ops/floordiv_impl.py +2 -1
  303. mindspore/ops/composite/multitype_ops/getitem_impl.py +3 -2
  304. mindspore/ops/composite/multitype_ops/greater_equal_impl.py +4 -3
  305. mindspore/ops/composite/multitype_ops/greater_impl.py +4 -3
  306. mindspore/ops/composite/multitype_ops/in_impl.py +2 -1
  307. mindspore/ops/composite/multitype_ops/invert_impl.py +50 -0
  308. mindspore/ops/composite/multitype_ops/left_shift_impl.py +2 -1
  309. mindspore/ops/composite/multitype_ops/less_equal_impl.py +4 -3
  310. mindspore/ops/composite/multitype_ops/less_impl.py +4 -3
  311. mindspore/ops/composite/multitype_ops/logic_not_impl.py +3 -2
  312. mindspore/ops/composite/multitype_ops/logical_and_impl.py +2 -1
  313. mindspore/ops/composite/multitype_ops/logical_or_impl.py +2 -1
  314. mindspore/ops/composite/multitype_ops/mod_impl.py +2 -1
  315. mindspore/ops/composite/multitype_ops/mul_impl.py +3 -2
  316. mindspore/ops/composite/multitype_ops/negative_impl.py +2 -1
  317. mindspore/ops/composite/multitype_ops/not_equal_impl.py +2 -1
  318. mindspore/ops/composite/multitype_ops/not_in_impl.py +2 -1
  319. mindspore/ops/composite/multitype_ops/ones_like_impl.py +18 -0
  320. mindspore/ops/composite/multitype_ops/pow_impl.py +2 -30
  321. mindspore/ops/composite/multitype_ops/right_shift_impl.py +2 -1
  322. mindspore/ops/composite/multitype_ops/setitem_impl.py +2 -1
  323. mindspore/ops/composite/multitype_ops/sub_impl.py +2 -1
  324. mindspore/ops/function/__init__.py +40 -2
  325. mindspore/ops/function/_add_attr_func.py +58 -0
  326. mindspore/ops/function/array_func.py +2089 -2403
  327. mindspore/ops/function/clip_func.py +80 -23
  328. mindspore/ops/function/debug_func.py +57 -57
  329. mindspore/ops/function/grad/__init__.py +1 -0
  330. mindspore/ops/function/grad/grad_func.py +104 -71
  331. mindspore/ops/function/image_func.py +2 -2
  332. mindspore/ops/function/linalg_func.py +47 -78
  333. mindspore/ops/function/math_func.py +4501 -3802
  334. mindspore/ops/function/nn_func.py +1726 -620
  335. mindspore/ops/function/other_func.py +159 -1
  336. mindspore/ops/function/parameter_func.py +18 -84
  337. mindspore/ops/function/random_func.py +440 -387
  338. mindspore/ops/function/reshard_func.py +4 -70
  339. mindspore/ops/function/sparse_func.py +3 -3
  340. mindspore/ops/function/sparse_unary_func.py +6 -6
  341. mindspore/ops/function/spectral_func.py +25 -58
  342. mindspore/ops/function/vmap_func.py +24 -17
  343. mindspore/ops/functional.py +22 -7
  344. mindspore/ops/functional_overload.py +1440 -0
  345. mindspore/ops/op_info_register.py +32 -244
  346. mindspore/ops/operations/__init__.py +13 -7
  347. mindspore/ops/operations/_custom_ops_utils.py +247 -0
  348. mindspore/ops/operations/_embedding_cache_ops.py +4 -4
  349. mindspore/ops/operations/_grad_ops.py +2 -43
  350. mindspore/ops/operations/_infer_ops.py +2 -1
  351. mindspore/ops/operations/_inner_ops.py +43 -84
  352. mindspore/ops/operations/_ms_kernel.py +4 -10
  353. mindspore/ops/operations/_rl_inner_ops.py +1 -1
  354. mindspore/ops/operations/_scalar_ops.py +3 -2
  355. mindspore/ops/operations/_sequence_ops.py +1 -1
  356. mindspore/ops/operations/_tensor_array.py +1 -1
  357. mindspore/ops/operations/array_ops.py +81 -324
  358. mindspore/ops/operations/comm_ops.py +154 -108
  359. mindspore/ops/operations/custom_ops.py +232 -78
  360. mindspore/ops/operations/debug_ops.py +153 -59
  361. mindspore/ops/operations/inner_ops.py +7 -5
  362. mindspore/ops/operations/linalg_ops.py +1 -57
  363. mindspore/ops/operations/manually_defined/_inner.py +1 -1
  364. mindspore/ops/operations/manually_defined/ops_def.py +928 -180
  365. mindspore/ops/operations/math_ops.py +32 -234
  366. mindspore/ops/operations/nn_ops.py +210 -498
  367. mindspore/ops/operations/other_ops.py +62 -9
  368. mindspore/ops/operations/random_ops.py +13 -7
  369. mindspore/ops/operations/reshard_ops.py +1 -1
  370. mindspore/ops/operations/sparse_ops.py +2 -2
  371. mindspore/ops/primitive.py +66 -53
  372. mindspore/ops/tensor_method.py +1888 -0
  373. mindspore/ops_generate/__init__.py +0 -5
  374. mindspore/ops_generate/aclnn/__init__.py +0 -0
  375. mindspore/ops_generate/aclnn/aclnn_kernel_register_auto_cc_generator.py +135 -0
  376. mindspore/ops_generate/aclnn/gen_aclnn_implement.py +257 -0
  377. mindspore/ops_generate/api/__init__.py +0 -0
  378. mindspore/ops_generate/api/add_tensor_docs_generator.py +56 -0
  379. mindspore/ops_generate/api/cpp_create_prim_instance_helper_generator.py +105 -0
  380. mindspore/ops_generate/api/functional_map_cpp_generator.py +504 -0
  381. mindspore/ops_generate/api/functional_overload_py_generator.py +112 -0
  382. mindspore/ops_generate/api/functions_cc_generator.py +237 -0
  383. mindspore/ops_generate/api/gen_api.py +103 -0
  384. mindspore/ops_generate/api/op_api_proto.py +235 -0
  385. mindspore/ops_generate/api/tensor_func_reg_cpp_generator.py +461 -0
  386. mindspore/ops_generate/common/__init__.py +0 -0
  387. mindspore/ops_generate/common/base_generator.py +11 -0
  388. mindspore/ops_generate/common/gen_constants.py +91 -0
  389. mindspore/ops_generate/common/gen_utils.py +348 -0
  390. mindspore/ops_generate/common/op_proto.py +473 -0
  391. mindspore/ops_generate/common/template.py +523 -0
  392. mindspore/ops_generate/gen_ops.py +22 -1069
  393. mindspore/ops_generate/op_def/__init__.py +0 -0
  394. mindspore/ops_generate/op_def/gen_op_def.py +90 -0
  395. mindspore/ops_generate/op_def/lite_ops_cpp_generator.py +191 -0
  396. mindspore/ops_generate/op_def/ops_def_cc_generator.py +299 -0
  397. mindspore/ops_generate/op_def/ops_def_h_generator.py +74 -0
  398. mindspore/ops_generate/op_def/ops_name_h_generator.py +83 -0
  399. mindspore/ops_generate/op_def/ops_primitive_h_generator.py +125 -0
  400. mindspore/ops_generate/op_def_py/__init__.py +0 -0
  401. mindspore/ops_generate/op_def_py/gen_op_def_py.py +47 -0
  402. mindspore/ops_generate/op_def_py/op_def_py_generator.py +132 -0
  403. mindspore/ops_generate/op_def_py/op_prim_py_generator.py +489 -0
  404. mindspore/ops_generate/pyboost/__init__.py +0 -0
  405. mindspore/ops_generate/pyboost/auto_grad_impl_cc_generator.py +139 -0
  406. mindspore/ops_generate/pyboost/auto_grad_reg_cc_generator.py +93 -0
  407. mindspore/ops_generate/pyboost/gen_pyboost_func.py +175 -0
  408. mindspore/ops_generate/pyboost/op_template_parser.py +517 -0
  409. mindspore/ops_generate/pyboost/pyboost_functions_cpp_generator.py +407 -0
  410. mindspore/ops_generate/pyboost/pyboost_functions_h_generator.py +100 -0
  411. mindspore/ops_generate/pyboost/pyboost_functions_py_generator.py +148 -0
  412. mindspore/ops_generate/pyboost/pyboost_grad_function_cpp_generator.py +155 -0
  413. mindspore/ops_generate/pyboost/pyboost_inner_prim_generator.py +132 -0
  414. mindspore/ops_generate/pyboost/pyboost_native_grad_functions_generator.py +272 -0
  415. mindspore/ops_generate/pyboost/pyboost_op_cpp_code_generator.py +938 -0
  416. mindspore/ops_generate/pyboost/pyboost_overload_functions_cpp_generator.py +357 -0
  417. mindspore/ops_generate/{pyboost_utils.py → pyboost/pyboost_utils.py} +179 -36
  418. mindspore/ops_generate/resources/__init__.py +0 -0
  419. mindspore/ops_generate/resources/resource_list.py +30 -0
  420. mindspore/ops_generate/resources/resource_loader.py +36 -0
  421. mindspore/ops_generate/resources/resource_manager.py +64 -0
  422. mindspore/ops_generate/resources/yaml_loader.py +88 -0
  423. mindspore/ops_generate/tensor_py_cc_generator.py +122 -0
  424. mindspore/parallel/__init__.py +7 -3
  425. mindspore/parallel/_auto_parallel_context.py +152 -34
  426. mindspore/parallel/_cell_wrapper.py +130 -15
  427. mindspore/parallel/_parallel_serialization.py +107 -5
  428. mindspore/parallel/_ps_context.py +1 -1
  429. mindspore/parallel/_recovery_context.py +7 -2
  430. mindspore/parallel/_tensor.py +142 -18
  431. mindspore/parallel/_utils.py +199 -23
  432. mindspore/parallel/algo_parameter_config.py +4 -4
  433. mindspore/parallel/auto_parallel.py +732 -0
  434. mindspore/parallel/checkpoint_convert.py +159 -0
  435. mindspore/parallel/checkpoint_transform.py +698 -35
  436. mindspore/parallel/cluster/process_entity/_api.py +276 -50
  437. mindspore/parallel/cluster/process_entity/_utils.py +41 -6
  438. mindspore/parallel/cluster/run.py +21 -4
  439. mindspore/parallel/function/__init__.py +24 -0
  440. mindspore/parallel/function/reshard_func.py +259 -0
  441. mindspore/parallel/nn/__init__.py +25 -0
  442. mindspore/parallel/nn/parallel_cell_wrapper.py +263 -0
  443. mindspore/parallel/nn/parallel_grad_reducer.py +169 -0
  444. mindspore/parallel/parameter_broadcast.py +25 -14
  445. mindspore/parallel/shard.py +137 -58
  446. mindspore/parallel/transform_safetensors.py +363 -305
  447. mindspore/pgodb140.dll +0 -0
  448. mindspore/pgort140.dll +0 -0
  449. mindspore/profiler/__init__.py +22 -5
  450. mindspore/profiler/analysis/__init__.py +0 -0
  451. mindspore/profiler/analysis/parser/__init__.py +0 -0
  452. mindspore/profiler/analysis/parser/ascend_cann_parser.py +170 -0
  453. mindspore/profiler/analysis/parser/base_parser.py +158 -0
  454. mindspore/profiler/analysis/parser/framework_cann_relation_parser.py +45 -0
  455. mindspore/profiler/analysis/parser/ms_framework_parser.py +142 -0
  456. mindspore/profiler/analysis/parser/ms_minddata_parser.py +145 -0
  457. mindspore/profiler/analysis/parser/timeline_assembly_factory/__init__.py +0 -0
  458. mindspore/profiler/analysis/parser/timeline_assembly_factory/ascend_timeline_assembler.py +264 -0
  459. mindspore/profiler/analysis/parser/timeline_assembly_factory/base_timeline_assembler.py +40 -0
  460. mindspore/profiler/analysis/parser/timeline_assembly_factory/trace_view_container.py +106 -0
  461. mindspore/profiler/analysis/parser/timeline_creator/__init__.py +0 -0
  462. mindspore/profiler/analysis/parser/timeline_creator/base_timeline_creator.py +44 -0
  463. mindspore/profiler/analysis/parser/timeline_creator/cpu_op_timeline_creator.py +90 -0
  464. mindspore/profiler/analysis/parser/timeline_creator/fwk_timeline_creator.py +76 -0
  465. mindspore/profiler/analysis/parser/timeline_creator/msprof_timeline_creator.py +103 -0
  466. mindspore/profiler/analysis/parser/timeline_creator/scope_layer_timeline_creator.py +134 -0
  467. mindspore/profiler/analysis/parser/timeline_event/__init__.py +0 -0
  468. mindspore/profiler/analysis/parser/timeline_event/base_event.py +233 -0
  469. mindspore/profiler/analysis/parser/timeline_event/cpu_op_event.py +47 -0
  470. mindspore/profiler/analysis/parser/timeline_event/flow_event.py +36 -0
  471. mindspore/profiler/analysis/parser/timeline_event/fwk_event.py +415 -0
  472. mindspore/profiler/analysis/parser/timeline_event/msprof_event.py +73 -0
  473. mindspore/profiler/analysis/parser/timeline_event/scope_layer_event.py +53 -0
  474. mindspore/profiler/analysis/parser/timeline_event/timeline_event_pool.py +146 -0
  475. mindspore/profiler/analysis/task_manager.py +131 -0
  476. mindspore/profiler/analysis/time_converter.py +84 -0
  477. mindspore/profiler/analysis/viewer/__init__.py +0 -0
  478. mindspore/profiler/analysis/viewer/ascend_communication_viewer.py +372 -0
  479. mindspore/profiler/analysis/viewer/ascend_integrate_viewer.py +87 -0
  480. mindspore/profiler/analysis/viewer/ascend_kernel_details_viewer.py +250 -0
  481. mindspore/profiler/analysis/viewer/ascend_memory_viewer.py +320 -0
  482. mindspore/profiler/analysis/viewer/ascend_op_memory_viewer.py +327 -0
  483. mindspore/profiler/analysis/viewer/ascend_step_trace_time_viewer.py +376 -0
  484. mindspore/profiler/analysis/viewer/ascend_timeline_viewer.py +58 -0
  485. mindspore/profiler/analysis/viewer/base_viewer.py +26 -0
  486. mindspore/profiler/analysis/viewer/ms_dataset_viewer.py +96 -0
  487. mindspore/profiler/analysis/viewer/ms_minddata_viewer.py +581 -0
  488. mindspore/profiler/analysis/work_flow.py +73 -0
  489. mindspore/profiler/common/ascend_msprof_exporter.py +139 -0
  490. mindspore/profiler/common/command_executor.py +90 -0
  491. mindspore/profiler/common/constant.py +186 -3
  492. mindspore/profiler/common/file_manager.py +208 -0
  493. mindspore/profiler/common/log.py +130 -0
  494. mindspore/profiler/common/msprof_cmd_tool.py +221 -0
  495. mindspore/profiler/common/path_manager.py +395 -0
  496. mindspore/profiler/common/process_bar.py +168 -0
  497. mindspore/profiler/common/process_pool.py +9 -3
  498. mindspore/profiler/common/profiler_context.py +500 -0
  499. mindspore/profiler/common/profiler_info.py +304 -0
  500. mindspore/profiler/common/profiler_meta_data.py +74 -0
  501. mindspore/profiler/common/profiler_output_path.py +284 -0
  502. mindspore/profiler/common/profiler_parameters.py +251 -0
  503. mindspore/profiler/common/profiler_path_manager.py +179 -0
  504. mindspore/profiler/common/record_function.py +76 -0
  505. mindspore/profiler/common/tlv_decoder.py +76 -0
  506. mindspore/profiler/common/util.py +75 -2
  507. mindspore/profiler/dynamic_profiler.py +341 -75
  508. mindspore/profiler/envprofiler.py +163 -0
  509. mindspore/profiler/experimental_config.py +197 -0
  510. mindspore/profiler/mstx.py +242 -0
  511. mindspore/profiler/platform/__init__.py +21 -0
  512. mindspore/profiler/platform/base_profiler.py +40 -0
  513. mindspore/profiler/platform/cpu_profiler.py +124 -0
  514. mindspore/profiler/platform/gpu_profiler.py +74 -0
  515. mindspore/profiler/platform/npu_profiler.py +335 -0
  516. mindspore/profiler/profiler.py +1073 -90
  517. mindspore/profiler/profiler_action_controller.py +187 -0
  518. mindspore/profiler/profiler_interface.py +118 -0
  519. mindspore/profiler/schedule.py +243 -0
  520. mindspore/rewrite/api/node.py +15 -13
  521. mindspore/rewrite/api/symbol_tree.py +2 -3
  522. mindspore/run_check/_check_version.py +27 -20
  523. mindspore/run_check/run_check.py +1 -1
  524. mindspore/runtime/__init__.py +37 -0
  525. mindspore/runtime/device.py +27 -0
  526. mindspore/runtime/event.py +209 -0
  527. mindspore/runtime/executor.py +177 -0
  528. mindspore/runtime/memory.py +409 -0
  529. mindspore/runtime/stream.py +460 -0
  530. mindspore/runtime/thread_bind_core.py +401 -0
  531. mindspore/safeguard/rewrite_obfuscation.py +12 -9
  532. mindspore/swresample-4.dll +0 -0
  533. mindspore/swscale-6.dll +0 -0
  534. mindspore/tbbmalloc.dll +0 -0
  535. mindspore/tinyxml2.dll +0 -0
  536. mindspore/train/__init__.py +8 -8
  537. mindspore/train/_utils.py +88 -25
  538. mindspore/train/amp.py +9 -5
  539. mindspore/train/callback/__init__.py +2 -2
  540. mindspore/train/callback/_callback.py +2 -16
  541. mindspore/train/callback/_checkpoint.py +53 -55
  542. mindspore/train/callback/_cluster_monitor.py +14 -18
  543. mindspore/train/callback/_early_stop.py +1 -1
  544. mindspore/train/callback/_flops_collector.py +103 -68
  545. mindspore/train/callback/_history.py +8 -5
  546. mindspore/train/callback/_lambda_callback.py +2 -2
  547. mindspore/train/callback/_landscape.py +0 -3
  548. mindspore/train/callback/_loss_monitor.py +2 -1
  549. mindspore/train/callback/_on_request_exit.py +6 -5
  550. mindspore/train/callback/_reduce_lr_on_plateau.py +11 -6
  551. mindspore/train/callback/_summary_collector.py +52 -19
  552. mindspore/train/callback/_time_monitor.py +2 -1
  553. mindspore/train/callback/{_tft_register.py → _train_fault_tolerance.py} +204 -107
  554. mindspore/train/data_sink.py +25 -2
  555. mindspore/train/dataset_helper.py +15 -16
  556. mindspore/train/loss_scale_manager.py +8 -7
  557. mindspore/train/metrics/accuracy.py +3 -3
  558. mindspore/train/metrics/confusion_matrix.py +9 -9
  559. mindspore/train/metrics/error.py +3 -3
  560. mindspore/train/metrics/hausdorff_distance.py +4 -4
  561. mindspore/train/metrics/mean_surface_distance.py +3 -3
  562. mindspore/train/metrics/metric.py +0 -12
  563. mindspore/train/metrics/occlusion_sensitivity.py +4 -2
  564. mindspore/train/metrics/precision.py +11 -10
  565. mindspore/train/metrics/recall.py +9 -9
  566. mindspore/train/metrics/root_mean_square_surface_distance.py +2 -2
  567. mindspore/train/mind_ir_pb2.py +174 -46
  568. mindspore/train/model.py +184 -113
  569. mindspore/train/serialization.py +622 -978
  570. mindspore/train/summary/_summary_adapter.py +2 -2
  571. mindspore/train/summary/summary_record.py +2 -3
  572. mindspore/train/train_thor/model_thor.py +1 -1
  573. mindspore/turbojpeg.dll +0 -0
  574. mindspore/utils/__init__.py +6 -3
  575. mindspore/utils/dryrun.py +140 -0
  576. mindspore/utils/hooks.py +81 -0
  577. mindspore/utils/runtime_execution_order_check.py +550 -0
  578. mindspore/utils/utils.py +138 -4
  579. mindspore/vcmeta.dll +0 -0
  580. mindspore/vcruntime140.dll +0 -0
  581. mindspore/vcruntime140_1.dll +0 -0
  582. mindspore/version.py +1 -1
  583. {mindspore-2.4.10.dist-info → mindspore-2.6.0rc1.dist-info}/METADATA +3 -3
  584. {mindspore-2.4.10.dist-info → mindspore-2.6.0rc1.dist-info}/RECORD +587 -418
  585. {mindspore-2.4.10.dist-info → mindspore-2.6.0rc1.dist-info}/entry_points.txt +1 -1
  586. mindspore/_install_custom.py +0 -43
  587. mindspore/common/_register_for_adapter.py +0 -74
  588. mindspore/common/_tensor_overload.py +0 -139
  589. mindspore/mindspore_np_dtype.dll +0 -0
  590. mindspore/ops/auto_generate/gen_arg_dtype_cast.py +0 -252
  591. mindspore/ops/auto_generate/gen_arg_handler.py +0 -197
  592. mindspore/ops/operations/_opaque_predicate_registry.py +0 -41
  593. mindspore/ops_generate/gen_aclnn_implement.py +0 -263
  594. mindspore/ops_generate/gen_ops_inner_prim.py +0 -131
  595. mindspore/ops_generate/gen_pyboost_func.py +0 -1052
  596. mindspore/ops_generate/gen_utils.py +0 -209
  597. mindspore/ops_generate/op_proto.py +0 -145
  598. mindspore/ops_generate/template.py +0 -261
  599. mindspore/profiler/envprofiling.py +0 -254
  600. mindspore/profiler/profiling.py +0 -1926
  601. {mindspore-2.4.10.dist-info → mindspore-2.6.0rc1.dist-info}/WHEEL +0 -0
  602. {mindspore-2.4.10.dist-info → mindspore-2.6.0rc1.dist-info}/top_level.txt +0 -0
@@ -32,17 +32,18 @@ from mindspore._checkparam import _check_3d_int_or_tuple
32
32
  from mindspore.common import dtype as mstype
33
33
  from mindspore.common._decorator import deprecated
34
34
  from mindspore.common import Tensor, CSRTensor, COOTensor
35
- from mindspore._c_expression import Tensor as Tensor_
35
+ from mindspore._c_expression import TensorPy as Tensor_
36
36
  from mindspore._c_expression import CSRTensor as CSRTensor_
37
37
  from mindspore._c_expression import COOTensor as COOTensor_
38
- from ..auto_generate import (ExpandDims, Reshape, TensorShape, Transpose, Gather,
39
- OnesLike, ZerosLike, Argmax, ArgMaxExt,
40
- ReverseV2, Diag, Eye, ScatterNd, ResizeNearestNeighborV2,
41
- GatherNd, GatherD, Range, MaskedFill, RightShift, NonZero,
42
- ResizeNearestNeighbor, Identity, Split, CumSum, CumProd, MaskedSelect,
43
- Cummax, Cummin, Argmin, Concat, UnsortedSegmentSum, ScalarToTensor,
44
- Triu, BroadcastTo, StridedSlice, Select, TopkExt, SearchSorted)
45
- from .manually_defined import Rank, Shape, Tile, Cast, Ones, Zeros
38
+ from ..auto_generate import (
39
+ ExpandDims, Reshape, TensorShape, Transpose, Gather, OnesLike, ZerosLike,
40
+ Argmax, ArgMaxExt, ReverseV2, Diag, Eye, ScatterNd,
41
+ ResizeNearestNeighborV2, GatherNd, GatherD, Range, MaskedFill, RightShift,
42
+ NonZero, ResizeNearestNeighbor, Identity, Split, CumSum, CumProd,
43
+ MaskedSelect, Cummax, Cummin, Argmin, Concat, UnsortedSegmentSum, UniqueConsecutive,
44
+ ScalarToTensor, Triu, BroadcastTo, StridedSlice, Select, TopkExt,
45
+ SearchSorted, Meshgrid, Squeeze, Slice)
46
+ from .manually_defined import Rank, Shape, Tile, Cast, Ones, Zeros, TypeAs
46
47
  from ..auto_generate import ArgMaxWithValue, ArgMinWithValue
47
48
  from ..auto_generate import TensorScatterElements as TensorScatterElementsExt
48
49
 
@@ -182,8 +183,7 @@ def _check_infer_attr_reduce(axis, keep_dims, prim_name):
182
183
 
183
184
  class Expand(Primitive):
184
185
  """
185
- :class:`mindspore.ops.Expand` will be deprecated in the future.
186
- Please use :class:`mindspore.ops.BroadcastTo` instead.
186
+ This interface will be deprecated in the future, and use :class:`mindspore.ops.BroadcastTo` instead.
187
187
  """
188
188
 
189
189
  @deprecated("2.1", "BroadcastTo", False)
@@ -273,7 +273,7 @@ class Im2Col(Primitive):
273
273
  each sliding `ksizes`- sized block within the spatial dimensions
274
274
  of input `x` into a column (i.e., last dimension) of a 4-D output
275
275
  tensor of shape :math:`(N, C, \prod(\text{kernel_size}), L)`, where
276
- :math:`C \times \prod(\text{kernel_size})` is the total number of values
276
+ :math:`C \times \prod(\text{kernel_size})` is the total number of elements
277
277
  within each block (a block has :math:`\prod(\text{kernel_size})` spatial
278
278
  locations each containing a `C`-channeled vector), and :math:`L` is
279
279
  the total number of such blocks:
@@ -474,52 +474,6 @@ class Unsqueeze(PrimitiveWithCheck):
474
474
  self.axis = axis
475
475
 
476
476
 
477
- class Squeeze(Primitive):
478
- """
479
- Return the Tensor after deleting the dimension of size 1 in the specified `axis`.
480
-
481
- Refer to :func:`mindspore.ops.squeeze` for more details.
482
-
483
- Args:
484
- axis (Union[int, tuple(int)]): Specifies the dimension indexes of shape to be removed, which will remove
485
- all the dimensions of size 1 in the given axis parameter. If specified, it must be int32 or int64.
486
- Default: ``()`` .
487
-
488
- Inputs:
489
- - **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
490
-
491
- Outputs:
492
- Tensor, the shape of tensor is :math:`(x_1, x_2, ..., x_S)`.
493
-
494
- Supported Platforms:
495
- ``Ascend`` ``GPU`` ``CPU``
496
-
497
- Examples:
498
- >>> import mindspore
499
- >>> import numpy as np
500
- >>> from mindspore import Tensor, ops
501
- >>> input_x = Tensor(np.ones(shape=[3, 2, 1]), mindspore.float32)
502
- >>> squeeze = ops.Squeeze(2)
503
- >>> output = squeeze(input_x)
504
- >>> print(output)
505
- [[1. 1.]
506
- [1. 1.]
507
- [1. 1.]]
508
- """
509
-
510
- @prim_attr_register
511
- def __init__(self, axis=()):
512
- """Initialize Squeeze"""
513
- self.init_prim_io_names(inputs=['x'], outputs=['output'])
514
- validator.check_value_type('axis', axis, [int, tuple], self.name)
515
- if isinstance(axis, tuple):
516
- for idx, item in enumerate(axis):
517
- validator.check_value_type("axis[%d]" % idx, item, [int], self.name)
518
- else:
519
- self.axis = (axis,)
520
- self.add_prim_attr("axis", (axis,))
521
-
522
-
523
477
  class ConjugateTranspose(Primitive):
524
478
  """
525
479
  Calculate the conjugate matrix of input x which has been transposed according to input perm.
@@ -556,8 +510,8 @@ class ConjugateTranspose(Primitive):
556
510
  >>> conjugate_transpose = ops.ConjugateTranspose()
557
511
  >>> output = conjugate_transpose(x, perm)
558
512
  >>> print(output)
559
- [[1.-1.j 3.-3.j]
560
- [2.-2.j 4.-4.j]]
513
+ [[1.-1.j 3.-3.j]
514
+ [2.-2.j 4.-4.j]]
561
515
  """
562
516
 
563
517
  @prim_attr_register
@@ -630,65 +584,6 @@ class Unique(Primitive):
630
584
  self.init_prim_io_names(inputs=['x'], outputs=['output'])
631
585
 
632
586
 
633
- class UniqueConsecutive(Primitive):
634
- """
635
- Returns the elements that are unique in each consecutive group of equivalent elements in the input tensor.
636
-
637
- .. warning::
638
- This is an experimental API that is subject to change or deletion.
639
-
640
- Refer to :func:`mindspore.ops.unique_consecutive` for more details.
641
-
642
- Args:
643
- return_idx (bool, optional): Whether to return the index of where the element in the original input
644
- maps to the position in the output. Default: ``False`` .
645
- return_counts (bool, optional): Whether to return the counts of each unique element. Default: ``False`` .
646
- axis (int, optional): The dimension to apply unique. If ``None`` , the unique of the flattened input is
647
- returned. If specified, it must be int32 or int64. Default: ``None`` .
648
-
649
- Inputs:
650
- - **x** (Tensor) - The input tensor.
651
-
652
- Outputs:
653
- A tensor or a tuple of tensors containing tensor objects (`output`, `idx`, `counts`).
654
-
655
- - `output` has the same type as `x` and is used to represent the output list of unique scalar elements.
656
- - If `return_idx` is True, there will be an additional returned tensor, `idx`,
657
- which has the same shape as `x` and represents
658
- the index of where the element in the original input maps to the position in the output.
659
- - If `return_counts` is True, there will be an additional returned tensor, `counts`,
660
- which represents the number of occurrences for each unique value or tensor.
661
-
662
- Supported Platforms:
663
- ``Ascend`` ``GPU`` ``CPU``
664
-
665
- Examples:
666
- >>> import numpy as np
667
- >>> from mindspore import Tensor, ops
668
- >>> from mindspore import dtype as mstype
669
- >>> x = Tensor(np.array([1, 1, 2, 2, 3, 1, 1, 2]), mstype.int32)
670
- >>> unique_consecutive = ops.UniqueConsecutive(True, True, None)
671
- >>> output, idx, counts = unique_consecutive(x)
672
- >>> print(output)
673
- [1 2 3 1 2]
674
- >>> print(idx)
675
- [0 0 1 1 2 3 3 4]
676
- >>> print(counts)
677
- [2 2 1 2 1]
678
- """
679
-
680
- @prim_attr_register
681
- def __init__(self, return_idx=False, return_counts=False, axis=None):
682
- """Initialize UniqueConsecutive"""
683
- self.init_prim_io_names(inputs=['x'], outputs=['output'])
684
- validator.check_value_type("return_idx", return_idx, [bool], self.name)
685
- validator.check_value_type("return_counts", return_counts, [bool], self.name)
686
- validator.check_value_type("axis", axis, [int, type(None)], self.name)
687
- self.add_prim_attr("return_idx", return_idx)
688
- self.add_prim_attr("return_counts", return_counts)
689
- self.add_prim_attr("axis", axis)
690
-
691
-
692
587
  class SparseGatherV2(Primitive):
693
588
  """
694
589
  Returns a slice of input tensor based on the specified indices and axis.
@@ -1274,7 +1169,7 @@ class TupleToArray(PrimitiveWithInfer):
1274
1169
 
1275
1170
  Inputs:
1276
1171
  - **input_x** (tuple) - A tuple of numbers. These numbers have the same type.
1277
- The shape is :math:`(N,*)` where :math:`*` means any number of additional dimensions.
1172
+ The shape is :math:`(N,)`.
1278
1173
 
1279
1174
  Outputs:
1280
1175
  Tensor, if the input tuple contains `N` numbers, then the shape of the output tensor is :math:`(N,)`.
@@ -1907,9 +1802,9 @@ class Unstack(Primitive):
1907
1802
  Refer to :func:`mindspore.ops.unstack` for more details.
1908
1803
 
1909
1804
  Args:
1910
- axis (int): Dimension along which to unpack. Default: ``0`` .
1805
+ axis (int, optional): Dimension along which to unpack. Default: ``0`` .
1911
1806
  Negative values wrap around. The range is [-R, R).
1912
- num (Union[None, int]): The number of output tensors.
1807
+ num (Union[None, int], optional): The number of output tensors.
1913
1808
  Automatically inferred by input_x and axis if ``None`` . Default: ``None`` .
1914
1809
 
1915
1810
  Inputs:
@@ -1943,55 +1838,6 @@ class Unstack(Primitive):
1943
1838
  validator.check_value_type("num", num, [int], self.name)
1944
1839
 
1945
1840
 
1946
- class Slice(Primitive):
1947
- """
1948
- Slices a tensor in the specified shape.
1949
-
1950
- Refer to :func:`mindspore.ops.slice` for more details.
1951
-
1952
- Inputs:
1953
- - **input_x** (Tensor) - The target tensor.
1954
- The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions.
1955
- - **begin** (Union[tuple, list]) - The beginning of the slice. Only constant value(>=0) is allowed.
1956
- - **size** (Union[tuple, list]) - The size of the slice. Only constant value is allowed.
1957
-
1958
- Outputs:
1959
- Tensor, the shape is: input `size`, the data type is the same as `input_x`.
1960
-
1961
- Supported Platforms:
1962
- ``Ascend`` ``GPU`` ``CPU``
1963
-
1964
- Examples:
1965
- >>> from mindspore import Tensor
1966
- >>> from mindspore import ops
1967
- >>> import numpy as np
1968
- >>> data = Tensor(np.array([[[1, 1, 1], [2, 2, 2]],
1969
- ... [[3, 3, 3], [4, 4, 4]],
1970
- ... [[5, 5, 5], [6, 6, 6]]]).astype(np.int32))
1971
- >>> slice_op = ops.Slice()
1972
- >>> output = slice_op(data, (1, 0, 0), (1, 1, 3))
1973
- >>> print(output)
1974
- [[[3 3 3]]]
1975
- >>> output = slice_op(data, (1, 0, 0), (1, 1, 2))
1976
- >>> print(output)
1977
- [[[3 3]]]
1978
- >>> output = slice_op(data, (1, 0, 0), (1, 1, 1))
1979
- >>> print(output)
1980
- [[[3]]]
1981
- >>> output = slice_op(data, (1, 1, 0), (1, 1, 3))
1982
- >>> print(output)
1983
- [[[4 4 4]]]
1984
- >>> output = slice_op(data, (1, 0, 1), (1, 1, 2))
1985
- >>> print(output)
1986
- [[[3 3]]]
1987
- """
1988
-
1989
- @prim_attr_register
1990
- def __init__(self):
1991
- """Initialize slice"""
1992
- self.init_prim_io_names(inputs=['x', 'begin', 'size'], outputs=['output'])
1993
-
1994
-
1995
1841
  class Coalesce(Primitive):
1996
1842
  """
1997
1843
  Returns the coalesced sparse tensor of the input.
@@ -2198,7 +2044,7 @@ class ScatterUpdate(Primitive):
2198
2044
  use_locking (bool): Whether to protect the assignment by a lock. Default: ``True`` .
2199
2045
 
2200
2046
  Inputs:
2201
- - **input_x** (Parameter) - The target tensor, with data type of Parameter.
2047
+ - **input_x** (Union[Parameter, Tensor]) - The target tensor, with data type of Parameter or Tensor.
2202
2048
  The shape is 0-D or :math:`(N, *)` where :math:`*` means any number of additional dimensions.
2203
2049
  - **indices** (Tensor) - The index of input tensor. With int32 data type.
2204
2050
  If there are duplicates in indices, the order for updating is undefined.
@@ -2212,8 +2058,8 @@ class ScatterUpdate(Primitive):
2212
2058
  TypeError: If `use_locking` is not a bool.
2213
2059
  TypeError: If `indices` is not an int32.
2214
2060
  ValueError: If the shape of `updates` is not equal to `indices.shape + input_x.shape[1:]`.
2215
- RuntimeError: If the data type of `input_x` and `updates` conversion of Parameter
2216
- is required when data type conversion of Parameter is not supported.
2061
+ RuntimeError: If the data type of `input_x` and `updates` conversion is required when data type conversion
2062
+ is not supported.
2217
2063
 
2218
2064
  Supported Platforms:
2219
2065
  ``Ascend`` ``GPU`` ``CPU``
@@ -2267,10 +2113,10 @@ class ScatterNdUpdate(Primitive):
2267
2113
  the relatively highest priority data type.
2268
2114
 
2269
2115
  Args:
2270
- use_locking (bool): Whether to protect the assignment by a lock. Default: ``True`` .
2116
+ use_locking (bool, optional): Whether to protect the assignment by a lock. Default: ``True`` .
2271
2117
 
2272
2118
  Inputs:
2273
- - **input_x** (Parameter) - The target tensor, with data type of Parameter.
2119
+ - **input_x** (Union[Parameter, Tensor]) - The target tensor, with data type of Parameter or Tensor.
2274
2120
  The shape is :math:`(N, *)` where :math:`*` means any number of additional dimensions.
2275
2121
  - **indices** (Tensor) - The index of input tensor, with int32 or int64 data type.
2276
2122
  - **updates** (Tensor) - N-D(2D or 3D) Tensor The tensor to be updated to the input tensor,
@@ -2282,8 +2128,8 @@ class ScatterNdUpdate(Primitive):
2282
2128
  Raises:
2283
2129
  TypeError: If `use_locking` is not a bool.
2284
2130
  TypeError: If `indices` is not an int32 or an int64.
2285
- RuntimeError: If the data type of `input_x` and `updates` conversion of Parameter
2286
- is required when data type conversion of Parameter is not supported.
2131
+ RuntimeError: If the data type of `input_x` and `updates` conversion is required when data type conversion
2132
+ is not supported.
2287
2133
 
2288
2134
  Supported Platforms:
2289
2135
  ``Ascend`` ``GPU`` ``CPU``
@@ -2340,7 +2186,7 @@ class ScatterMax(_ScatterOpDynamic):
2340
2186
  use_locking (bool): Whether to protect the assignment by a lock. Default: ``False`` .
2341
2187
 
2342
2188
  Inputs:
2343
- - **input_x** (Parameter) - The target tensor, with data type of Parameter.
2189
+ - **input_x** (Union[Parameter, Tensor]) - The target tensor, with data type of Parameter or Tensor.
2344
2190
  The shape is :math:`(N, *)` where :math:`*` means any number of additional dimensions.
2345
2191
  - **indices** (Tensor) - The index to do max operation whose data type must be mindspore.int32 or
2346
2192
  mindspore.int64.
@@ -2354,8 +2200,8 @@ class ScatterMax(_ScatterOpDynamic):
2354
2200
  TypeError: If `use_locking` is not a bool.
2355
2201
  TypeError: If `indices` is not an int32 or an int64.
2356
2202
  ValueError: If the shape of `updates` is not equal to `indices.shape + x.shape[1:]`.
2357
- RuntimeError: If the data type of `input_x` and `updates` conversion of Parameter
2358
- is required when data type conversion of Parameter is not supported.
2203
+ RuntimeError: If the data type of `input_x` and `updates` conversion is required when data type conversion
2204
+ is not supported.
2359
2205
  RuntimeError: On the Ascend platform, the input data dimension of `input_x` , `indices`
2360
2206
  and `updates` is greater than 8 dimensions.
2361
2207
 
@@ -2398,10 +2244,10 @@ class ScatterMin(_ScatterOpDynamic):
2398
2244
  when `updates` does not support conversion to the data type required by `input_x`.
2399
2245
 
2400
2246
  Args:
2401
- use_locking (bool): Whether to protect the assignment by a lock. Default: ``False`` .
2247
+ use_locking (bool, optional): Whether to protect the assignment by a lock. Default: ``False`` .
2402
2248
 
2403
2249
  Inputs:
2404
- - **input_x** (Parameter) - The target tensor, with data type of Parameter.
2250
+ - **input_x** (Union[Parameter, Tensor]) - The target tensor, with data type of Parameter or Tensor.
2405
2251
  The shape is :math:`(N, *)` where :math:`*` means any number of additional dimensions.
2406
2252
  - **indices** (Tensor) - The index to do min operation whose data type must be mindspore.int32 or
2407
2253
  mindspore.int64.
@@ -2415,8 +2261,8 @@ class ScatterMin(_ScatterOpDynamic):
2415
2261
  TypeError: If `use_locking` is not a bool.
2416
2262
  TypeError: If `indices` is not an int32 or an int64.
2417
2263
  ValueError: If the shape of `updates` is not equal to `indices.shape + input_x.shape[1:]`.
2418
- RuntimeError: If the data type of `input_x` and `updates` conversion of Parameter
2419
- is required when data type conversion of Parameter is not supported.
2264
+ RuntimeError: If the data type of `input_x` and `updates` conversion is required when data type conversion
2265
+ is not supported.
2420
2266
  RuntimeError: On the Ascend platform, the input data dimension of `input_x` , `indices`
2421
2267
  and `updates` is greater than 8 dimensions.
2422
2268
 
@@ -2460,12 +2306,12 @@ class ScatterAdd(Primitive):
2460
2306
  This is an in-place update operator. Therefore, the `input_x` will be updated after the operation is completed.
2461
2307
 
2462
2308
  Args:
2463
- use_locking (bool): Whether to protect the assignment by a lock.
2309
+ use_locking (bool, optional): Whether to protect the assignment by a lock.
2464
2310
  If ``True`` , `input_x` will be protected by the lock.
2465
2311
  Otherwise, the calculation result is undefined. Default: ``False`` .
2466
2312
 
2467
2313
  Inputs:
2468
- - **input_x** (Parameter) - The target tensor, with data type of Parameter.
2314
+ - **input_x** (Union[Parameter, Tensor]) - The target tensor, with data type of Parameter or Tensor.
2469
2315
  - **indices** (Tensor) - The index to do min operation whose data type must be mindspore.int32 or
2470
2316
  mindspore.int64.
2471
2317
  - **updates** (Tensor) - The tensor doing the min operation with `input_x`,
@@ -2478,8 +2324,8 @@ class ScatterAdd(Primitive):
2478
2324
  TypeError: If `use_locking` is not a bool.
2479
2325
  TypeError: If `indices` is not an int32 or an int64.
2480
2326
  ValueError: If the shape of `updates` is not equal to `indices.shape + x.shape[1:]`.
2481
- RuntimeError: If the data type of `input_x` and `updates` conversion of Parameter
2482
- is required when data type conversion of Parameter is not supported.
2327
+ RuntimeError: If the data type of `input_x` and `updates` conversion is required when data type conversion
2328
+ is not supported.
2483
2329
 
2484
2330
  Supported Platforms:
2485
2331
  ``Ascend`` ``GPU`` ``CPU``
@@ -2580,10 +2426,10 @@ class ScatterSub(Primitive):
2580
2426
  the relatively highest priority data type.
2581
2427
 
2582
2428
  Args:
2583
- use_locking (bool): Whether to protect the assignment by a lock. Default: ``False`` .
2429
+ use_locking (bool, optional): Whether to protect the assignment by a lock. Default: ``False`` .
2584
2430
 
2585
2431
  Inputs:
2586
- - **input_x** (Parameter) - The target tensor, with data type of Parameter.
2432
+ - **input_x** (Union[Parameter, Tensor]) - The target tensor, with data type of Parameter or Tensor.
2587
2433
  The shape is :math:`(N, *)` where :math:`*` means any number of additional dimensions.
2588
2434
  - **indices** (Tensor) - The index to do min operation whose data type must be mindspore.int32 or
2589
2435
  mindspore.int64.
@@ -2597,8 +2443,8 @@ class ScatterSub(Primitive):
2597
2443
  TypeError: If `use_locking` is not a bool.
2598
2444
  TypeError: If `indices` is not an int32.
2599
2445
  ValueError: If the shape of `updates` is not equal to `indices_shape + x_shape[1:]`.
2600
- RuntimeError: If the data type of `input_x` and `updates` conversion of Parameter
2601
- is required when data type conversion of Parameter is not supported.
2446
+ RuntimeError: If the data type of `input_x` and `updates` conversion is required when data type conversion
2447
+ is not supported.
2602
2448
 
2603
2449
  Supported Platforms:
2604
2450
  ``Ascend`` ``GPU`` ``CPU``
@@ -2702,7 +2548,7 @@ class ScatterMul(_ScatterOpDynamic):
2702
2548
  use_locking (bool): Whether to protect the assignment by a lock. Default: ``False`` .
2703
2549
 
2704
2550
  Inputs:
2705
- - **input_x** (Parameter) - The target tensor, with data type of Parameter.
2551
+ - **input_x** (Union[Parameter, Tensor]) - The target tensor, with data type of Parameter or Tensor.
2706
2552
  The shape is :math:`(N, *)` where :math:`*` means any number of additional dimensions.
2707
2553
  - **indices** (Tensor) - The index to do multiply operation whose data type must be mstype.int32 or
2708
2554
  mstype.int64.
@@ -2716,8 +2562,8 @@ class ScatterMul(_ScatterOpDynamic):
2716
2562
  TypeError: If `use_locking` is not a bool.
2717
2563
  TypeError: If `indices` is not an int32 or an int64.
2718
2564
  ValueError: If the shape of `updates` is not equal to `indices.shape + input_x.shape[1:]`.
2719
- RuntimeError: If the data type of `input_x` and `updates` conversion of Parameter
2720
- is required when data type conversion of Parameter is not supported.
2565
+ RuntimeError: If the data type of `input_x` and `updates` conversion is required when data type conversion
2566
+ is not supported.
2721
2567
 
2722
2568
  Supported Platforms:
2723
2569
  ``Ascend`` ``GPU`` ``CPU``
@@ -2810,7 +2656,7 @@ class ScatterDiv(_ScatterOpDynamic):
2810
2656
  use_locking (bool): Whether to protect the assignment by a lock. Default: ``False`` .
2811
2657
 
2812
2658
  Inputs:
2813
- - **input_x** (Parameter) - The target tensor, with data type of Parameter.
2659
+ - **input_x** (Union[Parameter, Tensor]) - The target tensor, with data type of Parameter or Tensor.
2814
2660
  The shape is :math:`(N, *)` where :math:`*` means any number of additional dimensions.
2815
2661
  - **indices** (Tensor) - The index to do divide operation whose data type must be mstype.int32 or
2816
2662
  mstype.int64.
@@ -2824,8 +2670,8 @@ class ScatterDiv(_ScatterOpDynamic):
2824
2670
  TypeError: If `use_locking` is not a bool.
2825
2671
  TypeError: If `indices` is not an int32 or an int64.
2826
2672
  ValueError: If the shape of `updates` is not equal to `indices.shape + input_x.shape[1:]`.
2827
- RuntimeError: If the data type of `input_x` and `updates` conversion of Parameter
2828
- is required when data type conversion of Parameter is not supported.
2673
+ RuntimeError: If the data type of `input_x` and `updates` conversion is required when data type conversion
2674
+ is not supported.
2829
2675
  RuntimeError: On the Ascend platform, the input data dimension of `input_x` , `indices`
2830
2676
  and `updates` is greater than 8 dimensions.
2831
2677
 
@@ -2914,7 +2760,7 @@ class ScatterNdAdd(Primitive):
2914
2760
  use_locking (bool, optional): Whether to protect the assignment by a lock. Default: ``False`` .
2915
2761
 
2916
2762
  Inputs:
2917
- - **input_x** (Parameter) - The target tensor, with data type of Parameter.
2763
+ - **input_x** (Union[Parameter, Tensor]) - The target tensor, with data type of Parameter or Tensor.
2918
2764
  The shape is :math:`(N, *)` where :math:`*` means any number of additional dimensions.
2919
2765
  - **indices** (Tensor) - The index to do add operation whose data type must be mindspore.int32.
2920
2766
  The rank of indices must be at least 2 and `indices.shape[-1] <= len(shape)`.
@@ -2991,7 +2837,7 @@ class ScatterNdSub(Primitive):
2991
2837
  use_locking (bool, optional): Whether to protect the assignment by a lock. Default: ``False`` .
2992
2838
 
2993
2839
  Inputs:
2994
- - **input_x** (Parameter) - The target tensor, with data type of Parameter.
2840
+ - **input_x** (Union[Parameter, Tensor]) - The target tensor, with data type of Parameter or Tensor.
2995
2841
  The shape is :math:`(N, *)` where :math:`*` means any number of additional dimensions.
2996
2842
  - **indices** (Tensor) - The index to do sub operation whose data type must be mindspore.int32.
2997
2843
  The rank of indices must be at least 2 and `indices.shape[-1] <= len(shape)`.
@@ -3072,7 +2918,7 @@ class ScatterNdMul(_ScatterNdOp):
3072
2918
  use_locking (bool, optional): Whether to protect the assignment by a lock. Default: ``False`` .
3073
2919
 
3074
2920
  Inputs:
3075
- - **input_x** (Parameter) - The target tensor, with data type of Parameter.
2921
+ - **input_x** (Union[Parameter, Tensor]) - The target tensor, with data type of Parameter or Tensor.
3076
2922
  - **indices** (Tensor) - The index to do mul operation whose data type must be int32 or int64.
3077
2923
  The rank of indices must be at least 2 and `indices.shape[-1] <= len(shape)`.
3078
2924
  - **updates** (Tensor) - The tensor to do the mul operation with `input_x`.
@@ -3137,7 +2983,7 @@ class ScatterNdDiv(_ScatterNdOp):
3137
2983
  use_locking (bool, optional): Whether to protect the assignment by a lock. Default: ``False`` .
3138
2984
 
3139
2985
  Inputs:
3140
- - **input_x** (Parameter) - The target tensor, with data type of Parameter.
2986
+ - **input_x** (Union[Parameter, Tensor]) - The target tensor, with data type of Parameter or Tensor.
3141
2987
  - **indices** (Tensor) - The index to do div operation whose data type must be int32 or int64.
3142
2988
  The rank of indices must be at least 2 and `indices.shape[-1] <= len(shape)`.
3143
2989
  - **updates** (Tensor) - The tensor to do the div operation with `input_x`.
@@ -3191,7 +3037,7 @@ class ScatterNdDiv(_ScatterNdOp):
3191
3037
 
3192
3038
  class ScatterNdMax(_ScatterNdOp):
3193
3039
  r"""
3194
- Applies sparse maximum to individual values or slices in a tensor.
3040
+ Computes sparse maximum to individual values or slices in a tensor.
3195
3041
 
3196
3042
  Using given values to update parameter value through the maximum operation, along with the input indices.
3197
3043
  This operation outputs the `input_x` after the update is done, which makes it convenient to use the updated value.
@@ -3202,7 +3048,7 @@ class ScatterNdMax(_ScatterNdOp):
3202
3048
  use_locking (bool, optional): Whether to protect the assignment by a lock. Default: ``False`` .
3203
3049
 
3204
3050
  Inputs:
3205
- - **input_x** (Parameter) -The target tensor, with data type of Parameter.
3051
+ - **input_x** (Union[Parameter, Tensor]) - The target tensor, with data type of Parameter or Tensor.
3206
3052
  - **indices** (Tensor) - The index to do maximum operation whose data type must be int32 or int64.
3207
3053
  The rank of indices must be at least 2 and `indices.shape[-1] <= len(shape)`.
3208
3054
  - **updates** (Tensor) - The tensor to do the max operation with `input_x`.
@@ -3269,7 +3115,7 @@ class ScatterNdMin(_ScatterNdOp):
3269
3115
  use_locking (bool, optional): Whether to protect the assignment by a lock. Default: ``False`` .
3270
3116
 
3271
3117
  Inputs:
3272
- - **input_x** (Parameter) -The target tensor, with data type of Parameter.
3118
+ - **input_x** (Union[Parameter, Tensor]) - The target tensor, with data type of Parameter or Tensor.
3273
3119
  - **indices** (Tensor) - The index to do minimum operation whose data type must be int32 or int64.
3274
3120
  The rank of indices must be at least 2 and `indices.shape[-1] <= len(shape)`.
3275
3121
  - **updates** (Tensor) - The tensor to do the max operation with `input_x`.
@@ -3735,117 +3581,13 @@ class BatchToSpaceNDV2(Primitive):
3735
3581
  self.add_prim_attr('origin_format', 'NHWC')
3736
3582
 
3737
3583
 
3738
- class Meshgrid(PrimitiveWithInfer):
3739
- """
3740
- Generates coordinate matrices from given coordinate tensors.
3741
-
3742
- Refer to :func:`mindspore.ops.meshgrid` for more details.
3743
-
3744
- Args:
3745
- indexing (str, optional): Cartesian ``'xy'`` or
3746
- matrix ``'ij'`` indexing of output. In the 2-D case with
3747
- inputs of length `M` and `N`, the outputs are of shape :math:`(N, M)`
3748
- for ``'xy'`` indexing and :math:`(M, N)` for ``'ij'`` indexing. In the 3-D
3749
- case with inputs of length `M`, `N` and `P`, outputs are of shape
3750
- :math:`(N, M, P)` for ``'xy'`` indexing and :math:`(M, N, P)` for ``'ij'`` indexing.
3751
- Default: ``'xy'``.
3752
-
3753
- Inputs:
3754
- - **input** (Union[tuple]) - A Tuple of N 1-D Tensor objects.
3755
- The length of input should be greater than 1. The data type is Number.
3756
-
3757
- Outputs:
3758
- Tensors, A Tuple of N N-D Tensor objects. The data type is the same with the Inputs.
3759
-
3760
- Supported Platforms:
3761
- ``Ascend`` ``GPU`` ``CPU``
3762
-
3763
- Examples:
3764
- >>> import numpy as np
3765
- >>> from mindspore import Tensor, ops
3766
- >>> x = Tensor(np.array([1, 2, 3, 4]).astype(np.int32))
3767
- >>> y = Tensor(np.array([5, 6, 7]).astype(np.int32))
3768
- >>> z = Tensor(np.array([8, 9, 0, 1, 2]).astype(np.int32))
3769
- >>> inputs = (x, y, z)
3770
- >>> meshgrid = ops.Meshgrid(indexing='xy')
3771
- >>> output = meshgrid(inputs)
3772
- >>> print(output)
3773
- (Tensor(shape=[3, 4, 5], dtype=Int32, value=
3774
- [[[1, 1, 1, 1, 1],
3775
- [2, 2, 2, 2, 2],
3776
- [3, 3, 3, 3, 3],
3777
- [4, 4, 4, 4, 4]],
3778
- [[1, 1, 1, 1, 1],
3779
- [2, 2, 2, 2, 2],
3780
- [3, 3, 3, 3, 3],
3781
- [4, 4, 4, 4, 4]],
3782
- [[1, 1, 1, 1, 1],
3783
- [2, 2, 2, 2, 2],
3784
- [3, 3, 3, 3, 3],
3785
- [4, 4, 4, 4, 4]]]),
3786
- Tensor(shape=[3, 4, 5], dtype=Int32, value=
3787
- [[[5, 5, 5, 5, 5],
3788
- [5, 5, 5, 5, 5],
3789
- [5, 5, 5, 5, 5],
3790
- [5, 5, 5, 5, 5]],
3791
- [[6, 6, 6, 6, 6],
3792
- [6, 6, 6, 6, 6],
3793
- [6, 6, 6, 6, 6],
3794
- [6, 6, 6, 6, 6]],
3795
- [[7, 7, 7, 7, 7],
3796
- [7, 7, 7, 7, 7],
3797
- [7, 7, 7, 7, 7],
3798
- [7, 7, 7, 7, 7]]]),
3799
- Tensor(shape=[3, 4, 5], dtype=Int32, value=
3800
- [[[8, 9, 0, 1, 2],
3801
- [8, 9, 0, 1, 2],
3802
- [8, 9, 0, 1, 2],
3803
- [8, 9, 0, 1, 2]],
3804
- [[8, 9, 0, 1, 2],
3805
- [8, 9, 0, 1, 2],
3806
- [8, 9, 0, 1, 2],
3807
- [8, 9, 0, 1, 2]],
3808
- [[8, 9, 0, 1, 2],
3809
- [8, 9, 0, 1, 2],
3810
- [8, 9, 0, 1, 2],
3811
- [8, 9, 0, 1, 2]]]))
3812
- """
3813
-
3814
- @prim_attr_register
3815
- def __init__(self, indexing="xy"):
3816
- """Initialize Meshgrid."""
3817
- validator.check_value_type("indexing", indexing, (str), self.name)
3818
- validator.check_string(indexing.lower(), ["xy", "ij"], "indexing", self.name)
3819
- self.indexing = indexing
3820
-
3821
- def infer_shape(self, x_shape):
3822
- validator.check_value_type("shape", x_shape, [tuple], self.name)
3823
- validator.check_int(len(x_shape), 2, validator.GE, "len of input", self.name)
3824
- n = len(x_shape)
3825
- shape_0 = []
3826
- for s in x_shape:
3827
- validator.check_int(len(s), 1, validator.EQ, 'each input rank', self.name)
3828
- shape_0.append(s[0])
3829
- if self.indexing == "xy":
3830
- shape_0[0], shape_0[1] = shape_0[1], shape_0[0]
3831
- out_shape = tuple(tuple(shape_0) for _ in range(n))
3832
- return out_shape
3833
-
3834
- def infer_dtype(self, x_type):
3835
- validator.check_subclass("input[0]", x_type[0], mstype.tensor_type, self.name)
3836
- n = len(x_type)
3837
- for i in range(1, n):
3838
- validator.check('x_type[%d]' % i, x_type[i], 'base', x_type[0], validator.EQ, self.name, TypeError)
3839
- return x_type
3840
-
3841
-
3842
3584
  class ReverseSequence(PrimitiveWithInfer):
3843
3585
  r"""
3844
3586
  Reverses variable length slices.
3845
3587
 
3846
3588
  Args:
3847
3589
  seq_dim (int): The dimension where reversal is performed. Required.
3848
- batch_dim (int): The input is sliced in this dimension. Default: ``0`` .
3590
+ batch_dim (int, optional): The input is sliced in this dimension. Default: ``0`` .
3849
3591
 
3850
3592
  Inputs:
3851
3593
  - **x** (Tensor) - The input to reverse, supporting all number types including bool.
@@ -4096,10 +3838,11 @@ class EmbeddingLookup(Primitive):
4096
3838
  `offset`.
4097
3839
 
4098
3840
  Inputs:
4099
- - **input_params** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
4100
- This represents a Tensor slice, instead of the entire Tensor. Currently, the dimension is restricted to be 2.
4101
- - **input_indices** (Tensor) - The shape of tensor is :math:`(y_1, y_2, ..., y_S)`.
4102
- Specifies the indices of elements of the original Tensor. Values can be out of range of `input_params`,
3841
+ - **input_params** (Tensor) - a Tensor slice, the shape is :math:`(x_1, x_2, ..., x_R)`.
3842
+ Currently, the dimension is restricted to be 2.
3843
+ - **input_indices** (Tensor) - Specifies the indices of elements of the original Tensor.
3844
+ The shape is :math:`(y_1, y_2, ..., y_S)`.
3845
+ Values can be out of range of `input_params`,
4103
3846
  and the exceeding part will be filled with 0 in the output. Values do not support negative and the result
4104
3847
  is undefined if values are negative. The data type should be int32 or int64.
4105
3848
  - **offset** (int) - Specifies the offset value of this `input_params` slice. Thus the real indices
@@ -4326,7 +4069,8 @@ class TensorScatterUpdate(_TensorScatterOp):
4326
4069
  r"""
4327
4070
  Creates a new tensor by updating the positions in `input_x` indicated by
4328
4071
  `indices`, with values from `update`. This operation is almost equivalent to using
4329
- `mindspore.ops.ScatterNdUpdate` , except that the updates are applied on `input_x` instead of a zero tensor.
4072
+ :class:`mindspore.ops.ScatterNdUpdate` , except that the updates are applied on output `Tensor`
4073
+ instead of `input_x`.
4330
4074
 
4331
4075
  `indices` must have rank at least 2, the last axis is the depth of each index
4332
4076
  vectors. For each index vector, there must be a corresponding value in `update`. If
@@ -4488,12 +4232,25 @@ class TensorScatterSub(Primitive):
4488
4232
  r"""
4489
4233
  Creates a new tensor by subtracting the values from the positions in `input_x` indicated by
4490
4234
  `indices`, with values from `updates`. When multiple values are provided for the same
4491
- index, the result of the update will be to subtract these values respectively. This operation is almost
4235
+ index, the result of the update will subtract these values respectively. This operation is almost
4492
4236
  equivalent to using :class:`mindspore.ops.ScatterNdSub` , except that the updates are applied on output `Tensor`
4493
4237
  instead of input `Parameter`.
4494
4238
 
4495
- .. math::
4496
- output\left [indices \right ] = input\_x- update
4239
+ .. code-block:: python
4240
+
4241
+ # Iterate through all index
4242
+ for i in range(indices.shape[0]):
4243
+ for j in range(indices.shape[1]):
4244
+ ...
4245
+ for k in range(indices.shape[-2]): # The last dimension is coordinate dimension
4246
+ # Get current index combination
4247
+ index_tuple = (i, j, ..., k)
4248
+ # Get target position
4249
+ target_index = indices[index_tuple]
4250
+ # Get corresponding update value
4251
+ update_value = updates[index_tuple]
4252
+ # Perform subtraction operation
4253
+ output[target_index] -= update_value
4497
4254
 
4498
4255
  Refer to :func:`mindspore.ops.tensor_scatter_sub` for more details.
4499
4256
 
@@ -5237,7 +4994,7 @@ class Tril(Primitive):
5237
4994
  indicating the main diagonal.
5238
4995
 
5239
4996
  Inputs:
5240
- - **x** (Tensor) - The input tensor with shape :math:`(M, N, *)`
4997
+ - **x** (Tensor) - The input tensor with shape :math:`(*, M, N)`
5241
4998
  where :math:`*` means any number of additional dimensions.
5242
4999
 
5243
5000
  Outputs:
@@ -5387,7 +5144,7 @@ class IndexPut(Primitive):
5387
5144
  >>> op = ops.IndexPut(accumulate = accumulate)
5388
5145
  >>> output = op(x1, x2, indices)
5389
5146
  >>> print(output)
5390
- [[4 5 3]
5147
+ [[4 5 3]
5391
5148
  [4 5 6]]
5392
5149
  """
5393
5150
 
@@ -5780,7 +5537,7 @@ class AffineGrid(Primitive):
5780
5537
 
5781
5538
  Args:
5782
5539
  align_corners (bool, optional): Geometrically, each pixel of input is viewed as a squqre instead of dot.
5783
- If True, consider extremum -1 and 1 referring to the centers of the pixels rather than pixel corners.
5540
+ If ``True``, consider extremum -1 and 1 referring to the centers of the pixels rather than pixel corners.
5784
5541
  The default value is ``False`` , extremum -1 and 1 refer to the corners of the pixels, so that sampling is
5785
5542
  irrelevant to resolution of the image. Default: ``False`` .
5786
5543
 
@@ -5792,7 +5549,7 @@ class AffineGrid(Primitive):
5792
5549
  or :math:`(N, C, D, H, W)` for 3D grid.
5793
5550
 
5794
5551
  Outputs:
5795
- Tensor, a tensor whose data type is same as 'theta', and the shape is :math:`(N, H, W, 2)` for 2D grid
5552
+ Tensor, a tensor whose data type is same as `theta`, and the shape is :math:`(N, H, W, 2)` for 2D grid
5796
5553
  or :math:`(N, D, H, W, 3)` for 3D grid.
5797
5554
 
5798
5555
  Supported Platforms:
@@ -6001,7 +5758,7 @@ class TopK(Primitive):
6001
5758
  - CPU: all numeric types.
6002
5759
 
6003
5760
  - **k** (Union(Tensor, int)) - The number of top elements to be computed along the last dimension.
6004
- If `k` is a Tensor, the supported dtype is int32 and it should be 0-D or 1-D with shape :math:`(1, )` .
5761
+ The supported dtype is int32 and it should be 0-D or 1-D Tensor with shape :math:`(1, )` .
6005
5762
 
6006
5763
  Outputs:
6007
5764
  A tuple consisting of `values` and `indexes`.