mindspore 2.4.10__cp310-cp310-win_amd64.whl → 2.6.0rc1__cp310-cp310-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mindspore might be problematic. Click here for more details.
- mindspore/.commit_id +1 -1
- mindspore/Microsoft.VisualStudio.Telemetry.dll +0 -0
- mindspore/Newtonsoft.Json.dll +0 -0
- mindspore/__init__.py +13 -6
- mindspore/_c_dataengine.cp310-win_amd64.pyd +0 -0
- mindspore/_c_expression.cp310-win_amd64.pyd +0 -0
- mindspore/_c_mindrecord.cp310-win_amd64.pyd +0 -0
- mindspore/_check_jit_forbidden_api.py +3 -0
- mindspore/_checkparam.py +3 -38
- mindspore/_deprecated/__init__.py +17 -0
- mindspore/_deprecated/jit.py +198 -0
- mindspore/_extends/builtin_operations.py +1 -1
- mindspore/_extends/parallel_compile/akg_compiler/gen_custom_op_files.py +1 -1
- mindspore/_extends/parse/__init__.py +6 -7
- mindspore/_extends/parse/compile_config.py +83 -0
- mindspore/_extends/parse/deprecated/__init__.py +0 -0
- mindspore/_extends/parse/deprecated/deprecated_tensor_method.py +394 -0
- mindspore/_extends/parse/jit_fallback_modules/__init__.py +0 -0
- mindspore/_extends/parse/jit_fallback_modules/check_utils.py +123 -0
- mindspore/_extends/parse/jit_fallback_modules/third_party_modules.py +50 -0
- mindspore/_extends/parse/parser.py +46 -197
- mindspore/_extends/parse/resources.py +1 -5
- mindspore/_extends/parse/standard_method.py +217 -98
- mindspore/_extends/pijit/__init__.py +2 -2
- mindspore/_extends/pijit/pijit_func_white_list.py +17 -12
- mindspore/_extends/pijit/tensor_func_list.py +27 -0
- mindspore/_extends/utils.py +1 -1
- mindspore/amp.py +11 -5
- mindspore/atlprov.dll +0 -0
- mindspore/avcodec-59.dll +0 -0
- mindspore/avdevice-59.dll +0 -0
- mindspore/avfilter-8.dll +0 -0
- mindspore/avformat-59.dll +0 -0
- mindspore/avutil-57.dll +0 -0
- mindspore/boost/__init__.py +2 -2
- mindspore/boost/base.py +3 -7
- mindspore/boost/boost_cell_wrapper.py +138 -43
- mindspore/c1.dll +0 -0
- mindspore/c1xx.dll +0 -0
- mindspore/c2.dll +0 -0
- mindspore/common/__init__.py +6 -3
- mindspore/common/_grad_function.py +56 -0
- mindspore/common/_pijit_context.py +14 -5
- mindspore/common/_register_for_tensor.py +1 -2
- mindspore/common/_stub_tensor.py +30 -14
- mindspore/common/_tensor_cpp_method.py +17 -0
- mindspore/common/_tensor_docs.py +4760 -0
- mindspore/common/api.py +435 -371
- mindspore/common/auto_dynamic_shape.py +41 -44
- mindspore/common/dtype.py +39 -36
- mindspore/common/dump.py +9 -6
- mindspore/common/file_system.py +9 -1
- mindspore/common/generator.py +2 -0
- mindspore/common/hook_handle.py +6 -2
- mindspore/common/initializer.py +13 -10
- mindspore/common/jit_begin_end.py +94 -0
- mindspore/common/jit_config.py +6 -1
- mindspore/common/jit_context.py +76 -0
- mindspore/common/jit_trace.py +378 -0
- mindspore/common/lazy_inline.py +9 -3
- mindspore/common/mindir_util.py +10 -2
- mindspore/common/mutable.py +5 -4
- mindspore/common/parameter.py +135 -52
- mindspore/common/seed.py +2 -2
- mindspore/common/sparse_tensor.py +23 -17
- mindspore/common/tensor.py +951 -1992
- mindspore/communication/__init__.py +7 -5
- mindspore/communication/_comm_helper.py +52 -2
- mindspore/communication/comm_func.py +240 -181
- mindspore/communication/management.py +95 -26
- mindspore/context.py +314 -566
- mindspore/dataset/__init__.py +65 -37
- mindspore/dataset/audio/__init__.py +2 -8
- mindspore/dataset/audio/transforms.py +3 -17
- mindspore/dataset/callback/ds_callback.py +2 -1
- mindspore/dataset/core/config.py +87 -6
- mindspore/dataset/engine/cache_admin.py +3 -3
- mindspore/dataset/engine/cache_client.py +6 -5
- mindspore/dataset/engine/datasets.py +292 -267
- mindspore/dataset/engine/datasets_audio.py +22 -8
- mindspore/dataset/engine/datasets_standard_format.py +46 -27
- mindspore/dataset/engine/datasets_text.py +78 -48
- mindspore/dataset/engine/datasets_user_defined.py +182 -116
- mindspore/dataset/engine/datasets_vision.py +120 -44
- mindspore/dataset/engine/iterators.py +283 -63
- mindspore/dataset/engine/obs/obs_mindrecord_dataset.py +1 -1
- mindspore/dataset/engine/obs/util.py +8 -0
- mindspore/dataset/engine/queue.py +40 -0
- mindspore/dataset/engine/samplers.py +289 -43
- mindspore/dataset/engine/serializer_deserializer.py +3 -2
- mindspore/dataset/engine/validators.py +53 -11
- mindspore/dataset/text/__init__.py +7 -6
- mindspore/dataset/text/transforms.py +6 -5
- mindspore/dataset/text/utils.py +3 -3
- mindspore/dataset/transforms/__init__.py +0 -9
- mindspore/dataset/transforms/py_transforms_util.py +17 -0
- mindspore/dataset/transforms/transforms.py +31 -14
- mindspore/dataset/utils/browse_dataset.py +1 -1
- mindspore/dataset/vision/__init__.py +2 -9
- mindspore/dataset/vision/transforms.py +202 -158
- mindspore/dataset/vision/utils.py +7 -5
- mindspore/dataset/vision/validators.py +1 -2
- mindspore/device_context/__init__.py +21 -0
- mindspore/device_context/ascend/__init__.py +25 -0
- mindspore/device_context/ascend/device.py +72 -0
- mindspore/device_context/ascend/op_debug.py +153 -0
- mindspore/device_context/ascend/op_precision.py +193 -0
- mindspore/device_context/ascend/op_tuning.py +123 -0
- mindspore/{ops_generate/gen_constants.py → device_context/cpu/__init__.py} +6 -17
- mindspore/device_context/cpu/device.py +62 -0
- mindspore/device_context/cpu/op_tuning.py +43 -0
- mindspore/device_context/gpu/__init__.py +21 -0
- mindspore/device_context/gpu/device.py +70 -0
- mindspore/device_context/gpu/op_precision.py +67 -0
- mindspore/device_context/gpu/op_tuning.py +175 -0
- mindspore/device_manager.py +170 -0
- mindspore/dnnl.dll +0 -0
- mindspore/dpcmi.dll +0 -0
- mindspore/experimental/es/embedding_service.py +35 -27
- mindspore/experimental/llm_boost/__init__.py +1 -0
- mindspore/experimental/llm_boost/ascend_native/__init__.py +22 -0
- mindspore/experimental/llm_boost/ascend_native/llama_boost_ascend_native.py +211 -0
- mindspore/experimental/llm_boost/ascend_native/llm_boost.py +52 -0
- mindspore/experimental/llm_boost/atb/boost_base.py +2 -3
- mindspore/experimental/llm_boost/atb/llama_boost.py +6 -1
- mindspore/experimental/llm_boost/register.py +1 -0
- mindspore/experimental/map_parameter.py +4 -4
- mindspore/experimental/optim/adadelta.py +6 -6
- mindspore/experimental/optim/adagrad.py +4 -4
- mindspore/experimental/optim/adam.py +7 -0
- mindspore/experimental/optim/adamax.py +4 -4
- mindspore/experimental/optim/adamw.py +4 -0
- mindspore/experimental/optim/asgd.py +1 -1
- mindspore/experimental/optim/lr_scheduler.py +73 -46
- mindspore/experimental/optim/radam.py +34 -31
- mindspore/experimental/optim/rprop.py +1 -1
- mindspore/experimental/optim/sgd.py +1 -1
- mindspore/hal/contiguous_tensors_handle.py +6 -10
- mindspore/hal/device.py +55 -53
- mindspore/hal/event.py +52 -52
- mindspore/hal/memory.py +157 -117
- mindspore/hal/stream.py +150 -109
- mindspore/include/api/context.h +0 -1
- mindspore/include/dataset/constants.h +7 -4
- mindspore/include/dataset/execute.h +2 -2
- mindspore/jpeg62.dll +0 -0
- mindspore/log.py +50 -0
- mindspore/mindrecord/__init__.py +21 -8
- mindspore/mindrecord/config.py +17 -316
- mindspore/mindrecord/filereader.py +1 -9
- mindspore/mindrecord/filewriter.py +5 -15
- mindspore/mindrecord/mindpage.py +1 -9
- mindspore/mindspore_backend_common.dll +0 -0
- mindspore/mindspore_backend_manager.dll +0 -0
- mindspore/mindspore_common.dll +0 -0
- mindspore/mindspore_core.dll +0 -0
- mindspore/mindspore_dump.dll +0 -0
- mindspore/mindspore_frontend.dll +0 -0
- mindspore/mindspore_glog.dll +0 -0
- mindspore/mindspore_memory_pool.dll +0 -0
- mindspore/mindspore_ms_backend.dll +0 -0
- mindspore/mindspore_ops.dll +0 -0
- mindspore/{mindspore_backend.dll → mindspore_ops_host.dll} +0 -0
- mindspore/mindspore_ops_kernel_common.dll +0 -0
- mindspore/mindspore_profiler.dll +0 -0
- mindspore/mindspore_pyboost.dll +0 -0
- mindspore/mindspore_pynative.dll +0 -0
- mindspore/mindspore_res_manager.dll +0 -0
- mindspore/mindspore_runtime_pipeline.dll +0 -0
- mindspore/mint/__init__.py +796 -759
- mindspore/mint/distributed/__init__.py +70 -4
- mindspore/mint/distributed/distributed.py +2679 -44
- mindspore/mint/linalg/__init__.py +8 -0
- mindspore/mint/nn/__init__.py +743 -22
- mindspore/mint/nn/functional.py +716 -23
- mindspore/mint/nn/layer/__init__.py +21 -4
- mindspore/mint/nn/layer/_functions.py +334 -0
- mindspore/mint/nn/layer/activation.py +276 -1
- mindspore/mint/nn/layer/basic.py +123 -0
- mindspore/mint/nn/layer/conv.py +921 -0
- mindspore/mint/nn/layer/normalization.py +223 -28
- mindspore/mint/nn/layer/padding.py +797 -0
- mindspore/mint/nn/layer/pooling.py +235 -0
- mindspore/mint/optim/__init__.py +3 -1
- mindspore/mint/optim/adam.py +223 -0
- mindspore/mint/optim/adamw.py +26 -19
- mindspore/mint/optim/sgd.py +171 -0
- mindspore/mint/special/__init__.py +2 -1
- mindspore/msobj140.dll +0 -0
- mindspore/mspdb140.dll +0 -0
- mindspore/mspdbcore.dll +0 -0
- mindspore/mspdbst.dll +0 -0
- mindspore/mspft140.dll +0 -0
- mindspore/msvcdis140.dll +0 -0
- mindspore/msvcp140_1.dll +0 -0
- mindspore/msvcp140_2.dll +0 -0
- mindspore/msvcp140_atomic_wait.dll +0 -0
- mindspore/msvcp140_codecvt_ids.dll +0 -0
- mindspore/multiprocessing/__init__.py +5 -0
- mindspore/nn/__init__.py +4 -1
- mindspore/nn/cell.py +1370 -189
- mindspore/nn/dynamic_lr.py +2 -1
- mindspore/nn/layer/activation.py +29 -27
- mindspore/nn/layer/basic.py +51 -35
- mindspore/nn/layer/channel_shuffle.py +3 -3
- mindspore/nn/layer/container.py +1 -1
- mindspore/nn/layer/conv.py +22 -17
- mindspore/nn/layer/embedding.py +12 -11
- mindspore/nn/layer/normalization.py +56 -49
- mindspore/nn/layer/padding.py +4 -3
- mindspore/nn/layer/pooling.py +120 -42
- mindspore/nn/layer/rnn_cells.py +1 -1
- mindspore/nn/layer/rnns.py +2 -1
- mindspore/nn/layer/timedistributed.py +5 -5
- mindspore/nn/layer/transformer.py +59 -36
- mindspore/nn/learning_rate_schedule.py +8 -4
- mindspore/nn/loss/loss.py +58 -55
- mindspore/nn/optim/ada_grad.py +7 -5
- mindspore/nn/optim/adadelta.py +11 -9
- mindspore/nn/optim/adafactor.py +1 -1
- mindspore/nn/optim/adam.py +17 -13
- mindspore/nn/optim/adamax.py +8 -7
- mindspore/nn/optim/adasum.py +5 -5
- mindspore/nn/optim/asgd.py +1 -1
- mindspore/nn/optim/ftrl.py +11 -9
- mindspore/nn/optim/lamb.py +1 -1
- mindspore/nn/optim/lars.py +1 -4
- mindspore/nn/optim/lazyadam.py +12 -10
- mindspore/nn/optim/momentum.py +7 -6
- mindspore/nn/optim/optimizer.py +3 -3
- mindspore/nn/optim/proximal_ada_grad.py +12 -10
- mindspore/nn/optim/rmsprop.py +13 -12
- mindspore/nn/optim/rprop.py +11 -9
- mindspore/nn/optim/sgd.py +9 -6
- mindspore/nn/optim/tft_wrapper.py +5 -2
- mindspore/nn/optim/thor.py +2 -1
- mindspore/nn/probability/bijector/bijector.py +17 -11
- mindspore/nn/probability/bijector/gumbel_cdf.py +5 -5
- mindspore/nn/probability/bijector/invert.py +2 -2
- mindspore/nn/probability/bijector/scalar_affine.py +3 -3
- mindspore/nn/probability/bijector/softplus.py +3 -2
- mindspore/nn/probability/distribution/beta.py +3 -3
- mindspore/nn/probability/distribution/categorical.py +1 -1
- mindspore/nn/probability/distribution/cauchy.py +4 -2
- mindspore/nn/probability/distribution/exponential.py +6 -7
- mindspore/nn/probability/distribution/gamma.py +2 -2
- mindspore/nn/probability/distribution/gumbel.py +2 -2
- mindspore/nn/probability/distribution/half_normal.py +5 -3
- mindspore/nn/probability/distribution/logistic.py +5 -3
- mindspore/nn/probability/distribution/poisson.py +1 -1
- mindspore/nn/probability/distribution/uniform.py +5 -3
- mindspore/nn/reinforcement/_tensors_queue.py +1 -1
- mindspore/nn/reinforcement/tensor_array.py +1 -1
- mindspore/nn/utils/init.py +13 -11
- mindspore/nn/wrap/__init__.py +6 -6
- mindspore/nn/wrap/cell_wrapper.py +181 -122
- mindspore/nn/wrap/grad_reducer.py +45 -36
- mindspore/nn/wrap/loss_scale.py +6 -7
- mindspore/numpy/array_creations.py +63 -65
- mindspore/numpy/array_ops.py +149 -144
- mindspore/numpy/logic_ops.py +41 -42
- mindspore/numpy/math_ops.py +365 -363
- mindspore/numpy/utils.py +17 -18
- mindspore/numpy/utils_const.py +5 -6
- mindspore/opencv_core452.dll +0 -0
- mindspore/opencv_imgcodecs452.dll +0 -0
- mindspore/opencv_imgproc452.dll +0 -0
- mindspore/ops/__init__.py +5 -3
- mindspore/ops/_grad_experimental/grad_comm_ops.py +112 -16
- mindspore/ops/_grad_experimental/grad_debug_ops.py +14 -2
- mindspore/ops/_grad_experimental/grad_inner_ops.py +9 -0
- mindspore/ops/_grad_experimental/grad_math_ops.py +2 -1
- mindspore/ops/_grad_experimental/taylor_rule.py +29 -0
- mindspore/ops/_op_impl/cpu/__init__.py +1 -0
- mindspore/ops/_op_impl/cpu/raise_op.py +28 -0
- mindspore/ops/_register_for_op.py +0 -11
- mindspore/{ops_generate → ops/_utils}/arg_dtype_cast.py +123 -4
- mindspore/{ops_generate → ops/_utils}/arg_handler.py +3 -65
- mindspore/ops/_vmap/vmap_array_ops.py +27 -25
- mindspore/ops/_vmap/vmap_base.py +0 -2
- mindspore/ops/_vmap/vmap_grad_nn_ops.py +21 -14
- mindspore/ops/_vmap/vmap_math_ops.py +15 -16
- mindspore/ops/_vmap/vmap_nn_ops.py +29 -42
- mindspore/ops/auto_generate/__init__.py +4 -3
- mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +236 -46
- mindspore/ops/auto_generate/gen_extend_func.py +764 -124
- mindspore/ops/auto_generate/gen_ops_def.py +4018 -2264
- mindspore/ops/auto_generate/gen_ops_prim.py +15463 -5037
- mindspore/ops/auto_generate/pyboost_inner_prim.py +221 -87
- mindspore/ops/composite/__init__.py +2 -1
- mindspore/ops/composite/base.py +20 -25
- mindspore/ops/composite/math_ops.py +6 -16
- mindspore/ops/composite/multitype_ops/__init__.py +5 -2
- mindspore/ops/composite/multitype_ops/_compile_utils.py +228 -30
- mindspore/ops/composite/multitype_ops/_constexpr_utils.py +1 -2
- mindspore/ops/composite/multitype_ops/add_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/bitwise_and_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/bitwise_or_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/bitwise_xor_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/div_impl.py +6 -4
- mindspore/ops/composite/multitype_ops/equal_impl.py +4 -3
- mindspore/ops/composite/multitype_ops/floordiv_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/getitem_impl.py +3 -2
- mindspore/ops/composite/multitype_ops/greater_equal_impl.py +4 -3
- mindspore/ops/composite/multitype_ops/greater_impl.py +4 -3
- mindspore/ops/composite/multitype_ops/in_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/invert_impl.py +50 -0
- mindspore/ops/composite/multitype_ops/left_shift_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/less_equal_impl.py +4 -3
- mindspore/ops/composite/multitype_ops/less_impl.py +4 -3
- mindspore/ops/composite/multitype_ops/logic_not_impl.py +3 -2
- mindspore/ops/composite/multitype_ops/logical_and_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/logical_or_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/mod_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/mul_impl.py +3 -2
- mindspore/ops/composite/multitype_ops/negative_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/not_equal_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/not_in_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/ones_like_impl.py +18 -0
- mindspore/ops/composite/multitype_ops/pow_impl.py +2 -30
- mindspore/ops/composite/multitype_ops/right_shift_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/setitem_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/sub_impl.py +2 -1
- mindspore/ops/function/__init__.py +40 -2
- mindspore/ops/function/_add_attr_func.py +58 -0
- mindspore/ops/function/array_func.py +2089 -2403
- mindspore/ops/function/clip_func.py +80 -23
- mindspore/ops/function/debug_func.py +57 -57
- mindspore/ops/function/grad/__init__.py +1 -0
- mindspore/ops/function/grad/grad_func.py +104 -71
- mindspore/ops/function/image_func.py +2 -2
- mindspore/ops/function/linalg_func.py +47 -78
- mindspore/ops/function/math_func.py +4501 -3802
- mindspore/ops/function/nn_func.py +1726 -620
- mindspore/ops/function/other_func.py +159 -1
- mindspore/ops/function/parameter_func.py +18 -84
- mindspore/ops/function/random_func.py +440 -387
- mindspore/ops/function/reshard_func.py +4 -70
- mindspore/ops/function/sparse_func.py +3 -3
- mindspore/ops/function/sparse_unary_func.py +6 -6
- mindspore/ops/function/spectral_func.py +25 -58
- mindspore/ops/function/vmap_func.py +24 -17
- mindspore/ops/functional.py +22 -7
- mindspore/ops/functional_overload.py +1440 -0
- mindspore/ops/op_info_register.py +32 -244
- mindspore/ops/operations/__init__.py +13 -7
- mindspore/ops/operations/_custom_ops_utils.py +247 -0
- mindspore/ops/operations/_embedding_cache_ops.py +4 -4
- mindspore/ops/operations/_grad_ops.py +2 -43
- mindspore/ops/operations/_infer_ops.py +2 -1
- mindspore/ops/operations/_inner_ops.py +43 -84
- mindspore/ops/operations/_ms_kernel.py +4 -10
- mindspore/ops/operations/_rl_inner_ops.py +1 -1
- mindspore/ops/operations/_scalar_ops.py +3 -2
- mindspore/ops/operations/_sequence_ops.py +1 -1
- mindspore/ops/operations/_tensor_array.py +1 -1
- mindspore/ops/operations/array_ops.py +81 -324
- mindspore/ops/operations/comm_ops.py +154 -108
- mindspore/ops/operations/custom_ops.py +232 -78
- mindspore/ops/operations/debug_ops.py +153 -59
- mindspore/ops/operations/inner_ops.py +7 -5
- mindspore/ops/operations/linalg_ops.py +1 -57
- mindspore/ops/operations/manually_defined/_inner.py +1 -1
- mindspore/ops/operations/manually_defined/ops_def.py +928 -180
- mindspore/ops/operations/math_ops.py +32 -234
- mindspore/ops/operations/nn_ops.py +210 -498
- mindspore/ops/operations/other_ops.py +62 -9
- mindspore/ops/operations/random_ops.py +13 -7
- mindspore/ops/operations/reshard_ops.py +1 -1
- mindspore/ops/operations/sparse_ops.py +2 -2
- mindspore/ops/primitive.py +66 -53
- mindspore/ops/tensor_method.py +1888 -0
- mindspore/ops_generate/__init__.py +0 -5
- mindspore/ops_generate/aclnn/__init__.py +0 -0
- mindspore/ops_generate/aclnn/aclnn_kernel_register_auto_cc_generator.py +135 -0
- mindspore/ops_generate/aclnn/gen_aclnn_implement.py +257 -0
- mindspore/ops_generate/api/__init__.py +0 -0
- mindspore/ops_generate/api/add_tensor_docs_generator.py +56 -0
- mindspore/ops_generate/api/cpp_create_prim_instance_helper_generator.py +105 -0
- mindspore/ops_generate/api/functional_map_cpp_generator.py +504 -0
- mindspore/ops_generate/api/functional_overload_py_generator.py +112 -0
- mindspore/ops_generate/api/functions_cc_generator.py +237 -0
- mindspore/ops_generate/api/gen_api.py +103 -0
- mindspore/ops_generate/api/op_api_proto.py +235 -0
- mindspore/ops_generate/api/tensor_func_reg_cpp_generator.py +461 -0
- mindspore/ops_generate/common/__init__.py +0 -0
- mindspore/ops_generate/common/base_generator.py +11 -0
- mindspore/ops_generate/common/gen_constants.py +91 -0
- mindspore/ops_generate/common/gen_utils.py +348 -0
- mindspore/ops_generate/common/op_proto.py +473 -0
- mindspore/ops_generate/common/template.py +523 -0
- mindspore/ops_generate/gen_ops.py +22 -1069
- mindspore/ops_generate/op_def/__init__.py +0 -0
- mindspore/ops_generate/op_def/gen_op_def.py +90 -0
- mindspore/ops_generate/op_def/lite_ops_cpp_generator.py +191 -0
- mindspore/ops_generate/op_def/ops_def_cc_generator.py +299 -0
- mindspore/ops_generate/op_def/ops_def_h_generator.py +74 -0
- mindspore/ops_generate/op_def/ops_name_h_generator.py +83 -0
- mindspore/ops_generate/op_def/ops_primitive_h_generator.py +125 -0
- mindspore/ops_generate/op_def_py/__init__.py +0 -0
- mindspore/ops_generate/op_def_py/gen_op_def_py.py +47 -0
- mindspore/ops_generate/op_def_py/op_def_py_generator.py +132 -0
- mindspore/ops_generate/op_def_py/op_prim_py_generator.py +489 -0
- mindspore/ops_generate/pyboost/__init__.py +0 -0
- mindspore/ops_generate/pyboost/auto_grad_impl_cc_generator.py +139 -0
- mindspore/ops_generate/pyboost/auto_grad_reg_cc_generator.py +93 -0
- mindspore/ops_generate/pyboost/gen_pyboost_func.py +175 -0
- mindspore/ops_generate/pyboost/op_template_parser.py +517 -0
- mindspore/ops_generate/pyboost/pyboost_functions_cpp_generator.py +407 -0
- mindspore/ops_generate/pyboost/pyboost_functions_h_generator.py +100 -0
- mindspore/ops_generate/pyboost/pyboost_functions_py_generator.py +148 -0
- mindspore/ops_generate/pyboost/pyboost_grad_function_cpp_generator.py +155 -0
- mindspore/ops_generate/pyboost/pyboost_inner_prim_generator.py +132 -0
- mindspore/ops_generate/pyboost/pyboost_native_grad_functions_generator.py +272 -0
- mindspore/ops_generate/pyboost/pyboost_op_cpp_code_generator.py +938 -0
- mindspore/ops_generate/pyboost/pyboost_overload_functions_cpp_generator.py +357 -0
- mindspore/ops_generate/{pyboost_utils.py → pyboost/pyboost_utils.py} +179 -36
- mindspore/ops_generate/resources/__init__.py +0 -0
- mindspore/ops_generate/resources/resource_list.py +30 -0
- mindspore/ops_generate/resources/resource_loader.py +36 -0
- mindspore/ops_generate/resources/resource_manager.py +64 -0
- mindspore/ops_generate/resources/yaml_loader.py +88 -0
- mindspore/ops_generate/tensor_py_cc_generator.py +122 -0
- mindspore/parallel/__init__.py +7 -3
- mindspore/parallel/_auto_parallel_context.py +152 -34
- mindspore/parallel/_cell_wrapper.py +130 -15
- mindspore/parallel/_parallel_serialization.py +107 -5
- mindspore/parallel/_ps_context.py +1 -1
- mindspore/parallel/_recovery_context.py +7 -2
- mindspore/parallel/_tensor.py +142 -18
- mindspore/parallel/_utils.py +199 -23
- mindspore/parallel/algo_parameter_config.py +4 -4
- mindspore/parallel/auto_parallel.py +732 -0
- mindspore/parallel/checkpoint_convert.py +159 -0
- mindspore/parallel/checkpoint_transform.py +698 -35
- mindspore/parallel/cluster/process_entity/_api.py +276 -50
- mindspore/parallel/cluster/process_entity/_utils.py +41 -6
- mindspore/parallel/cluster/run.py +21 -4
- mindspore/parallel/function/__init__.py +24 -0
- mindspore/parallel/function/reshard_func.py +259 -0
- mindspore/parallel/nn/__init__.py +25 -0
- mindspore/parallel/nn/parallel_cell_wrapper.py +263 -0
- mindspore/parallel/nn/parallel_grad_reducer.py +169 -0
- mindspore/parallel/parameter_broadcast.py +25 -14
- mindspore/parallel/shard.py +137 -58
- mindspore/parallel/transform_safetensors.py +363 -305
- mindspore/pgodb140.dll +0 -0
- mindspore/pgort140.dll +0 -0
- mindspore/profiler/__init__.py +22 -5
- mindspore/profiler/analysis/__init__.py +0 -0
- mindspore/profiler/analysis/parser/__init__.py +0 -0
- mindspore/profiler/analysis/parser/ascend_cann_parser.py +170 -0
- mindspore/profiler/analysis/parser/base_parser.py +158 -0
- mindspore/profiler/analysis/parser/framework_cann_relation_parser.py +45 -0
- mindspore/profiler/analysis/parser/ms_framework_parser.py +142 -0
- mindspore/profiler/analysis/parser/ms_minddata_parser.py +145 -0
- mindspore/profiler/analysis/parser/timeline_assembly_factory/__init__.py +0 -0
- mindspore/profiler/analysis/parser/timeline_assembly_factory/ascend_timeline_assembler.py +264 -0
- mindspore/profiler/analysis/parser/timeline_assembly_factory/base_timeline_assembler.py +40 -0
- mindspore/profiler/analysis/parser/timeline_assembly_factory/trace_view_container.py +106 -0
- mindspore/profiler/analysis/parser/timeline_creator/__init__.py +0 -0
- mindspore/profiler/analysis/parser/timeline_creator/base_timeline_creator.py +44 -0
- mindspore/profiler/analysis/parser/timeline_creator/cpu_op_timeline_creator.py +90 -0
- mindspore/profiler/analysis/parser/timeline_creator/fwk_timeline_creator.py +76 -0
- mindspore/profiler/analysis/parser/timeline_creator/msprof_timeline_creator.py +103 -0
- mindspore/profiler/analysis/parser/timeline_creator/scope_layer_timeline_creator.py +134 -0
- mindspore/profiler/analysis/parser/timeline_event/__init__.py +0 -0
- mindspore/profiler/analysis/parser/timeline_event/base_event.py +233 -0
- mindspore/profiler/analysis/parser/timeline_event/cpu_op_event.py +47 -0
- mindspore/profiler/analysis/parser/timeline_event/flow_event.py +36 -0
- mindspore/profiler/analysis/parser/timeline_event/fwk_event.py +415 -0
- mindspore/profiler/analysis/parser/timeline_event/msprof_event.py +73 -0
- mindspore/profiler/analysis/parser/timeline_event/scope_layer_event.py +53 -0
- mindspore/profiler/analysis/parser/timeline_event/timeline_event_pool.py +146 -0
- mindspore/profiler/analysis/task_manager.py +131 -0
- mindspore/profiler/analysis/time_converter.py +84 -0
- mindspore/profiler/analysis/viewer/__init__.py +0 -0
- mindspore/profiler/analysis/viewer/ascend_communication_viewer.py +372 -0
- mindspore/profiler/analysis/viewer/ascend_integrate_viewer.py +87 -0
- mindspore/profiler/analysis/viewer/ascend_kernel_details_viewer.py +250 -0
- mindspore/profiler/analysis/viewer/ascend_memory_viewer.py +320 -0
- mindspore/profiler/analysis/viewer/ascend_op_memory_viewer.py +327 -0
- mindspore/profiler/analysis/viewer/ascend_step_trace_time_viewer.py +376 -0
- mindspore/profiler/analysis/viewer/ascend_timeline_viewer.py +58 -0
- mindspore/profiler/analysis/viewer/base_viewer.py +26 -0
- mindspore/profiler/analysis/viewer/ms_dataset_viewer.py +96 -0
- mindspore/profiler/analysis/viewer/ms_minddata_viewer.py +581 -0
- mindspore/profiler/analysis/work_flow.py +73 -0
- mindspore/profiler/common/ascend_msprof_exporter.py +139 -0
- mindspore/profiler/common/command_executor.py +90 -0
- mindspore/profiler/common/constant.py +186 -3
- mindspore/profiler/common/file_manager.py +208 -0
- mindspore/profiler/common/log.py +130 -0
- mindspore/profiler/common/msprof_cmd_tool.py +221 -0
- mindspore/profiler/common/path_manager.py +395 -0
- mindspore/profiler/common/process_bar.py +168 -0
- mindspore/profiler/common/process_pool.py +9 -3
- mindspore/profiler/common/profiler_context.py +500 -0
- mindspore/profiler/common/profiler_info.py +304 -0
- mindspore/profiler/common/profiler_meta_data.py +74 -0
- mindspore/profiler/common/profiler_output_path.py +284 -0
- mindspore/profiler/common/profiler_parameters.py +251 -0
- mindspore/profiler/common/profiler_path_manager.py +179 -0
- mindspore/profiler/common/record_function.py +76 -0
- mindspore/profiler/common/tlv_decoder.py +76 -0
- mindspore/profiler/common/util.py +75 -2
- mindspore/profiler/dynamic_profiler.py +341 -75
- mindspore/profiler/envprofiler.py +163 -0
- mindspore/profiler/experimental_config.py +197 -0
- mindspore/profiler/mstx.py +242 -0
- mindspore/profiler/platform/__init__.py +21 -0
- mindspore/profiler/platform/base_profiler.py +40 -0
- mindspore/profiler/platform/cpu_profiler.py +124 -0
- mindspore/profiler/platform/gpu_profiler.py +74 -0
- mindspore/profiler/platform/npu_profiler.py +335 -0
- mindspore/profiler/profiler.py +1073 -90
- mindspore/profiler/profiler_action_controller.py +187 -0
- mindspore/profiler/profiler_interface.py +118 -0
- mindspore/profiler/schedule.py +243 -0
- mindspore/rewrite/api/node.py +15 -13
- mindspore/rewrite/api/symbol_tree.py +2 -3
- mindspore/run_check/_check_version.py +27 -20
- mindspore/run_check/run_check.py +1 -1
- mindspore/runtime/__init__.py +37 -0
- mindspore/runtime/device.py +27 -0
- mindspore/runtime/event.py +209 -0
- mindspore/runtime/executor.py +177 -0
- mindspore/runtime/memory.py +409 -0
- mindspore/runtime/stream.py +460 -0
- mindspore/runtime/thread_bind_core.py +401 -0
- mindspore/safeguard/rewrite_obfuscation.py +12 -9
- mindspore/swresample-4.dll +0 -0
- mindspore/swscale-6.dll +0 -0
- mindspore/tbbmalloc.dll +0 -0
- mindspore/tinyxml2.dll +0 -0
- mindspore/train/__init__.py +8 -8
- mindspore/train/_utils.py +88 -25
- mindspore/train/amp.py +9 -5
- mindspore/train/callback/__init__.py +2 -2
- mindspore/train/callback/_callback.py +2 -16
- mindspore/train/callback/_checkpoint.py +53 -55
- mindspore/train/callback/_cluster_monitor.py +14 -18
- mindspore/train/callback/_early_stop.py +1 -1
- mindspore/train/callback/_flops_collector.py +103 -68
- mindspore/train/callback/_history.py +8 -5
- mindspore/train/callback/_lambda_callback.py +2 -2
- mindspore/train/callback/_landscape.py +0 -3
- mindspore/train/callback/_loss_monitor.py +2 -1
- mindspore/train/callback/_on_request_exit.py +6 -5
- mindspore/train/callback/_reduce_lr_on_plateau.py +11 -6
- mindspore/train/callback/_summary_collector.py +52 -19
- mindspore/train/callback/_time_monitor.py +2 -1
- mindspore/train/callback/{_tft_register.py → _train_fault_tolerance.py} +204 -107
- mindspore/train/data_sink.py +25 -2
- mindspore/train/dataset_helper.py +15 -16
- mindspore/train/loss_scale_manager.py +8 -7
- mindspore/train/metrics/accuracy.py +3 -3
- mindspore/train/metrics/confusion_matrix.py +9 -9
- mindspore/train/metrics/error.py +3 -3
- mindspore/train/metrics/hausdorff_distance.py +4 -4
- mindspore/train/metrics/mean_surface_distance.py +3 -3
- mindspore/train/metrics/metric.py +0 -12
- mindspore/train/metrics/occlusion_sensitivity.py +4 -2
- mindspore/train/metrics/precision.py +11 -10
- mindspore/train/metrics/recall.py +9 -9
- mindspore/train/metrics/root_mean_square_surface_distance.py +2 -2
- mindspore/train/mind_ir_pb2.py +174 -46
- mindspore/train/model.py +184 -113
- mindspore/train/serialization.py +622 -978
- mindspore/train/summary/_summary_adapter.py +2 -2
- mindspore/train/summary/summary_record.py +2 -3
- mindspore/train/train_thor/model_thor.py +1 -1
- mindspore/turbojpeg.dll +0 -0
- mindspore/utils/__init__.py +6 -3
- mindspore/utils/dryrun.py +140 -0
- mindspore/utils/hooks.py +81 -0
- mindspore/utils/runtime_execution_order_check.py +550 -0
- mindspore/utils/utils.py +138 -4
- mindspore/vcmeta.dll +0 -0
- mindspore/vcruntime140.dll +0 -0
- mindspore/vcruntime140_1.dll +0 -0
- mindspore/version.py +1 -1
- {mindspore-2.4.10.dist-info → mindspore-2.6.0rc1.dist-info}/METADATA +3 -3
- {mindspore-2.4.10.dist-info → mindspore-2.6.0rc1.dist-info}/RECORD +587 -418
- {mindspore-2.4.10.dist-info → mindspore-2.6.0rc1.dist-info}/entry_points.txt +1 -1
- mindspore/_install_custom.py +0 -43
- mindspore/common/_register_for_adapter.py +0 -74
- mindspore/common/_tensor_overload.py +0 -139
- mindspore/mindspore_np_dtype.dll +0 -0
- mindspore/ops/auto_generate/gen_arg_dtype_cast.py +0 -252
- mindspore/ops/auto_generate/gen_arg_handler.py +0 -197
- mindspore/ops/operations/_opaque_predicate_registry.py +0 -41
- mindspore/ops_generate/gen_aclnn_implement.py +0 -263
- mindspore/ops_generate/gen_ops_inner_prim.py +0 -131
- mindspore/ops_generate/gen_pyboost_func.py +0 -1052
- mindspore/ops_generate/gen_utils.py +0 -209
- mindspore/ops_generate/op_proto.py +0 -145
- mindspore/ops_generate/template.py +0 -261
- mindspore/profiler/envprofiling.py +0 -254
- mindspore/profiler/profiling.py +0 -1926
- {mindspore-2.4.10.dist-info → mindspore-2.6.0rc1.dist-info}/WHEEL +0 -0
- {mindspore-2.4.10.dist-info → mindspore-2.6.0rc1.dist-info}/top_level.txt +0 -0
mindspore/nn/dynamic_lr.py
CHANGED
|
@@ -224,7 +224,8 @@ def inverse_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, deca
|
|
|
224
224
|
total_step (int): The total number of steps.
|
|
225
225
|
step_per_epoch (int): The number of steps in per epoch.
|
|
226
226
|
decay_epoch (int): Number of epochs to decay over.
|
|
227
|
-
is_stair (bool): If true, learning rate is decayed once every `decay_epoch` times.
|
|
227
|
+
is_stair (bool): If true, learning rate is decayed once every `decay_epoch` times. If False, the learning rate
|
|
228
|
+
decays for every epoch. Default: ``False`` .
|
|
228
229
|
|
|
229
230
|
Returns:
|
|
230
231
|
list[float]. The size of list is `total_step`.
|
mindspore/nn/layer/activation.py
CHANGED
|
@@ -82,7 +82,7 @@ class CELU(Cell):
|
|
|
82
82
|
:align: center
|
|
83
83
|
|
|
84
84
|
Args:
|
|
85
|
-
alpha (float): The :math:`\alpha` value for the Celu formulation. Default: ``1.0`` .
|
|
85
|
+
alpha (float, optional): The :math:`\alpha` value for the Celu formulation. Default: ``1.0`` .
|
|
86
86
|
|
|
87
87
|
Inputs:
|
|
88
88
|
- **x** (Tensor) - The input of CELU. The required dtype is float16 or float32.
|
|
@@ -136,20 +136,22 @@ class Softmin(Cell):
|
|
|
136
136
|
where :math:`x_{i}` is the :math:`i`-th slice in the given dimension of the input Tensor.
|
|
137
137
|
|
|
138
138
|
Args:
|
|
139
|
-
axis (Union[int, tuple[int]]): The axis to apply Softmin operation,
|
|
140
|
-
the
|
|
139
|
+
axis (Union[int, tuple[int]], optional): The axis to apply Softmin operation,
|
|
140
|
+
if the dimension of input `x` is x.ndim,
|
|
141
|
+
the range of axis is :math:`[-x.ndim, x.ndim)`. -1 means the last dimension.
|
|
142
|
+
Default: ``-1`` . In CPU environment, `axis` only supports int type.
|
|
141
143
|
|
|
142
144
|
Inputs:
|
|
143
145
|
- **x** (Tensor) - Tensor for computing Softmin functions with data type of float16 or float32.
|
|
144
146
|
|
|
145
147
|
Outputs:
|
|
146
|
-
Tensor, which has the same type and shape as `x` with values in the range [0,1]
|
|
148
|
+
Tensor, which has the same type and shape as `x` with values in the range :math:`[0, 1]`.
|
|
147
149
|
|
|
148
150
|
Raises:
|
|
149
151
|
TypeError: If `axis` is neither an int nor a tuple.
|
|
150
152
|
TypeError: If dtype of `x` is neither float16 nor float32.
|
|
151
153
|
ValueError: If `axis` is a tuple whose length is less than 1.
|
|
152
|
-
ValueError: If `axis` is a tuple whose elements are not all in the range [-x.ndim, x.ndim)
|
|
154
|
+
ValueError: If `axis` is a tuple whose elements are not all in the range :math:`[-x.ndim, x.ndim)`.
|
|
153
155
|
|
|
154
156
|
Supported Platforms:
|
|
155
157
|
``Ascend`` ``GPU`` ``CPU``
|
|
@@ -179,7 +181,7 @@ class Softmax2d(Cell):
|
|
|
179
181
|
r"""
|
|
180
182
|
Softmax function applied to 2D features data.
|
|
181
183
|
|
|
182
|
-
Applies `Softmax` to each location
|
|
184
|
+
Applies `Softmax` to each location with an input Tensor of shape :math:`(C, H, W)` .
|
|
183
185
|
|
|
184
186
|
Inputs:
|
|
185
187
|
- **x** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})` or :math:`(C_{in}, H_{in}, W_{in})`.
|
|
@@ -957,7 +959,7 @@ class GELU(Cell):
|
|
|
957
959
|
:align: center
|
|
958
960
|
|
|
959
961
|
Args:
|
|
960
|
-
approximate (bool): Whether to enable approximation. Default: ``True`` .
|
|
962
|
+
approximate (bool, optional): Whether to enable approximation. Default: ``True`` .
|
|
961
963
|
|
|
962
964
|
If `approximate` is ``True``, The gaussian error linear activation is:
|
|
963
965
|
|
|
@@ -965,7 +967,14 @@ class GELU(Cell):
|
|
|
965
967
|
|
|
966
968
|
else, it is:
|
|
967
969
|
|
|
968
|
-
:math:`x * P(X <= x) = 0.5 * x * (1 + erf(x / \sqrt(2)))`, where P(X) ~ N(0, 1)
|
|
970
|
+
:math:`x * P(X <= x) = 0.5 * x * (1 + erf(x / \sqrt(2)))`, where :math:`P(X) ~ N(0, 1)`.
|
|
971
|
+
|
|
972
|
+
Note:
|
|
973
|
+
- when calculating the input gradient of GELU with an input value of infinity, there are differences
|
|
974
|
+
in the output of the backward between ``Ascend`` and ``GPU``.
|
|
975
|
+
- when x is -inf, the computation result of ``Ascend`` is 0, and the computation result of ``GPU`` is Nan.
|
|
976
|
+
- when x is inf, the computation result of ``Ascend`` is dy, and the computation result of ``GPU`` is Nan.
|
|
977
|
+
- In mathematical terms, the result of Ascend has higher precision.
|
|
969
978
|
|
|
970
979
|
Inputs:
|
|
971
980
|
- **x** (Tensor) - The input of GELU with data type of float16, float32, or float64.
|
|
@@ -974,13 +983,6 @@ class GELU(Cell):
|
|
|
974
983
|
Outputs:
|
|
975
984
|
Tensor, with the same type and shape as the `x`.
|
|
976
985
|
|
|
977
|
-
Note:
|
|
978
|
-
when calculating the input gradient of GELU with an input value of infinity, there are differences
|
|
979
|
-
in the output of the backward between ``Ascend`` and ``GPU``.
|
|
980
|
-
when x is -inf, the computation result of ``Ascend`` is 0, and the computation result of ``GPU`` is Nan.
|
|
981
|
-
when x is inf, the computation result of ``Ascend`` is dy, and the computation result of ``GPU`` is Nan.
|
|
982
|
-
In mathematical terms, the result of Ascend has higher precision.
|
|
983
|
-
|
|
984
986
|
Raises:
|
|
985
987
|
TypeError: If dtype of `x` is not one of float16, float32, or float64.
|
|
986
988
|
|
|
@@ -1165,7 +1167,7 @@ class PReLU(Cell):
|
|
|
1165
1167
|
|
|
1166
1168
|
where :math:`x_i` is an element of an channel of the input.
|
|
1167
1169
|
|
|
1168
|
-
Here :math:`w` is a learnable parameter with a default initial value 0.25
|
|
1170
|
+
Here :math:`w` is a learnable parameter with a default initial value ``0.25``.
|
|
1169
1171
|
Parameter :math:`w` has dimensionality of the argument channel. If called without argument
|
|
1170
1172
|
channel, a single parameter :math:`w` will be shared across all channels.
|
|
1171
1173
|
|
|
@@ -1175,9 +1177,9 @@ class PReLU(Cell):
|
|
|
1175
1177
|
:align: center
|
|
1176
1178
|
|
|
1177
1179
|
Args:
|
|
1178
|
-
channel (int): The elements number of parameter :math:`w`.
|
|
1179
|
-
It could be an int, and the value is 1 or the channels number of input tensor `x`. Default: ``1`` .
|
|
1180
|
-
w (Union[float, list, Tensor]): The initial value of parameter. It could be a float, a float list or
|
|
1180
|
+
channel (int, optional): The elements number of parameter :math:`w`.
|
|
1181
|
+
It could be an int, and the value is ``1`` or the channels number of input tensor `x`. Default: ``1`` .
|
|
1182
|
+
w (Union[float, list, Tensor], optional): The initial value of parameter. It could be a float, a float list or
|
|
1181
1183
|
a tensor has the same dtype as the input tensor `x`. Default: ``0.25`` .
|
|
1182
1184
|
|
|
1183
1185
|
Inputs:
|
|
@@ -1189,7 +1191,7 @@ class PReLU(Cell):
|
|
|
1189
1191
|
|
|
1190
1192
|
Raises:
|
|
1191
1193
|
TypeError: If `channel` is not an int.
|
|
1192
|
-
TypeError: If `w` is not one of a float, a float
|
|
1194
|
+
TypeError: If `w` is not one of a float, a list[float], a Tensor[float].
|
|
1193
1195
|
TypeError: If dtype of `x` is neither float16 nor float32.
|
|
1194
1196
|
ValueError: If the `x` is a 0-D or 1-D Tensor on Ascend.
|
|
1195
1197
|
ValueError: If `channel` is less than 1.
|
|
@@ -1273,9 +1275,9 @@ class PReLUExt(Cell):
|
|
|
1273
1275
|
no channel dim and the number of channels = 1.
|
|
1274
1276
|
|
|
1275
1277
|
Args:
|
|
1276
|
-
num_parameters (int): number of `w` to learn. Although it takes an int as input,
|
|
1278
|
+
num_parameters (int, optional): number of `w` to learn. Although it takes an int as input,
|
|
1277
1279
|
there is only two legitimate values: 1, or the number of channels at Tensor `input`. Default: ``1`` .
|
|
1278
|
-
init (float): the initial value of `w`. Default: ``0.25`` .
|
|
1280
|
+
init (float, optional): the initial value of `w`. Default: ``0.25`` .
|
|
1279
1281
|
dtype (mindspore.dtype, optional): the type of `w`. Default: ``None`` . Supported data type
|
|
1280
1282
|
is {float16, float32, bfloat16}.
|
|
1281
1283
|
|
|
@@ -1320,7 +1322,7 @@ class HSwish(Cell):
|
|
|
1320
1322
|
Hard swish is defined as:
|
|
1321
1323
|
|
|
1322
1324
|
.. math::
|
|
1323
|
-
\text{
|
|
1325
|
+
\text{HSwish}(input) =
|
|
1324
1326
|
\begin{cases}
|
|
1325
1327
|
0, & \text{ if } input \leq -3, \\
|
|
1326
1328
|
input, & \text{ if } input \geq +3, \\
|
|
@@ -1372,7 +1374,7 @@ class HSigmoid(Cell):
|
|
|
1372
1374
|
Hard Sigmoid is defined as:
|
|
1373
1375
|
|
|
1374
1376
|
.. math::
|
|
1375
|
-
\text{
|
|
1377
|
+
\text{HSigmoid}(input) =
|
|
1376
1378
|
\begin{cases}
|
|
1377
1379
|
0, & \text{ if } input \leq -3, \\
|
|
1378
1380
|
1, & \text{ if } input \geq +3, \\
|
|
@@ -1578,7 +1580,7 @@ class HShrink(Cell):
|
|
|
1578
1580
|
The formula is defined as follows:
|
|
1579
1581
|
|
|
1580
1582
|
.. math::
|
|
1581
|
-
\text{
|
|
1583
|
+
\text{HShrink}(x) =
|
|
1582
1584
|
\begin{cases}
|
|
1583
1585
|
x, & \text{ if } x > \lambda \\
|
|
1584
1586
|
x, & \text{ if } x < -\lambda \\
|
|
@@ -1728,7 +1730,7 @@ class GLU(Cell):
|
|
|
1728
1730
|
Here :math:`\sigma` is the sigmoid function, and :math:`\otimes` is the Hadamard product.
|
|
1729
1731
|
|
|
1730
1732
|
Args:
|
|
1731
|
-
axis (int): the axis to split the input. Default: ``-1`` , the last axis in `x`.
|
|
1733
|
+
axis (int, optional): the axis to split the input. Default: ``-1`` , the last axis in `x`.
|
|
1732
1734
|
|
|
1733
1735
|
Inputs:
|
|
1734
1736
|
- **x** (Tensor) - :math:`(\ast_1, N, \ast_2)` where `*` means, any number of additional dimensions.
|
|
@@ -1811,7 +1813,7 @@ def get_activation(name, prim_name=None):
|
|
|
1811
1813
|
>>> import mindspore.nn as nn
|
|
1812
1814
|
>>> sigmoid = nn.get_activation('sigmoid')
|
|
1813
1815
|
>>> print(sigmoid)
|
|
1814
|
-
Sigmoid
|
|
1816
|
+
Sigmoid()
|
|
1815
1817
|
"""
|
|
1816
1818
|
msg_prefix = f"For '{prim_name}', the" if prim_name else "The"
|
|
1817
1819
|
if name is None:
|
mindspore/nn/layer/basic.py
CHANGED
|
@@ -25,10 +25,9 @@ from mindspore.ops.composite.multitype_ops import _constexpr_utils as const_util
|
|
|
25
25
|
from mindspore.common.seed import _get_graph_seed
|
|
26
26
|
from mindspore.common.tensor import Tensor
|
|
27
27
|
from mindspore.common.initializer import initializer, HeUniform, Uniform
|
|
28
|
+
from mindspore import ops
|
|
28
29
|
from mindspore.ops import operations as P
|
|
29
30
|
from mindspore.ops import functional as F
|
|
30
|
-
from mindspore.ops.function.nn_func import interpolate_ext
|
|
31
|
-
from mindspore.ops.auto_generate import unfold_ext
|
|
32
31
|
from mindspore.ops.operations import _inner_ops as inner
|
|
33
32
|
from mindspore.ops.primitive import constexpr, Primitive, _primexpr
|
|
34
33
|
from mindspore.common.parameter import Parameter
|
|
@@ -37,7 +36,6 @@ from mindspore import _checkparam as Validator
|
|
|
37
36
|
from mindspore.nn.cell import Cell
|
|
38
37
|
from mindspore.nn.layer.activation import get_activation
|
|
39
38
|
from mindspore.common._decorator import deprecated
|
|
40
|
-
from mindspore.ops.auto_generate import dropout_ext_op, fold_ext
|
|
41
39
|
from mindspore.common.generator import default_generator
|
|
42
40
|
|
|
43
41
|
__all__ = ['Dropout', 'Flatten', 'Dense', 'Linear', 'ClipByNorm', 'Norm', 'OneHot', 'Pad', 'Unfold', 'Tril', 'Triu',
|
|
@@ -140,6 +138,7 @@ class Dropout(Cell):
|
|
|
140
138
|
|
|
141
139
|
Inputs:
|
|
142
140
|
- **x** (Tensor) - The input of Dropout with data type of float16 or float32.
|
|
141
|
+
The shape of `x` cannot be less than 1.
|
|
143
142
|
|
|
144
143
|
Outputs:
|
|
145
144
|
Tensor, output tensor with the same shape as the `x`.
|
|
@@ -225,8 +224,10 @@ class DropoutExt(Cell):
|
|
|
225
224
|
- Parameter `p` means the probability of the element of the input tensor to be zeroed.
|
|
226
225
|
|
|
227
226
|
Args:
|
|
228
|
-
p (float): The dropout rate of input neurons, E.g. `p` =0.9, dropping out 90% of input neurons.
|
|
227
|
+
p (float, optional): The dropout rate of input neurons, E.g. `p` =0.9, dropping out 90% of input neurons.
|
|
229
228
|
Default: ``0.5`` .
|
|
229
|
+
inplace (bool, optional): Whether to enable the operation in-place.
|
|
230
|
+
If set to ``True`` , will do this operation in-place. Default: ``False`` .
|
|
230
231
|
|
|
231
232
|
Inputs:
|
|
232
233
|
- **x** (Tensor) - The input of Dropout.
|
|
@@ -253,18 +254,23 @@ class DropoutExt(Cell):
|
|
|
253
254
|
(2, 2, 3)
|
|
254
255
|
"""
|
|
255
256
|
|
|
256
|
-
def __init__(self, p=0.5):
|
|
257
|
+
def __init__(self, p=0.5, inplace=False):
|
|
257
258
|
"""Initialize DropoutExt."""
|
|
258
259
|
super(DropoutExt, self).__init__()
|
|
259
260
|
self.p = p
|
|
260
|
-
self.
|
|
261
|
+
self.inplace = inplace
|
|
262
|
+
self.generator_step = Tensor(12, mstype.int64)
|
|
261
263
|
|
|
262
264
|
def construct(self, x):
|
|
263
265
|
if not self.training or self.p == 0:
|
|
264
266
|
return x
|
|
265
267
|
|
|
266
268
|
seed, offset = default_generator._step(self.generator_step) # pylint: disable=protected-access
|
|
267
|
-
out, _ = dropout_ext_op(x, self.p, seed, offset)
|
|
269
|
+
out, _ = ops.auto_generate.dropout_ext_op(x, self.p, seed, offset)
|
|
270
|
+
|
|
271
|
+
if self.inplace:
|
|
272
|
+
x.copy_(out)
|
|
273
|
+
return x
|
|
268
274
|
return out
|
|
269
275
|
|
|
270
276
|
|
|
@@ -342,8 +348,8 @@ class Dropout2d(Cell):
|
|
|
342
348
|
|
|
343
349
|
For example, the :math:`j\_th` channel of the :math:`i\_th` sample in the batched input is a to-be-processed
|
|
344
350
|
`2D` tensor input[i,j].
|
|
345
|
-
|
|
346
|
-
|
|
351
|
+
At each forward propagation,
|
|
352
|
+
each channel will be independently determined to be set to zero with probability `p`.
|
|
347
353
|
|
|
348
354
|
`Dropout2d` can improve the independence between channel feature maps.
|
|
349
355
|
|
|
@@ -479,6 +485,9 @@ class UpsampleExt(Cell):
|
|
|
479
485
|
r"""
|
|
480
486
|
For details, please refer to :func:`mindspore.mint.nn.functional.interpolate`.
|
|
481
487
|
|
|
488
|
+
.. warning::
|
|
489
|
+
This is an experimental API that is subject to change or deletion.
|
|
490
|
+
|
|
482
491
|
Supported Platforms:
|
|
483
492
|
``Ascend``
|
|
484
493
|
|
|
@@ -511,8 +520,8 @@ class UpsampleExt(Cell):
|
|
|
511
520
|
self.recompute_scale_factor = recompute_scale_factor
|
|
512
521
|
|
|
513
522
|
def construct(self, input):
|
|
514
|
-
out = interpolate_ext(input, self.size, self.scale_factor, self.mode,
|
|
515
|
-
|
|
523
|
+
out = ops.function.nn_func.interpolate_ext(input, self.size, self.scale_factor, self.mode,
|
|
524
|
+
self.align_corners, self.recompute_scale_factor)
|
|
516
525
|
return out
|
|
517
526
|
|
|
518
527
|
|
|
@@ -623,25 +632,27 @@ class Dense(Cell):
|
|
|
623
632
|
where :math:`X` is the input tensors, :math:`\text{activation}` is the activation function passed as the activation
|
|
624
633
|
argument (if passed in), :math:`\text{kernel}` is a weight matrix with the same
|
|
625
634
|
data type as the :math:`X` created by the layer, and :math:`\text{bias}` is a bias vector
|
|
626
|
-
with the same data type as the :math:`X` created by the layer (only if has_bias is True).
|
|
635
|
+
with the same data type as the :math:`X` created by the layer (only if `has_bias` is ``True``).
|
|
627
636
|
|
|
628
637
|
.. warning::
|
|
629
|
-
|
|
638
|
+
On the Ascend platform, if `bias` is ``False`` , the `x` cannot be greater than 6D in PYNATIVE or KBK mode.
|
|
630
639
|
|
|
631
640
|
Args:
|
|
632
641
|
in_channels (int): The number of channels in the input space.
|
|
633
642
|
out_channels (int): The number of channels in the output space.
|
|
634
|
-
weight_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable weight_init parameter.
|
|
635
|
-
is same as `x`. The values of str refer to the function `initializer`. Default: ``None`` ,
|
|
643
|
+
weight_init (Union[Tensor, str, Initializer, numbers.Number], optional): The trainable weight_init parameter.
|
|
644
|
+
The dtype is same as `x`. The values of str refer to the function `initializer`. Default: ``None`` ,
|
|
636
645
|
weight will be initialized using HeUniform.
|
|
637
|
-
bias_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable bias_init parameter.
|
|
638
|
-
same as `x`. The values of str refer to the function `initializer`. Default: ``None`` ,
|
|
646
|
+
bias_init (Union[Tensor, str, Initializer, numbers.Number], optional): The trainable bias_init parameter.
|
|
647
|
+
The dtype is same as `x`. The values of str refer to the function `initializer`. Default: ``None`` ,
|
|
639
648
|
bias will be initialized using Uniform.
|
|
640
|
-
has_bias (bool): Specifies whether the layer uses a bias vector :math:`\text{bias}`.
|
|
641
|
-
|
|
649
|
+
has_bias (bool, optional): Specifies whether the layer uses a bias vector :math:`\text{bias}`.
|
|
650
|
+
Default: ``True``.
|
|
651
|
+
activation (Union[str, Cell, Primitive, None], optional): activate function applied to
|
|
652
|
+
the output of the fully connected
|
|
642
653
|
layer. Both activation name, e.g. 'relu', and mindspore activation function, e.g. mindspore.ops.ReLU(),
|
|
643
654
|
are supported. Default: ``None`` .
|
|
644
|
-
dtype (:class:`mindspore.dtype
|
|
655
|
+
dtype (:class:`mindspore.dtype`, optional): Data type of Parameter. Default: ``mstype.float32`` .
|
|
645
656
|
When `weight_init` is Tensor, Parameter has the same data type as `weight_init` ,
|
|
646
657
|
in other cases, Parameter has the same data type as `dtype`, the same goes for `bias_init`.
|
|
647
658
|
|
|
@@ -660,7 +671,7 @@ class Dense(Cell):
|
|
|
660
671
|
is not equal to `out_channels` or shape[1] of `weight_init` is not equal to `in_channels`.
|
|
661
672
|
ValueError: If length of shape of `bias_init` is not equal to 1
|
|
662
673
|
or shape[0] of `bias_init` is not equal to `out_channels`.
|
|
663
|
-
RuntimeError:
|
|
674
|
+
RuntimeError: On the Ascend platform, if `bias` is ``False`` and `x` is greater than 6D in PYNATIVE or KBK mode.
|
|
664
675
|
|
|
665
676
|
Supported Platforms:
|
|
666
677
|
``Ascend`` ``GPU`` ``CPU``
|
|
@@ -763,23 +774,28 @@ class Linear(Cell):
|
|
|
763
774
|
\text{outputs} = X * kernel + bias
|
|
764
775
|
|
|
765
776
|
.. warning::
|
|
766
|
-
|
|
777
|
+
On the Ascend platform, if `bias` is ``False`` , the `x` cannot be greater than 6D in PYNATIVE or KBK mode.
|
|
767
778
|
|
|
768
779
|
where :math:`X` is the input tensors, :math:`\text{kernel}` is a weight matrix with the same
|
|
769
780
|
data type as the :math:`X` created by the layer, and :math:`\text{bias}` is a bias vector
|
|
770
|
-
with the same data type as the :math:`X` created by the layer (only if
|
|
781
|
+
with the same data type as the :math:`X` created by the layer (only if the parameter `bias` is True).
|
|
782
|
+
|
|
783
|
+
.. warning::
|
|
784
|
+
In PyNative mode, if `bias` is ``False`` , the `x` cannot be greater than 6D.
|
|
771
785
|
|
|
772
786
|
Args:
|
|
773
787
|
in_features (int): The number of features in the input space.
|
|
774
788
|
out_features (int): The number of features in the output space.
|
|
775
|
-
bias (bool): Specifies whether the layer uses a bias vector :math:`\text{bias}`. Default: ``True``.
|
|
776
|
-
weight_init (Union[Tensor, str, Initializer, numbers.Number]):
|
|
789
|
+
bias (bool, optional): Specifies whether the layer uses a bias vector :math:`\text{bias}`. Default: ``True``.
|
|
790
|
+
weight_init (Union[Tensor, str, Initializer, numbers.Number], optional):
|
|
791
|
+
The trainable weight_init parameter. The dtype
|
|
777
792
|
is same as `x`. The values of str refer to the function `initializer`. Default: ``None`` ,
|
|
778
793
|
weight will be initialized using HeUniform.
|
|
779
|
-
bias_init (Union[Tensor, str, Initializer, numbers.Number]):
|
|
794
|
+
bias_init (Union[Tensor, str, Initializer, numbers.Number], optional):
|
|
795
|
+
The trainable bias_init parameter. The dtype is
|
|
780
796
|
same as `x`. The values of str refer to the function `initializer`. Default: ``None`` ,
|
|
781
797
|
bias will be initialized using Uniform.
|
|
782
|
-
dtype (:class:`mindspore.dtype
|
|
798
|
+
dtype (:class:`mindspore.dtype`, optional): Data type of Parameter. Default: ``None`` .
|
|
783
799
|
If `dtype` is ``None`` , `dtype` is set to ``mstype.float32`` when initializing the method.
|
|
784
800
|
When `weight_init` is Tensor, Parameter has the same data type as `weight_init` ,
|
|
785
801
|
in other cases, Parameter has the same data type as `dtype`, the same goes for `bias_init`.
|
|
@@ -798,7 +814,7 @@ class Linear(Cell):
|
|
|
798
814
|
is not equal to `out_features` or shape[1] of `weight_init` is not equal to `in_features`.
|
|
799
815
|
ValueError: If length of shape of `bias_init` is not equal to 1
|
|
800
816
|
or shape[0] of `bias_init` is not equal to `out_features`.
|
|
801
|
-
RuntimeError:
|
|
817
|
+
RuntimeError: On the Ascend platform, if `bias` is ``False`` and `x` is greater than 6D in PYNATIVE or KBK mode.
|
|
802
818
|
|
|
803
819
|
Supported Platforms:
|
|
804
820
|
``Ascend`` ``GPU`` ``CPU``
|
|
@@ -806,10 +822,10 @@ class Linear(Cell):
|
|
|
806
822
|
Examples:
|
|
807
823
|
>>> import mindspore
|
|
808
824
|
>>> from mindspore import Tensor
|
|
809
|
-
>>> from mindspore import
|
|
825
|
+
>>> from mindspore import mint
|
|
810
826
|
>>> import numpy as np
|
|
811
827
|
>>> x = Tensor(np.array([[180, 234, 154], [244, 48, 247]]), mindspore.float32)
|
|
812
|
-
>>> net =
|
|
828
|
+
>>> net = mint.nn.Linear(3, 4)
|
|
813
829
|
>>> output = net(x)
|
|
814
830
|
>>> print(output.shape)
|
|
815
831
|
(2, 4)
|
|
@@ -1285,7 +1301,7 @@ class UnfoldExt(Cell):
|
|
|
1285
1301
|
self.stride = stride
|
|
1286
1302
|
|
|
1287
1303
|
def construct(self, input):
|
|
1288
|
-
return unfold_ext(input, self.kernel_size, self.dilation, self.padding, self.stride)
|
|
1304
|
+
return ops.auto_generate.unfold_ext(input, self.kernel_size, self.dilation, self.padding, self.stride)
|
|
1289
1305
|
|
|
1290
1306
|
|
|
1291
1307
|
class Fold(Cell):
|
|
@@ -1316,8 +1332,8 @@ class Fold(Cell):
|
|
|
1316
1332
|
self.stride = stride
|
|
1317
1333
|
|
|
1318
1334
|
def construct(self, input):
|
|
1319
|
-
return fold_ext(input, self.output_size, self.kernel_size,
|
|
1320
|
-
|
|
1335
|
+
return ops.auto_generate.fold_ext(input, self.output_size, self.kernel_size,
|
|
1336
|
+
self.dilation, self.padding, self.stride)
|
|
1321
1337
|
|
|
1322
1338
|
|
|
1323
1339
|
@_primexpr
|
|
@@ -1555,7 +1571,7 @@ class Roll(Cell):
|
|
|
1555
1571
|
else:
|
|
1556
1572
|
if not isinstance(self.axis, (list, tuple)):
|
|
1557
1573
|
self.op_list.append(
|
|
1558
|
-
(P.Roll(
|
|
1574
|
+
(P.Roll(shifts=self.shift, dims=0), self.axis))
|
|
1559
1575
|
else:
|
|
1560
1576
|
if len(self.shift) != len(self.axis):
|
|
1561
1577
|
raise ValueError(f"For '{self.cls_name}', the shape of 'shift' and the shape of 'axis' must be "
|
|
@@ -1563,7 +1579,7 @@ class Roll(Cell):
|
|
|
1563
1579
|
f"and the length of 'axis' {len(self.axis)}.")
|
|
1564
1580
|
for idx, _ in enumerate(self.axis):
|
|
1565
1581
|
self.op_list.append(
|
|
1566
|
-
(P.Roll(
|
|
1582
|
+
(P.Roll(shifts=self.shift[idx], dims=0), self.axis[idx]))
|
|
1567
1583
|
|
|
1568
1584
|
def construct(self, input_x):
|
|
1569
1585
|
dim = len(self.shape_op(input_x))
|
|
@@ -21,9 +21,9 @@ __all__ = ['ChannelShuffle']
|
|
|
21
21
|
|
|
22
22
|
class ChannelShuffle(Cell):
|
|
23
23
|
r"""
|
|
24
|
-
Divide the channels
|
|
25
|
-
|
|
26
|
-
|
|
24
|
+
Divide the channels in a tensor of shape :math:`(*, C, H, W)` into :math:`g` group and
|
|
25
|
+
rearrange them as :math:`(*, \frac{C}{g}, g, H*W)`, while retaining the original tensor
|
|
26
|
+
shape in the final output.
|
|
27
27
|
|
|
28
28
|
Args:
|
|
29
29
|
groups (int): Number of groups to divide channels in, must be greater than 0.
|
mindspore/nn/layer/container.py
CHANGED
|
@@ -648,7 +648,7 @@ class CellDict(_CellDictBase, Cell):
|
|
|
648
648
|
Remove key from the CellDict and return its cell.
|
|
649
649
|
|
|
650
650
|
Args:
|
|
651
|
-
key (
|
|
651
|
+
key (str): key to pop from the CellDict.
|
|
652
652
|
|
|
653
653
|
Raises:
|
|
654
654
|
KeyError: If `key` not exist in CellDict when attempt to access cell.
|
mindspore/nn/layer/conv.py
CHANGED
|
@@ -856,11 +856,12 @@ class Conv3dTranspose(_Conv):
|
|
|
856
856
|
where :math:`N` is batch size, :math:`C_{in}` is a number of
|
|
857
857
|
channels, :math:`D_{in}, H_{in}, W_{in}` are the depth, height and width of the feature layer respectively.
|
|
858
858
|
|
|
859
|
-
When Conv3d and Conv3dTranspose are initialized with the same parameters, and `pad_mode` is set to 'pad'
|
|
859
|
+
When Conv3d and Conv3dTranspose are initialized with the same parameters, and `pad_mode` is set to ``'pad'``,
|
|
860
860
|
:math:`dilation * (kernel\_size - 1) - padding` amount of zero will be paded to the depth, height and width
|
|
861
861
|
directions of the input, they are inverses of each other in regard to the input and output shapes in this case.
|
|
862
|
-
However, when `stride` > 1, Conv2d maps multiple input shapes to the same output shape.
|
|
863
|
-
|
|
862
|
+
However, when `stride` > 1, Conv2d maps multiple input shapes to the same output shape.
|
|
863
|
+
For the detailed information of Deconvolutional network,
|
|
864
|
+
refer to `Deconvolutional Networks <https://www.matthewzeiler.com/mattzeiler/deconvolutionalnetworks.pdf>`_.
|
|
864
865
|
|
|
865
866
|
Note:
|
|
866
867
|
For Atlas A2 training series products, `output_padding` is currently not supported.
|
|
@@ -872,7 +873,7 @@ class Conv3dTranspose(_Conv):
|
|
|
872
873
|
The data type is an integer or a tuple of three integers. An integer represents the depth, height
|
|
873
874
|
and width of the convolution kernel. A tuple of three integers represents the depth, height
|
|
874
875
|
and width of the convolution kernel respectively.
|
|
875
|
-
stride (Union[int, tuple[int]]): The movement stride of the 3D convolution kernel.
|
|
876
|
+
stride (Union[int, tuple[int]], optional): The movement stride of the 3D convolution kernel.
|
|
876
877
|
The data type is an integer or a tuple of three integers. An integer represents the movement step size
|
|
877
878
|
in depth, height and width directions. A tuple of three integers represents the movement step size
|
|
878
879
|
in the depth, height and width directions respectively. Default: ``1`` .
|
|
@@ -892,13 +893,15 @@ class Conv3dTranspose(_Conv):
|
|
|
892
893
|
in the depth, height and width dimension is determined by the `padding` parameter.
|
|
893
894
|
If this mode is set, `padding` must be greater than or equal to 0.
|
|
894
895
|
|
|
895
|
-
padding (Union(int, tuple[int])): The number of padding on the depth, height and
|
|
896
|
+
padding (Union(int, tuple[int]), optional): The number of padding on the depth, height and
|
|
897
|
+
width directions of the input.
|
|
896
898
|
The data type is an integer or a tuple of six integers. If `padding` is an integer,
|
|
897
899
|
then the head, tail, top, bottom, left, and right padding are all equal to `padding`.
|
|
898
900
|
If `padding` is a tuple of six integers, then the head, tail, top, bottom, left, and right padding
|
|
899
901
|
is equal to `padding[0]`, `padding[1]`, `padding[2]`, `padding[3]`, `padding[4]` and `padding[5]`
|
|
900
902
|
respectively. The value should be greater than or equal to 0. Default: ``0`` .
|
|
901
|
-
dilation (Union[int, tuple[int]]): Specifies the dilation rate to use for dilated convolution.
|
|
903
|
+
dilation (Union[int, tuple[int]], optional): Specifies the dilation rate to use for dilated convolution.
|
|
904
|
+
The data type
|
|
902
905
|
can be a single int or a tuple of 3 integers. A single int means the dilation size is the same in the
|
|
903
906
|
depth, height and width directions. A tuple of 3 ints represents the dilation size in the depth, height
|
|
904
907
|
and width directions, respectively.
|
|
@@ -908,33 +911,35 @@ class Conv3dTranspose(_Conv):
|
|
|
908
911
|
The values in the depth, height and width dimensions are in
|
|
909
912
|
the ranges [1, D], [1, H] and [1, W], respectively.
|
|
910
913
|
Default: ``1`` .
|
|
911
|
-
group (int): Splits filter into groups, `in_channels` and `out_channels` must be
|
|
914
|
+
group (int, optional): Splits filter into groups, `in_channels` and `out_channels` must be
|
|
912
915
|
divisible by `group`. Default: ``1`` .
|
|
913
|
-
output_padding (Union(int, tuple[int])): The number of padding on the depth,
|
|
916
|
+
output_padding (Union(int, tuple[int]), optional): The number of padding on the depth,
|
|
917
|
+
height and width directions of
|
|
914
918
|
the output. The data type is an integer or a tuple of three integers. If `output_padding` is an integer,
|
|
915
919
|
then the depth, height, and width dimension padding are all equal to `output_padding`.
|
|
916
920
|
If `output_padding` is a tuple of three integers, then the depth, height, and width padding is equal to
|
|
917
921
|
`output_padding[0]`, `output_padding[1]` and `output_padding[2]` respectively.
|
|
918
922
|
The value should be greater than or equal to 0.
|
|
919
923
|
Default: ``0`` .
|
|
920
|
-
has_bias (bool): Whether the Conv3dTranspose layer has a bias parameter. Default: ``False`` .
|
|
921
|
-
weight_init (Union[Tensor, str, Initializer, numbers.Number]): Initialization method of
|
|
924
|
+
has_bias (bool, optional): Whether the Conv3dTranspose layer has a bias parameter. Default: ``False`` .
|
|
925
|
+
weight_init (Union[Tensor, str, Initializer, numbers.Number], optional): Initialization method of
|
|
926
|
+
weight parameter.
|
|
922
927
|
It can be a Tensor, a string, an Initializer or a numbers.Number. When a string is specified,
|
|
923
928
|
values from ``'TruncatedNormal'`` , ``'Normal'`` , ``'Uniform'`` , ``'HeUniform'`` and ``'XavierUniform'``
|
|
924
929
|
distributions as well as constant ``'One'`` and ``'Zero'`` distributions are possible. Alias
|
|
925
930
|
``'xavier_uniform'`` , ``'he_uniform'`` , ``'ones'`` and ``'zeros'`` are acceptable. Uppercase and
|
|
926
931
|
lowercase are both acceptable. Refer to the values of Initializer for more details. Default: ``None`` ,
|
|
927
932
|
weight will be initialized using HeUniform.
|
|
928
|
-
bias_init (Union[Tensor, str, Initializer, numbers.Number]): Initialization method of bias parameter.
|
|
933
|
+
bias_init (Union[Tensor, str, Initializer, numbers.Number], optional): Initialization method of bias parameter.
|
|
929
934
|
Available initialization methods are the same as 'weight_init'. Refer to the values of
|
|
930
935
|
Initializer for more details. Default: ``None`` , bias will be initialized using Uniform.
|
|
931
|
-
data_format (str): The optional value for data format. Currently only support ``'NCDHW'`` .
|
|
936
|
+
data_format (str, optional): The optional value for data format. Currently only support ``'NCDHW'`` .
|
|
932
937
|
Default: ``'NCDHW'`` .
|
|
933
|
-
dtype (:class:`mindspore.dtype
|
|
938
|
+
dtype (:class:`mindspore.dtype`, optional): Dtype of Parameters. Default: ``mstype.float32`` .
|
|
934
939
|
|
|
935
940
|
Inputs:
|
|
936
941
|
- **x** (Tensor) - Tensor of shape :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`.
|
|
937
|
-
Currently input data dtype only
|
|
942
|
+
Currently input data dtype only supports float16 and float32.
|
|
938
943
|
|
|
939
944
|
Outputs:
|
|
940
945
|
Tensor, the shape is :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`.
|
|
@@ -980,10 +985,10 @@ class Conv3dTranspose(_Conv):
|
|
|
980
985
|
TypeError: If input data type is not float16 or float32.
|
|
981
986
|
ValueError: If `in_channels`, `out_channels`, `kernel_size`, `stride` or `dilation` is less than 1.
|
|
982
987
|
ValueError: If `padding` is less than 0.
|
|
983
|
-
ValueError: If `pad_mode` is not one of 'same'
|
|
988
|
+
ValueError: If `pad_mode` is not one of ``'same'``, ``'valid'``, ``'pad'``.
|
|
984
989
|
ValueError: If `padding` is a tuple whose length is not equal to 6.
|
|
985
|
-
ValueError: If `pad_mode` is not equal to 'pad' and `padding` is not equal to (0, 0, 0, 0, 0, 0).
|
|
986
|
-
ValueError: If `data_format` is not 'NCDHW'
|
|
990
|
+
ValueError: If `pad_mode` is not equal to ``'pad'`` and `padding` is not equal to (0, 0, 0, 0, 0, 0).
|
|
991
|
+
ValueError: If `data_format` is not ``'NCDHW'``.
|
|
987
992
|
|
|
988
993
|
Supported Platforms:
|
|
989
994
|
``Ascend`` ``GPU`` ``CPU``
|
mindspore/nn/layer/embedding.py
CHANGED
|
@@ -179,7 +179,7 @@ class EmbeddingExt(Cell):
|
|
|
179
179
|
`[-num_embeddings, num_embeddings)` if it's not ``None``. Default ``None``.
|
|
180
180
|
max_norm (float, optional): If the value is not None, firstly get the p-norm result of the embedding
|
|
181
181
|
vector specified by `input` where p is specified by `norm_type`; if the result is larger then `max_norm`,
|
|
182
|
-
update the embedding vector
|
|
182
|
+
update the embedding vector with :math:`\frac{max\_norm}{result+1e^{-7}}`. Default ``None``.
|
|
183
183
|
norm_type (float, optional): Indicated the value of p in p-norm. Default ``2.0``.
|
|
184
184
|
scale_grad_by_freq (bool, optional): If ``True`` the gradients will be scaled by the inverse of frequency
|
|
185
185
|
of the index in `input`. Default ``False``.
|
|
@@ -193,8 +193,8 @@ class EmbeddingExt(Cell):
|
|
|
193
193
|
not None. Default: ``None``.
|
|
194
194
|
|
|
195
195
|
Variables:
|
|
196
|
-
weight (Parameter)
|
|
197
|
-
|
|
196
|
+
- **weight** (Parameter) - The learnable weights of this module of shape (num_embeddings, embedding_dim), which
|
|
197
|
+
initialized from :math:`{N}(\text{sigma=1.0}, \text{mean=0.0})` or `_weight` .
|
|
198
198
|
|
|
199
199
|
Inputs:
|
|
200
200
|
- **input** (Tensor) - The indices used to lookup in the embedding vector. The data type must be
|
|
@@ -220,18 +220,19 @@ class EmbeddingExt(Cell):
|
|
|
220
220
|
>>> import mindspore
|
|
221
221
|
>>> import numpy as np
|
|
222
222
|
>>> from mindspore import Tensor, nn
|
|
223
|
+
>>> mindspore.set_seed(0)
|
|
223
224
|
>>> input = Tensor([[1, 0, 1, 1], [0, 0, 1, 0]])
|
|
224
225
|
>>> embedding = nn.EmbeddingExt(num_embeddings=10, embedding_dim=3)
|
|
225
226
|
>>> output = embedding(input)
|
|
226
227
|
>>> print(output)
|
|
227
|
-
[[[
|
|
228
|
-
[
|
|
229
|
-
[
|
|
230
|
-
[
|
|
231
|
-
[[
|
|
232
|
-
[
|
|
233
|
-
[
|
|
234
|
-
[
|
|
228
|
+
[[[ 0.6712398 0.5407775 1.0317237]
|
|
229
|
+
[-0.49091062 -0.42302188 -1.4807187]
|
|
230
|
+
[ 0.6712398 0.5407775 1.0317237]
|
|
231
|
+
[ 0.0024154 0.5407775 1.0317237]]
|
|
232
|
+
[[-0.49091062 -0.42302188 -1.4807187]
|
|
233
|
+
[-0.49091062 -0.42302188 -1.4807187]
|
|
234
|
+
[ 0.6712398 0.5407775 1.0317237]
|
|
235
|
+
[-0.49091062 -0.42302188 -1.4807187]]]
|
|
235
236
|
"""
|
|
236
237
|
|
|
237
238
|
def __init__(self, num_embeddings, embedding_dim, padding_idx=None, max_norm=None, norm_type=2.0,
|