mindspore 2.2.14__cp39-cp39-win_amd64.whl → 2.4.0__cp39-cp39-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (1217) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/Microsoft.VisualStudio.Telemetry.dll +0 -0
  3. mindspore/Newtonsoft.Json.dll +0 -0
  4. mindspore/__init__.py +8 -5
  5. mindspore/_c_dataengine.cp39-win_amd64.pyd +0 -0
  6. mindspore/_c_expression.cp39-win_amd64.pyd +0 -0
  7. mindspore/_c_mindrecord.cp39-win_amd64.pyd +0 -0
  8. mindspore/_checkparam.py +124 -25
  9. mindspore/_extends/builtin_operations.py +2 -1
  10. mindspore/_extends/graph_kernel/model/graph_parallel.py +16 -6
  11. mindspore/_extends/parallel_compile/akg_compiler/akg_process.py +3 -16
  12. mindspore/_extends/parallel_compile/akg_compiler/build_tbe_kernel.py +16 -4
  13. mindspore/_extends/parallel_compile/akg_compiler/compiler.py +1 -0
  14. mindspore/_extends/parallel_compile/akg_compiler/gen_custom_op_files.py +96 -0
  15. mindspore/_extends/parallel_compile/akg_compiler/tbe_topi.py +2 -1
  16. mindspore/_extends/parallel_compile/akg_compiler/util.py +5 -2
  17. mindspore/_extends/parse/__init__.py +18 -14
  18. mindspore/_extends/parse/compile_config.py +299 -0
  19. mindspore/_extends/parse/namespace.py +2 -2
  20. mindspore/_extends/parse/parser.py +182 -68
  21. mindspore/_extends/parse/resources.py +45 -14
  22. mindspore/_extends/parse/standard_method.py +192 -252
  23. mindspore/{ops/_op_impl/tbe/atomic_addr_clean.py → _extends/pijit/__init__.py} +6 -16
  24. mindspore/_extends/pijit/pijit_func_white_list.py +669 -0
  25. mindspore/_extends/remote/kernel_build_server.py +2 -0
  26. mindspore/_profiler.py +30 -0
  27. mindspore/amp.py +67 -26
  28. mindspore/atlprov.dll +0 -0
  29. mindspore/avcodec-59.dll +0 -0
  30. mindspore/avdevice-59.dll +0 -0
  31. mindspore/avfilter-8.dll +0 -0
  32. mindspore/avformat-59.dll +0 -0
  33. mindspore/avutil-57.dll +0 -0
  34. mindspore/boost/adasum.py +1 -1
  35. mindspore/boost/base.py +1 -1
  36. mindspore/boost/boost_cell_wrapper.py +2 -2
  37. mindspore/boost/grad_freeze.py +2 -2
  38. mindspore/boost/group_loss_scale_manager.py +1 -1
  39. mindspore/boost/less_batch_normalization.py +9 -6
  40. mindspore/c1.dll +0 -0
  41. mindspore/c1xx.dll +0 -0
  42. mindspore/c2.dll +0 -0
  43. mindspore/common/__init__.py +20 -7
  44. mindspore/common/_jit_fallback_utils.py +2 -3
  45. mindspore/common/_pijit_context.py +190 -0
  46. mindspore/common/_register_for_adapter.py +7 -0
  47. mindspore/common/_register_for_recompute.py +48 -0
  48. mindspore/common/_register_for_tensor.py +10 -10
  49. mindspore/common/_stub_tensor.py +7 -1
  50. mindspore/common/_tensor_overload.py +139 -0
  51. mindspore/common/_utils.py +5 -17
  52. mindspore/common/api.py +449 -129
  53. mindspore/common/auto_dynamic_shape.py +27 -14
  54. mindspore/common/dtype.py +17 -10
  55. mindspore/common/dump.py +8 -11
  56. mindspore/common/file_system.py +48 -0
  57. mindspore/common/generator.py +254 -0
  58. mindspore/common/hook_handle.py +65 -30
  59. mindspore/common/initializer.py +1 -1
  60. mindspore/common/jit_config.py +34 -14
  61. mindspore/common/lazy_inline.py +72 -19
  62. mindspore/common/mindir_util.py +12 -2
  63. mindspore/common/mutable.py +79 -14
  64. mindspore/common/no_inline.py +54 -0
  65. mindspore/common/np_dtype.py +25 -0
  66. mindspore/common/parameter.py +73 -21
  67. mindspore/common/recompute.py +292 -0
  68. mindspore/common/seed.py +9 -9
  69. mindspore/common/sparse_tensor.py +276 -24
  70. mindspore/common/symbol.py +122 -0
  71. mindspore/common/tensor.py +668 -514
  72. mindspore/communication/__init__.py +6 -11
  73. mindspore/communication/_comm_helper.py +43 -3
  74. mindspore/communication/comm_func.py +1395 -0
  75. mindspore/communication/management.py +117 -104
  76. mindspore/config/op_info.config +22 -54
  77. mindspore/context.py +455 -71
  78. mindspore/dataset/__init__.py +5 -5
  79. mindspore/dataset/audio/__init__.py +6 -6
  80. mindspore/dataset/audio/transforms.py +711 -158
  81. mindspore/dataset/callback/ds_callback.py +2 -2
  82. mindspore/dataset/core/config.py +7 -0
  83. mindspore/dataset/core/validator_helpers.py +7 -0
  84. mindspore/dataset/engine/cache_client.py +2 -2
  85. mindspore/dataset/engine/datasets.py +201 -116
  86. mindspore/dataset/engine/datasets_audio.py +14 -14
  87. mindspore/dataset/engine/datasets_standard_format.py +83 -3
  88. mindspore/dataset/engine/datasets_text.py +39 -39
  89. mindspore/dataset/engine/datasets_user_defined.py +230 -141
  90. mindspore/dataset/engine/datasets_vision.py +78 -74
  91. mindspore/dataset/engine/iterators.py +29 -0
  92. mindspore/dataset/engine/obs/util.py +7 -0
  93. mindspore/dataset/engine/offload.py +5 -7
  94. mindspore/dataset/engine/queue.py +138 -66
  95. mindspore/dataset/engine/serializer_deserializer.py +2 -2
  96. mindspore/dataset/engine/validators.py +41 -15
  97. mindspore/dataset/text/__init__.py +2 -5
  98. mindspore/dataset/text/transforms.py +408 -121
  99. mindspore/dataset/text/utils.py +9 -9
  100. mindspore/dataset/transforms/__init__.py +0 -3
  101. mindspore/dataset/transforms/transforms.py +261 -76
  102. mindspore/dataset/utils/browse_dataset.py +9 -9
  103. mindspore/dataset/utils/line_reader.py +2 -0
  104. mindspore/dataset/vision/__init__.py +7 -10
  105. mindspore/dataset/vision/c_transforms.py +10 -10
  106. mindspore/dataset/vision/py_transforms_util.py +1 -1
  107. mindspore/dataset/vision/transforms.py +2844 -549
  108. mindspore/dataset/vision/utils.py +161 -10
  109. mindspore/dataset/vision/validators.py +16 -3
  110. mindspore/dnnl.dll +0 -0
  111. mindspore/dpcmi.dll +0 -0
  112. mindspore/{rewrite/ast_creator_register.py → experimental/es/__init__.py} +5 -20
  113. mindspore/experimental/es/embedding_service.py +883 -0
  114. mindspore/experimental/es/embedding_service_layer.py +581 -0
  115. mindspore/experimental/llm_boost/__init__.py +21 -0
  116. mindspore/experimental/llm_boost/atb/__init__.py +23 -0
  117. mindspore/experimental/llm_boost/atb/boost_base.py +211 -0
  118. mindspore/experimental/llm_boost/atb/llama_boost.py +115 -0
  119. mindspore/experimental/llm_boost/atb/qwen_boost.py +101 -0
  120. mindspore/experimental/llm_boost/register.py +129 -0
  121. mindspore/experimental/llm_boost/utils.py +31 -0
  122. mindspore/experimental/optim/__init__.py +12 -2
  123. mindspore/experimental/optim/adadelta.py +161 -0
  124. mindspore/experimental/optim/adagrad.py +168 -0
  125. mindspore/experimental/optim/adam.py +35 -34
  126. mindspore/experimental/optim/adamax.py +170 -0
  127. mindspore/experimental/optim/adamw.py +124 -15
  128. mindspore/experimental/optim/asgd.py +153 -0
  129. mindspore/experimental/optim/lr_scheduler.py +66 -121
  130. mindspore/experimental/optim/nadam.py +157 -0
  131. mindspore/experimental/optim/optimizer.py +18 -8
  132. mindspore/experimental/optim/radam.py +194 -0
  133. mindspore/experimental/optim/rmsprop.py +154 -0
  134. mindspore/experimental/optim/rprop.py +164 -0
  135. mindspore/experimental/optim/sgd.py +28 -19
  136. mindspore/hal/__init__.py +40 -0
  137. mindspore/hal/_ascend.py +57 -0
  138. mindspore/hal/_base.py +57 -0
  139. mindspore/hal/_cpu.py +56 -0
  140. mindspore/hal/_gpu.py +57 -0
  141. mindspore/hal/contiguous_tensors_handle.py +175 -0
  142. mindspore/hal/device.py +356 -0
  143. mindspore/hal/event.py +179 -0
  144. mindspore/hal/memory.py +326 -0
  145. mindspore/hal/stream.py +357 -0
  146. mindspore/include/api/data_type.h +2 -2
  147. mindspore/include/api/dual_abi_helper.h +16 -3
  148. mindspore/include/api/model.h +4 -3
  149. mindspore/include/api/model_group.h +13 -1
  150. mindspore/include/api/status.h +14 -0
  151. mindspore/include/api/types.h +10 -10
  152. mindspore/include/c_api/model_c.h +173 -0
  153. mindspore/include/c_api/types_c.h +19 -0
  154. mindspore/include/dataset/config.h +2 -2
  155. mindspore/include/dataset/constants.h +2 -2
  156. mindspore/include/dataset/execute.h +3 -5
  157. mindspore/include/dataset/vision.h +58 -2
  158. mindspore/jpeg62.dll +0 -0
  159. mindspore/log.py +3 -3
  160. mindspore/mindrecord/__init__.py +5 -1
  161. mindspore/mindrecord/config.py +809 -0
  162. mindspore/mindrecord/filereader.py +25 -0
  163. mindspore/mindrecord/filewriter.py +138 -103
  164. mindspore/mindrecord/mindpage.py +40 -6
  165. mindspore/mindrecord/shardutils.py +3 -2
  166. mindspore/mindrecord/shardwriter.py +7 -0
  167. mindspore/mindrecord/tools/cifar100_to_mr.py +8 -13
  168. mindspore/mindrecord/tools/cifar10_to_mr.py +9 -15
  169. mindspore/mindrecord/tools/csv_to_mr.py +4 -9
  170. mindspore/mindrecord/tools/imagenet_to_mr.py +3 -8
  171. mindspore/mindrecord/tools/mnist_to_mr.py +7 -12
  172. mindspore/mindrecord/tools/tfrecord_to_mr.py +1 -6
  173. mindspore/mindspore_backend.dll +0 -0
  174. mindspore/mindspore_common.dll +0 -0
  175. mindspore/mindspore_core.dll +0 -0
  176. mindspore/mindspore_glog.dll +0 -0
  177. mindspore/mindspore_np_dtype.dll +0 -0
  178. mindspore/mindspore_ops.dll +0 -0
  179. mindspore/mint/__init__.py +1586 -0
  180. mindspore/mint/distributed/__init__.py +31 -0
  181. mindspore/mint/distributed/distributed.py +254 -0
  182. mindspore/{rewrite/ast_transformers → mint/linalg}/__init__.py +9 -4
  183. mindspore/mint/nn/__init__.py +757 -0
  184. mindspore/mint/nn/functional.py +679 -0
  185. mindspore/mint/nn/layer/__init__.py +39 -0
  186. mindspore/mint/nn/layer/activation.py +133 -0
  187. mindspore/mint/nn/layer/normalization.py +477 -0
  188. mindspore/mint/nn/layer/pooling.py +110 -0
  189. mindspore/mint/optim/__init__.py +24 -0
  190. mindspore/mint/optim/adamw.py +206 -0
  191. mindspore/mint/special/__init__.py +63 -0
  192. mindspore/msobj140.dll +0 -0
  193. mindspore/mspdb140.dll +0 -0
  194. mindspore/mspdbcore.dll +0 -0
  195. mindspore/mspdbst.dll +0 -0
  196. mindspore/mspft140.dll +0 -0
  197. mindspore/msvcdis140.dll +0 -0
  198. mindspore/msvcp140_1.dll +0 -0
  199. mindspore/msvcp140_2.dll +0 -0
  200. mindspore/msvcp140_atomic_wait.dll +0 -0
  201. mindspore/msvcp140_codecvt_ids.dll +0 -0
  202. mindspore/multiprocessing/__init__.py +73 -0
  203. mindspore/nn/cell.py +461 -323
  204. mindspore/nn/dynamic_lr.py +2 -2
  205. mindspore/nn/layer/activation.py +292 -135
  206. mindspore/nn/layer/basic.py +288 -83
  207. mindspore/nn/layer/channel_shuffle.py +3 -16
  208. mindspore/nn/layer/container.py +3 -3
  209. mindspore/nn/layer/conv.py +75 -66
  210. mindspore/nn/layer/embedding.py +221 -45
  211. mindspore/nn/layer/image.py +4 -7
  212. mindspore/nn/layer/math.py +1 -1
  213. mindspore/nn/layer/normalization.py +150 -68
  214. mindspore/nn/layer/padding.py +64 -87
  215. mindspore/nn/layer/pooling.py +175 -12
  216. mindspore/nn/layer/rnn_cells.py +6 -16
  217. mindspore/nn/layer/rnns.py +6 -5
  218. mindspore/nn/layer/thor_layer.py +1 -2
  219. mindspore/nn/layer/timedistributed.py +1 -1
  220. mindspore/nn/layer/transformer.py +55 -53
  221. mindspore/nn/learning_rate_schedule.py +6 -5
  222. mindspore/nn/loss/__init__.py +2 -2
  223. mindspore/nn/loss/loss.py +145 -88
  224. mindspore/nn/optim/__init__.py +2 -1
  225. mindspore/nn/optim/ada_grad.py +4 -2
  226. mindspore/nn/optim/adadelta.py +4 -2
  227. mindspore/nn/optim/adafactor.py +1 -1
  228. mindspore/nn/optim/adam.py +102 -181
  229. mindspore/nn/optim/adamax.py +4 -2
  230. mindspore/nn/optim/adasum.py +3 -3
  231. mindspore/nn/optim/asgd.py +4 -2
  232. mindspore/nn/optim/ftrl.py +31 -61
  233. mindspore/nn/optim/lamb.py +5 -3
  234. mindspore/nn/optim/lars.py +2 -2
  235. mindspore/nn/optim/lazyadam.py +6 -4
  236. mindspore/nn/optim/momentum.py +13 -25
  237. mindspore/nn/optim/optimizer.py +6 -3
  238. mindspore/nn/optim/proximal_ada_grad.py +4 -2
  239. mindspore/nn/optim/rmsprop.py +9 -3
  240. mindspore/nn/optim/rprop.py +4 -2
  241. mindspore/nn/optim/sgd.py +5 -3
  242. mindspore/nn/optim/tft_wrapper.py +127 -0
  243. mindspore/nn/optim/thor.py +2 -2
  244. mindspore/nn/probability/distribution/_utils/custom_ops.py +2 -2
  245. mindspore/nn/probability/distribution/beta.py +2 -2
  246. mindspore/nn/probability/distribution/categorical.py +4 -6
  247. mindspore/nn/probability/distribution/cauchy.py +2 -2
  248. mindspore/nn/probability/distribution/exponential.py +2 -2
  249. mindspore/nn/probability/distribution/geometric.py +1 -1
  250. mindspore/nn/probability/distribution/gumbel.py +2 -2
  251. mindspore/nn/probability/distribution/logistic.py +1 -1
  252. mindspore/nn/probability/distribution/poisson.py +2 -2
  253. mindspore/nn/probability/distribution/uniform.py +2 -2
  254. mindspore/nn/reinforcement/_tensors_queue.py +13 -1
  255. mindspore/nn/wrap/__init__.py +2 -1
  256. mindspore/nn/wrap/cell_wrapper.py +46 -12
  257. mindspore/nn/wrap/grad_reducer.py +148 -8
  258. mindspore/nn/wrap/loss_scale.py +44 -7
  259. mindspore/numpy/__init__.py +2 -0
  260. mindspore/numpy/array_creations.py +67 -68
  261. mindspore/numpy/array_ops.py +70 -66
  262. mindspore/numpy/dtypes.py +3 -3
  263. mindspore/numpy/fft.py +966 -0
  264. mindspore/numpy/logic_ops.py +11 -10
  265. mindspore/numpy/math_ops.py +147 -152
  266. mindspore/numpy/utils.py +3 -0
  267. mindspore/numpy/utils_const.py +4 -4
  268. mindspore/opencv_core452.dll +0 -0
  269. mindspore/opencv_imgcodecs452.dll +0 -0
  270. mindspore/opencv_imgproc452.dll +0 -0
  271. mindspore/ops/__init__.py +9 -6
  272. mindspore/ops/_grad_experimental/grad_array_ops.py +4 -129
  273. mindspore/ops/_grad_experimental/grad_comm_ops.py +135 -36
  274. mindspore/ops/_grad_experimental/grad_math_ops.py +61 -298
  275. mindspore/ops/_grad_experimental/grad_nn_ops.py +0 -53
  276. mindspore/ops/_grad_experimental/grad_quant_ops.py +3 -3
  277. mindspore/ops/_grad_experimental/grad_sparse.py +1 -1
  278. mindspore/ops/_grad_experimental/grad_sparse_ops.py +3 -3
  279. mindspore/ops/_op_impl/__init__.py +0 -1
  280. mindspore/ops/_op_impl/aicpu/gamma.py +2 -0
  281. mindspore/ops/_op_impl/aicpu/generate_eod_mask.py +1 -1
  282. mindspore/ops/_op_impl/aicpu/log_uniform_candidate_sampler.py +1 -3
  283. mindspore/ops/_op_impl/aicpu/poisson.py +2 -0
  284. mindspore/ops/_op_impl/cpu/__init__.py +1 -3
  285. mindspore/ops/_op_impl/cpu/adam.py +2 -2
  286. mindspore/ops/_op_impl/cpu/adam_weight_decay.py +3 -2
  287. mindspore/ops/_op_impl/cpu/maximum_grad.py +16 -14
  288. mindspore/ops/_op_impl/cpu/minimum_grad.py +8 -0
  289. mindspore/ops/_vmap/vmap_array_ops.py +162 -101
  290. mindspore/ops/_vmap/vmap_base.py +8 -1
  291. mindspore/ops/_vmap/vmap_grad_math_ops.py +95 -9
  292. mindspore/ops/_vmap/vmap_grad_nn_ops.py +143 -58
  293. mindspore/ops/_vmap/vmap_image_ops.py +70 -13
  294. mindspore/ops/_vmap/vmap_math_ops.py +147 -59
  295. mindspore/ops/_vmap/vmap_nn_ops.py +292 -117
  296. mindspore/ops/_vmap/vmap_other_ops.py +1 -1
  297. mindspore/ops/auto_generate/__init__.py +31 -0
  298. mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +309 -0
  299. mindspore/ops/auto_generate/gen_arg_dtype_cast.py +252 -0
  300. mindspore/ops/auto_generate/gen_arg_handler.py +197 -0
  301. mindspore/ops/auto_generate/gen_extend_func.py +1701 -0
  302. mindspore/ops/auto_generate/gen_ops_def.py +8482 -0
  303. mindspore/ops/auto_generate/gen_ops_prim.py +16704 -0
  304. mindspore/ops/auto_generate/pyboost_inner_prim.py +549 -0
  305. mindspore/ops/composite/__init__.py +5 -2
  306. mindspore/ops/composite/base.py +201 -66
  307. mindspore/ops/composite/math_ops.py +10 -49
  308. mindspore/ops/composite/multitype_ops/_compile_utils.py +192 -618
  309. mindspore/ops/composite/multitype_ops/_constexpr_utils.py +25 -134
  310. mindspore/ops/composite/multitype_ops/add_impl.py +6 -0
  311. mindspore/ops/composite/multitype_ops/bitwise_and_impl.py +6 -0
  312. mindspore/ops/composite/multitype_ops/bitwise_or_impl.py +6 -0
  313. mindspore/ops/composite/multitype_ops/bitwise_xor_impl.py +6 -0
  314. mindspore/ops/composite/multitype_ops/div_impl.py +8 -0
  315. mindspore/ops/composite/multitype_ops/equal_impl.py +6 -0
  316. mindspore/ops/composite/multitype_ops/floordiv_impl.py +8 -0
  317. mindspore/ops/composite/multitype_ops/getitem_impl.py +6 -0
  318. mindspore/ops/composite/multitype_ops/greater_equal_impl.py +6 -0
  319. mindspore/ops/composite/multitype_ops/greater_impl.py +6 -0
  320. mindspore/ops/composite/multitype_ops/in_impl.py +8 -2
  321. mindspore/ops/composite/multitype_ops/left_shift_impl.py +6 -0
  322. mindspore/ops/composite/multitype_ops/less_equal_impl.py +6 -0
  323. mindspore/ops/composite/multitype_ops/less_impl.py +6 -0
  324. mindspore/ops/composite/multitype_ops/logic_not_impl.py +6 -0
  325. mindspore/ops/composite/multitype_ops/logical_and_impl.py +6 -0
  326. mindspore/ops/composite/multitype_ops/logical_or_impl.py +6 -0
  327. mindspore/ops/composite/multitype_ops/mod_impl.py +6 -0
  328. mindspore/ops/composite/multitype_ops/mul_impl.py +6 -0
  329. mindspore/ops/composite/multitype_ops/negative_impl.py +9 -3
  330. mindspore/ops/composite/multitype_ops/not_equal_impl.py +6 -0
  331. mindspore/ops/composite/multitype_ops/not_in_impl.py +8 -3
  332. mindspore/ops/composite/multitype_ops/ones_like_impl.py +2 -2
  333. mindspore/ops/composite/multitype_ops/pow_impl.py +6 -0
  334. mindspore/ops/composite/multitype_ops/right_shift_impl.py +6 -0
  335. mindspore/ops/composite/multitype_ops/setitem_impl.py +32 -21
  336. mindspore/ops/composite/multitype_ops/sub_impl.py +6 -0
  337. mindspore/ops/composite/multitype_ops/zeros_like_impl.py +6 -3
  338. mindspore/ops/deprecated.py +14 -3
  339. mindspore/ops/function/__init__.py +53 -11
  340. mindspore/ops/function/array_func.py +1269 -1821
  341. mindspore/ops/function/clip_func.py +19 -31
  342. mindspore/ops/function/debug_func.py +114 -5
  343. mindspore/ops/function/fft_func.py +44 -0
  344. mindspore/ops/function/grad/grad_func.py +30 -22
  345. mindspore/ops/function/image_func.py +27 -21
  346. mindspore/ops/function/linalg_func.py +35 -68
  347. mindspore/ops/function/math_func.py +1170 -2697
  348. mindspore/ops/function/nn_func.py +2116 -1128
  349. mindspore/ops/function/other_func.py +8 -8
  350. mindspore/ops/function/parameter_func.py +5 -93
  351. mindspore/ops/function/random_func.py +435 -113
  352. mindspore/ops/function/reshard_func.py +104 -0
  353. mindspore/ops/function/sparse_func.py +4 -4
  354. mindspore/ops/function/sparse_unary_func.py +9 -16
  355. mindspore/ops/function/spectral_func.py +1 -1
  356. mindspore/ops/function/vmap_func.py +16 -15
  357. mindspore/ops/functional.py +355 -346
  358. mindspore/ops/op_info_register.py +18 -45
  359. mindspore/ops/operations/__init__.py +38 -24
  360. mindspore/ops/operations/_grad_ops.py +21 -927
  361. mindspore/ops/operations/_infer_ops.py +19 -0
  362. mindspore/ops/operations/_inner_ops.py +173 -607
  363. mindspore/ops/operations/_rl_inner_ops.py +2 -2
  364. mindspore/ops/operations/_scalar_ops.py +5 -480
  365. mindspore/ops/operations/_sequence_ops.py +6 -36
  366. mindspore/ops/operations/_tensor_array.py +8 -8
  367. mindspore/ops/operations/array_ops.py +106 -2837
  368. mindspore/ops/operations/comm_ops.py +799 -127
  369. mindspore/ops/operations/custom_ops.py +124 -119
  370. mindspore/ops/operations/debug_ops.py +142 -41
  371. mindspore/ops/operations/image_ops.py +1 -217
  372. mindspore/ops/operations/inner_ops.py +5 -40
  373. mindspore/ops/operations/linalg_ops.py +1 -49
  374. mindspore/ops/operations/manually_defined/__init__.py +24 -0
  375. mindspore/ops/operations/manually_defined/_inner.py +73 -0
  376. mindspore/ops/operations/manually_defined/ops_def.py +2271 -0
  377. mindspore/ops/operations/math_ops.py +666 -4972
  378. mindspore/ops/operations/nn_ops.py +205 -2213
  379. mindspore/ops/operations/other_ops.py +60 -49
  380. mindspore/ops/operations/random_ops.py +50 -54
  381. mindspore/ops/operations/reshard_ops.py +53 -0
  382. mindspore/ops/operations/sparse_ops.py +4 -4
  383. mindspore/ops/primitive.py +216 -103
  384. mindspore/ops_generate/__init__.py +27 -0
  385. mindspore/ops_generate/arg_dtype_cast.py +252 -0
  386. mindspore/ops_generate/arg_handler.py +197 -0
  387. mindspore/ops_generate/gen_aclnn_implement.py +263 -0
  388. mindspore/ops_generate/gen_constants.py +36 -0
  389. mindspore/ops_generate/gen_ops.py +1099 -0
  390. mindspore/ops_generate/gen_ops_inner_prim.py +131 -0
  391. mindspore/ops_generate/gen_pyboost_func.py +1052 -0
  392. mindspore/ops_generate/gen_utils.py +209 -0
  393. mindspore/ops_generate/op_proto.py +145 -0
  394. mindspore/ops_generate/pyboost_utils.py +367 -0
  395. mindspore/ops_generate/template.py +261 -0
  396. mindspore/parallel/__init__.py +8 -4
  397. mindspore/parallel/_auto_parallel_context.py +100 -10
  398. mindspore/parallel/_cell_wrapper.py +99 -9
  399. mindspore/parallel/_cost_model_context.py +1 -1
  400. mindspore/parallel/_dp_allreduce_fusion.py +159 -159
  401. mindspore/parallel/_parallel_serialization.py +67 -23
  402. mindspore/parallel/_ps_context.py +1 -1
  403. mindspore/parallel/_recovery_context.py +1 -1
  404. mindspore/parallel/_tensor.py +99 -22
  405. mindspore/parallel/_transformer/__init__.py +1 -1
  406. mindspore/parallel/_transformer/layers.py +1 -1
  407. mindspore/parallel/_transformer/loss.py +1 -1
  408. mindspore/parallel/_transformer/moe.py +1 -1
  409. mindspore/parallel/_transformer/op_parallel_config.py +1 -1
  410. mindspore/parallel/_transformer/transformer.py +2 -2
  411. mindspore/parallel/_utils.py +173 -6
  412. mindspore/parallel/algo_parameter_config.py +8 -10
  413. mindspore/parallel/checkpoint_transform.py +204 -38
  414. mindspore/parallel/cluster/__init__.py +15 -0
  415. mindspore/parallel/cluster/process_entity/__init__.py +18 -0
  416. mindspore/parallel/cluster/process_entity/_api.py +352 -0
  417. mindspore/parallel/cluster/process_entity/_utils.py +101 -0
  418. mindspore/parallel/cluster/run.py +136 -0
  419. mindspore/parallel/mpi/__init__.py +1 -1
  420. mindspore/parallel/mpi/_mpi_config.py +1 -1
  421. mindspore/parallel/parameter_broadcast.py +151 -0
  422. mindspore/parallel/shard.py +279 -37
  423. mindspore/parallel/transform_safetensors.py +993 -0
  424. mindspore/pgodb140.dll +0 -0
  425. mindspore/pgort140.dll +0 -0
  426. mindspore/profiler/__init__.py +4 -2
  427. mindspore/profiler/common/constant.py +29 -0
  428. mindspore/profiler/common/process_pool.py +41 -0
  429. mindspore/profiler/common/registry.py +47 -0
  430. mindspore/profiler/common/singleton.py +28 -0
  431. mindspore/profiler/common/util.py +153 -0
  432. mindspore/profiler/dynamic_profiler.py +694 -0
  433. mindspore/profiler/envprofiling.py +18 -20
  434. mindspore/{_extends/parallel_compile/tbe_compiler → profiler/parser/ascend_analysis}/__init__.py +1 -1
  435. mindspore/profiler/parser/ascend_analysis/constant.py +71 -0
  436. mindspore/profiler/parser/ascend_analysis/file_manager.py +180 -0
  437. mindspore/profiler/parser/ascend_analysis/function_event.py +185 -0
  438. mindspore/profiler/parser/ascend_analysis/fwk_cann_parser.py +136 -0
  439. mindspore/profiler/parser/ascend_analysis/fwk_file_parser.py +131 -0
  440. mindspore/profiler/parser/ascend_analysis/msprof_timeline_parser.py +104 -0
  441. mindspore/profiler/parser/ascend_analysis/path_manager.py +313 -0
  442. mindspore/profiler/parser/ascend_analysis/profiler_info_parser.py +123 -0
  443. mindspore/profiler/parser/ascend_analysis/tlv_decoder.py +86 -0
  444. mindspore/profiler/parser/ascend_analysis/trace_event_manager.py +75 -0
  445. mindspore/profiler/parser/ascend_cluster_generator.py +14 -9
  446. mindspore/profiler/parser/ascend_communicate_generator.py +0 -1
  447. mindspore/profiler/parser/ascend_flops_generator.py +20 -4
  448. mindspore/profiler/parser/ascend_hccl_generator.py +29 -278
  449. mindspore/profiler/parser/ascend_integrate_generator.py +42 -0
  450. mindspore/profiler/parser/ascend_memory_generator.py +185 -0
  451. mindspore/profiler/parser/ascend_msprof_exporter.py +148 -146
  452. mindspore/profiler/parser/ascend_msprof_generator.py +73 -283
  453. mindspore/profiler/parser/ascend_op_generator.py +92 -42
  454. mindspore/profiler/parser/ascend_timeline_generator.py +298 -133
  455. mindspore/profiler/parser/base_timeline_generator.py +25 -25
  456. mindspore/profiler/parser/cpu_gpu_timeline_generator.py +25 -12
  457. mindspore/profiler/parser/framework_parser.py +4 -393
  458. mindspore/profiler/parser/gpu_analysis/__init__.py +14 -0
  459. mindspore/profiler/parser/gpu_analysis/function_event.py +44 -0
  460. mindspore/profiler/parser/gpu_analysis/fwk_file_parser.py +89 -0
  461. mindspore/profiler/parser/gpu_analysis/profiler_info_parser.py +72 -0
  462. mindspore/profiler/parser/integrator.py +3 -1
  463. mindspore/profiler/parser/memory_usage_parser.py +0 -154
  464. mindspore/profiler/parser/minddata_parser.py +72 -3
  465. mindspore/profiler/parser/profiler_info.py +94 -7
  466. mindspore/profiler/profiler.py +153 -0
  467. mindspore/profiler/profiling.py +631 -508
  468. mindspore/rewrite/__init__.py +2 -14
  469. mindspore/rewrite/api/node.py +122 -36
  470. mindspore/rewrite/api/pattern_engine.py +2 -3
  471. mindspore/rewrite/api/scoped_value.py +16 -15
  472. mindspore/rewrite/api/symbol_tree.py +45 -29
  473. mindspore/rewrite/ast_helpers/__init__.py +3 -6
  474. mindspore/rewrite/ast_helpers/ast_converter.py +143 -0
  475. mindspore/rewrite/ast_helpers/ast_finder.py +48 -0
  476. mindspore/rewrite/ast_helpers/ast_flattener.py +268 -0
  477. mindspore/rewrite/ast_helpers/ast_modifier.py +160 -92
  478. mindspore/rewrite/common/__init__.py +1 -2
  479. mindspore/rewrite/common/config.py +24 -0
  480. mindspore/rewrite/common/{rewrite_elog.py → error_log.py} +39 -39
  481. mindspore/rewrite/{namer.py → common/namer.py} +63 -18
  482. mindspore/rewrite/common/namespace.py +118 -0
  483. mindspore/rewrite/node/__init__.py +5 -5
  484. mindspore/rewrite/node/call_function.py +23 -7
  485. mindspore/rewrite/node/cell_container.py +7 -3
  486. mindspore/rewrite/node/control_flow.py +53 -28
  487. mindspore/rewrite/node/node.py +212 -196
  488. mindspore/rewrite/node/node_manager.py +51 -22
  489. mindspore/rewrite/node/node_topological_manager.py +3 -23
  490. mindspore/rewrite/parsers/__init__.py +12 -0
  491. mindspore/rewrite/parsers/arguments_parser.py +8 -9
  492. mindspore/rewrite/parsers/assign_parser.py +637 -413
  493. mindspore/rewrite/parsers/attribute_parser.py +3 -4
  494. mindspore/rewrite/parsers/class_def_parser.py +115 -148
  495. mindspore/rewrite/parsers/constant_parser.py +5 -5
  496. mindspore/rewrite/parsers/container_parser.py +4 -6
  497. mindspore/rewrite/parsers/expr_parser.py +55 -0
  498. mindspore/rewrite/parsers/for_parser.py +31 -98
  499. mindspore/rewrite/parsers/function_def_parser.py +13 -5
  500. mindspore/rewrite/parsers/if_parser.py +28 -10
  501. mindspore/rewrite/parsers/module_parser.py +8 -182
  502. mindspore/rewrite/parsers/parser.py +1 -5
  503. mindspore/rewrite/parsers/parser_register.py +1 -1
  504. mindspore/rewrite/parsers/return_parser.py +5 -10
  505. mindspore/rewrite/parsers/while_parser.py +59 -0
  506. mindspore/rewrite/sparsify/utils.py +1 -1
  507. mindspore/rewrite/symbol_tree/__init__.py +20 -0
  508. mindspore/rewrite/{symbol_tree.py → symbol_tree/symbol_tree.py} +705 -186
  509. mindspore/rewrite/{symbol_tree_builder.py → symbol_tree/symbol_tree_builder.py} +8 -8
  510. mindspore/rewrite/{symbol_tree_dumper.py → symbol_tree/symbol_tree_dumper.py} +4 -4
  511. mindspore/run_check/_check_version.py +40 -115
  512. mindspore/run_check/run_check.py +1 -1
  513. mindspore/safeguard/rewrite_obfuscation.py +597 -263
  514. mindspore/swresample-4.dll +0 -0
  515. mindspore/swscale-6.dll +0 -0
  516. mindspore/tbbmalloc.dll +0 -0
  517. mindspore/tinyxml2.dll +0 -0
  518. mindspore/train/__init__.py +7 -5
  519. mindspore/train/_utils.py +204 -4
  520. mindspore/train/amp.py +335 -295
  521. mindspore/train/anf_ir_pb2.py +14 -2
  522. mindspore/train/callback/__init__.py +5 -2
  523. mindspore/train/callback/_backup_and_restore.py +5 -5
  524. mindspore/train/callback/_callback.py +4 -4
  525. mindspore/train/callback/_checkpoint.py +220 -43
  526. mindspore/train/callback/_cluster_monitor.py +201 -0
  527. mindspore/train/callback/_early_stop.py +2 -2
  528. mindspore/train/callback/_flops_collector.py +239 -0
  529. mindspore/train/callback/_landscape.py +15 -9
  530. mindspore/train/callback/_loss_monitor.py +5 -5
  531. mindspore/train/callback/_on_request_exit.py +136 -33
  532. mindspore/train/callback/_reduce_lr_on_plateau.py +2 -2
  533. mindspore/train/callback/_summary_collector.py +12 -12
  534. mindspore/train/callback/_tft_register.py +352 -0
  535. mindspore/train/callback/_time_monitor.py +3 -3
  536. mindspore/train/data_sink.py +6 -5
  537. mindspore/train/dataset_helper.py +66 -23
  538. mindspore/train/loss_scale_manager.py +2 -2
  539. mindspore/train/metrics/accuracy.py +7 -7
  540. mindspore/train/metrics/confusion_matrix.py +8 -6
  541. mindspore/train/metrics/cosine_similarity.py +6 -4
  542. mindspore/train/metrics/error.py +2 -2
  543. mindspore/train/metrics/metric.py +3 -3
  544. mindspore/train/metrics/perplexity.py +2 -1
  545. mindspore/train/metrics/roc.py +4 -4
  546. mindspore/train/metrics/topk.py +2 -2
  547. mindspore/train/mind_ir_pb2.py +116 -37
  548. mindspore/train/model.py +382 -76
  549. mindspore/train/serialization.py +787 -288
  550. mindspore/train/summary/_summary_adapter.py +1 -1
  551. mindspore/train/summary/summary_record.py +51 -28
  552. mindspore/train/train_thor/convert_utils.py +3 -3
  553. mindspore/turbojpeg.dll +0 -0
  554. mindspore/utils/__init__.py +21 -0
  555. mindspore/utils/utils.py +60 -0
  556. mindspore/vcmeta.dll +0 -0
  557. mindspore/vcruntime140.dll +0 -0
  558. mindspore/vcruntime140_1.dll +0 -0
  559. mindspore/version.py +1 -1
  560. {mindspore-2.2.14.dist-info → mindspore-2.4.0.dist-info}/METADATA +8 -4
  561. mindspore-2.4.0.dist-info/RECORD +1406 -0
  562. {mindspore-2.2.14.dist-info → mindspore-2.4.0.dist-info}/entry_points.txt +1 -0
  563. mindspore/_extends/parallel_compile/tbe_compiler/tbe_adapter.py +0 -662
  564. mindspore/_extends/parallel_compile/tbe_compiler/tbe_helper.py +0 -377
  565. mindspore/_extends/parallel_compile/tbe_compiler/tbe_job.py +0 -201
  566. mindspore/_extends/parallel_compile/tbe_compiler/tbe_job_manager.py +0 -515
  567. mindspore/gen_ops.py +0 -273
  568. mindspore/include/c_api/ms/abstract.h +0 -67
  569. mindspore/include/c_api/ms/attribute.h +0 -197
  570. mindspore/include/c_api/ms/base/handle_types.h +0 -43
  571. mindspore/include/c_api/ms/base/macros.h +0 -32
  572. mindspore/include/c_api/ms/base/status.h +0 -33
  573. mindspore/include/c_api/ms/base/types.h +0 -282
  574. mindspore/include/c_api/ms/context.h +0 -102
  575. mindspore/include/c_api/ms/graph.h +0 -160
  576. mindspore/include/c_api/ms/node.h +0 -606
  577. mindspore/include/c_api/ms/tensor.h +0 -161
  578. mindspore/include/c_api/ms/value.h +0 -84
  579. mindspore/mindspore_shared_lib.dll +0 -0
  580. mindspore/nn/layer/flash_attention.py +0 -189
  581. mindspore/ops/_op_impl/aicpu/strided_slice_v2.py +0 -93
  582. mindspore/ops/_op_impl/aicpu/strided_slice_v2_grad.py +0 -66
  583. mindspore/ops/_op_impl/cpu/concat.py +0 -39
  584. mindspore/ops/_op_impl/cpu/tensor_shape.py +0 -42
  585. mindspore/ops/_op_impl/tbe/__init__.py +0 -47
  586. mindspore/ops/_op_impl/tbe/abs.py +0 -38
  587. mindspore/ops/_op_impl/tbe/abs_ds.py +0 -39
  588. mindspore/ops/_op_impl/tbe/abs_grad.py +0 -43
  589. mindspore/ops/_op_impl/tbe/abs_grad_ds.py +0 -44
  590. mindspore/ops/_op_impl/tbe/accumulate_n_v2.py +0 -41
  591. mindspore/ops/_op_impl/tbe/accumulate_n_v2_ds.py +0 -42
  592. mindspore/ops/_op_impl/tbe/acos.py +0 -37
  593. mindspore/ops/_op_impl/tbe/acos_ds.py +0 -38
  594. mindspore/ops/_op_impl/tbe/acos_grad.py +0 -43
  595. mindspore/ops/_op_impl/tbe/acos_grad_ds.py +0 -44
  596. mindspore/ops/_op_impl/tbe/acosh.py +0 -37
  597. mindspore/ops/_op_impl/tbe/acosh_ds.py +0 -38
  598. mindspore/ops/_op_impl/tbe/acosh_grad.py +0 -43
  599. mindspore/ops/_op_impl/tbe/acosh_grad_ds.py +0 -44
  600. mindspore/ops/_op_impl/tbe/act_ulq_clamp_max_grad.py +0 -38
  601. mindspore/ops/_op_impl/tbe/act_ulq_clamp_min_grad.py +0 -38
  602. mindspore/ops/_op_impl/tbe/acts_ulq.py +0 -45
  603. mindspore/ops/_op_impl/tbe/acts_ulq_input_grad.py +0 -38
  604. mindspore/ops/_op_impl/tbe/adam_apply_one.py +0 -50
  605. mindspore/ops/_op_impl/tbe/adam_apply_one_assign.py +0 -53
  606. mindspore/ops/_op_impl/tbe/adam_apply_one_ds.py +0 -51
  607. mindspore/ops/_op_impl/tbe/adam_apply_one_with_decay.py +0 -54
  608. mindspore/ops/_op_impl/tbe/adam_apply_one_with_decay_assign.py +0 -54
  609. mindspore/ops/_op_impl/tbe/adam_apply_one_with_decay_ds.py +0 -55
  610. mindspore/ops/_op_impl/tbe/adaptive_max_pool2d.py +0 -37
  611. mindspore/ops/_op_impl/tbe/add.py +0 -42
  612. mindspore/ops/_op_impl/tbe/add_ds.py +0 -43
  613. mindspore/ops/_op_impl/tbe/add_n.py +0 -39
  614. mindspore/ops/_op_impl/tbe/add_n_ds.py +0 -40
  615. mindspore/ops/_op_impl/tbe/addcdiv.py +0 -41
  616. mindspore/ops/_op_impl/tbe/addcdiv_ds.py +0 -42
  617. mindspore/ops/_op_impl/tbe/addcmul.py +0 -43
  618. mindspore/ops/_op_impl/tbe/addcmul_ds.py +0 -44
  619. mindspore/ops/_op_impl/tbe/apply_ada_max.py +0 -68
  620. mindspore/ops/_op_impl/tbe/apply_ada_max_ds.py +0 -69
  621. mindspore/ops/_op_impl/tbe/apply_adadelta.py +0 -66
  622. mindspore/ops/_op_impl/tbe/apply_adadelta_ds.py +0 -67
  623. mindspore/ops/_op_impl/tbe/apply_adagrad.py +0 -55
  624. mindspore/ops/_op_impl/tbe/apply_adagrad_d_a.py +0 -67
  625. mindspore/ops/_op_impl/tbe/apply_adagrad_ds.py +0 -56
  626. mindspore/ops/_op_impl/tbe/apply_adagrad_v2.py +0 -48
  627. mindspore/ops/_op_impl/tbe/apply_adagrad_v2_ds.py +0 -49
  628. mindspore/ops/_op_impl/tbe/apply_adam.py +0 -79
  629. mindspore/ops/_op_impl/tbe/apply_adam_ds.py +0 -80
  630. mindspore/ops/_op_impl/tbe/apply_adam_with_amsgrad.py +0 -60
  631. mindspore/ops/_op_impl/tbe/apply_adam_with_amsgrad_ds.py +0 -61
  632. mindspore/ops/_op_impl/tbe/apply_add_sign.py +0 -65
  633. mindspore/ops/_op_impl/tbe/apply_add_sign_ds.py +0 -66
  634. mindspore/ops/_op_impl/tbe/apply_centered_rms_prop.py +0 -77
  635. mindspore/ops/_op_impl/tbe/apply_centered_rms_prop_ds.py +0 -78
  636. mindspore/ops/_op_impl/tbe/apply_ftrl.py +0 -67
  637. mindspore/ops/_op_impl/tbe/apply_ftrl_ds.py +0 -68
  638. mindspore/ops/_op_impl/tbe/apply_gradient_descent.py +0 -44
  639. mindspore/ops/_op_impl/tbe/apply_gradient_descent_ds.py +0 -45
  640. mindspore/ops/_op_impl/tbe/apply_keras_momentum.py +0 -49
  641. mindspore/ops/_op_impl/tbe/apply_momentum.py +0 -64
  642. mindspore/ops/_op_impl/tbe/apply_momentum_ds.py +0 -65
  643. mindspore/ops/_op_impl/tbe/apply_power_sign.py +0 -65
  644. mindspore/ops/_op_impl/tbe/apply_power_sign_ds.py +0 -66
  645. mindspore/ops/_op_impl/tbe/apply_proximal_adagrad.py +0 -57
  646. mindspore/ops/_op_impl/tbe/apply_proximal_adagrad_ds.py +0 -58
  647. mindspore/ops/_op_impl/tbe/apply_proximal_gradient_descent.py +0 -54
  648. mindspore/ops/_op_impl/tbe/apply_proximal_gradient_descent_ds.py +0 -55
  649. mindspore/ops/_op_impl/tbe/apply_rms_prop.py +0 -52
  650. mindspore/ops/_op_impl/tbe/approximate_equal.py +0 -39
  651. mindspore/ops/_op_impl/tbe/approximate_equal_ds.py +0 -40
  652. mindspore/ops/_op_impl/tbe/arg_max.py +0 -38
  653. mindspore/ops/_op_impl/tbe/arg_max_with_value.py +0 -38
  654. mindspore/ops/_op_impl/tbe/arg_max_with_value_ds.py +0 -39
  655. mindspore/ops/_op_impl/tbe/arg_min.py +0 -38
  656. mindspore/ops/_op_impl/tbe/arg_min_v2_ds.py +0 -40
  657. mindspore/ops/_op_impl/tbe/arg_min_with_value.py +0 -38
  658. mindspore/ops/_op_impl/tbe/arg_min_with_value_ds.py +0 -39
  659. mindspore/ops/_op_impl/tbe/asin.py +0 -37
  660. mindspore/ops/_op_impl/tbe/asin_ds.py +0 -38
  661. mindspore/ops/_op_impl/tbe/asin_grad.py +0 -43
  662. mindspore/ops/_op_impl/tbe/asin_grad_ds.py +0 -44
  663. mindspore/ops/_op_impl/tbe/asinh.py +0 -37
  664. mindspore/ops/_op_impl/tbe/asinh_ds.py +0 -38
  665. mindspore/ops/_op_impl/tbe/asinh_grad.py +0 -43
  666. mindspore/ops/_op_impl/tbe/asinh_grad_ds.py +0 -44
  667. mindspore/ops/_op_impl/tbe/assign.py +0 -79
  668. mindspore/ops/_op_impl/tbe/assign_add.py +0 -59
  669. mindspore/ops/_op_impl/tbe/assign_add_ds.py +0 -60
  670. mindspore/ops/_op_impl/tbe/assign_ds.py +0 -80
  671. mindspore/ops/_op_impl/tbe/assign_sub.py +0 -55
  672. mindspore/ops/_op_impl/tbe/assign_sub_ds.py +0 -56
  673. mindspore/ops/_op_impl/tbe/atan.py +0 -37
  674. mindspore/ops/_op_impl/tbe/atan2.py +0 -38
  675. mindspore/ops/_op_impl/tbe/atan2_ds.py +0 -39
  676. mindspore/ops/_op_impl/tbe/atan_ds.py +0 -38
  677. mindspore/ops/_op_impl/tbe/atan_grad.py +0 -43
  678. mindspore/ops/_op_impl/tbe/atan_grad_ds.py +0 -44
  679. mindspore/ops/_op_impl/tbe/atanh.py +0 -37
  680. mindspore/ops/_op_impl/tbe/atanh_ds.py +0 -38
  681. mindspore/ops/_op_impl/tbe/avg_pool.py +0 -43
  682. mindspore/ops/_op_impl/tbe/avg_pool_3d.py +0 -44
  683. mindspore/ops/_op_impl/tbe/avg_pool_3d_grad.py +0 -45
  684. mindspore/ops/_op_impl/tbe/avg_pool_ds.py +0 -44
  685. mindspore/ops/_op_impl/tbe/avg_pool_grad.py +0 -42
  686. mindspore/ops/_op_impl/tbe/avg_pool_grad_vm.py +0 -42
  687. mindspore/ops/_op_impl/tbe/basic_lstm_cell.py +0 -57
  688. mindspore/ops/_op_impl/tbe/basic_lstm_cell_c_state_grad.py +0 -50
  689. mindspore/ops/_op_impl/tbe/basic_lstm_cell_c_state_grad_v2.py +0 -51
  690. mindspore/ops/_op_impl/tbe/basic_lstm_cell_input_grad.py +0 -42
  691. mindspore/ops/_op_impl/tbe/basic_lstm_cell_weight_grad.py +0 -41
  692. mindspore/ops/_op_impl/tbe/batch_matmul.py +0 -42
  693. mindspore/ops/_op_impl/tbe/batch_matmul_ds.py +0 -41
  694. mindspore/ops/_op_impl/tbe/batch_matmul_v2.py +0 -47
  695. mindspore/ops/_op_impl/tbe/batch_to_space.py +0 -38
  696. mindspore/ops/_op_impl/tbe/batch_to_space_nd.py +0 -38
  697. mindspore/ops/_op_impl/tbe/batch_to_space_nd_ds.py +0 -39
  698. mindspore/ops/_op_impl/tbe/batch_to_space_nd_v2.py +0 -41
  699. mindspore/ops/_op_impl/tbe/batchnorm.py +0 -58
  700. mindspore/ops/_op_impl/tbe/batchnorm_grad.py +0 -58
  701. mindspore/ops/_op_impl/tbe/bce_with_logits_loss.py +0 -42
  702. mindspore/ops/_op_impl/tbe/bessel_i0e.py +0 -37
  703. mindspore/ops/_op_impl/tbe/bessel_i0e_ds.py +0 -38
  704. mindspore/ops/_op_impl/tbe/bessel_i1e.py +0 -37
  705. mindspore/ops/_op_impl/tbe/bessel_i1e_ds.py +0 -38
  706. mindspore/ops/_op_impl/tbe/bias_add.py +0 -38
  707. mindspore/ops/_op_impl/tbe/bias_add_ds.py +0 -39
  708. mindspore/ops/_op_impl/tbe/bias_add_grad.py +0 -53
  709. mindspore/ops/_op_impl/tbe/binary_cross_entropy.py +0 -39
  710. mindspore/ops/_op_impl/tbe/binary_cross_entropy_ds.py +0 -40
  711. mindspore/ops/_op_impl/tbe/binary_cross_entropy_grad.py +0 -44
  712. mindspore/ops/_op_impl/tbe/binary_cross_entropy_grad_ds.py +0 -45
  713. mindspore/ops/_op_impl/tbe/bitwise_and.py +0 -39
  714. mindspore/ops/_op_impl/tbe/bitwise_and_ds.py +0 -40
  715. mindspore/ops/_op_impl/tbe/bitwise_or.py +0 -39
  716. mindspore/ops/_op_impl/tbe/bitwise_or_ds.py +0 -40
  717. mindspore/ops/_op_impl/tbe/bitwise_xor.py +0 -39
  718. mindspore/ops/_op_impl/tbe/bitwise_xor_ds.py +0 -40
  719. mindspore/ops/_op_impl/tbe/bn_infer.py +0 -43
  720. mindspore/ops/_op_impl/tbe/bn_infer_ds.py +0 -45
  721. mindspore/ops/_op_impl/tbe/bn_infer_grad.py +0 -41
  722. mindspore/ops/_op_impl/tbe/bn_infer_grad_ds.py +0 -40
  723. mindspore/ops/_op_impl/tbe/bn_inference.py +0 -50
  724. mindspore/ops/_op_impl/tbe/bn_training_reduce.py +0 -38
  725. mindspore/ops/_op_impl/tbe/bn_training_reduce_ds.py +0 -39
  726. mindspore/ops/_op_impl/tbe/bn_training_reduce_grad.py +0 -46
  727. mindspore/ops/_op_impl/tbe/bn_training_reduce_grad_ds.py +0 -47
  728. mindspore/ops/_op_impl/tbe/bn_training_update.py +0 -52
  729. mindspore/ops/_op_impl/tbe/bn_training_update_ds.py +0 -53
  730. mindspore/ops/_op_impl/tbe/bn_training_update_grad.py +0 -44
  731. mindspore/ops/_op_impl/tbe/bn_training_update_grad_ds.py +0 -45
  732. mindspore/ops/_op_impl/tbe/bn_training_update_v2.py +0 -48
  733. mindspore/ops/_op_impl/tbe/bn_training_update_v3.py +0 -51
  734. mindspore/ops/_op_impl/tbe/bounding_box_decode.py +0 -41
  735. mindspore/ops/_op_impl/tbe/bounding_box_decode_ds.py +0 -42
  736. mindspore/ops/_op_impl/tbe/bounding_box_encode.py +0 -38
  737. mindspore/ops/_op_impl/tbe/broadcast_to.py +0 -40
  738. mindspore/ops/_op_impl/tbe/broadcast_to_ds.py +0 -44
  739. mindspore/ops/_op_impl/tbe/cast.py +0 -55
  740. mindspore/ops/_op_impl/tbe/cast_ds.py +0 -58
  741. mindspore/ops/_op_impl/tbe/cdist.py +0 -38
  742. mindspore/ops/_op_impl/tbe/cdist_grad.py +0 -42
  743. mindspore/ops/_op_impl/tbe/ceil.py +0 -37
  744. mindspore/ops/_op_impl/tbe/ceil_ds.py +0 -38
  745. mindspore/ops/_op_impl/tbe/celu.py +0 -39
  746. mindspore/ops/_op_impl/tbe/centralization.py +0 -39
  747. mindspore/ops/_op_impl/tbe/check_valid.py +0 -38
  748. mindspore/ops/_op_impl/tbe/check_valid_ds.py +0 -39
  749. mindspore/ops/_op_impl/tbe/clip_by_norm_no_div_sum.py +0 -41
  750. mindspore/ops/_op_impl/tbe/clip_by_norm_no_div_sum_ds.py +0 -42
  751. mindspore/ops/_op_impl/tbe/clip_by_value.py +0 -41
  752. mindspore/ops/_op_impl/tbe/clip_by_value_ds.py +0 -42
  753. mindspore/ops/_op_impl/tbe/concat.py +0 -40
  754. mindspore/ops/_op_impl/tbe/concat_ds.py +0 -38
  755. mindspore/ops/_op_impl/tbe/confusion_matrix.py +0 -63
  756. mindspore/ops/_op_impl/tbe/confusion_mul_grad.py +0 -40
  757. mindspore/ops/_op_impl/tbe/confusion_softmax_grad.py +0 -41
  758. mindspore/ops/_op_impl/tbe/confusion_transpose_d.py +0 -39
  759. mindspore/ops/_op_impl/tbe/conv2d.py +0 -47
  760. mindspore/ops/_op_impl/tbe/conv2d_backprop_filter.py +0 -42
  761. mindspore/ops/_op_impl/tbe/conv2d_backprop_filter_ds.py +0 -43
  762. mindspore/ops/_op_impl/tbe/conv2d_backprop_input.py +0 -42
  763. mindspore/ops/_op_impl/tbe/conv2d_backprop_input_ds.py +0 -44
  764. mindspore/ops/_op_impl/tbe/conv2d_ds.py +0 -47
  765. mindspore/ops/_op_impl/tbe/conv2d_transpose.py +0 -48
  766. mindspore/ops/_op_impl/tbe/conv3d.py +0 -45
  767. mindspore/ops/_op_impl/tbe/conv3d_backprop_filter.py +0 -42
  768. mindspore/ops/_op_impl/tbe/conv3d_backprop_input.py +0 -42
  769. mindspore/ops/_op_impl/tbe/conv3d_transpose.py +0 -47
  770. mindspore/ops/_op_impl/tbe/conv3d_transpose_ds.py +0 -48
  771. mindspore/ops/_op_impl/tbe/cos.py +0 -37
  772. mindspore/ops/_op_impl/tbe/cos_ds.py +0 -38
  773. mindspore/ops/_op_impl/tbe/cosh.py +0 -37
  774. mindspore/ops/_op_impl/tbe/cosh_ds.py +0 -38
  775. mindspore/ops/_op_impl/tbe/ctc_loss_v2.py +0 -42
  776. mindspore/ops/_op_impl/tbe/ctc_loss_v2_grad.py +0 -44
  777. mindspore/ops/_op_impl/tbe/cum_sum.py +0 -42
  778. mindspore/ops/_op_impl/tbe/cum_sum_ds.py +0 -44
  779. mindspore/ops/_op_impl/tbe/cummin.py +0 -41
  780. mindspore/ops/_op_impl/tbe/cumprod.py +0 -42
  781. mindspore/ops/_op_impl/tbe/data_format_dim_map.py +0 -38
  782. mindspore/ops/_op_impl/tbe/data_format_dim_map_ds.py +0 -40
  783. mindspore/ops/_op_impl/tbe/deformable_offsets.py +0 -45
  784. mindspore/ops/_op_impl/tbe/deformable_offsets_grad.py +0 -48
  785. mindspore/ops/_op_impl/tbe/depth_to_space_ds.py +0 -49
  786. mindspore/ops/_op_impl/tbe/depthwise_conv2d.py +0 -44
  787. mindspore/ops/_op_impl/tbe/depthwise_conv2d_backprop_filter.py +0 -41
  788. mindspore/ops/_op_impl/tbe/depthwise_conv2d_backprop_input.py +0 -41
  789. mindspore/ops/_op_impl/tbe/diag.py +0 -38
  790. mindspore/ops/_op_impl/tbe/diag_part.py +0 -38
  791. mindspore/ops/_op_impl/tbe/dilation.py +0 -40
  792. mindspore/ops/_op_impl/tbe/div.py +0 -41
  793. mindspore/ops/_op_impl/tbe/div_ds.py +0 -42
  794. mindspore/ops/_op_impl/tbe/div_no_nan.py +0 -41
  795. mindspore/ops/_op_impl/tbe/div_no_nan_ds.py +0 -42
  796. mindspore/ops/_op_impl/tbe/dropout_do_mask.py +0 -38
  797. mindspore/ops/_op_impl/tbe/dropout_do_mask_ds.py +0 -39
  798. mindspore/ops/_op_impl/tbe/dropout_do_mask_v3.py +0 -39
  799. mindspore/ops/_op_impl/tbe/dynamic_atomic_addr_clean.py +0 -34
  800. mindspore/ops/_op_impl/tbe/dynamic_gru_v2.py +0 -95
  801. mindspore/ops/_op_impl/tbe/dynamic_rnn.py +0 -82
  802. mindspore/ops/_op_impl/tbe/elu.py +0 -38
  803. mindspore/ops/_op_impl/tbe/elu_ds.py +0 -39
  804. mindspore/ops/_op_impl/tbe/elu_grad.py +0 -43
  805. mindspore/ops/_op_impl/tbe/elu_grad_ds.py +0 -44
  806. mindspore/ops/_op_impl/tbe/equal.py +0 -42
  807. mindspore/ops/_op_impl/tbe/equal_ds.py +0 -42
  808. mindspore/ops/_op_impl/tbe/erf.py +0 -37
  809. mindspore/ops/_op_impl/tbe/erf_ds.py +0 -38
  810. mindspore/ops/_op_impl/tbe/erfc.py +0 -37
  811. mindspore/ops/_op_impl/tbe/erfc_ds.py +0 -38
  812. mindspore/ops/_op_impl/tbe/erfinv.py +0 -36
  813. mindspore/ops/_op_impl/tbe/exp.py +0 -40
  814. mindspore/ops/_op_impl/tbe/exp_ds.py +0 -41
  815. mindspore/ops/_op_impl/tbe/expand_dims.py +0 -38
  816. mindspore/ops/_op_impl/tbe/expm1.py +0 -37
  817. mindspore/ops/_op_impl/tbe/expm1_ds.py +0 -38
  818. mindspore/ops/_op_impl/tbe/extract_image_patches.py +0 -41
  819. mindspore/ops/_op_impl/tbe/extract_volume_patches.py +0 -39
  820. mindspore/ops/_op_impl/tbe/fake_quant_with_min_max_vars.py +0 -39
  821. mindspore/ops/_op_impl/tbe/fake_quant_with_min_max_vars_gradient.py +0 -43
  822. mindspore/ops/_op_impl/tbe/fake_quant_with_min_max_vars_per_channel.py +0 -39
  823. mindspore/ops/_op_impl/tbe/fake_quant_with_min_max_vars_per_channel_gradient.py +0 -43
  824. mindspore/ops/_op_impl/tbe/fast_gelu.py +0 -37
  825. mindspore/ops/_op_impl/tbe/fast_gelu_ds.py +0 -38
  826. mindspore/ops/_op_impl/tbe/fast_gelu_grad.py +0 -41
  827. mindspore/ops/_op_impl/tbe/fast_gelu_grad_ds.py +0 -42
  828. mindspore/ops/_op_impl/tbe/fill.py +0 -56
  829. mindspore/ops/_op_impl/tbe/fill_ds.py +0 -42
  830. mindspore/ops/_op_impl/tbe/flatten.py +0 -48
  831. mindspore/ops/_op_impl/tbe/floor.py +0 -37
  832. mindspore/ops/_op_impl/tbe/floor_div.py +0 -41
  833. mindspore/ops/_op_impl/tbe/floor_div_ds.py +0 -42
  834. mindspore/ops/_op_impl/tbe/floor_ds.py +0 -38
  835. mindspore/ops/_op_impl/tbe/floor_mod.py +0 -39
  836. mindspore/ops/_op_impl/tbe/floor_mod_ds.py +0 -40
  837. mindspore/ops/_op_impl/tbe/fused_dbn_dw.py +0 -52
  838. mindspore/ops/_op_impl/tbe/fused_mul_add.py +0 -38
  839. mindspore/ops/_op_impl/tbe/fused_mul_add_n.py +0 -48
  840. mindspore/ops/_op_impl/tbe/fused_mul_add_n_l2loss.py +0 -53
  841. mindspore/ops/_op_impl/tbe/fused_mul_apply_momentum.py +0 -57
  842. mindspore/ops/_op_impl/tbe/fused_mul_apply_momentum_extern.py +0 -67
  843. mindspore/ops/_op_impl/tbe/gather_nd.py +0 -52
  844. mindspore/ops/_op_impl/tbe/gather_nd_ds.py +0 -48
  845. mindspore/ops/_op_impl/tbe/gather_v2.py +0 -56
  846. mindspore/ops/_op_impl/tbe/gather_v2_ds.py +0 -68
  847. mindspore/ops/_op_impl/tbe/gelu.py +0 -37
  848. mindspore/ops/_op_impl/tbe/gelu_ds.py +0 -38
  849. mindspore/ops/_op_impl/tbe/gelu_grad.py +0 -42
  850. mindspore/ops/_op_impl/tbe/gelu_grad_ds.py +0 -43
  851. mindspore/ops/_op_impl/tbe/ger.py +0 -43
  852. mindspore/ops/_op_impl/tbe/ger_ds.py +0 -44
  853. mindspore/ops/_op_impl/tbe/greater.py +0 -43
  854. mindspore/ops/_op_impl/tbe/greater_equal.py +0 -41
  855. mindspore/ops/_op_impl/tbe/greater_equal_ds.py +0 -42
  856. mindspore/ops/_op_impl/tbe/gru_v2_hidden_grad.py +0 -51
  857. mindspore/ops/_op_impl/tbe/gru_v2_hidden_grad_cell.py +0 -52
  858. mindspore/ops/_op_impl/tbe/hard_swish.py +0 -37
  859. mindspore/ops/_op_impl/tbe/hard_swish_ds.py +0 -38
  860. mindspore/ops/_op_impl/tbe/hard_swish_grad.py +0 -41
  861. mindspore/ops/_op_impl/tbe/hard_swish_grad_ds.py +0 -42
  862. mindspore/ops/_op_impl/tbe/histogram_fixed_width.py +0 -40
  863. mindspore/ops/_op_impl/tbe/hshrink.py +0 -33
  864. mindspore/ops/_op_impl/tbe/hshrink_grad.py +0 -37
  865. mindspore/ops/_op_impl/tbe/hsigmoid.py +0 -45
  866. mindspore/ops/_op_impl/tbe/hsigmoid_grad.py +0 -39
  867. mindspore/ops/_op_impl/tbe/ifmr.py +0 -47
  868. mindspore/ops/_op_impl/tbe/ifmr_ds.py +0 -48
  869. mindspore/ops/_op_impl/tbe/im2col.py +0 -42
  870. mindspore/ops/_op_impl/tbe/in_top_k.py +0 -37
  871. mindspore/ops/_op_impl/tbe/inplace_add.py +0 -39
  872. mindspore/ops/_op_impl/tbe/inplace_index_add.py +0 -46
  873. mindspore/ops/_op_impl/tbe/inplace_sub.py +0 -39
  874. mindspore/ops/_op_impl/tbe/inplace_update.py +0 -39
  875. mindspore/ops/_op_impl/tbe/inplace_update_ds.py +0 -40
  876. mindspore/ops/_op_impl/tbe/inv.py +0 -38
  877. mindspore/ops/_op_impl/tbe/inv_ds.py +0 -39
  878. mindspore/ops/_op_impl/tbe/inv_grad.py +0 -40
  879. mindspore/ops/_op_impl/tbe/inv_grad_ds.py +0 -41
  880. mindspore/ops/_op_impl/tbe/invert.py +0 -37
  881. mindspore/ops/_op_impl/tbe/invert_ds.py +0 -38
  882. mindspore/ops/_op_impl/tbe/iou.py +0 -38
  883. mindspore/ops/_op_impl/tbe/iou_ds.py +0 -39
  884. mindspore/ops/_op_impl/tbe/is_close.py +0 -40
  885. mindspore/ops/_op_impl/tbe/kl_div_loss.py +0 -38
  886. mindspore/ops/_op_impl/tbe/kl_div_loss_ds.py +0 -39
  887. mindspore/ops/_op_impl/tbe/kl_div_loss_grad.py +0 -40
  888. mindspore/ops/_op_impl/tbe/l2_loss.py +0 -36
  889. mindspore/ops/_op_impl/tbe/l2_loss_ds.py +0 -37
  890. mindspore/ops/_op_impl/tbe/l2_normalize.py +0 -38
  891. mindspore/ops/_op_impl/tbe/l2_normalize_grad.py +0 -40
  892. mindspore/ops/_op_impl/tbe/lamb_apply_optimizer_assign.py +0 -55
  893. mindspore/ops/_op_impl/tbe/lamb_apply_weight_assign.py +0 -42
  894. mindspore/ops/_op_impl/tbe/lamb_next_mv.py +0 -59
  895. mindspore/ops/_op_impl/tbe/lamb_next_mv_with_decay.py +0 -59
  896. mindspore/ops/_op_impl/tbe/lamb_next_right.py +0 -44
  897. mindspore/ops/_op_impl/tbe/lamb_update_with_lr.py +0 -48
  898. mindspore/ops/_op_impl/tbe/lamb_update_with_lr_v2.py +0 -44
  899. mindspore/ops/_op_impl/tbe/lars_update.py +0 -50
  900. mindspore/ops/_op_impl/tbe/lars_update_ds.py +0 -51
  901. mindspore/ops/_op_impl/tbe/layer_norm.py +0 -46
  902. mindspore/ops/_op_impl/tbe/layer_norm_beta_gamma_backprop.py +0 -44
  903. mindspore/ops/_op_impl/tbe/layer_norm_beta_gamma_backprop_ds.py +0 -45
  904. mindspore/ops/_op_impl/tbe/layer_norm_beta_gamma_backprop_v2.py +0 -40
  905. mindspore/ops/_op_impl/tbe/layer_norm_beta_gamma_backprop_v2_ds.py +0 -41
  906. mindspore/ops/_op_impl/tbe/layer_norm_ds.py +0 -47
  907. mindspore/ops/_op_impl/tbe/layer_norm_grad.py +0 -48
  908. mindspore/ops/_op_impl/tbe/layer_norm_x_backprop.py +0 -43
  909. mindspore/ops/_op_impl/tbe/layer_norm_x_backprop_ds.py +0 -44
  910. mindspore/ops/_op_impl/tbe/layer_norm_x_backprop_v2.py +0 -45
  911. mindspore/ops/_op_impl/tbe/layer_norm_x_backprop_v2_ds.py +0 -45
  912. mindspore/ops/_op_impl/tbe/lerp.py +0 -38
  913. mindspore/ops/_op_impl/tbe/less.py +0 -41
  914. mindspore/ops/_op_impl/tbe/less_ds.py +0 -42
  915. mindspore/ops/_op_impl/tbe/less_equal.py +0 -41
  916. mindspore/ops/_op_impl/tbe/less_equal_ds.py +0 -42
  917. mindspore/ops/_op_impl/tbe/log.py +0 -40
  918. mindspore/ops/_op_impl/tbe/log1p.py +0 -37
  919. mindspore/ops/_op_impl/tbe/log1p_ds.py +0 -38
  920. mindspore/ops/_op_impl/tbe/log_ds.py +0 -41
  921. mindspore/ops/_op_impl/tbe/logical_and.py +0 -37
  922. mindspore/ops/_op_impl/tbe/logical_and_ds.py +0 -38
  923. mindspore/ops/_op_impl/tbe/logical_not.py +0 -36
  924. mindspore/ops/_op_impl/tbe/logical_not_ds.py +0 -37
  925. mindspore/ops/_op_impl/tbe/logical_or.py +0 -37
  926. mindspore/ops/_op_impl/tbe/logical_or_ds.py +0 -38
  927. mindspore/ops/_op_impl/tbe/logsoftmax.py +0 -37
  928. mindspore/ops/_op_impl/tbe/logsoftmax_ds.py +0 -38
  929. mindspore/ops/_op_impl/tbe/logsoftmax_grad.py +0 -38
  930. mindspore/ops/_op_impl/tbe/logsoftmax_grad_ds.py +0 -39
  931. mindspore/ops/_op_impl/tbe/lp_norm.py +0 -40
  932. mindspore/ops/_op_impl/tbe/lp_norm_ds.py +0 -41
  933. mindspore/ops/_op_impl/tbe/lrn.py +0 -41
  934. mindspore/ops/_op_impl/tbe/lrn_grad.py +0 -42
  935. mindspore/ops/_op_impl/tbe/lstm_input_grad.py +0 -51
  936. mindspore/ops/_op_impl/tbe/masked_fill.py +0 -40
  937. mindspore/ops/_op_impl/tbe/masked_fill_ds.py +0 -41
  938. mindspore/ops/_op_impl/tbe/matmul.py +0 -53
  939. mindspore/ops/_op_impl/tbe/matmul_ds.py +0 -47
  940. mindspore/ops/_op_impl/tbe/matmul_v2.py +0 -50
  941. mindspore/ops/_op_impl/tbe/matrix_diag.py +0 -45
  942. mindspore/ops/_op_impl/tbe/matrix_diag_part.py +0 -45
  943. mindspore/ops/_op_impl/tbe/matrix_set_diag.py +0 -46
  944. mindspore/ops/_op_impl/tbe/max_pool.py +0 -39
  945. mindspore/ops/_op_impl/tbe/max_pool3d.py +0 -44
  946. mindspore/ops/_op_impl/tbe/max_pool3d_grad.py +0 -43
  947. mindspore/ops/_op_impl/tbe/max_pool3d_grad_grad.py +0 -44
  948. mindspore/ops/_op_impl/tbe/max_pool_ds.py +0 -40
  949. mindspore/ops/_op_impl/tbe/max_pool_grad.py +0 -43
  950. mindspore/ops/_op_impl/tbe/max_pool_grad_grad.py +0 -41
  951. mindspore/ops/_op_impl/tbe/max_pool_grad_grad_with_argmax.py +0 -41
  952. mindspore/ops/_op_impl/tbe/max_pool_grad_with_argmax.py +0 -42
  953. mindspore/ops/_op_impl/tbe/max_pool_with_argmax.py +0 -40
  954. mindspore/ops/_op_impl/tbe/maximum.py +0 -39
  955. mindspore/ops/_op_impl/tbe/maximum_ds.py +0 -40
  956. mindspore/ops/_op_impl/tbe/maximum_grad.py +0 -46
  957. mindspore/ops/_op_impl/tbe/maximum_grad_ds.py +0 -47
  958. mindspore/ops/_op_impl/tbe/mem_set.py +0 -38
  959. mindspore/ops/_op_impl/tbe/minimum.py +0 -40
  960. mindspore/ops/_op_impl/tbe/minimum_ds.py +0 -41
  961. mindspore/ops/_op_impl/tbe/minimum_grad.py +0 -46
  962. mindspore/ops/_op_impl/tbe/minimum_grad_ds.py +0 -47
  963. mindspore/ops/_op_impl/tbe/mish.py +0 -37
  964. mindspore/ops/_op_impl/tbe/mod.py +0 -41
  965. mindspore/ops/_op_impl/tbe/mod_ds.py +0 -42
  966. mindspore/ops/_op_impl/tbe/mul.py +0 -37
  967. mindspore/ops/_op_impl/tbe/mul_ds.py +0 -38
  968. mindspore/ops/_op_impl/tbe/mul_no_nan.py +0 -39
  969. mindspore/ops/_op_impl/tbe/mul_no_nan_ds.py +0 -40
  970. mindspore/ops/_op_impl/tbe/multilabel_margin_loss.py +0 -39
  971. mindspore/ops/_op_impl/tbe/neg.py +0 -39
  972. mindspore/ops/_op_impl/tbe/neg_ds.py +0 -40
  973. mindspore/ops/_op_impl/tbe/new_im2col.py +0 -40
  974. mindspore/ops/_op_impl/tbe/nll_loss.py +0 -41
  975. mindspore/ops/_op_impl/tbe/nll_loss_grad.py +0 -44
  976. mindspore/ops/_op_impl/tbe/nms_with_mask.py +0 -39
  977. mindspore/ops/_op_impl/tbe/not_equal.py +0 -41
  978. mindspore/ops/_op_impl/tbe/not_equal_ds.py +0 -42
  979. mindspore/ops/_op_impl/tbe/npu_alloc_float_status.py +0 -34
  980. mindspore/ops/_op_impl/tbe/npu_clear_float_status.py +0 -35
  981. mindspore/ops/_op_impl/tbe/npu_clear_float_status_v2.py +0 -35
  982. mindspore/ops/_op_impl/tbe/npu_get_float_status.py +0 -35
  983. mindspore/ops/_op_impl/tbe/npu_get_float_status_v2.py +0 -35
  984. mindspore/ops/_op_impl/tbe/one_hot.py +0 -48
  985. mindspore/ops/_op_impl/tbe/one_hot_ds.py +0 -45
  986. mindspore/ops/_op_impl/tbe/ones_like.py +0 -40
  987. mindspore/ops/_op_impl/tbe/ones_like_ds.py +0 -41
  988. mindspore/ops/_op_impl/tbe/p_s_r_o_i_pooling.py +0 -40
  989. mindspore/ops/_op_impl/tbe/p_s_r_o_i_pooling_grad.py +0 -40
  990. mindspore/ops/_op_impl/tbe/pack.py +0 -58
  991. mindspore/ops/_op_impl/tbe/pack_ds.py +0 -59
  992. mindspore/ops/_op_impl/tbe/pad_d.py +0 -40
  993. mindspore/ops/_op_impl/tbe/pad_d_ds.py +0 -41
  994. mindspore/ops/_op_impl/tbe/parallel_concat.py +0 -70
  995. mindspore/ops/_op_impl/tbe/parallel_resize_bilinear.py +0 -45
  996. mindspore/ops/_op_impl/tbe/parallel_resize_bilinear_grad.py +0 -44
  997. mindspore/ops/_op_impl/tbe/pdist.py +0 -36
  998. mindspore/ops/_op_impl/tbe/pooling.py +0 -46
  999. mindspore/ops/_op_impl/tbe/population_count.py +0 -38
  1000. mindspore/ops/_op_impl/tbe/pow.py +0 -41
  1001. mindspore/ops/_op_impl/tbe/pow_ds.py +0 -42
  1002. mindspore/ops/_op_impl/tbe/prelu.py +0 -37
  1003. mindspore/ops/_op_impl/tbe/prelu_ds.py +0 -38
  1004. mindspore/ops/_op_impl/tbe/prelu_grad.py +0 -40
  1005. mindspore/ops/_op_impl/tbe/range.py +0 -39
  1006. mindspore/ops/_op_impl/tbe/real_div.py +0 -38
  1007. mindspore/ops/_op_impl/tbe/real_div_ds.py +0 -39
  1008. mindspore/ops/_op_impl/tbe/reciprocal.py +0 -36
  1009. mindspore/ops/_op_impl/tbe/reciprocal_ds.py +0 -37
  1010. mindspore/ops/_op_impl/tbe/reciprocal_grad.py +0 -38
  1011. mindspore/ops/_op_impl/tbe/reciprocal_grad_ds.py +0 -39
  1012. mindspore/ops/_op_impl/tbe/reduce_all.py +0 -38
  1013. mindspore/ops/_op_impl/tbe/reduce_all_ds.py +0 -39
  1014. mindspore/ops/_op_impl/tbe/reduce_any.py +0 -38
  1015. mindspore/ops/_op_impl/tbe/reduce_any_ds.py +0 -39
  1016. mindspore/ops/_op_impl/tbe/reduce_max.py +0 -43
  1017. mindspore/ops/_op_impl/tbe/reduce_max_ds.py +0 -41
  1018. mindspore/ops/_op_impl/tbe/reduce_mean.py +0 -40
  1019. mindspore/ops/_op_impl/tbe/reduce_mean_ds.py +0 -42
  1020. mindspore/ops/_op_impl/tbe/reduce_min.py +0 -41
  1021. mindspore/ops/_op_impl/tbe/reduce_min_ds.py +0 -41
  1022. mindspore/ops/_op_impl/tbe/reduce_prod.py +0 -42
  1023. mindspore/ops/_op_impl/tbe/reduce_prod_ds.py +0 -41
  1024. mindspore/ops/_op_impl/tbe/reduce_std.py +0 -44
  1025. mindspore/ops/_op_impl/tbe/reduce_sum.py +0 -39
  1026. mindspore/ops/_op_impl/tbe/reduce_sum_ds.py +0 -41
  1027. mindspore/ops/_op_impl/tbe/relu.py +0 -39
  1028. mindspore/ops/_op_impl/tbe/relu6.py +0 -38
  1029. mindspore/ops/_op_impl/tbe/relu6_ds.py +0 -39
  1030. mindspore/ops/_op_impl/tbe/relu6_grad.py +0 -43
  1031. mindspore/ops/_op_impl/tbe/relu6_grad_ds.py +0 -44
  1032. mindspore/ops/_op_impl/tbe/relu_ds.py +0 -40
  1033. mindspore/ops/_op_impl/tbe/relu_grad.py +0 -41
  1034. mindspore/ops/_op_impl/tbe/relu_grad_ds.py +0 -42
  1035. mindspore/ops/_op_impl/tbe/relu_grad_v2.py +0 -40
  1036. mindspore/ops/_op_impl/tbe/relu_grad_v2_ds.py +0 -41
  1037. mindspore/ops/_op_impl/tbe/relu_v2.py +0 -40
  1038. mindspore/ops/_op_impl/tbe/relu_v2_ds.py +0 -41
  1039. mindspore/ops/_op_impl/tbe/renorm.py +0 -39
  1040. mindspore/ops/_op_impl/tbe/resize_bilinear.py +0 -40
  1041. mindspore/ops/_op_impl/tbe/resize_bilinear_grad.py +0 -41
  1042. mindspore/ops/_op_impl/tbe/resize_bilinear_v2.py +0 -43
  1043. mindspore/ops/_op_impl/tbe/resize_nearest_neighbor.py +0 -40
  1044. mindspore/ops/_op_impl/tbe/resize_nearest_neighbor_ds.py +0 -40
  1045. mindspore/ops/_op_impl/tbe/resize_nearest_neighbor_grad.py +0 -39
  1046. mindspore/ops/_op_impl/tbe/resize_nearest_neighbor_grad_ds.py +0 -42
  1047. mindspore/ops/_op_impl/tbe/reverse_v2_d.py +0 -37
  1048. mindspore/ops/_op_impl/tbe/rint.py +0 -37
  1049. mindspore/ops/_op_impl/tbe/rint_ds.py +0 -38
  1050. mindspore/ops/_op_impl/tbe/roi_align.py +0 -43
  1051. mindspore/ops/_op_impl/tbe/roi_align_ds.py +0 -44
  1052. mindspore/ops/_op_impl/tbe/roi_align_grad.py +0 -43
  1053. mindspore/ops/_op_impl/tbe/roi_align_grad_ds.py +0 -44
  1054. mindspore/ops/_op_impl/tbe/roll.py +0 -42
  1055. mindspore/ops/_op_impl/tbe/round.py +0 -38
  1056. mindspore/ops/_op_impl/tbe/round_ds.py +0 -39
  1057. mindspore/ops/_op_impl/tbe/rsqrt.py +0 -37
  1058. mindspore/ops/_op_impl/tbe/rsqrt_ds.py +0 -38
  1059. mindspore/ops/_op_impl/tbe/rsqrt_grad.py +0 -40
  1060. mindspore/ops/_op_impl/tbe/rsqrt_grad_ds.py +0 -41
  1061. mindspore/ops/_op_impl/tbe/scatter_add.py +0 -44
  1062. mindspore/ops/_op_impl/tbe/scatter_div.py +0 -46
  1063. mindspore/ops/_op_impl/tbe/scatter_max.py +0 -45
  1064. mindspore/ops/_op_impl/tbe/scatter_min.py +0 -45
  1065. mindspore/ops/_op_impl/tbe/scatter_mul.py +0 -44
  1066. mindspore/ops/_op_impl/tbe/scatter_nd.py +0 -41
  1067. mindspore/ops/_op_impl/tbe/scatter_nd_add.py +0 -45
  1068. mindspore/ops/_op_impl/tbe/scatter_nd_d.py +0 -41
  1069. mindspore/ops/_op_impl/tbe/scatter_nd_ds.py +0 -49
  1070. mindspore/ops/_op_impl/tbe/scatter_nd_sub.py +0 -47
  1071. mindspore/ops/_op_impl/tbe/scatter_nd_sub_ds.py +0 -48
  1072. mindspore/ops/_op_impl/tbe/scatter_nd_update.py +0 -47
  1073. mindspore/ops/_op_impl/tbe/scatter_nd_update_ds.py +0 -48
  1074. mindspore/ops/_op_impl/tbe/scatter_non_aliasing_add.py +0 -39
  1075. mindspore/ops/_op_impl/tbe/scatter_non_aliasing_add_ds.py +0 -40
  1076. mindspore/ops/_op_impl/tbe/scatter_sub.py +0 -47
  1077. mindspore/ops/_op_impl/tbe/scatter_sub_ds.py +0 -48
  1078. mindspore/ops/_op_impl/tbe/scatter_update.py +0 -43
  1079. mindspore/ops/_op_impl/tbe/select.py +0 -38
  1080. mindspore/ops/_op_impl/tbe/select_ds.py +0 -39
  1081. mindspore/ops/_op_impl/tbe/selu.py +0 -39
  1082. mindspore/ops/_op_impl/tbe/selu_ds.py +0 -40
  1083. mindspore/ops/_op_impl/tbe/sgd.py +0 -62
  1084. mindspore/ops/_op_impl/tbe/sigmoid.py +0 -37
  1085. mindspore/ops/_op_impl/tbe/sigmoid_cross_entropy_with_logits.py +0 -41
  1086. mindspore/ops/_op_impl/tbe/sigmoid_cross_entropy_with_logits_ds.py +0 -42
  1087. mindspore/ops/_op_impl/tbe/sigmoid_cross_entropy_with_logits_grad.py +0 -42
  1088. mindspore/ops/_op_impl/tbe/sigmoid_cross_entropy_with_logits_grad_ds.py +0 -43
  1089. mindspore/ops/_op_impl/tbe/sigmoid_ds.py +0 -38
  1090. mindspore/ops/_op_impl/tbe/sigmoid_grad.py +0 -39
  1091. mindspore/ops/_op_impl/tbe/sigmoid_grad_ds.py +0 -40
  1092. mindspore/ops/_op_impl/tbe/sign.py +0 -38
  1093. mindspore/ops/_op_impl/tbe/sign_ds.py +0 -39
  1094. mindspore/ops/_op_impl/tbe/sin.py +0 -37
  1095. mindspore/ops/_op_impl/tbe/sin_ds.py +0 -38
  1096. mindspore/ops/_op_impl/tbe/sinh.py +0 -37
  1097. mindspore/ops/_op_impl/tbe/sinh_ds.py +0 -38
  1098. mindspore/ops/_op_impl/tbe/slice.py +0 -58
  1099. mindspore/ops/_op_impl/tbe/smooth_l1_loss.py +0 -45
  1100. mindspore/ops/_op_impl/tbe/smooth_l1_loss_ds.py +0 -46
  1101. mindspore/ops/_op_impl/tbe/smooth_l1_loss_grad.py +0 -46
  1102. mindspore/ops/_op_impl/tbe/smooth_l1_loss_grad_ds.py +0 -47
  1103. mindspore/ops/_op_impl/tbe/soft_margin_loss.py +0 -38
  1104. mindspore/ops/_op_impl/tbe/soft_margin_loss_grad.py +0 -39
  1105. mindspore/ops/_op_impl/tbe/soft_shrink.py +0 -36
  1106. mindspore/ops/_op_impl/tbe/soft_shrink_grad.py +0 -38
  1107. mindspore/ops/_op_impl/tbe/softmax.py +0 -37
  1108. mindspore/ops/_op_impl/tbe/softmax_cross_entropy_with_logits.py +0 -38
  1109. mindspore/ops/_op_impl/tbe/softmax_cross_entropy_with_logits_ds.py +0 -39
  1110. mindspore/ops/_op_impl/tbe/softmax_ds.py +0 -38
  1111. mindspore/ops/_op_impl/tbe/softmax_grad_ext.py +0 -42
  1112. mindspore/ops/_op_impl/tbe/softmax_v2_with_dropout_do_mask_v3.py +0 -39
  1113. mindspore/ops/_op_impl/tbe/softplus.py +0 -37
  1114. mindspore/ops/_op_impl/tbe/softplus_ds.py +0 -38
  1115. mindspore/ops/_op_impl/tbe/softplus_grad.py +0 -38
  1116. mindspore/ops/_op_impl/tbe/softplus_grad_ds.py +0 -38
  1117. mindspore/ops/_op_impl/tbe/softsign.py +0 -37
  1118. mindspore/ops/_op_impl/tbe/softsign_ds.py +0 -38
  1119. mindspore/ops/_op_impl/tbe/sort.py +0 -38
  1120. mindspore/ops/_op_impl/tbe/sort_ds.py +0 -39
  1121. mindspore/ops/_op_impl/tbe/space_to_batch.py +0 -38
  1122. mindspore/ops/_op_impl/tbe/space_to_batch_nd.py +0 -38
  1123. mindspore/ops/_op_impl/tbe/space_to_depth.py +0 -47
  1124. mindspore/ops/_op_impl/tbe/sparse_apply_adadelta.py +0 -56
  1125. mindspore/ops/_op_impl/tbe/sparse_apply_adagrad.py +0 -45
  1126. mindspore/ops/_op_impl/tbe/sparse_apply_adagrad_ds.py +0 -46
  1127. mindspore/ops/_op_impl/tbe/sparse_apply_adagrad_v2.py +0 -46
  1128. mindspore/ops/_op_impl/tbe/sparse_apply_adagrad_v2_ds.py +0 -47
  1129. mindspore/ops/_op_impl/tbe/sparse_apply_ftrl_d.py +0 -53
  1130. mindspore/ops/_op_impl/tbe/sparse_apply_ftrl_d_ds.py +0 -50
  1131. mindspore/ops/_op_impl/tbe/sparse_apply_ftrl_v2.py +0 -50
  1132. mindspore/ops/_op_impl/tbe/sparse_apply_proximal_adagrad.py +0 -66
  1133. mindspore/ops/_op_impl/tbe/sparse_apply_proximal_adagrad_ds.py +0 -67
  1134. mindspore/ops/_op_impl/tbe/sparse_apply_r_m_s_prop.py +0 -57
  1135. mindspore/ops/_op_impl/tbe/sparse_apply_r_m_s_prop_ds.py +0 -58
  1136. mindspore/ops/_op_impl/tbe/sparse_gather_v2.py +0 -56
  1137. mindspore/ops/_op_impl/tbe/sparse_gather_v2_ds.py +0 -58
  1138. mindspore/ops/_op_impl/tbe/split_d.py +0 -38
  1139. mindspore/ops/_op_impl/tbe/split_d_ds.py +0 -39
  1140. mindspore/ops/_op_impl/tbe/split_v.py +0 -39
  1141. mindspore/ops/_op_impl/tbe/splitv.py +0 -39
  1142. mindspore/ops/_op_impl/tbe/sqrt.py +0 -37
  1143. mindspore/ops/_op_impl/tbe/sqrt_ds.py +0 -38
  1144. mindspore/ops/_op_impl/tbe/sqrt_grad.py +0 -43
  1145. mindspore/ops/_op_impl/tbe/sqrt_grad_ds.py +0 -44
  1146. mindspore/ops/_op_impl/tbe/square.py +0 -38
  1147. mindspore/ops/_op_impl/tbe/square_ds.py +0 -39
  1148. mindspore/ops/_op_impl/tbe/square_sum_all.py +0 -40
  1149. mindspore/ops/_op_impl/tbe/square_sum_all_ds.py +0 -41
  1150. mindspore/ops/_op_impl/tbe/square_sum_v1.py +0 -38
  1151. mindspore/ops/_op_impl/tbe/square_sum_v1_ds.py +0 -39
  1152. mindspore/ops/_op_impl/tbe/square_sum_v2.py +0 -39
  1153. mindspore/ops/_op_impl/tbe/squared_difference.py +0 -39
  1154. mindspore/ops/_op_impl/tbe/squared_difference_ds.py +0 -41
  1155. mindspore/ops/_op_impl/tbe/squeeze.py +0 -37
  1156. mindspore/ops/_op_impl/tbe/strided_read.py +0 -38
  1157. mindspore/ops/_op_impl/tbe/strided_slice_d.py +0 -44
  1158. mindspore/ops/_op_impl/tbe/strided_slice_ds.py +0 -71
  1159. mindspore/ops/_op_impl/tbe/strided_slice_grad_d.py +0 -51
  1160. mindspore/ops/_op_impl/tbe/strided_slice_grad_ds.py +0 -57
  1161. mindspore/ops/_op_impl/tbe/strided_write.py +0 -38
  1162. mindspore/ops/_op_impl/tbe/sub.py +0 -39
  1163. mindspore/ops/_op_impl/tbe/sub_ds.py +0 -40
  1164. mindspore/ops/_op_impl/tbe/tan.py +0 -38
  1165. mindspore/ops/_op_impl/tbe/tan_ds.py +0 -39
  1166. mindspore/ops/_op_impl/tbe/tanh.py +0 -37
  1167. mindspore/ops/_op_impl/tbe/tanh_ds.py +0 -38
  1168. mindspore/ops/_op_impl/tbe/tanh_grad.py +0 -39
  1169. mindspore/ops/_op_impl/tbe/tanh_grad_ds.py +0 -40
  1170. mindspore/ops/_op_impl/tbe/tensor_move.py +0 -49
  1171. mindspore/ops/_op_impl/tbe/tensor_move_ds.py +0 -50
  1172. mindspore/ops/_op_impl/tbe/tensor_scatter_update.py +0 -41
  1173. mindspore/ops/_op_impl/tbe/tile.py +0 -37
  1174. mindspore/ops/_op_impl/tbe/tile_ds.py +0 -42
  1175. mindspore/ops/_op_impl/tbe/top_k.py +0 -42
  1176. mindspore/ops/_op_impl/tbe/top_k_ds.py +0 -43
  1177. mindspore/ops/_op_impl/tbe/trans_data.py +0 -167
  1178. mindspore/ops/_op_impl/tbe/trans_data_ds.py +0 -180
  1179. mindspore/ops/_op_impl/tbe/trans_data_rnn.py +0 -44
  1180. mindspore/ops/_op_impl/tbe/transpose.py +0 -60
  1181. mindspore/ops/_op_impl/tbe/transpose_d.py +0 -47
  1182. mindspore/ops/_op_impl/tbe/transpose_nod.py +0 -60
  1183. mindspore/ops/_op_impl/tbe/trunc.py +0 -39
  1184. mindspore/ops/_op_impl/tbe/truncate_div.py +0 -41
  1185. mindspore/ops/_op_impl/tbe/truncate_div_ds.py +0 -42
  1186. mindspore/ops/_op_impl/tbe/truncate_mod.py +0 -41
  1187. mindspore/ops/_op_impl/tbe/truncate_mod_ds.py +0 -42
  1188. mindspore/ops/_op_impl/tbe/unpack.py +0 -38
  1189. mindspore/ops/_op_impl/tbe/unpack_ds.py +0 -39
  1190. mindspore/ops/_op_impl/tbe/unsorted_segment_max.py +0 -49
  1191. mindspore/ops/_op_impl/tbe/unsorted_segment_max_ds.py +0 -40
  1192. mindspore/ops/_op_impl/tbe/unsorted_segment_min.py +0 -49
  1193. mindspore/ops/_op_impl/tbe/unsorted_segment_min_ds.py +0 -40
  1194. mindspore/ops/_op_impl/tbe/unsorted_segment_prod.py +0 -49
  1195. mindspore/ops/_op_impl/tbe/unsorted_segment_prod_ds.py +0 -38
  1196. mindspore/ops/_op_impl/tbe/unsorted_segment_sum.py +0 -38
  1197. mindspore/ops/_op_impl/tbe/unsorted_segment_sum_ds.py +0 -41
  1198. mindspore/ops/_op_impl/tbe/wts_arq.py +0 -40
  1199. mindspore/ops/_op_impl/tbe/xdivy.py +0 -38
  1200. mindspore/ops/_op_impl/tbe/xdivy_ds.py +0 -39
  1201. mindspore/ops/_op_impl/tbe/xlogy.py +0 -38
  1202. mindspore/ops/_op_impl/tbe/xlogy_ds.py +0 -39
  1203. mindspore/ops/_op_impl/tbe/zeros_like.py +0 -41
  1204. mindspore/ops/_op_impl/tbe/zeros_like_ds.py +0 -42
  1205. mindspore/ops/_tracefunc.py +0 -241
  1206. mindspore/ops/arg_dtype_cast.py +0 -54
  1207. mindspore/ops/silent_check.py +0 -162
  1208. mindspore/profiler/parser/msadvisor_analyzer.py +0 -82
  1209. mindspore/profiler/parser/msadvisor_parser.py +0 -240
  1210. mindspore/rewrite/api/tree_node_helper.py +0 -60
  1211. mindspore/rewrite/ast_helpers/ast_creator.py +0 -115
  1212. mindspore/rewrite/ast_transformers/flatten_recursive_stmt.py +0 -267
  1213. mindspore/rewrite/ast_transformers/remove_return_out_of_if.py +0 -228
  1214. mindspore/rewrite/namespace.py +0 -53
  1215. mindspore-2.2.14.dist-info/RECORD +0 -1924
  1216. {mindspore-2.2.14.dist-info → mindspore-2.4.0.dist-info}/WHEEL +0 -0
  1217. {mindspore-2.2.14.dist-info → mindspore-2.4.0.dist-info}/top_level.txt +0 -0
@@ -1,4 +1,4 @@
1
- # Copyright 2020-2021 Huawei Technologies Co., Ltd
1
+ # Copyright 2020-2024 Huawei Technologies Co., Ltd
2
2
  #
3
3
  # Licensed under the Apache License, Version 2.0 (the "License");
4
4
  # you may not use this file except in compliance with the License.
@@ -79,7 +79,7 @@ def absolute(x, dtype=None):
79
79
  Numpy arguments `out`, `where`, `casting`, `order`, `subok`, `signature`, and `extobj` are
80
80
  not supported.
81
81
  Currently the backend kernel only supports float calculation, if the input
82
- is not a `float`, then it will be casted to :class:`mstype.float32` and casted back.
82
+ is not a `float`, then it will be casted to ``mstype.float32`` and casted back.
83
83
 
84
84
  Args:
85
85
  x (Tensor): Tensor to be used for calculation.
@@ -295,7 +295,7 @@ def add(x1, x2, dtype=None):
295
295
  # broadcast is not fully supported in tensor_add on CPU,
296
296
  # so we use tensor_sub as a substitute solution
297
297
  if _get_device() == 'CPU':
298
- return subtract(x1, F.neg_tensor(_to_tensor(x2)), dtype=dtype)
298
+ return subtract(x1, F.neg(_to_tensor(x2)), dtype=dtype)
299
299
  return _apply_tensor_op(F.tensor_add, x1, x2, dtype=dtype)
300
300
 
301
301
 
@@ -604,14 +604,14 @@ def mean(a, axis=None, keepdims=False, dtype=None):
604
604
  Args:
605
605
  a (Tensor): input tensor containing numbers whose mean is desired.
606
606
  If a is not an array, a conversion is attempted.
607
- axis (None or int or tuple of integers, optional): Axis or axes along
607
+ axis (Union[int, tuple(int), None], optional): Axis or axes along
608
608
  which the means are computed. The default is to compute
609
609
  the mean of the flattened array. If this is a tuple of
610
- ints, a mean is performed over multiple axes.
610
+ ints, a mean is performed over multiple axes. Default: ``None`` .
611
611
  keepdims (bool, optional): If this is set to ``True`` , the axes which
612
612
  are reduced are left in the result as dimensions with
613
613
  size one. With this option, the result will broadcast
614
- correctly against the input tensor.
614
+ correctly against the input tensor. Default: ``False`` .
615
615
  dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
616
616
  output Tensor.
617
617
 
@@ -902,7 +902,7 @@ def std(x, axis=None, ddof=0, keepdims=False):
902
902
 
903
903
  If ``None`` , compute the standard deviation of the flattened array.
904
904
  ddof (int): Means Delta Degrees of Freedom. The divisor used in calculations is :math:`N - ddof`,
905
- where :math:`N` represents the number of elements. Default: 0.
905
+ where :math:`N` represents the number of elements. Default: ``0``.
906
906
  keepdims: If this is set to True, the axes which are reduced are left in the result as
907
907
  dimensions with size one. With this option, the result will broadcast correctly against the input tensor.
908
908
  If the default value is passed, then keepdims will not be passed through to the std method of
@@ -1011,14 +1011,14 @@ def average(x, axis=None, weights=None, returned=False):
1011
1011
 
1012
1012
  Args:
1013
1013
  x (Tensor): A Tensor to be averaged.
1014
- axis (Union[None, int, tuple(int)]): Axis along which to average `x`. Default: ``None`` .
1014
+ axis (Union[None, int, tuple(int)], optional): Axis along which to average `x`. Default: ``None`` .
1015
1015
  If the axis is `None`, it will average over all of the elements of the tensor `x`.
1016
1016
  If the axis is negative, it counts from the last to the first axis.
1017
- weights (Union[None, Tensor]): Weights associated with the values in `x`. Default: ``None`` .
1017
+ weights (Union[None, Tensor], optional): Weights associated with the values in `x`. Default: ``None`` .
1018
1018
  If `weights` is `None`, all the data in `x` are assumed to have a weight equal to one.
1019
1019
  If `weights` is 1-D tensor, the length must be the same as the given axis.
1020
1020
  Otherwise, `weights` should have the same shape as `x`.
1021
- returned (bool): Default: ``False`` .
1021
+ returned (bool, optional): Default: ``False`` .
1022
1022
  If `True`, the tuple (average, sum_of_weights) is returned.
1023
1023
  If `False`, only the average is returned.
1024
1024
 
@@ -1154,7 +1154,7 @@ def square(x, dtype=None):
1154
1154
 
1155
1155
  Returns:
1156
1156
  Tensor or scalar, element-wise ``x*x``, of the same shape and dtype as `x`.
1157
- This is a scalar if `x` is a scalar..
1157
+ This is a scalar if `x` is a scalar.
1158
1158
 
1159
1159
  Supported Platforms:
1160
1160
  ``Ascend`` ``GPU`` ``CPU``
@@ -1402,7 +1402,7 @@ def amax(a, axis=None, keepdims=False, initial=None, where=True):
1402
1402
 
1403
1403
  Args:
1404
1404
  a (Tensor): Input data.
1405
- axis (None or int or tuple of integers, optional): Default: ``None`` . Axis or
1405
+ axis (Union[int, tuple(int), None], optional): Default: ``None`` . Axis or
1406
1406
  axes along which to operate. By default, flattened input is used. If
1407
1407
  this is a tuple of integers, the maximum is selected over multiple axes,
1408
1408
  instead of a single axis or all the axes as before.
@@ -1458,7 +1458,7 @@ def amin(a, axis=None, keepdims=False, initial=None, where=True):
1458
1458
 
1459
1459
  Args:
1460
1460
  a (Tensor): Input data.
1461
- axis (None or int or tuple of integers, optional): Default: ``None`` . Axis or
1461
+ axis (Union[int, tuple(int), None], optional): Default: ``None`` . Axis or
1462
1462
  axes along which to operate. By default, flattened input is used. If
1463
1463
  this is a tuple of integers, the minimum is selected over multiple axes,
1464
1464
  instead of a single axis or all the axes as before.
@@ -1552,7 +1552,7 @@ def hypot(x1, x2, dtype=None):
1552
1552
  if _get_device() == 'CPU':
1553
1553
  # broadcast is not fully supported in tensor_add on CPU,
1554
1554
  # so we use tensor_sub as a substitute solution
1555
- return F.sqrt(F.tensor_sub(F.square(x1), F.neg_tensor(F.square(x2))))
1555
+ return F.sqrt(F.tensor_sub(F.square(x1), F.neg(F.square(x2))))
1556
1556
  return F.sqrt(F.tensor_add(F.square(x1), F.square(x2)))
1557
1557
 
1558
1558
  return _apply_tensor_op(_hypot, x1, x2, dtype=dtype)
@@ -1716,7 +1716,7 @@ def fix(x):
1716
1716
  x = F.cast(x, mstype.float32)
1717
1717
  floored = F.floor(x)
1718
1718
  # change to F.ceil once supported on CPU.
1719
- ceiled = F.neg_tensor(F.floor(F.neg_tensor(x)))
1719
+ ceiled = F.neg(F.floor(F.neg(x)))
1720
1720
  is_neg = F.tensor_lt(x, zeros(F.shape(x), F.dtype(x)))
1721
1721
  return F.select(is_neg, ceiled, floored)
1722
1722
 
@@ -1992,10 +1992,10 @@ def ediff1d(ary, to_end=None, to_begin=None):
1992
1992
 
1993
1993
  Args:
1994
1994
  ary (Tensor): If necessary, will be flattened before the differences are taken.
1995
- to_end (Tensor or scalar, optional): Number(s) to append at the end of the
1996
- returned differences.
1997
- to_begin (Tensor or scalar, optional): Number(s) to prepend at the beginning
1998
- of the returned differences.
1995
+ to_end (Tensor, scalar, optional): Number(s) to append at the end of the
1996
+ returned differences. Default: ``None`` .
1997
+ to_begin (Tensor, scalar, optional): Number(s) to prepend at the beginning
1998
+ of the returned differences. Default: ``None`` .
1999
1999
 
2000
2000
  Returns:
2001
2001
  The differences.
@@ -2432,7 +2432,7 @@ def _shape_reduced(shape, axes):
2432
2432
  """Removes dimensions corresponding to argument axes"""
2433
2433
  ndim_orig = F.tuple_len(shape)
2434
2434
  ndim_out = ndim_orig - F.tuple_len(axes)
2435
- shape_out = [0]*ndim_out
2435
+ shape_out = [0] * ndim_out
2436
2436
  idx_out = 0
2437
2437
  for i in range(ndim_orig):
2438
2438
  if i not in axes:
@@ -2499,8 +2499,8 @@ def nanmax(a, axis=None, dtype=None, keepdims=False):
2499
2499
  Args:
2500
2500
  a (Union[int, float, list, tuple, Tensor]): Array containing numbers whose maximum
2501
2501
  is desired. If `a` is not an array, a conversion is attempted.
2502
- axis (Union[int, tuple of int, None], optional): Axis or axes along which the maximum is
2503
- computed. The default is to compute the maximum of the flattened array.
2502
+ axis (Union[int, tuple(int), None], optional): Axis or axes along which the maximum is
2503
+ computed. The default is to compute the maximum of the flattened array. Default: ``None`` .
2504
2504
  dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
2505
2505
  output Tensor.
2506
2506
  keepdims (boolean, optional): Default: ``False`` . If this is set to True, the axes which
@@ -2531,7 +2531,7 @@ def nanmax(a, axis=None, dtype=None, keepdims=False):
2531
2531
  if not isinstance(keepdims, int):
2532
2532
  _raise_type_error("integer argument expected, got", keepdims)
2533
2533
  nan_mask = _isnan(a)
2534
- a = F.select(nan_mask, full(F.shape(a), -sys.maxsize - 1, F.dtype(a)), a)
2534
+ a = F.select(nan_mask, P.FillV2()(F.shape(a), Tensor(-sys.maxsize - 1, F.dtype(a))), a)
2535
2535
  reduce_fn = _reduce_max_keepdims if keepdims else _reduce_max_default
2536
2536
  return _reduce(a, reduce_fn, axis=axis, keepdims=keepdims, dtype=dtype)
2537
2537
 
@@ -2549,8 +2549,8 @@ def nanmin(a, axis=None, dtype=None, keepdims=False):
2549
2549
  Args:
2550
2550
  a (Union[int, float, list, tuple, Tensor]): Array containing numbers whose minimum
2551
2551
  is desired. If `a` is not an array, a conversion is attempted.
2552
- axis (Union[int, tuple of int, None], optional): Axis or axes along which the minimum is
2553
- computed. The default is to compute the minimum of the flattened array.
2552
+ axis (Union[int, tuple(int), None], optional): Axis or axes along which the minimum is
2553
+ computed. The default is to compute the minimum of the flattened array. Default: ``None`` .
2554
2554
  dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
2555
2555
  output Tensor.
2556
2556
  keepdims (boolean, optional): Default: ``False`` . If this is set to True, the axes which
@@ -2581,7 +2581,7 @@ def nanmin(a, axis=None, dtype=None, keepdims=False):
2581
2581
  if not isinstance(keepdims, int):
2582
2582
  _raise_type_error("integer argument expected, got", keepdims)
2583
2583
  nan_mask = _isnan(a)
2584
- a = F.select(nan_mask, full(F.shape(a), sys.maxsize, F.dtype(a)), a)
2584
+ a = F.select(nan_mask, P.FillV2()(F.shape(a), Tensor(sys.maxsize, F.dtype(a))), a)
2585
2585
  reduce_fn = _reduce_min_keepdims if keepdims else _reduce_min_default
2586
2586
  return _reduce(a, reduce_fn, axis=axis, keepdims=keepdims, dtype=dtype)
2587
2587
 
@@ -2605,7 +2605,7 @@ def nansum(a, axis=None, dtype=None, keepdims=False):
2605
2605
  a (Union[int, float, list, tuple, Tensor]): Array containing numbers
2606
2606
  whose sum is desired. If `a` is not an array, a conversion is attempted.
2607
2607
  axis (Union[int, tuple of int, None], optional): Axis or axes along which the sum is
2608
- computed. The default is to compute the sum of the flattened array.
2608
+ computed. The default is to compute the sum of the flattened array. Default: ``None`` .
2609
2609
  dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
2610
2610
  output Tensor.
2611
2611
  keepdims (boolean, optional): Default: ``False`` . If this is set to True, the axes which
@@ -2662,7 +2662,7 @@ def nanmean(a, axis=None, dtype=None, keepdims=False):
2662
2662
  a (Union[int, float, list, tuple, Tensor]): Array containing numbers
2663
2663
  whose mean is desired. If `a` is not an array, a conversion is attempted.
2664
2664
  axis (Union[int, tuple of int, None], optional): Axis or axes along which the mean is
2665
- computed. The default is to compute the mean of the flattened array.
2665
+ computed. The default is to compute the mean of the flattened array. Default: ``None`` .
2666
2666
  dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
2667
2667
  output Tensor.
2668
2668
  keepdims (boolean, optional): Default: ``False`` . If this is set to True, the axes which
@@ -2724,7 +2724,7 @@ def nanvar(a, axis=None, dtype=None, ddof=0, keepdims=False):
2724
2724
  a (Union[int, float, list, tuple, Tensor]): Array containing numbers
2725
2725
  whose variance is desired. If `a` is not an array, a conversion is attempted.
2726
2726
  axis (Union[int, tuple of int, None], optional): Axis or axes along which the variance is
2727
- computed. The default is to compute the variance of the flattened array.
2727
+ computed. The default is to compute the variance of the flattened array. Default: ``None`` .
2728
2728
  dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
2729
2729
  output Tensor.
2730
2730
  ddof (int, optional): "Delta Degrees of Freedom": the divisor used in the calculation is
@@ -2779,7 +2779,7 @@ def nanstd(a, axis=None, dtype=None, ddof=0, keepdims=False):
2779
2779
  a (Union[int, float, list, tuple, Tensor]): Calculates the standard deviation of the non-NaN values.
2780
2780
  axis (Union[int, tuple of int, None], optional): Axis or axes along which the standard
2781
2781
  deviation is computed. The default is to compute the standard deviation of the
2782
- flattened array.
2782
+ flattened array. Default: ``None`` .
2783
2783
  dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
2784
2784
  output Tensor.
2785
2785
  ddof (int, optional): "Delta Degrees of Freedom": the divisor used in the calculation is
@@ -2894,9 +2894,9 @@ def kron(a, b):
2894
2894
 
2895
2895
  # scales a by the shape of b
2896
2896
  kron_shape = _seq_prod(shape_a, shape_b)
2897
- a = F.reshape(a, _add_unit_axes(shape_a, 2*ndim, True))
2898
- a = F.tile(a, _add_unit_axes(shape_b, 2*ndim, False))
2899
- a = moveaxis(a, F.make_range(ndim, 2*ndim), F.make_range(1, 2*ndim, 2))
2897
+ a = F.reshape(a, _add_unit_axes(shape_a, 2 * ndim, True))
2898
+ a = F.tile(a, _add_unit_axes(shape_b, 2 * ndim, False))
2899
+ a = moveaxis(a, F.make_range(ndim, 2 * ndim), F.make_range(1, 2 * ndim, 2))
2900
2900
  a = F.reshape(a, kron_shape)
2901
2901
  # scales b by the shape of a
2902
2902
  b = F.tile(b, shape_a)
@@ -2997,11 +2997,11 @@ def cross(a, b, axisa=- 1, axisb=- 1, axisc=- 1, axis=None):
2997
2997
  cx = F.tensor_sub(_get_slice_product(1, 2), _get_slice_product(2, 1)) # ay*bz - az*by
2998
2998
  cy = F.tensor_sub(_get_slice_product(2, 0), _get_slice_product(0, 2)) # az*bx - ax*bz
2999
2999
  elif a_has_z:
3000
- cx = F.neg_tensor(_get_slice_product(2, 1)) # -az*by
3000
+ cx = F.neg(_get_slice_product(2, 1)) # -az*by
3001
3001
  cy = _get_slice_product(2, 0) # az*bx
3002
3002
  else: # b_has_z
3003
3003
  cx = _get_slice_product(1, 2) # ay*bz
3004
- cy = F.neg_tensor(_get_slice_product(0, 2)) # -ax*bz
3004
+ cy = F.neg(_get_slice_product(0, 2)) # -ax*bz
3005
3005
  res = _concat((cx, cy, cz)).reshape(shape_out)
3006
3006
  return moveaxis(res, -1, axisc).astype(dtype)
3007
3007
 
@@ -3035,7 +3035,7 @@ def ceil(x, dtype=None):
3035
3035
  >>> print(output)
3036
3036
  [-1. -1. -0. 1. 2. 2. 2.]
3037
3037
  """
3038
- return _apply_tensor_op(lambda x: F.neg_tensor(F.floor(F.neg_tensor(x.astype(mstype.float32)))),
3038
+ return _apply_tensor_op(lambda x: F.neg(F.floor(F.neg(x.astype(mstype.float32)))),
3039
3039
  x, dtype=dtype)
3040
3040
 
3041
3041
 
@@ -3080,8 +3080,8 @@ def positive(a, dtype=None):
3080
3080
  [1. -1.]
3081
3081
  """
3082
3082
  _check_input_tensor(a)
3083
- neg_tensor = F.neg_tensor(a)
3084
- return _apply_tensor_op(F.neg_tensor, neg_tensor, dtype=dtype)
3083
+ neg_tensor = F.neg(a)
3084
+ return _apply_tensor_op(F.neg, neg_tensor, dtype=dtype)
3085
3085
 
3086
3086
 
3087
3087
  def negative(a, dtype=None):
@@ -3110,7 +3110,7 @@ def negative(a, dtype=None):
3110
3110
  >>> print(output)
3111
3111
  [-1. 1.]
3112
3112
  """
3113
- return _apply_tensor_op(F.neg_tensor, a, dtype=dtype)
3113
+ return _apply_tensor_op(F.neg, a, dtype=dtype)
3114
3114
 
3115
3115
 
3116
3116
  def cumsum(a, axis=None, dtype=None):
@@ -3118,8 +3118,8 @@ def cumsum(a, axis=None, dtype=None):
3118
3118
  Returns the cumulative sum of the elements along a given axis.
3119
3119
 
3120
3120
  Note:
3121
- If ``a.dtype`` is :class:`int8`, :class:`int16` or :class:`bool`, the result
3122
- `dtype` will be elevated to :class:`int32`.
3121
+ If ``a.dtype`` is `int8`, `int16` or `bool`, the result
3122
+ `dtype` will be elevated to `int32`.
3123
3123
 
3124
3124
  Args:
3125
3125
  a (Tensor): Input tensor.
@@ -3161,8 +3161,8 @@ def nancumsum(a, axis=None, dtype=None):
3161
3161
  Zeros are returned for slices that are all-NaN or empty.
3162
3162
 
3163
3163
  Note:
3164
- If ``a.dtype`` is :class:`int8`, :class:`int16` or :class:`bool`, the result
3165
- `dtype` will be elevated to :class:`int32`.
3164
+ If ``a.dtype`` is `int8`, `int16` or `bool`, the result
3165
+ `dtype` will be elevated to `int32`.
3166
3166
 
3167
3167
  Args:
3168
3168
  a (Tensor): Input tensor.
@@ -3171,7 +3171,7 @@ def nancumsum(a, axis=None, dtype=None):
3171
3171
  dtype (:class:`mindspore.dtype`, optional): If not specified, stay the same as `a`,
3172
3172
  unless `a` has an integer dtype with a precision less than that of the
3173
3173
  default platform integer. In that case, the default platform integer
3174
- is used.
3174
+ is used. Default: ``None`` .
3175
3175
 
3176
3176
  Returns:
3177
3177
  Tensor.
@@ -3231,7 +3231,7 @@ def cbrt(x, dtype=None):
3231
3231
  def _cbrt(x):
3232
3232
  compute_type = promote_types(x.dtype, "float32")
3233
3233
  x = x.astype(compute_type)
3234
- # TODO: use P.Sign() once gpu support is added
3234
+ # use P.Sign() once gpu support is added
3235
3235
  abs_x = F.absolute(x)
3236
3236
  sign_x = abs_x / x
3237
3237
  return sign_x * F.tensor_pow(abs_x, 1. / 3.)
@@ -3271,12 +3271,7 @@ def log1p(x, dtype=None):
3271
3271
 
3272
3272
  def logaddexp(x1, x2, dtype=None):
3273
3273
  """
3274
- Logarithm of the sum of exponentiations of the inputs.
3275
-
3276
- Calculates ``log(exp(x1) + exp(x2))``. This function is useful in statistics where the
3277
- calculated probabilities of events may be so small as to exceed the range of normal
3278
- floating point numbers. In such cases the logarithm of the calculated probability is
3279
- stored. This function allows adding probabilities stored in such a fashion.
3274
+ Logarithm of the sum of exponentiations of the inputs. Calculates ``log(exp(x1) + exp(x2))``.
3280
3275
 
3281
3276
  Note:
3282
3277
  Numpy arguments `out`, `where`, `casting`, `order`, `subok`, `signature`, and `extobj` are
@@ -3502,7 +3497,7 @@ def tan(x, dtype=None):
3502
3497
  Tensor or scalar. This is a scalar if `x` is a scalar.
3503
3498
 
3504
3499
  Raises:
3505
- TypeError: If the input is not a tensor or is :class:`tensor.dtype` is :class:`mindspore.float64`.
3500
+ TypeError: If the input is not a tensor or the dtype of tensor is mindspore.float64.
3506
3501
 
3507
3502
  Supported Platforms:
3508
3503
  ``Ascend`` ``CPU``
@@ -3937,11 +3932,11 @@ def _gradient_along_axis(f, h, axis):
3937
3932
  """compute the gradients of `f` along a given axis, a helper function of gradient."""
3938
3933
  end = f.shape[axis]
3939
3934
  upper_edge = _slice_along_axis(f, axis, 1, 2) - _slice_along_axis(f, axis, 0, 1)
3940
- lower_edge = _slice_along_axis(f, axis, end-1, end) - _slice_along_axis(f, axis, end-2, end-1)
3935
+ lower_edge = _slice_along_axis(f, axis, end - 1, end) - _slice_along_axis(f, axis, end - 2, end - 1)
3941
3936
  if end <= 2:
3942
3937
  a_grad = concatenate((upper_edge, lower_edge), axis)
3943
3938
  else:
3944
- middle = (_slice_along_axis(f, axis, 2, end) - _slice_along_axis(f, axis, 0, end-2)) * 0.5
3939
+ middle = (_slice_along_axis(f, axis, 2, end) - _slice_along_axis(f, axis, 0, end - 2)) * 0.5
3945
3940
  a_grad = concatenate((upper_edge, middle, lower_edge), axis)
3946
3941
  return a_grad / h
3947
3942
 
@@ -3983,10 +3978,10 @@ def gradient(f, *varargs, axis=None, edge_order=1):
3983
3978
  1. single scalar to specify a sample distance for all dimensions.
3984
3979
  2. N scalars to specify a constant sample distance for each dimension.
3985
3980
  axis (Union[None, int, tuple(int), list(int)], optional): Gradient is calculated
3986
- only along the given axis or axes. The default :class:`(axis = None)` is to calculate
3981
+ only along the given axis or axes. The default ``(axis = None)`` is to calculate
3987
3982
  the gradient for all the axes of the input tensor. `axis` may be negative,
3988
3983
  in which case it counts from the last to the first `axis`.
3989
- edge_order (int): Gradient is calculated using N-th order accurate differences
3984
+ edge_order (int, optional): Gradient is calculated using N-th order accurate differences
3990
3985
  at the boundaries. Default: ``1`` .
3991
3986
 
3992
3987
  Returns:
@@ -4055,21 +4050,22 @@ def sum_(a, axis=None, dtype=None, keepdims=False, initial=None):
4055
4050
  `extobj` are not supported.
4056
4051
 
4057
4052
  Args:
4058
- x (Union[int, float, bool, list, tuple, Tensor]): Elements to sum.
4059
- axis (Union[None, int, tuple(int)]): Axis or axes along which a sum is performed. Default: `None`.
4053
+ a (Union[int, float, bool, list, tuple, Tensor]): Elements to sum.
4054
+ axis (Union[None, int, tuple(int)], optional): Axis or axes along which a sum is performed. Default: ``None``.
4060
4055
  If `None`, sum all of the elements of the input array.
4061
4056
  If axis is negative it counts from the last to the first axis.
4062
4057
  If axis is a tuple of integers, a sum is performed on all of the axes specified in the tuple
4063
4058
  instead of a single axis or all the axes as before.
4064
4059
  dtype (:class:`mindspore.dtype`, optional): Defaults to `None`. Overrides the dtype of the
4065
4060
  output Tensor.
4066
- keepdims (bool): If this is set to True, the axes which are reduced are left in the result as
4061
+ keepdims (bool, optional): If this is set to True, the axes which are reduced are left in the result as
4067
4062
  dimensions with size one. With this option, the result will broadcast correctly against the input array.
4068
4063
  If the default value is passed, then keepdims will not be passed through to the sum method of
4069
4064
  sub-classes of ndarray, however any non-default value will be. If the sub-class method does not
4070
- implement keepdims any exceptions will be raised. Default: `False`.
4071
- initial (scalar): Starting value for the sum, if `None`, which refers to the first element of the reduction.
4072
- Default: `None`.
4065
+ implement keepdims any exceptions will be raised. Default: ``False``.
4066
+ initial (scalar, optional): Starting value for the sum, if `None`,
4067
+ which refers to the first element of the reduction.
4068
+ Default: ``None``.
4073
4069
 
4074
4070
  Returns:
4075
4071
  Tensor. An array with the same shape as a, with the specified axis removed.
@@ -4104,8 +4100,8 @@ def _min_cost_chain_matmul(dims):
4104
4100
  """
4105
4101
  dims = tuple(dims)
4106
4102
  n = len(dims) - 1
4107
- m = [[0]*n for _ in range(n)]
4108
- s = [[0]*n for _ in range(n)]
4103
+ m = [[0] * n for _ in range(n)]
4104
+ s = [[0] * n for _ in range(n)]
4109
4105
  for pos in range(1, n):
4110
4106
  for i in range(n - pos):
4111
4107
  j = i + pos
@@ -4171,18 +4167,18 @@ def multi_dot(arrays):
4171
4167
  Examples:
4172
4168
  >>> import mindspore.numpy as np
4173
4169
  >>> A = np.ones((10000, 100))
4174
- >>> B = np.ones((100, 1000))
4175
- >>> C = np.ones((1000, 5))
4170
+ >>> B = np.ones((100, 100))
4171
+ >>> C = np.ones((100, 5))
4176
4172
  >>> D = np.ones((5, 333))
4177
4173
  >>> output = np.multi_dot([A, B, C, D])
4178
4174
  >>> print(output)
4179
- [[500000. 500000. 500000. ... 500000. 500000. 500000.]
4180
- [500000. 500000. 500000. ... 500000. 500000. 500000.]
4181
- [500000. 500000. 500000. ... 500000. 500000. 500000.]
4175
+ [[50000. 50000. 50000. ... 50000. 50000. 50000.]
4176
+ [50000. 50000. 50000. ... 50000. 50000. 50000.]
4177
+ [50000. 50000. 50000. ... 50000. 50000. 50000.]
4182
4178
  ...
4183
- [500000. 500000. 500000. ... 500000. 500000. 500000.]
4184
- [500000. 500000. 500000. ... 500000. 500000. 500000.]
4185
- [500000. 500000. 500000. ... 500000. 500000. 500000.]]
4179
+ [50000. 50000. 50000. ... 50000. 50000. 50000.]
4180
+ [50000. 50000. 50000. ... 50000. 50000. 50000.]
4181
+ [50000. 50000. 50000. ... 50000. 50000. 50000.]]
4186
4182
  """
4187
4183
  if len(arrays) < 2:
4188
4184
  _raise_value_error('Expecting at least 2 arrays')
@@ -4285,7 +4281,7 @@ def argmin(a, axis=None):
4285
4281
 
4286
4282
  Examples:
4287
4283
  >>> import mindspore.numpy as np
4288
- >>> a = np.arange(10, 16).reshape(2, 3).astype(np.float32)
4284
+ >>> a = np.arange(10, 16).reshape(2, 3)
4289
4285
  >>> print(np.argmin(a))
4290
4286
  0
4291
4287
  >>> print(np.argmin(a, axis=0))
@@ -4314,12 +4310,12 @@ def searchsorted(a, v, side='left', sorter=None):
4314
4310
  None, then it must be sorted in ascending order, otherwise `sorter` must be
4315
4311
  an array of indices that sort it.
4316
4312
  v (Union[int, float, bool, list, tuple, Tensor]): Values to insert into `a`.
4317
- side ('left', 'right', optional): If ``'left'`` , the index of the first suitable
4313
+ side ('left', 'right', optional): If ``'left'`` (default value), the index of the first suitable
4318
4314
  location found is given. If ``'right'`` , return the last such index. If there is
4319
4315
  no suitable index, return either 0 or N (where N is the length of `a`).
4320
4316
  sorter (Union[int, float, bool, list, tuple, Tensor]): 1-D optional array of
4321
4317
  integer indices that sort array `a` into ascending order. They are typically
4322
- the result of argsort.
4318
+ the result of argsort. Default: ``None`` .
4323
4319
 
4324
4320
  Returns:
4325
4321
  Tensor, array of insertion points with the same shape as `v`.
@@ -4383,9 +4379,9 @@ def interp(x, xp, fp, left=None, right=None):
4383
4379
  fp (Union[int, float, bool, list, tuple, Tensor]): 1-D sequence of floats, the
4384
4380
  y-coordinates of the data points, same length as `xp`.
4385
4381
  left (float, optional): Value to return for ``x < xp[0]``, default is ``fp[0]``
4386
- once obtained.
4382
+ once obtained. Default: ``None`` .
4387
4383
  right (float, optional): Value to return for ``x > xp[-1]``, default is ``fp[-1]``
4388
- once obtained.
4384
+ once obtained. Default: ``None`` .
4389
4385
 
4390
4386
  Returns:
4391
4387
  Tensor, the interpolated values, same shape as `x`.
@@ -4426,7 +4422,7 @@ def interp(x, xp, fp, left=None, right=None):
4426
4422
  x_1 = F.gather_nd(xp, indices_1)
4427
4423
  y_0 = F.gather_nd(fp, indices_0)
4428
4424
  y_1 = F.gather_nd(fp, indices_1)
4429
- res = (y_0*(x_1 - x) + y_1*(x - x_0))/(x_1 - x_0)
4425
+ res = (y_0 * (x_1 - x) + y_1 * (x - x_0)) / (x_1 - x_0)
4430
4426
  res = F.select(F.equal(x_0, x_1), y_0, res)
4431
4427
 
4432
4428
  idx_0 = _to_tensor([0])
@@ -4554,7 +4550,7 @@ def copysign(x1, x2, dtype=None):
4554
4550
  else:
4555
4551
  pos_tensor = F.absolute(x1)
4556
4552
 
4557
- neg_tensor = F.neg_tensor(pos_tensor)
4553
+ neg_tensor = F.neg(pos_tensor)
4558
4554
  less_zero = F.less(x2, 0)
4559
4555
  res = F.select(less_zero, neg_tensor, pos_tensor)
4560
4556
 
@@ -4690,21 +4686,21 @@ def histogram(a, bins=10, range=None, weights=None, density=False): # pylint: di
4690
4686
  bins (Union[int, tuple, list, Tensor], optional): If `bins` is an int, it
4691
4687
  defines the number of equal-width bins in the given range (10, by
4692
4688
  default). If `bins` is a sequence, it defines the bin edges, including
4693
- the rightmost edge, allowing for non-uniform bin widths.
4689
+ the rightmost edge, allowing for non-uniform bin widths. Default: ``10`` .
4694
4690
  range((float, float), optional): The lower and upper range of the bins. If
4695
4691
  not provided, `range` is simply ``(a.min(), a.max())``. Values outside
4696
4692
  the range are ignored. The first element of the range must be less than
4697
- or equal to the second.
4693
+ or equal to the second. Default: ``None`` .
4698
4694
  weights (Union[int, float, bool, list, tuple, Tensor], optional): An array
4699
4695
  of weights, of the same shape as `a`. If density is True, the weights
4700
4696
  are normalized, so that the integral of the density over the range
4701
- remains 1.
4697
+ remains 1. Default: ``None`` .
4702
4698
  density (boolean, optional): If False, the result will contain the number of
4703
4699
  samples in each bin. If True, the result is the value of the probability
4704
4700
  density function at the bin, normalized such that the integral over the
4705
4701
  range is 1. Note that the sum of the histogram values will not be equal
4706
4702
  to 1 unless bins of unity width are chosen; it is not a probability mass
4707
- function.
4703
+ function. Default: ``False`` .
4708
4704
 
4709
4705
  Returns:
4710
4706
  (Tensor, Tensor), the values of the histogram and the bin edges.
@@ -4744,7 +4740,7 @@ def histogram(a, bins=10, range=None, weights=None, density=False): # pylint: di
4744
4740
  return count, bin_edges
4745
4741
  if density:
4746
4742
  count = F.cast(count, mstype.float32)
4747
- count = count/diff(bin_edges)/F.reduce_sum(count)
4743
+ count = count / diff(bin_edges) / F.reduce_sum(count)
4748
4744
  return count, bin_edges
4749
4745
 
4750
4746
 
@@ -4800,7 +4796,7 @@ def histogramdd(sample, bins=10, range=None, weights=None, density=False): # pyl
4800
4796
  such as ``histogramdd((X, Y, Z))``.
4801
4797
 
4802
4798
  The first form should be preferred.
4803
- bins (Union[int, tuple, list], optional): The bin specification:
4799
+ bins (Union[int, tuple, list], optional): Default: ``10`` . The bin specification:
4804
4800
 
4805
4801
  A sequence of arrays describing the monotonically increasing bin edges along
4806
4802
  each dimension.
@@ -4812,12 +4808,12 @@ def histogramdd(sample, bins=10, range=None, weights=None, density=False): # pyl
4812
4808
  ``(lower, upper)`` tuple giving the outer bin edges to be used if the edges
4813
4809
  are not given explicitly in bins. An entry of None in the sequence results in
4814
4810
  the minimum and maximum values being used for the corresponding dimension.
4815
- The default, None, is equivalent to passing a tuple of `D` None values.
4811
+ The default, None, is equivalent to passing a tuple of `D` None values. Default: ``None`` .
4816
4812
  weights (Union[list, tuple, Tensor], optional): An array with shape `(N,)` of values
4817
- `w_i` weighing each sample ``(x_i, y_i, z_i, …)``.
4813
+ `w_i` weighing each sample ``(x_i, y_i, z_i, …)``. Default: ``None`` .
4818
4814
  density (boolean, optional): If False, the default, returns the number of samples
4819
4815
  in each bin. If True, returns the probability density function at the bin,
4820
- ``bin_count / sample_count / bin_volume``.
4816
+ ``bin_count / sample_count / bin_volume``. Default: ``False`` .
4821
4817
 
4822
4818
  Returns:
4823
4819
  (Tensor, list of Tensor), the values of the histogram and the bin edges.
@@ -4904,7 +4900,7 @@ def histogram2d(x, y, bins=10, range=None, weights=None, density=False): # pylin
4904
4900
  coordinates of the points to be histogrammed.
4905
4901
  y (Union[list, tuple, Tensor]): An array with shape `(N,)` containing the y
4906
4902
  coordinates of the points to be histogrammed.
4907
- bins (Union[int, tuple, list], optional): The bin specification:
4903
+ bins (Union[int, tuple, list], optional): Default: ``10`` . The bin specification:
4908
4904
 
4909
4905
  If int, the number of bins for the two dimensions ``(nx=ny=bins)``.
4910
4906
 
@@ -4919,12 +4915,12 @@ def histogram2d(x, y, bins=10, range=None, weights=None, density=False): # pylin
4919
4915
  range(Union[list, tuple], optional): has shape (2, 2), the leftmost and rightmost
4920
4916
  edges of the bins along each dimension (if not specified explicitly in the bins
4921
4917
  parameters): ``[[xmin, xmax], [ymin, ymax]]``. All values outside of this range
4922
- will be considered outliers and not tallied in the histogram.
4918
+ will be considered outliers and not tallied in the histogram. Default: ``None`` .
4923
4919
  weights (Union[list, tuple, Tensor], optional): An array with shape `(N,)` of values
4924
- `w_i` weighing each sample `(x_i, y_i)`.
4920
+ `w_i` weighing each sample `(x_i, y_i)`. Default: ``None`` .
4925
4921
  density (boolean, optional): If False, the default, returns the number of samples
4926
4922
  in each bin. If True, returns the probability density function at the bin,
4927
- ``bin_count / sample_count / bin_volume``.
4923
+ ``bin_count / sample_count / bin_volume``. Default: ``False`` .
4928
4924
 
4929
4925
  Returns:
4930
4926
  (Tensor, Tensor, Tensor), the values of the bi-directional histogram and the bin edges
@@ -5065,8 +5061,8 @@ def polyadd(a1, a2):
5065
5061
  Numpy object poly1d is currently not supported.
5066
5062
 
5067
5063
  Args:
5068
- a1 (Union[int, float, list, tuple, Tensor): Input polynomial.
5069
- a2 (Union[int, float, list, tuple, Tensor): Input polynomial.
5064
+ a1 (Union[int, float, list, tuple, Tensor]): Input polynomial.
5065
+ a2 (Union[int, float, list, tuple, Tensor]): Input polynomial.
5070
5066
 
5071
5067
  Returns:
5072
5068
  Tensor, the sum of the inputs.
@@ -5101,8 +5097,8 @@ def polysub(a1, a2):
5101
5097
  Numpy object poly1d is currently not supported.
5102
5098
 
5103
5099
  Args:
5104
- a1 (Union[int, float, list, tuple, Tensor): Minuend polynomial.
5105
- a2 (Union[int, float, list, tuple, Tensor): Subtrahend polynomial.
5100
+ a1 (Union[int, float, list, tuple, Tensor]): Minuend polynomial.
5101
+ a2 (Union[int, float, list, tuple, Tensor]): Subtrahend polynomial.
5106
5102
 
5107
5103
  Returns:
5108
5104
  Tensor, the difference of the inputs.
@@ -5118,7 +5114,7 @@ def polysub(a1, a2):
5118
5114
  >>> print(np.polysub([2, 10, -2], [3, 10, -4]))
5119
5115
  [-1 0 2]
5120
5116
  """
5121
- return polyadd(a1, F.neg_tensor(_to_tensor(a2)))
5117
+ return polyadd(a1, F.neg(_to_tensor(a2)))
5122
5118
 
5123
5119
 
5124
5120
  def polyval(p, x):
@@ -5133,10 +5129,10 @@ def polyval(p, x):
5133
5129
  Numpy object poly1d is currently not supported.
5134
5130
 
5135
5131
  Args:
5136
- p (Union[int, float, bool, list, tuple, Tensor): 1D array of polynomial
5132
+ p (Union[int, float, bool, list, tuple, Tensor]): 1D array of polynomial
5137
5133
  coefficients (including coefficients equal to zero) from highest
5138
5134
  degree to the constant term.
5139
- x (Union[int, float, bool, list, tuple, Tensor): A number, an array of
5135
+ x (Union[int, float, bool, list, tuple, Tensor]): A number, an array of
5140
5136
  numbers, at which to evaluate `p`.
5141
5137
 
5142
5138
  Returns:
@@ -5157,7 +5153,7 @@ def polyval(p, x):
5157
5153
  shape = F.shape(x)
5158
5154
  exp_p = arange(_type_convert(int, p.size) - 1, -1, -1).astype(mstype.float32)
5159
5155
  var_p = (x.reshape(shape + (1,)))**exp_p
5160
- return F.reduce_sum(p*var_p, -1)
5156
+ return F.reduce_sum(p * var_p, -1)
5161
5157
 
5162
5158
 
5163
5159
  def polyder(p, m=1):
@@ -5168,7 +5164,7 @@ def polyder(p, m=1):
5168
5164
  Numpy object poly1d is currently not supported.
5169
5165
 
5170
5166
  Args:
5171
- p (Union[int, float, bool, list, tuple, Tensor): Polynomial to differentiate.
5167
+ p (Union[int, float, bool, list, tuple, Tensor]): Polynomial to differentiate.
5172
5168
  A sequence is interpreted as polynomial coefficients.
5173
5169
  m (int, optional): Default: ``1`` , order of differentiation.
5174
5170
 
@@ -5205,8 +5201,8 @@ def polymul(a1, a2):
5205
5201
  Numpy object poly1d is currently not supported.
5206
5202
 
5207
5203
  Args:
5208
- a1 (Union[int, float, bool, list, tuple, Tensor): Input polynomial.
5209
- a2 (Union[int, float, bool, list, tuple, Tensor): Input polynomial.
5204
+ a1 (Union[int, float, bool, list, tuple, Tensor]): Input polynomial.
5205
+ a2 (Union[int, float, bool, list, tuple, Tensor]): Input polynomial.
5210
5206
 
5211
5207
  Returns:
5212
5208
  Tensor, a new polynomial representing the derivative.
@@ -5235,10 +5231,10 @@ def polyint(p, m=1, k=None):
5235
5231
  Numpy object poly1d is currently not supported.
5236
5232
 
5237
5233
  Args:
5238
- p (Union[int, float, bool, list, tuple, Tensor): Polynomial to integrate. A
5234
+ p (Union[int, float, bool, list, tuple, Tensor]): Polynomial to integrate. A
5239
5235
  sequence is interpreted as polynomial coefficients.
5240
5236
  m (int, optional): Defaults to 1, Order of the antiderivative.
5241
- k (Union[int, list of int]y, optinoal): Integration constants. They are given
5237
+ k (Union[int, list[int]], optional): Integration constants. They are given
5242
5238
  in the order of integration: those corresponding to highest-order terms
5243
5239
  come first. If None (default), all constants are assumed to be zero. If
5244
5240
  ``m = 1``, a single scalar can be given instead of a list.
@@ -5342,7 +5338,7 @@ def unwrap(p, discont=3.141592653589793, axis=-1):
5342
5338
  differently than numpy due to differences in round-off.
5343
5339
 
5344
5340
  Args:
5345
- p (Union[int, float, bool, list, tuple, Tensor): Input array.
5341
+ p (Union[int, float, bool, list, tuple, Tensor]): Input array.
5346
5342
  discont (float, optional): Maximum discontinuity between values, default: ``pi`` .
5347
5343
  axis (int, optional): Axis along which unwrap will operate, default: ``-1`` .
5348
5344
 
@@ -5370,9 +5366,9 @@ def unwrap(p, discont=3.141592653589793, axis=-1):
5370
5366
  axis = _check_axis_in_range(axis, ndim)
5371
5367
  dd = diff(p, axis=axis)
5372
5368
  ddmod = remainder(add(dd, pi), 2*pi) - pi
5373
- ddmod = F.masked_fill(ddmod, F.logical_and(ddmod == -pi, dd > 0), pi)
5369
+ ddmod = F.masked_fill(ddmod, F.logical_and(ddmod == -pi, dd > 0), F.cast(pi, ddmod.dtype))
5374
5370
  ph_correct = ddmod - dd
5375
- ph_correct = F.masked_fill(ph_correct, absolute(dd) < discont, 0)
5371
+ ph_correct = F.masked_fill(ph_correct, absolute(dd) < discont, F.cast(0, ph_correct.dtype))
5376
5372
  slice_all = _list_comprehensions(F.rank(p), F.make_slice(None, None, None), True)
5377
5373
  slice0 = _tuple_setitem(slice_all, axis, F.make_slice(0, 1, None))
5378
5374
  slice1 = _tuple_setitem(slice_all, axis, F.make_slice(1, None, None))
@@ -5477,14 +5473,14 @@ def ravel_multi_index(multi_index, dims, mode='clip', order='C'):
5477
5473
  Args:
5478
5474
  multi_index (tuple of array_like):
5479
5475
  A tuple of integer arrays, one array for each dimension.
5480
- dims (Union[int, tuple of integers]): The shape of array into which the indices from multi_index apply.
5481
- mode ({`wrap`, `clip`}): Specifies how out-of-bounds indices are handled. Default: ``clip''``.
5476
+ dims (Union[int, tuple(int)]): The shape of array into which the indices from multi_index apply.
5477
+ mode ({`wrap`, `clip`}, optional): Specifies how out-of-bounds indices are handled. Default: ``'clip'``.
5482
5478
 
5483
5479
  - `wrap`: wrap around
5484
5480
  - `clip`: clip to the range
5485
5481
 
5486
5482
  In `clip` mode, a negative index which would normally wrap will clip to 0 instead.
5487
- order ({`C`, `F`}): Determines whether the multi-index should be viewed as indexing in
5483
+ order ({`C`, `F`}, optional): Determines whether the multi-index should be viewed as indexing in
5488
5484
  row-major (C-style) or column-major (Fortran-style) order.
5489
5485
 
5490
5486
  Returns:
@@ -5539,7 +5535,7 @@ def _vector_norm(x, _ord, axis, keepdims):
5539
5535
  elif _ord == 0:
5540
5536
  res = P.ReduceSum(keepdims)(F.not_equal(x, 0).astype(mstype.float32), axis)
5541
5537
  else:
5542
- res = power(P.ReduceSum(keepdims)(power(absolute(x), _ord), axis), 1./_ord)
5538
+ res = power(P.ReduceSum(keepdims)(power(absolute(x), _ord), axis), 1. / _ord)
5543
5539
  return res
5544
5540
 
5545
5541
 
@@ -5586,7 +5582,7 @@ def norm(x, ord=None, axis=None, keepdims=False): # pylint: disable=redefined-bu
5586
5582
  the 2-norm of ``x.ravel`` will be returned.
5587
5583
  ord (Union[None, 'fro', 'nuc', inf, -inf, int, float], optional): Order of the norm.
5588
5584
  inf means numpy’s inf object. Default: ``None`` .
5589
- axis (Union[None, int, 2-tuple of integers], optional): If `axis` is an integer, it
5585
+ axis (Union[int, 2-tuple(int), None], optional): If `axis` is an integer, it
5590
5586
  specifies the axis of `x` along which to compute the vector norms. If `axis` is
5591
5587
  a 2-tuple, it specifies the axes that hold 2-D matrices, and the matrix norms of
5592
5588
  these matrices are computed. If `axis` is None then either a vector norm (when x
@@ -5800,72 +5796,71 @@ def rint(x, dtype=None):
5800
5796
 
5801
5797
 
5802
5798
  def correlate(a, v, mode='valid'):
5803
- """
5799
+ r"""
5804
5800
  Cross-correlation of two 1-dimensional sequences.
5805
5801
 
5806
5802
  This function computes the correlation as generally defined in signal processing texts:
5807
5803
 
5808
- :math:`c_{av}[k] = sum_n a[n+k] * conj(v[n])`
5804
+ :math:`c_{av}[k] = \sum_{n}{a[n+k] * conj(v[n])}`
5809
5805
 
5810
5806
  with `a` and `v` sequences being zero-padded where necessary and conj being the conjugate.
5811
5807
 
5812
5808
  Note:
5813
- Currently, complex numbers are not supported.
5809
+ - `correlate` is currently only used in `mindscience` scientific computing scenarios and
5810
+ dose not support other usage scenarios.
5811
+ - `correlate` is not supported on Windows platform yet.
5814
5812
 
5815
5813
  Args:
5816
5814
  a (Union[list, tuple, Tensor]): First input sequence.
5817
5815
  v (Union[list, tuple, Tensor]): Second input sequence.
5818
- mode (str, optional): By default, mode is `\'valid\'`.
5819
- If `mode` is `\'valid\'`, it returns output of length :math:`max(M, N) - min(M, N) + 1`.
5820
- The convolution product is only given for points where the signals overlap
5821
- completely. Values outside the signal boundary have no effect.
5822
- If `mode` is `\'full\'`, it returns the convolution at each point of overlap, with
5823
- an output shape of :math:`(N + M - 1,)`.
5824
- At the end-points of the convolution, the signals do not overlap completely,
5825
- and boundary effects may be seen.
5826
- If `mode` is `\'same\'`, it returns output of length :math:`max(M, N)`. Boundary
5827
- effects are still visible.
5816
+ mode (str, optional): Specifies padding mode. The optional values are
5817
+ ``"same"`` , ``"valid"`` and ``"full"`` . Default: ``"valid"`` .
5818
+
5819
+ - ``"same"``: it returns output of length :math:`max(M, N)`. Boundary
5820
+ effects are still visible.
5821
+
5822
+ - ``"valid"``: it returns output of length :math:`max(M, N) - min(M, N) + 1`.
5823
+ The convolution product is only given for points where the signals overlap
5824
+ completely. Values outside the signal boundary have no effect.
5825
+
5826
+ - ``"full"``: it returns the convolution at each point of overlap, with
5827
+ an output shape of :math:`(N + M - 1,)`.At the end-points of the convolution,
5828
+ the signals do not overlap completely, and boundary effects may be seen.
5828
5829
 
5829
5830
  Returns:
5830
- Tensor. Discrete cross-correlation of `a` and `v`.
5831
+ Tensor, Discrete cross-correlation of `a` and `v`.
5831
5832
 
5832
5833
  Raises:
5833
- TypeError: If the inputs can not be converted to tensor.
5834
+ TypeError: If `a` or `v` is not a tensor.
5835
+ TypeError: If `a` and `v` is of different dtype.
5834
5836
  ValueError: If `a` and `v` are empty or have wrong dimensions
5835
5837
 
5836
5838
  Supported Platforms:
5837
- ``GPU``
5839
+ ``Ascend`` ``GPU`` ``CPU``
5838
5840
 
5839
5841
  Examples:
5840
- >>> import mindspore.numpy as np
5841
- >>> output = np.correlate([1, 2, 3], [0, 1, 0.5])
5842
+ >>> import mindspore.numpy as mnp
5843
+ >>> from mindspore import Tensor
5844
+ >>> output = mnp.correlate(Tensor([1., 2., 3.]), Tensor([0., 1., 0.5]))
5842
5845
  >>> print(output)
5843
5846
  [3.5]
5844
- >>> output = np.correlate([1, 2, 3], [0, 1, 0.5], mode="same")
5847
+ >>> output = mnp.correlate(Tensor([1., 2., 3.]), Tensor([0., 1., 0.5]), mode="same")
5845
5848
  >>> print(output)
5846
5849
  [2. 3.5 3. ]
5847
- >>> output = np.correlate([1, 2, 3, 4, 5], [1, 2], mode="same")
5850
+ >>> output = mnp.correlate(Tensor([1., 2., 3., 4., 5.]), Tensor([1., 2.]), mode="full")
5848
5851
  >>> print(output)
5849
- [ 2. 5. 8. 11. 14.]
5850
- """
5851
- a, v = _to_tensor(a, v)
5852
- if a.ndim != 1 or v.ndim != 1:
5853
- _raise_value_error("only support 1-dimensional inputs.")
5854
- if a.size == 0 or v.size == 0:
5855
- _raise_value_error("Inputs cannot be empty.")
5852
+ [ 2. 5. 8. 11. 14. 5.]
5853
+ """
5854
+ if isinstance(a, list):
5855
+ a = ops.auto_generate.list_to_tuple(a)
5856
+ if isinstance(a, tuple):
5857
+ a = ops.auto_generate.tuple_to_tensor(a)
5858
+ if isinstance(v, list):
5859
+ v = ops.auto_generate.list_to_tuple(v)
5860
+ if isinstance(v, tuple):
5861
+ v = ops.auto_generate.tuple_to_tensor(v)
5862
+ return ops.auto_generate.correlate(a, v, mode)
5856
5863
 
5857
- promote_dtype = _promote(a.dtype, v.dtype)
5858
- # P.Conv2D requires that the two tensors have the same data type.
5859
- # If the promote data type is not supported, it will be converted to float32.
5860
- # The supported dtype list may vary in the future.
5861
- if promote_dtype not in [mstype.float32, mstype.float16]:
5862
- promote_dtype = mstype.float32
5863
- a = a.astype(promote_dtype)
5864
- v = v.astype(promote_dtype)
5865
- if a.size < v.size:
5866
- a, v = v, a
5867
- return _compute_1d_conv(a, v, mode)[::-1]
5868
- return _compute_1d_conv(a, v, mode)
5869
5864
 
5870
5865
 
5871
5866
  def _compute_1d_conv(a, v, mode):