mindspore 2.2.11__cp39-cp39-win_amd64.whl → 2.3.0__cp39-cp39-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mindspore might be problematic. Click here for more details.
- mindspore/.commit_id +1 -1
- mindspore/__init__.py +7 -5
- mindspore/_c_dataengine.cp39-win_amd64.pyd +0 -0
- mindspore/_c_expression.cp39-win_amd64.pyd +0 -0
- mindspore/_c_mindrecord.cp39-win_amd64.pyd +0 -0
- mindspore/_checkparam.py +76 -18
- mindspore/_extends/builtin_operations.py +2 -1
- mindspore/_extends/graph_kernel/model/graph_parallel.py +16 -6
- mindspore/_extends/parallel_compile/akg_compiler/akg_process.py +3 -16
- mindspore/_extends/parallel_compile/akg_compiler/build_tbe_kernel.py +16 -4
- mindspore/_extends/parallel_compile/akg_compiler/compiler.py +1 -0
- mindspore/_extends/parallel_compile/akg_compiler/gen_custom_op_files.py +96 -0
- mindspore/_extends/parallel_compile/akg_compiler/tbe_topi.py +2 -1
- mindspore/_extends/parallel_compile/akg_compiler/util.py +5 -2
- mindspore/_extends/parse/__init__.py +18 -14
- mindspore/_extends/parse/compile_config.py +258 -0
- mindspore/_extends/parse/namespace.py +2 -2
- mindspore/_extends/parse/parser.py +174 -62
- mindspore/_extends/parse/resources.py +45 -14
- mindspore/_extends/parse/standard_method.py +142 -240
- mindspore/{ops/_op_impl/tbe/atomic_addr_clean.py → _extends/pijit/__init__.py} +6 -16
- mindspore/_extends/pijit/pijit_func_white_list.py +343 -0
- mindspore/_extends/remote/kernel_build_server.py +2 -0
- mindspore/_profiler.py +30 -0
- mindspore/amp.py +51 -24
- mindspore/avcodec-59.dll +0 -0
- mindspore/avdevice-59.dll +0 -0
- mindspore/avfilter-8.dll +0 -0
- mindspore/avformat-59.dll +0 -0
- mindspore/avutil-57.dll +0 -0
- mindspore/boost/adasum.py +1 -1
- mindspore/boost/base.py +1 -1
- mindspore/boost/boost_cell_wrapper.py +2 -2
- mindspore/boost/grad_freeze.py +2 -2
- mindspore/boost/group_loss_scale_manager.py +1 -1
- mindspore/boost/less_batch_normalization.py +9 -6
- mindspore/common/__init__.py +15 -4
- mindspore/common/_jit_fallback_utils.py +2 -3
- mindspore/common/_register_for_adapter.py +7 -0
- mindspore/common/_register_for_recompute.py +48 -0
- mindspore/common/_register_for_tensor.py +8 -9
- mindspore/common/_stub_tensor.py +7 -1
- mindspore/common/_utils.py +5 -17
- mindspore/common/api.py +411 -106
- mindspore/common/auto_dynamic_shape.py +27 -14
- mindspore/common/dtype.py +17 -10
- mindspore/common/dump.py +6 -8
- mindspore/common/file_system.py +48 -0
- mindspore/common/generator.py +260 -0
- mindspore/common/hook_handle.py +51 -4
- mindspore/common/initializer.py +1 -1
- mindspore/common/jit_config.py +34 -14
- mindspore/common/lazy_inline.py +72 -19
- mindspore/common/mindir_util.py +12 -2
- mindspore/common/mutable.py +79 -14
- mindspore/common/no_inline.py +54 -0
- mindspore/common/np_dtype.py +25 -0
- mindspore/common/parameter.py +30 -11
- mindspore/common/recompute.py +262 -0
- mindspore/common/seed.py +9 -9
- mindspore/common/sparse_tensor.py +272 -24
- mindspore/common/symbol.py +122 -0
- mindspore/common/tensor.py +468 -496
- mindspore/communication/__init__.py +6 -11
- mindspore/communication/_comm_helper.py +5 -0
- mindspore/communication/comm_func.py +1140 -0
- mindspore/communication/management.py +118 -102
- mindspore/config/op_info.config +22 -54
- mindspore/context.py +378 -65
- mindspore/dataset/__init__.py +5 -5
- mindspore/dataset/audio/__init__.py +6 -6
- mindspore/dataset/audio/transforms.py +711 -158
- mindspore/dataset/callback/ds_callback.py +2 -2
- mindspore/dataset/engine/cache_client.py +2 -2
- mindspore/dataset/engine/datasets.py +163 -83
- mindspore/dataset/engine/datasets_audio.py +14 -14
- mindspore/dataset/engine/datasets_standard_format.py +33 -3
- mindspore/dataset/engine/datasets_text.py +38 -38
- mindspore/dataset/engine/datasets_user_defined.py +78 -59
- mindspore/dataset/engine/datasets_vision.py +77 -73
- mindspore/dataset/engine/offload.py +5 -7
- mindspore/dataset/engine/queue.py +56 -38
- mindspore/dataset/engine/validators.py +11 -5
- mindspore/dataset/text/__init__.py +3 -3
- mindspore/dataset/text/transforms.py +408 -121
- mindspore/dataset/text/utils.py +9 -9
- mindspore/dataset/transforms/__init__.py +1 -1
- mindspore/dataset/transforms/transforms.py +261 -76
- mindspore/dataset/utils/browse_dataset.py +9 -9
- mindspore/dataset/vision/__init__.py +8 -8
- mindspore/dataset/vision/c_transforms.py +10 -10
- mindspore/dataset/vision/py_transforms_util.py +3 -3
- mindspore/dataset/vision/transforms.py +2844 -549
- mindspore/dataset/vision/utils.py +161 -10
- mindspore/dataset/vision/validators.py +14 -2
- mindspore/dnnl.dll +0 -0
- mindspore/experimental/optim/__init__.py +12 -2
- mindspore/experimental/optim/adadelta.py +161 -0
- mindspore/experimental/optim/adagrad.py +168 -0
- mindspore/experimental/optim/adam.py +35 -34
- mindspore/experimental/optim/adamax.py +170 -0
- mindspore/experimental/optim/adamw.py +40 -16
- mindspore/experimental/optim/asgd.py +153 -0
- mindspore/experimental/optim/lr_scheduler.py +71 -127
- mindspore/experimental/optim/nadam.py +157 -0
- mindspore/experimental/optim/optimizer.py +15 -8
- mindspore/experimental/optim/radam.py +194 -0
- mindspore/experimental/optim/rmsprop.py +154 -0
- mindspore/experimental/optim/rprop.py +164 -0
- mindspore/experimental/optim/sgd.py +28 -19
- mindspore/hal/__init__.py +40 -0
- mindspore/hal/_ascend.py +57 -0
- mindspore/hal/_base.py +57 -0
- mindspore/hal/_cpu.py +56 -0
- mindspore/hal/_gpu.py +57 -0
- mindspore/hal/device.py +356 -0
- mindspore/hal/event.py +179 -0
- mindspore/hal/memory.py +326 -0
- mindspore/hal/stream.py +339 -0
- mindspore/include/api/data_type.h +2 -2
- mindspore/include/api/dual_abi_helper.h +16 -3
- mindspore/include/api/model.h +4 -3
- mindspore/include/api/status.h +14 -0
- mindspore/include/c_api/model_c.h +173 -0
- mindspore/include/c_api/ms/base/types.h +1 -0
- mindspore/include/c_api/types_c.h +19 -0
- mindspore/include/dataset/execute.h +1 -3
- mindspore/include/dataset/vision.h +54 -2
- mindspore/jpeg62.dll +0 -0
- mindspore/log.py +2 -2
- mindspore/mindrecord/__init__.py +5 -1
- mindspore/mindrecord/config.py +809 -0
- mindspore/mindrecord/filereader.py +25 -0
- mindspore/mindrecord/filewriter.py +76 -58
- mindspore/mindrecord/mindpage.py +40 -6
- mindspore/mindrecord/shardutils.py +3 -2
- mindspore/mindrecord/shardwriter.py +7 -0
- mindspore/mindrecord/tools/cifar100_to_mr.py +53 -66
- mindspore/mindrecord/tools/cifar10_to_mr.py +48 -63
- mindspore/mindrecord/tools/csv_to_mr.py +7 -17
- mindspore/mindrecord/tools/imagenet_to_mr.py +3 -8
- mindspore/mindrecord/tools/mnist_to_mr.py +11 -21
- mindspore/mindrecord/tools/tfrecord_to_mr.py +2 -10
- mindspore/mindspore_backend.dll +0 -0
- mindspore/mindspore_common.dll +0 -0
- mindspore/mindspore_core.dll +0 -0
- mindspore/mindspore_glog.dll +0 -0
- mindspore/mindspore_np_dtype.dll +0 -0
- mindspore/mindspore_shared_lib.dll +0 -0
- mindspore/mint/__init__.py +1137 -0
- mindspore/{rewrite/ast_transformers → mint/linalg}/__init__.py +9 -4
- mindspore/mint/nn/__init__.py +512 -0
- mindspore/mint/nn/functional.py +573 -0
- mindspore/mint/optim/__init__.py +24 -0
- mindspore/mint/optim/adamw.py +185 -0
- mindspore/multiprocessing/__init__.py +72 -0
- mindspore/nn/__init__.py +1 -0
- mindspore/nn/cell.py +213 -257
- mindspore/nn/dynamic_lr.py +2 -2
- mindspore/nn/extend/__init__.py +29 -0
- mindspore/nn/extend/basic.py +140 -0
- mindspore/nn/extend/embedding.py +143 -0
- mindspore/{rewrite/ast_creator_register.py → nn/extend/layer/__init__.py} +9 -19
- mindspore/nn/extend/layer/normalization.py +109 -0
- mindspore/nn/extend/pooling.py +117 -0
- mindspore/nn/layer/activation.py +84 -94
- mindspore/nn/layer/basic.py +177 -82
- mindspore/nn/layer/channel_shuffle.py +3 -16
- mindspore/nn/layer/container.py +3 -3
- mindspore/nn/layer/conv.py +75 -66
- mindspore/nn/layer/embedding.py +103 -45
- mindspore/nn/layer/embedding_service.py +531 -0
- mindspore/nn/layer/embedding_service_layer.py +393 -0
- mindspore/nn/layer/image.py +4 -7
- mindspore/nn/layer/math.py +1 -1
- mindspore/nn/layer/normalization.py +52 -66
- mindspore/nn/layer/padding.py +30 -39
- mindspore/nn/layer/pooling.py +18 -9
- mindspore/nn/layer/rnn_cells.py +6 -16
- mindspore/nn/layer/rnns.py +6 -5
- mindspore/nn/layer/thor_layer.py +1 -2
- mindspore/nn/layer/timedistributed.py +1 -1
- mindspore/nn/layer/transformer.py +52 -50
- mindspore/nn/learning_rate_schedule.py +6 -5
- mindspore/nn/loss/loss.py +63 -84
- mindspore/nn/optim/ada_grad.py +6 -4
- mindspore/nn/optim/adadelta.py +3 -1
- mindspore/nn/optim/adafactor.py +1 -1
- mindspore/nn/optim/adam.py +102 -181
- mindspore/nn/optim/adamax.py +4 -2
- mindspore/nn/optim/adasum.py +3 -3
- mindspore/nn/optim/asgd.py +4 -2
- mindspore/nn/optim/ftrl.py +31 -61
- mindspore/nn/optim/lamb.py +5 -3
- mindspore/nn/optim/lars.py +2 -2
- mindspore/nn/optim/lazyadam.py +6 -4
- mindspore/nn/optim/momentum.py +13 -25
- mindspore/nn/optim/optimizer.py +6 -3
- mindspore/nn/optim/proximal_ada_grad.py +4 -2
- mindspore/nn/optim/rmsprop.py +9 -3
- mindspore/nn/optim/rprop.py +4 -2
- mindspore/nn/optim/sgd.py +7 -4
- mindspore/nn/optim/thor.py +2 -2
- mindspore/nn/probability/distribution/_utils/custom_ops.py +2 -2
- mindspore/nn/probability/distribution/beta.py +2 -2
- mindspore/nn/probability/distribution/categorical.py +4 -6
- mindspore/nn/probability/distribution/cauchy.py +2 -2
- mindspore/nn/probability/distribution/exponential.py +2 -2
- mindspore/nn/probability/distribution/geometric.py +1 -1
- mindspore/nn/probability/distribution/gumbel.py +2 -2
- mindspore/nn/probability/distribution/logistic.py +1 -1
- mindspore/nn/probability/distribution/poisson.py +2 -2
- mindspore/nn/probability/distribution/uniform.py +2 -2
- mindspore/nn/reinforcement/_tensors_queue.py +13 -1
- mindspore/nn/wrap/__init__.py +2 -1
- mindspore/nn/wrap/cell_wrapper.py +58 -13
- mindspore/nn/wrap/grad_reducer.py +148 -8
- mindspore/nn/wrap/loss_scale.py +32 -9
- mindspore/numpy/__init__.py +2 -0
- mindspore/numpy/array_creations.py +2 -0
- mindspore/numpy/array_ops.py +6 -6
- mindspore/numpy/dtypes.py +3 -3
- mindspore/numpy/fft.py +431 -0
- mindspore/numpy/math_ops.py +61 -67
- mindspore/numpy/utils.py +3 -0
- mindspore/opencv_core452.dll +0 -0
- mindspore/opencv_imgcodecs452.dll +0 -0
- mindspore/opencv_imgproc452.dll +0 -0
- mindspore/ops/__init__.py +8 -4
- mindspore/ops/_grad_experimental/grad_array_ops.py +4 -160
- mindspore/ops/_grad_experimental/grad_comm_ops.py +93 -36
- mindspore/ops/_grad_experimental/grad_inner_ops.py +8 -0
- mindspore/ops/_grad_experimental/grad_math_ops.py +92 -287
- mindspore/ops/_grad_experimental/grad_nn_ops.py +0 -53
- mindspore/ops/_grad_experimental/grad_quant_ops.py +3 -3
- mindspore/ops/_grad_experimental/grad_sparse.py +1 -1
- mindspore/ops/_grad_experimental/grad_sparse_ops.py +3 -3
- mindspore/ops/_op_impl/__init__.py +0 -1
- mindspore/ops/_op_impl/aicpu/__init__.py +1 -0
- mindspore/ops/_op_impl/aicpu/gamma.py +2 -0
- mindspore/ops/_op_impl/{cpu/concat.py → aicpu/generate_eod_mask.py} +16 -17
- mindspore/ops/_op_impl/aicpu/log_uniform_candidate_sampler.py +1 -3
- mindspore/ops/_op_impl/aicpu/poisson.py +2 -0
- mindspore/ops/_op_impl/cpu/__init__.py +1 -3
- mindspore/ops/_op_impl/cpu/adam.py +2 -2
- mindspore/ops/_op_impl/cpu/adam_weight_decay.py +3 -2
- mindspore/ops/_op_impl/cpu/maximum_grad.py +16 -14
- mindspore/ops/_op_impl/cpu/minimum_grad.py +8 -0
- mindspore/ops/_vmap/vmap_array_ops.py +164 -101
- mindspore/ops/_vmap/vmap_base.py +8 -1
- mindspore/ops/_vmap/vmap_grad_math_ops.py +95 -9
- mindspore/ops/_vmap/vmap_grad_nn_ops.py +143 -58
- mindspore/ops/_vmap/vmap_image_ops.py +70 -13
- mindspore/ops/_vmap/vmap_math_ops.py +130 -58
- mindspore/ops/_vmap/vmap_nn_ops.py +249 -115
- mindspore/ops/_vmap/vmap_other_ops.py +1 -1
- mindspore/ops/auto_generate/__init__.py +31 -0
- mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +231 -0
- mindspore/ops/auto_generate/gen_arg_dtype_cast.py +250 -0
- mindspore/ops/auto_generate/gen_arg_handler.py +197 -0
- mindspore/ops/auto_generate/gen_extend_func.py +980 -0
- mindspore/ops/auto_generate/gen_ops_def.py +6443 -0
- mindspore/ops/auto_generate/gen_ops_prim.py +13167 -0
- mindspore/ops/auto_generate/pyboost_inner_prim.py +429 -0
- mindspore/ops/composite/__init__.py +5 -2
- mindspore/ops/composite/base.py +121 -23
- mindspore/ops/composite/math_ops.py +10 -49
- mindspore/ops/composite/multitype_ops/_compile_utils.py +191 -618
- mindspore/ops/composite/multitype_ops/_constexpr_utils.py +25 -134
- mindspore/ops/composite/multitype_ops/add_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/bitwise_and_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/bitwise_or_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/bitwise_xor_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/div_impl.py +8 -0
- mindspore/ops/composite/multitype_ops/equal_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/floordiv_impl.py +8 -0
- mindspore/ops/composite/multitype_ops/getitem_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/greater_equal_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/greater_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/in_impl.py +8 -2
- mindspore/ops/composite/multitype_ops/left_shift_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/less_equal_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/less_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/logic_not_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/logical_and_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/logical_or_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/mod_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/mul_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/negative_impl.py +9 -3
- mindspore/ops/composite/multitype_ops/not_equal_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/not_in_impl.py +6 -1
- mindspore/ops/composite/multitype_ops/ones_like_impl.py +2 -2
- mindspore/ops/composite/multitype_ops/pow_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/right_shift_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/setitem_impl.py +32 -21
- mindspore/ops/composite/multitype_ops/sub_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/zeros_like_impl.py +6 -3
- mindspore/ops/deprecated.py +14 -3
- mindspore/ops/extend/__init__.py +53 -0
- mindspore/ops/extend/array_func.py +218 -0
- mindspore/ops/extend/math_func.py +76 -0
- mindspore/ops/extend/nn_func.py +308 -0
- mindspore/ops/function/__init__.py +31 -11
- mindspore/ops/function/array_func.py +848 -1736
- mindspore/ops/function/clip_func.py +19 -31
- mindspore/ops/function/debug_func.py +2 -5
- mindspore/ops/function/fft_func.py +31 -0
- mindspore/ops/function/grad/grad_func.py +27 -20
- mindspore/ops/function/image_func.py +27 -21
- mindspore/ops/function/linalg_func.py +30 -53
- mindspore/ops/function/math_func.py +916 -2791
- mindspore/ops/function/nn_func.py +1445 -889
- mindspore/ops/function/other_func.py +6 -7
- mindspore/ops/function/parameter_func.py +6 -92
- mindspore/ops/function/random_func.py +254 -108
- mindspore/ops/function/reshard_func.py +102 -0
- mindspore/ops/function/sparse_func.py +4 -4
- mindspore/ops/function/sparse_unary_func.py +11 -18
- mindspore/ops/function/spectral_func.py +1 -1
- mindspore/ops/function/vmap_func.py +15 -14
- mindspore/ops/functional.py +342 -343
- mindspore/ops/op_info_register.py +16 -43
- mindspore/ops/operations/__init__.py +32 -23
- mindspore/ops/operations/_embedding_cache_ops.py +1 -1
- mindspore/ops/operations/_grad_ops.py +21 -853
- mindspore/ops/operations/_infer_ops.py +19 -0
- mindspore/ops/operations/_inner_ops.py +155 -511
- mindspore/ops/operations/_quant_ops.py +4 -4
- mindspore/ops/operations/_rl_inner_ops.py +3 -3
- mindspore/ops/operations/_scalar_ops.py +5 -480
- mindspore/ops/operations/_sequence_ops.py +6 -36
- mindspore/ops/operations/_tensor_array.py +8 -8
- mindspore/ops/operations/array_ops.py +112 -2698
- mindspore/ops/operations/comm_ops.py +801 -118
- mindspore/ops/operations/custom_ops.py +62 -121
- mindspore/ops/operations/debug_ops.py +105 -36
- mindspore/ops/operations/image_ops.py +3 -219
- mindspore/ops/operations/inner_ops.py +54 -40
- mindspore/ops/operations/linalg_ops.py +1 -49
- mindspore/ops/operations/manually_defined/__init__.py +24 -0
- mindspore/ops/operations/manually_defined/_inner.py +61 -0
- mindspore/ops/operations/manually_defined/ops_def.py +2016 -0
- mindspore/ops/operations/math_ops.py +621 -4654
- mindspore/ops/operations/nn_ops.py +316 -2226
- mindspore/ops/operations/other_ops.py +53 -45
- mindspore/ops/operations/random_ops.py +4 -51
- mindspore/ops/operations/reshard_ops.py +53 -0
- mindspore/ops/operations/sparse_ops.py +8 -8
- mindspore/ops/primitive.py +204 -103
- mindspore/ops/silent_check.py +162 -0
- mindspore/ops_generate/__init__.py +27 -0
- mindspore/ops_generate/arg_dtype_cast.py +250 -0
- mindspore/ops_generate/arg_handler.py +197 -0
- mindspore/ops_generate/gen_aclnn_implement.py +263 -0
- mindspore/ops_generate/gen_ops.py +1084 -0
- mindspore/ops_generate/gen_ops_inner_prim.py +131 -0
- mindspore/ops_generate/gen_pyboost_func.py +968 -0
- mindspore/ops_generate/gen_utils.py +209 -0
- mindspore/ops_generate/op_proto.py +138 -0
- mindspore/ops_generate/pyboost_utils.py +354 -0
- mindspore/ops_generate/template.py +239 -0
- mindspore/parallel/__init__.py +7 -4
- mindspore/parallel/_auto_parallel_context.py +155 -6
- mindspore/parallel/_cell_wrapper.py +16 -9
- mindspore/parallel/_cost_model_context.py +1 -1
- mindspore/parallel/_dp_allreduce_fusion.py +159 -159
- mindspore/parallel/_parallel_serialization.py +62 -14
- mindspore/parallel/_ps_context.py +1 -1
- mindspore/parallel/_recovery_context.py +1 -1
- mindspore/parallel/_tensor.py +18 -9
- mindspore/parallel/_transformer/__init__.py +1 -1
- mindspore/parallel/_transformer/layers.py +1 -1
- mindspore/parallel/_transformer/loss.py +1 -1
- mindspore/parallel/_transformer/moe.py +1 -1
- mindspore/parallel/_transformer/op_parallel_config.py +1 -1
- mindspore/parallel/_transformer/transformer.py +10 -10
- mindspore/parallel/_utils.py +161 -6
- mindspore/parallel/algo_parameter_config.py +6 -8
- mindspore/parallel/checkpoint_transform.py +369 -64
- mindspore/parallel/cluster/__init__.py +15 -0
- mindspore/parallel/cluster/process_entity/__init__.py +18 -0
- mindspore/parallel/cluster/process_entity/_api.py +344 -0
- mindspore/parallel/cluster/process_entity/_utils.py +126 -0
- mindspore/parallel/cluster/run.py +136 -0
- mindspore/parallel/mpi/__init__.py +1 -1
- mindspore/parallel/mpi/_mpi_config.py +1 -1
- mindspore/parallel/parameter_broadcast.py +152 -0
- mindspore/parallel/shard.py +128 -17
- mindspore/profiler/__init__.py +3 -2
- mindspore/profiler/common/process_pool.py +41 -0
- mindspore/profiler/common/singleton.py +28 -0
- mindspore/profiler/common/util.py +125 -0
- mindspore/profiler/envprofiling.py +2 -2
- mindspore/{_extends/parallel_compile/tbe_compiler → profiler/parser/ascend_analysis}/__init__.py +1 -1
- mindspore/profiler/parser/ascend_analysis/constant.py +53 -0
- mindspore/profiler/parser/ascend_analysis/file_manager.py +159 -0
- mindspore/profiler/parser/ascend_analysis/function_event.py +161 -0
- mindspore/profiler/parser/ascend_analysis/fwk_cann_parser.py +131 -0
- mindspore/profiler/parser/ascend_analysis/fwk_file_parser.py +85 -0
- mindspore/profiler/parser/ascend_analysis/msprof_timeline_parser.py +57 -0
- mindspore/profiler/parser/ascend_analysis/profiler_info_parser.py +116 -0
- mindspore/profiler/parser/ascend_analysis/tlv_decoder.py +86 -0
- mindspore/profiler/parser/ascend_analysis/trace_event_manager.py +68 -0
- mindspore/profiler/parser/ascend_cluster_generator.py +116 -0
- mindspore/profiler/parser/ascend_communicate_generator.py +314 -0
- mindspore/profiler/parser/ascend_flops_generator.py +27 -5
- mindspore/profiler/parser/ascend_fpbp_generator.py +8 -2
- mindspore/profiler/parser/ascend_hccl_generator.py +31 -280
- mindspore/profiler/parser/ascend_integrate_generator.py +42 -0
- mindspore/profiler/parser/ascend_memory_generator.py +185 -0
- mindspore/profiler/parser/ascend_msprof_exporter.py +151 -126
- mindspore/profiler/parser/ascend_msprof_generator.py +75 -274
- mindspore/profiler/parser/ascend_op_generator.py +94 -36
- mindspore/profiler/parser/ascend_timeline_generator.py +297 -131
- mindspore/profiler/parser/base_timeline_generator.py +17 -3
- mindspore/profiler/parser/cpu_gpu_timeline_generator.py +2 -1
- mindspore/profiler/parser/framework_parser.py +11 -4
- mindspore/profiler/parser/integrator.py +3 -1
- mindspore/profiler/parser/memory_usage_parser.py +8 -2
- mindspore/profiler/parser/minddata_analyzer.py +8 -2
- mindspore/profiler/parser/minddata_parser.py +73 -4
- mindspore/profiler/parser/msadvisor_analyzer.py +5 -3
- mindspore/profiler/parser/msadvisor_parser.py +10 -4
- mindspore/profiler/parser/profiler_info.py +16 -1
- mindspore/profiler/profiling.py +522 -195
- mindspore/rewrite/__init__.py +2 -13
- mindspore/rewrite/api/node.py +123 -37
- mindspore/rewrite/api/pattern_engine.py +2 -3
- mindspore/rewrite/api/scoped_value.py +16 -15
- mindspore/rewrite/api/symbol_tree.py +46 -30
- mindspore/rewrite/ast_helpers/__init__.py +3 -6
- mindspore/rewrite/ast_helpers/ast_converter.py +143 -0
- mindspore/rewrite/ast_helpers/ast_finder.py +48 -0
- mindspore/rewrite/ast_helpers/ast_flattener.py +268 -0
- mindspore/rewrite/ast_helpers/ast_modifier.py +160 -92
- mindspore/rewrite/common/__init__.py +1 -2
- mindspore/rewrite/common/config.py +24 -0
- mindspore/rewrite/common/{rewrite_elog.py → error_log.py} +39 -39
- mindspore/rewrite/{namer.py → common/namer.py} +63 -18
- mindspore/rewrite/common/namespace.py +118 -0
- mindspore/rewrite/node/__init__.py +5 -5
- mindspore/rewrite/node/call_function.py +23 -7
- mindspore/rewrite/node/cell_container.py +7 -3
- mindspore/rewrite/node/control_flow.py +53 -28
- mindspore/rewrite/node/node.py +212 -196
- mindspore/rewrite/node/node_manager.py +51 -22
- mindspore/rewrite/node/node_topological_manager.py +3 -23
- mindspore/rewrite/parsers/__init__.py +12 -0
- mindspore/rewrite/parsers/arguments_parser.py +8 -9
- mindspore/rewrite/parsers/assign_parser.py +637 -413
- mindspore/rewrite/parsers/attribute_parser.py +3 -4
- mindspore/rewrite/parsers/class_def_parser.py +115 -148
- mindspore/rewrite/parsers/constant_parser.py +5 -5
- mindspore/rewrite/parsers/container_parser.py +4 -6
- mindspore/rewrite/parsers/expr_parser.py +55 -0
- mindspore/rewrite/parsers/for_parser.py +31 -98
- mindspore/rewrite/parsers/function_def_parser.py +13 -5
- mindspore/rewrite/parsers/if_parser.py +28 -10
- mindspore/rewrite/parsers/module_parser.py +8 -182
- mindspore/rewrite/parsers/parser.py +1 -5
- mindspore/rewrite/parsers/parser_register.py +1 -1
- mindspore/rewrite/parsers/return_parser.py +5 -10
- mindspore/rewrite/parsers/while_parser.py +59 -0
- mindspore/rewrite/sparsify/utils.py +1 -1
- mindspore/rewrite/symbol_tree/__init__.py +20 -0
- mindspore/rewrite/{symbol_tree.py → symbol_tree/symbol_tree.py} +704 -185
- mindspore/rewrite/{symbol_tree_builder.py → symbol_tree/symbol_tree_builder.py} +8 -8
- mindspore/rewrite/{symbol_tree_dumper.py → symbol_tree/symbol_tree_dumper.py} +4 -4
- mindspore/run_check/_check_version.py +6 -14
- mindspore/run_check/run_check.py +1 -1
- mindspore/safeguard/rewrite_obfuscation.py +9 -19
- mindspore/swresample-4.dll +0 -0
- mindspore/swscale-6.dll +0 -0
- mindspore/tinyxml2.dll +0 -0
- mindspore/train/__init__.py +6 -5
- mindspore/train/_utils.py +178 -4
- mindspore/train/amp.py +167 -245
- mindspore/train/anf_ir_pb2.py +14 -2
- mindspore/train/callback/__init__.py +5 -2
- mindspore/train/callback/_backup_and_restore.py +5 -5
- mindspore/train/callback/_callback.py +4 -4
- mindspore/train/callback/_checkpoint.py +151 -37
- mindspore/train/callback/_cluster_monitor.py +201 -0
- mindspore/train/callback/_early_stop.py +2 -2
- mindspore/train/callback/_flops_collector.py +238 -0
- mindspore/train/callback/_landscape.py +16 -11
- mindspore/train/callback/_loss_monitor.py +2 -2
- mindspore/train/callback/_mindio_ttp.py +443 -0
- mindspore/train/callback/_on_request_exit.py +2 -2
- mindspore/train/callback/_reduce_lr_on_plateau.py +2 -2
- mindspore/train/callback/_summary_collector.py +13 -14
- mindspore/train/callback/_time_monitor.py +3 -3
- mindspore/train/data_sink.py +6 -5
- mindspore/train/dataset_helper.py +66 -21
- mindspore/train/loss_scale_manager.py +2 -2
- mindspore/train/metrics/accuracy.py +7 -7
- mindspore/train/metrics/confusion_matrix.py +8 -6
- mindspore/train/metrics/cosine_similarity.py +6 -4
- mindspore/train/metrics/error.py +2 -2
- mindspore/train/metrics/metric.py +3 -3
- mindspore/train/metrics/perplexity.py +2 -1
- mindspore/train/metrics/topk.py +2 -2
- mindspore/train/mind_ir_pb2.py +89 -15
- mindspore/train/model.py +298 -56
- mindspore/train/serialization.py +501 -221
- mindspore/train/summary/_summary_adapter.py +1 -1
- mindspore/train/summary/_writer_pool.py +1 -1
- mindspore/train/summary/summary_record.py +56 -34
- mindspore/train/train_thor/convert_utils.py +3 -3
- mindspore/turbojpeg.dll +0 -0
- mindspore/version.py +1 -1
- {mindspore-2.2.11.dist-info → mindspore-2.3.0.dist-info}/METADATA +3 -3
- mindspore-2.3.0.dist-info/RECORD +1400 -0
- {mindspore-2.2.11.dist-info → mindspore-2.3.0.dist-info}/entry_points.txt +1 -0
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_adapter.py +0 -662
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_helper.py +0 -377
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_job.py +0 -201
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_job_manager.py +0 -515
- mindspore/gen_ops.py +0 -273
- mindspore/nn/layer/flash_attention.py +0 -189
- mindspore/ops/_op_impl/cpu/tensor_shape.py +0 -42
- mindspore/ops/_op_impl/tbe/__init__.py +0 -47
- mindspore/ops/_op_impl/tbe/abs.py +0 -38
- mindspore/ops/_op_impl/tbe/abs_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/abs_grad.py +0 -43
- mindspore/ops/_op_impl/tbe/abs_grad_ds.py +0 -44
- mindspore/ops/_op_impl/tbe/accumulate_n_v2.py +0 -41
- mindspore/ops/_op_impl/tbe/accumulate_n_v2_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/acos.py +0 -37
- mindspore/ops/_op_impl/tbe/acos_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/acos_grad.py +0 -43
- mindspore/ops/_op_impl/tbe/acos_grad_ds.py +0 -44
- mindspore/ops/_op_impl/tbe/acosh.py +0 -37
- mindspore/ops/_op_impl/tbe/acosh_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/acosh_grad.py +0 -43
- mindspore/ops/_op_impl/tbe/acosh_grad_ds.py +0 -44
- mindspore/ops/_op_impl/tbe/act_ulq_clamp_max_grad.py +0 -38
- mindspore/ops/_op_impl/tbe/act_ulq_clamp_min_grad.py +0 -38
- mindspore/ops/_op_impl/tbe/acts_ulq.py +0 -45
- mindspore/ops/_op_impl/tbe/acts_ulq_input_grad.py +0 -38
- mindspore/ops/_op_impl/tbe/adam_apply_one.py +0 -50
- mindspore/ops/_op_impl/tbe/adam_apply_one_assign.py +0 -53
- mindspore/ops/_op_impl/tbe/adam_apply_one_ds.py +0 -51
- mindspore/ops/_op_impl/tbe/adam_apply_one_with_decay.py +0 -54
- mindspore/ops/_op_impl/tbe/adam_apply_one_with_decay_assign.py +0 -54
- mindspore/ops/_op_impl/tbe/adam_apply_one_with_decay_ds.py +0 -55
- mindspore/ops/_op_impl/tbe/adaptive_max_pool2d.py +0 -37
- mindspore/ops/_op_impl/tbe/add.py +0 -42
- mindspore/ops/_op_impl/tbe/add_ds.py +0 -43
- mindspore/ops/_op_impl/tbe/add_n.py +0 -39
- mindspore/ops/_op_impl/tbe/add_n_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/addcdiv.py +0 -41
- mindspore/ops/_op_impl/tbe/addcdiv_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/addcmul.py +0 -43
- mindspore/ops/_op_impl/tbe/addcmul_ds.py +0 -44
- mindspore/ops/_op_impl/tbe/apply_ada_max.py +0 -68
- mindspore/ops/_op_impl/tbe/apply_ada_max_ds.py +0 -69
- mindspore/ops/_op_impl/tbe/apply_adadelta.py +0 -66
- mindspore/ops/_op_impl/tbe/apply_adadelta_ds.py +0 -67
- mindspore/ops/_op_impl/tbe/apply_adagrad.py +0 -55
- mindspore/ops/_op_impl/tbe/apply_adagrad_d_a.py +0 -67
- mindspore/ops/_op_impl/tbe/apply_adagrad_ds.py +0 -56
- mindspore/ops/_op_impl/tbe/apply_adagrad_v2.py +0 -48
- mindspore/ops/_op_impl/tbe/apply_adagrad_v2_ds.py +0 -49
- mindspore/ops/_op_impl/tbe/apply_adam.py +0 -79
- mindspore/ops/_op_impl/tbe/apply_adam_ds.py +0 -80
- mindspore/ops/_op_impl/tbe/apply_adam_with_amsgrad.py +0 -60
- mindspore/ops/_op_impl/tbe/apply_adam_with_amsgrad_ds.py +0 -61
- mindspore/ops/_op_impl/tbe/apply_add_sign.py +0 -65
- mindspore/ops/_op_impl/tbe/apply_add_sign_ds.py +0 -66
- mindspore/ops/_op_impl/tbe/apply_centered_rms_prop.py +0 -77
- mindspore/ops/_op_impl/tbe/apply_centered_rms_prop_ds.py +0 -78
- mindspore/ops/_op_impl/tbe/apply_ftrl.py +0 -67
- mindspore/ops/_op_impl/tbe/apply_ftrl_ds.py +0 -68
- mindspore/ops/_op_impl/tbe/apply_gradient_descent.py +0 -44
- mindspore/ops/_op_impl/tbe/apply_gradient_descent_ds.py +0 -45
- mindspore/ops/_op_impl/tbe/apply_keras_momentum.py +0 -49
- mindspore/ops/_op_impl/tbe/apply_momentum.py +0 -64
- mindspore/ops/_op_impl/tbe/apply_momentum_ds.py +0 -65
- mindspore/ops/_op_impl/tbe/apply_power_sign.py +0 -65
- mindspore/ops/_op_impl/tbe/apply_power_sign_ds.py +0 -66
- mindspore/ops/_op_impl/tbe/apply_proximal_adagrad.py +0 -57
- mindspore/ops/_op_impl/tbe/apply_proximal_adagrad_ds.py +0 -58
- mindspore/ops/_op_impl/tbe/apply_proximal_gradient_descent.py +0 -54
- mindspore/ops/_op_impl/tbe/apply_proximal_gradient_descent_ds.py +0 -55
- mindspore/ops/_op_impl/tbe/apply_rms_prop.py +0 -52
- mindspore/ops/_op_impl/tbe/approximate_equal.py +0 -39
- mindspore/ops/_op_impl/tbe/approximate_equal_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/arg_max.py +0 -38
- mindspore/ops/_op_impl/tbe/arg_max_with_value.py +0 -38
- mindspore/ops/_op_impl/tbe/arg_max_with_value_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/arg_min.py +0 -38
- mindspore/ops/_op_impl/tbe/arg_min_v2_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/arg_min_with_value.py +0 -38
- mindspore/ops/_op_impl/tbe/arg_min_with_value_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/asin.py +0 -37
- mindspore/ops/_op_impl/tbe/asin_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/asin_grad.py +0 -43
- mindspore/ops/_op_impl/tbe/asin_grad_ds.py +0 -44
- mindspore/ops/_op_impl/tbe/asinh.py +0 -37
- mindspore/ops/_op_impl/tbe/asinh_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/asinh_grad.py +0 -43
- mindspore/ops/_op_impl/tbe/asinh_grad_ds.py +0 -44
- mindspore/ops/_op_impl/tbe/assign.py +0 -79
- mindspore/ops/_op_impl/tbe/assign_add.py +0 -59
- mindspore/ops/_op_impl/tbe/assign_add_ds.py +0 -60
- mindspore/ops/_op_impl/tbe/assign_ds.py +0 -80
- mindspore/ops/_op_impl/tbe/assign_sub.py +0 -55
- mindspore/ops/_op_impl/tbe/assign_sub_ds.py +0 -56
- mindspore/ops/_op_impl/tbe/atan.py +0 -37
- mindspore/ops/_op_impl/tbe/atan2.py +0 -38
- mindspore/ops/_op_impl/tbe/atan2_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/atan_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/atan_grad.py +0 -43
- mindspore/ops/_op_impl/tbe/atan_grad_ds.py +0 -44
- mindspore/ops/_op_impl/tbe/atanh.py +0 -37
- mindspore/ops/_op_impl/tbe/atanh_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/avg_pool.py +0 -43
- mindspore/ops/_op_impl/tbe/avg_pool_3d.py +0 -44
- mindspore/ops/_op_impl/tbe/avg_pool_3d_grad.py +0 -45
- mindspore/ops/_op_impl/tbe/avg_pool_ds.py +0 -44
- mindspore/ops/_op_impl/tbe/avg_pool_grad.py +0 -42
- mindspore/ops/_op_impl/tbe/avg_pool_grad_vm.py +0 -42
- mindspore/ops/_op_impl/tbe/basic_lstm_cell.py +0 -57
- mindspore/ops/_op_impl/tbe/basic_lstm_cell_c_state_grad.py +0 -50
- mindspore/ops/_op_impl/tbe/basic_lstm_cell_c_state_grad_v2.py +0 -51
- mindspore/ops/_op_impl/tbe/basic_lstm_cell_input_grad.py +0 -42
- mindspore/ops/_op_impl/tbe/basic_lstm_cell_weight_grad.py +0 -41
- mindspore/ops/_op_impl/tbe/batch_matmul.py +0 -42
- mindspore/ops/_op_impl/tbe/batch_matmul_ds.py +0 -41
- mindspore/ops/_op_impl/tbe/batch_matmul_v2.py +0 -47
- mindspore/ops/_op_impl/tbe/batch_to_space.py +0 -38
- mindspore/ops/_op_impl/tbe/batch_to_space_nd.py +0 -38
- mindspore/ops/_op_impl/tbe/batch_to_space_nd_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/batch_to_space_nd_v2.py +0 -41
- mindspore/ops/_op_impl/tbe/batchnorm.py +0 -58
- mindspore/ops/_op_impl/tbe/batchnorm_grad.py +0 -58
- mindspore/ops/_op_impl/tbe/bce_with_logits_loss.py +0 -42
- mindspore/ops/_op_impl/tbe/bessel_i0e.py +0 -37
- mindspore/ops/_op_impl/tbe/bessel_i0e_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/bessel_i1e.py +0 -37
- mindspore/ops/_op_impl/tbe/bessel_i1e_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/bias_add.py +0 -38
- mindspore/ops/_op_impl/tbe/bias_add_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/bias_add_grad.py +0 -53
- mindspore/ops/_op_impl/tbe/binary_cross_entropy.py +0 -39
- mindspore/ops/_op_impl/tbe/binary_cross_entropy_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/binary_cross_entropy_grad.py +0 -44
- mindspore/ops/_op_impl/tbe/binary_cross_entropy_grad_ds.py +0 -45
- mindspore/ops/_op_impl/tbe/bitwise_and.py +0 -39
- mindspore/ops/_op_impl/tbe/bitwise_and_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/bitwise_or.py +0 -39
- mindspore/ops/_op_impl/tbe/bitwise_or_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/bitwise_xor.py +0 -39
- mindspore/ops/_op_impl/tbe/bitwise_xor_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/bn_infer.py +0 -43
- mindspore/ops/_op_impl/tbe/bn_infer_ds.py +0 -45
- mindspore/ops/_op_impl/tbe/bn_infer_grad.py +0 -41
- mindspore/ops/_op_impl/tbe/bn_infer_grad_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/bn_inference.py +0 -50
- mindspore/ops/_op_impl/tbe/bn_training_reduce.py +0 -38
- mindspore/ops/_op_impl/tbe/bn_training_reduce_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/bn_training_reduce_grad.py +0 -46
- mindspore/ops/_op_impl/tbe/bn_training_reduce_grad_ds.py +0 -47
- mindspore/ops/_op_impl/tbe/bn_training_update.py +0 -52
- mindspore/ops/_op_impl/tbe/bn_training_update_ds.py +0 -53
- mindspore/ops/_op_impl/tbe/bn_training_update_grad.py +0 -44
- mindspore/ops/_op_impl/tbe/bn_training_update_grad_ds.py +0 -45
- mindspore/ops/_op_impl/tbe/bn_training_update_v2.py +0 -48
- mindspore/ops/_op_impl/tbe/bn_training_update_v3.py +0 -51
- mindspore/ops/_op_impl/tbe/bounding_box_decode.py +0 -41
- mindspore/ops/_op_impl/tbe/bounding_box_decode_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/bounding_box_encode.py +0 -38
- mindspore/ops/_op_impl/tbe/broadcast_to.py +0 -40
- mindspore/ops/_op_impl/tbe/broadcast_to_ds.py +0 -44
- mindspore/ops/_op_impl/tbe/cast.py +0 -55
- mindspore/ops/_op_impl/tbe/cast_ds.py +0 -58
- mindspore/ops/_op_impl/tbe/cdist.py +0 -38
- mindspore/ops/_op_impl/tbe/cdist_grad.py +0 -42
- mindspore/ops/_op_impl/tbe/ceil.py +0 -37
- mindspore/ops/_op_impl/tbe/ceil_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/celu.py +0 -39
- mindspore/ops/_op_impl/tbe/centralization.py +0 -39
- mindspore/ops/_op_impl/tbe/check_valid.py +0 -38
- mindspore/ops/_op_impl/tbe/check_valid_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/clip_by_norm_no_div_sum.py +0 -41
- mindspore/ops/_op_impl/tbe/clip_by_norm_no_div_sum_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/clip_by_value.py +0 -41
- mindspore/ops/_op_impl/tbe/clip_by_value_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/concat.py +0 -40
- mindspore/ops/_op_impl/tbe/concat_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/confusion_matrix.py +0 -63
- mindspore/ops/_op_impl/tbe/confusion_mul_grad.py +0 -40
- mindspore/ops/_op_impl/tbe/confusion_softmax_grad.py +0 -41
- mindspore/ops/_op_impl/tbe/confusion_transpose_d.py +0 -39
- mindspore/ops/_op_impl/tbe/conv2d.py +0 -47
- mindspore/ops/_op_impl/tbe/conv2d_backprop_filter.py +0 -42
- mindspore/ops/_op_impl/tbe/conv2d_backprop_filter_ds.py +0 -43
- mindspore/ops/_op_impl/tbe/conv2d_backprop_input.py +0 -42
- mindspore/ops/_op_impl/tbe/conv2d_backprop_input_ds.py +0 -44
- mindspore/ops/_op_impl/tbe/conv2d_ds.py +0 -47
- mindspore/ops/_op_impl/tbe/conv2d_transpose.py +0 -48
- mindspore/ops/_op_impl/tbe/conv3d.py +0 -45
- mindspore/ops/_op_impl/tbe/conv3d_backprop_filter.py +0 -42
- mindspore/ops/_op_impl/tbe/conv3d_backprop_input.py +0 -42
- mindspore/ops/_op_impl/tbe/conv3d_transpose.py +0 -47
- mindspore/ops/_op_impl/tbe/conv3d_transpose_ds.py +0 -48
- mindspore/ops/_op_impl/tbe/cos.py +0 -37
- mindspore/ops/_op_impl/tbe/cos_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/cosh.py +0 -37
- mindspore/ops/_op_impl/tbe/cosh_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/ctc_loss_v2.py +0 -42
- mindspore/ops/_op_impl/tbe/ctc_loss_v2_grad.py +0 -44
- mindspore/ops/_op_impl/tbe/cum_sum.py +0 -42
- mindspore/ops/_op_impl/tbe/cum_sum_ds.py +0 -44
- mindspore/ops/_op_impl/tbe/cummin.py +0 -41
- mindspore/ops/_op_impl/tbe/cumprod.py +0 -42
- mindspore/ops/_op_impl/tbe/data_format_dim_map.py +0 -38
- mindspore/ops/_op_impl/tbe/data_format_dim_map_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/deformable_offsets.py +0 -45
- mindspore/ops/_op_impl/tbe/deformable_offsets_grad.py +0 -48
- mindspore/ops/_op_impl/tbe/depth_to_space_ds.py +0 -49
- mindspore/ops/_op_impl/tbe/depthwise_conv2d.py +0 -44
- mindspore/ops/_op_impl/tbe/depthwise_conv2d_backprop_filter.py +0 -41
- mindspore/ops/_op_impl/tbe/depthwise_conv2d_backprop_input.py +0 -41
- mindspore/ops/_op_impl/tbe/diag.py +0 -38
- mindspore/ops/_op_impl/tbe/diag_part.py +0 -38
- mindspore/ops/_op_impl/tbe/dilation.py +0 -40
- mindspore/ops/_op_impl/tbe/div.py +0 -41
- mindspore/ops/_op_impl/tbe/div_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/div_no_nan.py +0 -41
- mindspore/ops/_op_impl/tbe/div_no_nan_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/dropout_do_mask.py +0 -38
- mindspore/ops/_op_impl/tbe/dropout_do_mask_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/dropout_do_mask_v3.py +0 -39
- mindspore/ops/_op_impl/tbe/dynamic_atomic_addr_clean.py +0 -34
- mindspore/ops/_op_impl/tbe/dynamic_gru_v2.py +0 -95
- mindspore/ops/_op_impl/tbe/dynamic_rnn.py +0 -82
- mindspore/ops/_op_impl/tbe/elu.py +0 -38
- mindspore/ops/_op_impl/tbe/elu_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/elu_grad.py +0 -43
- mindspore/ops/_op_impl/tbe/elu_grad_ds.py +0 -44
- mindspore/ops/_op_impl/tbe/equal.py +0 -42
- mindspore/ops/_op_impl/tbe/equal_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/erf.py +0 -37
- mindspore/ops/_op_impl/tbe/erf_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/erfc.py +0 -37
- mindspore/ops/_op_impl/tbe/erfc_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/erfinv.py +0 -36
- mindspore/ops/_op_impl/tbe/exp.py +0 -40
- mindspore/ops/_op_impl/tbe/exp_ds.py +0 -41
- mindspore/ops/_op_impl/tbe/expand_dims.py +0 -38
- mindspore/ops/_op_impl/tbe/expm1.py +0 -37
- mindspore/ops/_op_impl/tbe/expm1_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/extract_image_patches.py +0 -41
- mindspore/ops/_op_impl/tbe/extract_volume_patches.py +0 -39
- mindspore/ops/_op_impl/tbe/fake_quant_with_min_max_vars.py +0 -39
- mindspore/ops/_op_impl/tbe/fake_quant_with_min_max_vars_gradient.py +0 -43
- mindspore/ops/_op_impl/tbe/fake_quant_with_min_max_vars_per_channel.py +0 -39
- mindspore/ops/_op_impl/tbe/fake_quant_with_min_max_vars_per_channel_gradient.py +0 -43
- mindspore/ops/_op_impl/tbe/fast_gelu.py +0 -37
- mindspore/ops/_op_impl/tbe/fast_gelu_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/fast_gelu_grad.py +0 -41
- mindspore/ops/_op_impl/tbe/fast_gelu_grad_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/fill.py +0 -56
- mindspore/ops/_op_impl/tbe/fill_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/flatten.py +0 -48
- mindspore/ops/_op_impl/tbe/floor.py +0 -37
- mindspore/ops/_op_impl/tbe/floor_div.py +0 -41
- mindspore/ops/_op_impl/tbe/floor_div_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/floor_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/floor_mod.py +0 -39
- mindspore/ops/_op_impl/tbe/floor_mod_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/fused_dbn_dw.py +0 -52
- mindspore/ops/_op_impl/tbe/fused_mul_add.py +0 -38
- mindspore/ops/_op_impl/tbe/fused_mul_add_n.py +0 -48
- mindspore/ops/_op_impl/tbe/fused_mul_add_n_l2loss.py +0 -53
- mindspore/ops/_op_impl/tbe/fused_mul_apply_momentum.py +0 -57
- mindspore/ops/_op_impl/tbe/fused_mul_apply_momentum_extern.py +0 -67
- mindspore/ops/_op_impl/tbe/gather_nd.py +0 -52
- mindspore/ops/_op_impl/tbe/gather_nd_ds.py +0 -48
- mindspore/ops/_op_impl/tbe/gather_v2.py +0 -56
- mindspore/ops/_op_impl/tbe/gather_v2_ds.py +0 -68
- mindspore/ops/_op_impl/tbe/gelu.py +0 -37
- mindspore/ops/_op_impl/tbe/gelu_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/gelu_grad.py +0 -42
- mindspore/ops/_op_impl/tbe/gelu_grad_ds.py +0 -43
- mindspore/ops/_op_impl/tbe/ger.py +0 -43
- mindspore/ops/_op_impl/tbe/ger_ds.py +0 -44
- mindspore/ops/_op_impl/tbe/greater.py +0 -43
- mindspore/ops/_op_impl/tbe/greater_equal.py +0 -41
- mindspore/ops/_op_impl/tbe/greater_equal_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/gru_v2_hidden_grad.py +0 -51
- mindspore/ops/_op_impl/tbe/gru_v2_hidden_grad_cell.py +0 -52
- mindspore/ops/_op_impl/tbe/hard_swish.py +0 -37
- mindspore/ops/_op_impl/tbe/hard_swish_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/hard_swish_grad.py +0 -41
- mindspore/ops/_op_impl/tbe/hard_swish_grad_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/histogram_fixed_width.py +0 -40
- mindspore/ops/_op_impl/tbe/hshrink.py +0 -33
- mindspore/ops/_op_impl/tbe/hshrink_grad.py +0 -37
- mindspore/ops/_op_impl/tbe/hsigmoid.py +0 -45
- mindspore/ops/_op_impl/tbe/hsigmoid_grad.py +0 -39
- mindspore/ops/_op_impl/tbe/ifmr.py +0 -47
- mindspore/ops/_op_impl/tbe/ifmr_ds.py +0 -48
- mindspore/ops/_op_impl/tbe/im2col.py +0 -42
- mindspore/ops/_op_impl/tbe/in_top_k.py +0 -37
- mindspore/ops/_op_impl/tbe/inplace_add.py +0 -39
- mindspore/ops/_op_impl/tbe/inplace_index_add.py +0 -46
- mindspore/ops/_op_impl/tbe/inplace_sub.py +0 -39
- mindspore/ops/_op_impl/tbe/inplace_update.py +0 -39
- mindspore/ops/_op_impl/tbe/inplace_update_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/inv.py +0 -38
- mindspore/ops/_op_impl/tbe/inv_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/inv_grad.py +0 -40
- mindspore/ops/_op_impl/tbe/inv_grad_ds.py +0 -41
- mindspore/ops/_op_impl/tbe/invert.py +0 -37
- mindspore/ops/_op_impl/tbe/invert_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/iou.py +0 -38
- mindspore/ops/_op_impl/tbe/iou_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/is_close.py +0 -40
- mindspore/ops/_op_impl/tbe/kl_div_loss.py +0 -38
- mindspore/ops/_op_impl/tbe/kl_div_loss_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/kl_div_loss_grad.py +0 -40
- mindspore/ops/_op_impl/tbe/l2_loss.py +0 -36
- mindspore/ops/_op_impl/tbe/l2_loss_ds.py +0 -37
- mindspore/ops/_op_impl/tbe/l2_normalize.py +0 -38
- mindspore/ops/_op_impl/tbe/l2_normalize_grad.py +0 -40
- mindspore/ops/_op_impl/tbe/lamb_apply_optimizer_assign.py +0 -55
- mindspore/ops/_op_impl/tbe/lamb_apply_weight_assign.py +0 -42
- mindspore/ops/_op_impl/tbe/lamb_next_mv.py +0 -59
- mindspore/ops/_op_impl/tbe/lamb_next_mv_with_decay.py +0 -59
- mindspore/ops/_op_impl/tbe/lamb_next_right.py +0 -44
- mindspore/ops/_op_impl/tbe/lamb_update_with_lr.py +0 -48
- mindspore/ops/_op_impl/tbe/lamb_update_with_lr_v2.py +0 -44
- mindspore/ops/_op_impl/tbe/lars_update.py +0 -50
- mindspore/ops/_op_impl/tbe/lars_update_ds.py +0 -51
- mindspore/ops/_op_impl/tbe/layer_norm.py +0 -46
- mindspore/ops/_op_impl/tbe/layer_norm_beta_gamma_backprop.py +0 -44
- mindspore/ops/_op_impl/tbe/layer_norm_beta_gamma_backprop_ds.py +0 -45
- mindspore/ops/_op_impl/tbe/layer_norm_beta_gamma_backprop_v2.py +0 -40
- mindspore/ops/_op_impl/tbe/layer_norm_beta_gamma_backprop_v2_ds.py +0 -41
- mindspore/ops/_op_impl/tbe/layer_norm_ds.py +0 -47
- mindspore/ops/_op_impl/tbe/layer_norm_grad.py +0 -48
- mindspore/ops/_op_impl/tbe/layer_norm_x_backprop.py +0 -43
- mindspore/ops/_op_impl/tbe/layer_norm_x_backprop_ds.py +0 -44
- mindspore/ops/_op_impl/tbe/layer_norm_x_backprop_v2.py +0 -45
- mindspore/ops/_op_impl/tbe/layer_norm_x_backprop_v2_ds.py +0 -45
- mindspore/ops/_op_impl/tbe/lerp.py +0 -38
- mindspore/ops/_op_impl/tbe/less.py +0 -41
- mindspore/ops/_op_impl/tbe/less_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/less_equal.py +0 -41
- mindspore/ops/_op_impl/tbe/less_equal_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/log.py +0 -40
- mindspore/ops/_op_impl/tbe/log1p.py +0 -37
- mindspore/ops/_op_impl/tbe/log1p_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/log_ds.py +0 -41
- mindspore/ops/_op_impl/tbe/logical_and.py +0 -37
- mindspore/ops/_op_impl/tbe/logical_and_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/logical_not.py +0 -36
- mindspore/ops/_op_impl/tbe/logical_not_ds.py +0 -37
- mindspore/ops/_op_impl/tbe/logical_or.py +0 -37
- mindspore/ops/_op_impl/tbe/logical_or_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/logsoftmax.py +0 -37
- mindspore/ops/_op_impl/tbe/logsoftmax_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/logsoftmax_grad.py +0 -38
- mindspore/ops/_op_impl/tbe/logsoftmax_grad_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/lp_norm.py +0 -40
- mindspore/ops/_op_impl/tbe/lp_norm_ds.py +0 -41
- mindspore/ops/_op_impl/tbe/lrn.py +0 -41
- mindspore/ops/_op_impl/tbe/lrn_grad.py +0 -42
- mindspore/ops/_op_impl/tbe/lstm_input_grad.py +0 -51
- mindspore/ops/_op_impl/tbe/masked_fill.py +0 -40
- mindspore/ops/_op_impl/tbe/masked_fill_ds.py +0 -41
- mindspore/ops/_op_impl/tbe/matmul.py +0 -53
- mindspore/ops/_op_impl/tbe/matmul_ds.py +0 -47
- mindspore/ops/_op_impl/tbe/matmul_v2.py +0 -50
- mindspore/ops/_op_impl/tbe/matrix_diag.py +0 -45
- mindspore/ops/_op_impl/tbe/matrix_diag_part.py +0 -45
- mindspore/ops/_op_impl/tbe/matrix_set_diag.py +0 -46
- mindspore/ops/_op_impl/tbe/max_pool.py +0 -39
- mindspore/ops/_op_impl/tbe/max_pool3d.py +0 -44
- mindspore/ops/_op_impl/tbe/max_pool3d_grad.py +0 -43
- mindspore/ops/_op_impl/tbe/max_pool3d_grad_grad.py +0 -44
- mindspore/ops/_op_impl/tbe/max_pool_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/max_pool_grad.py +0 -43
- mindspore/ops/_op_impl/tbe/max_pool_grad_grad.py +0 -41
- mindspore/ops/_op_impl/tbe/max_pool_grad_grad_with_argmax.py +0 -41
- mindspore/ops/_op_impl/tbe/max_pool_grad_with_argmax.py +0 -42
- mindspore/ops/_op_impl/tbe/max_pool_with_argmax.py +0 -40
- mindspore/ops/_op_impl/tbe/maximum.py +0 -39
- mindspore/ops/_op_impl/tbe/maximum_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/maximum_grad.py +0 -46
- mindspore/ops/_op_impl/tbe/maximum_grad_ds.py +0 -47
- mindspore/ops/_op_impl/tbe/mem_set.py +0 -38
- mindspore/ops/_op_impl/tbe/minimum.py +0 -40
- mindspore/ops/_op_impl/tbe/minimum_ds.py +0 -41
- mindspore/ops/_op_impl/tbe/minimum_grad.py +0 -46
- mindspore/ops/_op_impl/tbe/minimum_grad_ds.py +0 -47
- mindspore/ops/_op_impl/tbe/mish.py +0 -37
- mindspore/ops/_op_impl/tbe/mod.py +0 -41
- mindspore/ops/_op_impl/tbe/mod_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/mul.py +0 -37
- mindspore/ops/_op_impl/tbe/mul_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/mul_no_nan.py +0 -39
- mindspore/ops/_op_impl/tbe/mul_no_nan_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/multilabel_margin_loss.py +0 -39
- mindspore/ops/_op_impl/tbe/neg.py +0 -39
- mindspore/ops/_op_impl/tbe/neg_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/new_im2col.py +0 -40
- mindspore/ops/_op_impl/tbe/nll_loss.py +0 -41
- mindspore/ops/_op_impl/tbe/nll_loss_grad.py +0 -44
- mindspore/ops/_op_impl/tbe/nms_with_mask.py +0 -39
- mindspore/ops/_op_impl/tbe/not_equal.py +0 -41
- mindspore/ops/_op_impl/tbe/not_equal_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/npu_alloc_float_status.py +0 -34
- mindspore/ops/_op_impl/tbe/npu_clear_float_status.py +0 -35
- mindspore/ops/_op_impl/tbe/npu_clear_float_status_v2.py +0 -35
- mindspore/ops/_op_impl/tbe/npu_get_float_status.py +0 -35
- mindspore/ops/_op_impl/tbe/npu_get_float_status_v2.py +0 -35
- mindspore/ops/_op_impl/tbe/one_hot.py +0 -48
- mindspore/ops/_op_impl/tbe/one_hot_ds.py +0 -45
- mindspore/ops/_op_impl/tbe/ones_like.py +0 -40
- mindspore/ops/_op_impl/tbe/ones_like_ds.py +0 -41
- mindspore/ops/_op_impl/tbe/p_s_r_o_i_pooling.py +0 -40
- mindspore/ops/_op_impl/tbe/p_s_r_o_i_pooling_grad.py +0 -40
- mindspore/ops/_op_impl/tbe/pack.py +0 -58
- mindspore/ops/_op_impl/tbe/pack_ds.py +0 -59
- mindspore/ops/_op_impl/tbe/pad_d.py +0 -40
- mindspore/ops/_op_impl/tbe/pad_d_ds.py +0 -41
- mindspore/ops/_op_impl/tbe/parallel_concat.py +0 -70
- mindspore/ops/_op_impl/tbe/parallel_resize_bilinear.py +0 -45
- mindspore/ops/_op_impl/tbe/parallel_resize_bilinear_grad.py +0 -44
- mindspore/ops/_op_impl/tbe/pdist.py +0 -36
- mindspore/ops/_op_impl/tbe/pooling.py +0 -46
- mindspore/ops/_op_impl/tbe/population_count.py +0 -38
- mindspore/ops/_op_impl/tbe/pow.py +0 -41
- mindspore/ops/_op_impl/tbe/pow_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/prelu.py +0 -37
- mindspore/ops/_op_impl/tbe/prelu_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/prelu_grad.py +0 -40
- mindspore/ops/_op_impl/tbe/range.py +0 -39
- mindspore/ops/_op_impl/tbe/real_div.py +0 -38
- mindspore/ops/_op_impl/tbe/real_div_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/reciprocal.py +0 -36
- mindspore/ops/_op_impl/tbe/reciprocal_ds.py +0 -37
- mindspore/ops/_op_impl/tbe/reciprocal_grad.py +0 -38
- mindspore/ops/_op_impl/tbe/reciprocal_grad_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/reduce_all.py +0 -38
- mindspore/ops/_op_impl/tbe/reduce_all_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/reduce_any.py +0 -38
- mindspore/ops/_op_impl/tbe/reduce_any_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/reduce_max.py +0 -43
- mindspore/ops/_op_impl/tbe/reduce_max_ds.py +0 -41
- mindspore/ops/_op_impl/tbe/reduce_mean.py +0 -40
- mindspore/ops/_op_impl/tbe/reduce_mean_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/reduce_min.py +0 -41
- mindspore/ops/_op_impl/tbe/reduce_min_ds.py +0 -41
- mindspore/ops/_op_impl/tbe/reduce_prod.py +0 -42
- mindspore/ops/_op_impl/tbe/reduce_prod_ds.py +0 -41
- mindspore/ops/_op_impl/tbe/reduce_std.py +0 -44
- mindspore/ops/_op_impl/tbe/reduce_sum.py +0 -39
- mindspore/ops/_op_impl/tbe/reduce_sum_ds.py +0 -41
- mindspore/ops/_op_impl/tbe/relu.py +0 -39
- mindspore/ops/_op_impl/tbe/relu6.py +0 -38
- mindspore/ops/_op_impl/tbe/relu6_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/relu6_grad.py +0 -43
- mindspore/ops/_op_impl/tbe/relu6_grad_ds.py +0 -44
- mindspore/ops/_op_impl/tbe/relu_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/relu_grad.py +0 -41
- mindspore/ops/_op_impl/tbe/relu_grad_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/relu_grad_v2.py +0 -40
- mindspore/ops/_op_impl/tbe/relu_grad_v2_ds.py +0 -41
- mindspore/ops/_op_impl/tbe/relu_v2.py +0 -40
- mindspore/ops/_op_impl/tbe/relu_v2_ds.py +0 -41
- mindspore/ops/_op_impl/tbe/renorm.py +0 -39
- mindspore/ops/_op_impl/tbe/resize_bilinear.py +0 -40
- mindspore/ops/_op_impl/tbe/resize_bilinear_grad.py +0 -41
- mindspore/ops/_op_impl/tbe/resize_bilinear_v2.py +0 -43
- mindspore/ops/_op_impl/tbe/resize_nearest_neighbor.py +0 -40
- mindspore/ops/_op_impl/tbe/resize_nearest_neighbor_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/resize_nearest_neighbor_grad.py +0 -39
- mindspore/ops/_op_impl/tbe/resize_nearest_neighbor_grad_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/reverse_v2_d.py +0 -37
- mindspore/ops/_op_impl/tbe/rint.py +0 -37
- mindspore/ops/_op_impl/tbe/rint_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/roi_align.py +0 -43
- mindspore/ops/_op_impl/tbe/roi_align_ds.py +0 -44
- mindspore/ops/_op_impl/tbe/roi_align_grad.py +0 -43
- mindspore/ops/_op_impl/tbe/roi_align_grad_ds.py +0 -44
- mindspore/ops/_op_impl/tbe/roll.py +0 -42
- mindspore/ops/_op_impl/tbe/round.py +0 -38
- mindspore/ops/_op_impl/tbe/round_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/rsqrt.py +0 -37
- mindspore/ops/_op_impl/tbe/rsqrt_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/rsqrt_grad.py +0 -40
- mindspore/ops/_op_impl/tbe/rsqrt_grad_ds.py +0 -41
- mindspore/ops/_op_impl/tbe/scatter_add.py +0 -44
- mindspore/ops/_op_impl/tbe/scatter_div.py +0 -46
- mindspore/ops/_op_impl/tbe/scatter_max.py +0 -45
- mindspore/ops/_op_impl/tbe/scatter_min.py +0 -45
- mindspore/ops/_op_impl/tbe/scatter_mul.py +0 -44
- mindspore/ops/_op_impl/tbe/scatter_nd.py +0 -41
- mindspore/ops/_op_impl/tbe/scatter_nd_add.py +0 -45
- mindspore/ops/_op_impl/tbe/scatter_nd_d.py +0 -41
- mindspore/ops/_op_impl/tbe/scatter_nd_ds.py +0 -49
- mindspore/ops/_op_impl/tbe/scatter_nd_sub.py +0 -47
- mindspore/ops/_op_impl/tbe/scatter_nd_sub_ds.py +0 -48
- mindspore/ops/_op_impl/tbe/scatter_nd_update.py +0 -47
- mindspore/ops/_op_impl/tbe/scatter_nd_update_ds.py +0 -48
- mindspore/ops/_op_impl/tbe/scatter_non_aliasing_add.py +0 -39
- mindspore/ops/_op_impl/tbe/scatter_non_aliasing_add_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/scatter_sub.py +0 -47
- mindspore/ops/_op_impl/tbe/scatter_sub_ds.py +0 -48
- mindspore/ops/_op_impl/tbe/scatter_update.py +0 -43
- mindspore/ops/_op_impl/tbe/select.py +0 -38
- mindspore/ops/_op_impl/tbe/select_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/selu.py +0 -39
- mindspore/ops/_op_impl/tbe/selu_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/sgd.py +0 -62
- mindspore/ops/_op_impl/tbe/sigmoid.py +0 -37
- mindspore/ops/_op_impl/tbe/sigmoid_cross_entropy_with_logits.py +0 -41
- mindspore/ops/_op_impl/tbe/sigmoid_cross_entropy_with_logits_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/sigmoid_cross_entropy_with_logits_grad.py +0 -42
- mindspore/ops/_op_impl/tbe/sigmoid_cross_entropy_with_logits_grad_ds.py +0 -43
- mindspore/ops/_op_impl/tbe/sigmoid_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/sigmoid_grad.py +0 -39
- mindspore/ops/_op_impl/tbe/sigmoid_grad_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/sign.py +0 -38
- mindspore/ops/_op_impl/tbe/sign_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/sin.py +0 -37
- mindspore/ops/_op_impl/tbe/sin_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/sinh.py +0 -37
- mindspore/ops/_op_impl/tbe/sinh_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/slice.py +0 -58
- mindspore/ops/_op_impl/tbe/smooth_l1_loss.py +0 -45
- mindspore/ops/_op_impl/tbe/smooth_l1_loss_ds.py +0 -46
- mindspore/ops/_op_impl/tbe/smooth_l1_loss_grad.py +0 -46
- mindspore/ops/_op_impl/tbe/smooth_l1_loss_grad_ds.py +0 -47
- mindspore/ops/_op_impl/tbe/soft_margin_loss.py +0 -38
- mindspore/ops/_op_impl/tbe/soft_margin_loss_grad.py +0 -39
- mindspore/ops/_op_impl/tbe/soft_shrink.py +0 -36
- mindspore/ops/_op_impl/tbe/soft_shrink_grad.py +0 -38
- mindspore/ops/_op_impl/tbe/softmax.py +0 -37
- mindspore/ops/_op_impl/tbe/softmax_cross_entropy_with_logits.py +0 -38
- mindspore/ops/_op_impl/tbe/softmax_cross_entropy_with_logits_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/softmax_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/softmax_grad_ext.py +0 -42
- mindspore/ops/_op_impl/tbe/softmax_v2_with_dropout_do_mask_v3.py +0 -39
- mindspore/ops/_op_impl/tbe/softplus.py +0 -37
- mindspore/ops/_op_impl/tbe/softplus_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/softplus_grad.py +0 -38
- mindspore/ops/_op_impl/tbe/softplus_grad_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/softsign.py +0 -37
- mindspore/ops/_op_impl/tbe/softsign_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/sort.py +0 -38
- mindspore/ops/_op_impl/tbe/sort_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/space_to_batch.py +0 -38
- mindspore/ops/_op_impl/tbe/space_to_batch_nd.py +0 -38
- mindspore/ops/_op_impl/tbe/space_to_depth.py +0 -47
- mindspore/ops/_op_impl/tbe/sparse_apply_adadelta.py +0 -56
- mindspore/ops/_op_impl/tbe/sparse_apply_adagrad.py +0 -45
- mindspore/ops/_op_impl/tbe/sparse_apply_adagrad_ds.py +0 -46
- mindspore/ops/_op_impl/tbe/sparse_apply_adagrad_v2.py +0 -46
- mindspore/ops/_op_impl/tbe/sparse_apply_adagrad_v2_ds.py +0 -47
- mindspore/ops/_op_impl/tbe/sparse_apply_ftrl_d.py +0 -53
- mindspore/ops/_op_impl/tbe/sparse_apply_ftrl_d_ds.py +0 -50
- mindspore/ops/_op_impl/tbe/sparse_apply_ftrl_v2.py +0 -50
- mindspore/ops/_op_impl/tbe/sparse_apply_proximal_adagrad.py +0 -66
- mindspore/ops/_op_impl/tbe/sparse_apply_proximal_adagrad_ds.py +0 -67
- mindspore/ops/_op_impl/tbe/sparse_apply_r_m_s_prop.py +0 -57
- mindspore/ops/_op_impl/tbe/sparse_apply_r_m_s_prop_ds.py +0 -58
- mindspore/ops/_op_impl/tbe/sparse_gather_v2.py +0 -56
- mindspore/ops/_op_impl/tbe/sparse_gather_v2_ds.py +0 -58
- mindspore/ops/_op_impl/tbe/split_d.py +0 -38
- mindspore/ops/_op_impl/tbe/split_d_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/split_v.py +0 -39
- mindspore/ops/_op_impl/tbe/splitv.py +0 -39
- mindspore/ops/_op_impl/tbe/sqrt.py +0 -37
- mindspore/ops/_op_impl/tbe/sqrt_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/sqrt_grad.py +0 -43
- mindspore/ops/_op_impl/tbe/sqrt_grad_ds.py +0 -44
- mindspore/ops/_op_impl/tbe/square.py +0 -38
- mindspore/ops/_op_impl/tbe/square_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/square_sum_all.py +0 -40
- mindspore/ops/_op_impl/tbe/square_sum_all_ds.py +0 -41
- mindspore/ops/_op_impl/tbe/square_sum_v1.py +0 -38
- mindspore/ops/_op_impl/tbe/square_sum_v1_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/square_sum_v2.py +0 -39
- mindspore/ops/_op_impl/tbe/squared_difference.py +0 -39
- mindspore/ops/_op_impl/tbe/squared_difference_ds.py +0 -41
- mindspore/ops/_op_impl/tbe/squeeze.py +0 -37
- mindspore/ops/_op_impl/tbe/strided_read.py +0 -38
- mindspore/ops/_op_impl/tbe/strided_slice_d.py +0 -44
- mindspore/ops/_op_impl/tbe/strided_slice_ds.py +0 -71
- mindspore/ops/_op_impl/tbe/strided_slice_grad_d.py +0 -51
- mindspore/ops/_op_impl/tbe/strided_slice_grad_ds.py +0 -57
- mindspore/ops/_op_impl/tbe/strided_write.py +0 -38
- mindspore/ops/_op_impl/tbe/sub.py +0 -39
- mindspore/ops/_op_impl/tbe/sub_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/tan.py +0 -38
- mindspore/ops/_op_impl/tbe/tan_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/tanh.py +0 -37
- mindspore/ops/_op_impl/tbe/tanh_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/tanh_grad.py +0 -39
- mindspore/ops/_op_impl/tbe/tanh_grad_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/tensor_move.py +0 -49
- mindspore/ops/_op_impl/tbe/tensor_move_ds.py +0 -50
- mindspore/ops/_op_impl/tbe/tensor_scatter_update.py +0 -41
- mindspore/ops/_op_impl/tbe/tile.py +0 -37
- mindspore/ops/_op_impl/tbe/tile_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/top_k.py +0 -42
- mindspore/ops/_op_impl/tbe/top_k_ds.py +0 -43
- mindspore/ops/_op_impl/tbe/trans_data.py +0 -167
- mindspore/ops/_op_impl/tbe/trans_data_ds.py +0 -180
- mindspore/ops/_op_impl/tbe/trans_data_rnn.py +0 -44
- mindspore/ops/_op_impl/tbe/transpose.py +0 -60
- mindspore/ops/_op_impl/tbe/transpose_d.py +0 -47
- mindspore/ops/_op_impl/tbe/transpose_nod.py +0 -60
- mindspore/ops/_op_impl/tbe/trunc.py +0 -39
- mindspore/ops/_op_impl/tbe/truncate_div.py +0 -41
- mindspore/ops/_op_impl/tbe/truncate_div_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/truncate_mod.py +0 -41
- mindspore/ops/_op_impl/tbe/truncate_mod_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/unpack.py +0 -38
- mindspore/ops/_op_impl/tbe/unpack_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/unsorted_segment_max.py +0 -49
- mindspore/ops/_op_impl/tbe/unsorted_segment_max_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/unsorted_segment_min.py +0 -49
- mindspore/ops/_op_impl/tbe/unsorted_segment_min_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/unsorted_segment_prod.py +0 -49
- mindspore/ops/_op_impl/tbe/unsorted_segment_prod_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/unsorted_segment_sum.py +0 -38
- mindspore/ops/_op_impl/tbe/unsorted_segment_sum_ds.py +0 -41
- mindspore/ops/_op_impl/tbe/wts_arq.py +0 -40
- mindspore/ops/_op_impl/tbe/xdivy.py +0 -38
- mindspore/ops/_op_impl/tbe/xdivy_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/xlogy.py +0 -38
- mindspore/ops/_op_impl/tbe/xlogy_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/zeros_like.py +0 -41
- mindspore/ops/_op_impl/tbe/zeros_like_ds.py +0 -42
- mindspore/ops/_tracefunc.py +0 -241
- mindspore/ops/arg_dtype_cast.py +0 -54
- mindspore/rewrite/api/tree_node_helper.py +0 -60
- mindspore/rewrite/ast_helpers/ast_creator.py +0 -115
- mindspore/rewrite/ast_transformers/flatten_recursive_stmt.py +0 -267
- mindspore/rewrite/ast_transformers/remove_return_out_of_if.py +0 -228
- mindspore/rewrite/namespace.py +0 -53
- mindspore-2.2.11.dist-info/RECORD +0 -1920
- {mindspore-2.2.11.dist-info → mindspore-2.3.0.dist-info}/WHEEL +0 -0
- {mindspore-2.2.11.dist-info → mindspore-2.3.0.dist-info}/top_level.txt +0 -0
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
# Copyright 2020-
|
|
1
|
+
# Copyright 2020-2023 Huawei Technologies Co., Ltd
|
|
2
2
|
#
|
|
3
3
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
4
|
# you may not use this file except in compliance with the License.
|
|
@@ -29,15 +29,21 @@ from mindspore.common._utils import is_shape_unknown, is_dim_unknown
|
|
|
29
29
|
from mindspore.ops.primitive import Primitive, PrimitiveWithInfer, PrimitiveWithCheck, prim_attr_register, _run_op
|
|
30
30
|
from mindspore import _checkparam as validator
|
|
31
31
|
from mindspore._checkparam import _check_3d_int_or_tuple
|
|
32
|
-
from mindspore.ops._tracefunc import PackFunc
|
|
33
32
|
from mindspore.common import dtype as mstype
|
|
34
33
|
from mindspore.common._decorator import deprecated
|
|
35
|
-
from mindspore.common.parameter import Parameter
|
|
36
34
|
from mindspore.common import Tensor, CSRTensor, COOTensor
|
|
37
35
|
from mindspore._c_expression import Tensor as Tensor_
|
|
38
36
|
from mindspore._c_expression import CSRTensor as CSRTensor_
|
|
39
37
|
from mindspore._c_expression import COOTensor as COOTensor_
|
|
40
|
-
|
|
38
|
+
from ..auto_generate import (ExpandDims, Reshape, TensorShape, Transpose, Gather,
|
|
39
|
+
OnesLike, ZerosLike, Argmax, ArgMaxExt,
|
|
40
|
+
ReverseV2, Diag, Eye, ScatterNd, ResizeNearestNeighborV2,
|
|
41
|
+
GatherNd, GatherD, Range, MaskedFill, RightShift, NonZero,
|
|
42
|
+
ResizeNearestNeighbor, Identity, Split, CumSum, CumProd,
|
|
43
|
+
Cummax, Cummin, Argmin, Concat, UnsortedSegmentSum, ScalarToTensor,
|
|
44
|
+
Triu, BroadcastTo, StridedSlice, Select, TopkExt, SearchSorted)
|
|
45
|
+
from .manually_defined import Rank, Shape, Tile, Cast, Ones, Zeros
|
|
46
|
+
from ..auto_generate import ArgMaxWithValue, ArgMinWithValue
|
|
41
47
|
|
|
42
48
|
class _ScatterOp(PrimitiveWithInfer):
|
|
43
49
|
"""
|
|
@@ -187,50 +193,6 @@ class Expand(Primitive):
|
|
|
187
193
|
self.init_prim_io_names(inputs=['x', 'shape'], outputs=['y'])
|
|
188
194
|
|
|
189
195
|
|
|
190
|
-
class ExpandDims(PrimitiveWithCheck):
|
|
191
|
-
"""
|
|
192
|
-
Adds an additional dimension to `input_x` at the given axis, the dimension of
|
|
193
|
-
`input_x` should be greater than or equal to 1.
|
|
194
|
-
|
|
195
|
-
Refer to :func:`mindspore.ops.expand_dims` for more details.
|
|
196
|
-
|
|
197
|
-
Inputs:
|
|
198
|
-
- **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
|
|
199
|
-
- **axis** (int) - Specifies the dimension index at which to expand
|
|
200
|
-
the shape of `input_x`. The value of axis must be in the range
|
|
201
|
-
`[-input_x.ndim-1, input_x.ndim]`. Only constant value is allowed.
|
|
202
|
-
|
|
203
|
-
Outputs:
|
|
204
|
-
Tensor, the shape of tensor is :math:`(1, x_1, x_2, ..., x_R)` if the
|
|
205
|
-
value of `axis` is 0. It has the same data type as `input_x`.
|
|
206
|
-
|
|
207
|
-
Supported Platforms:
|
|
208
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
209
|
-
|
|
210
|
-
Examples:
|
|
211
|
-
>>> import mindspore
|
|
212
|
-
>>> import numpy as np
|
|
213
|
-
>>> from mindspore import Tensor, ops
|
|
214
|
-
>>> input_tensor = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32)
|
|
215
|
-
>>> expand_dims = ops.ExpandDims()
|
|
216
|
-
>>> output = expand_dims(input_tensor, 0)
|
|
217
|
-
>>> print(output)
|
|
218
|
-
[[[2. 2.]
|
|
219
|
-
[2. 2.]]]
|
|
220
|
-
"""
|
|
221
|
-
|
|
222
|
-
@prim_attr_register
|
|
223
|
-
def __init__(self):
|
|
224
|
-
"""Initialize ExpandDims"""
|
|
225
|
-
self.init_prim_io_names(inputs=['x', 'axis'], outputs=['output'])
|
|
226
|
-
|
|
227
|
-
def infer_value(self, input_x, axis):
|
|
228
|
-
value = None
|
|
229
|
-
if input_x is not None and axis is not None:
|
|
230
|
-
value = Tensor(np.expand_dims(input_x.asnumpy(), axis))
|
|
231
|
-
return value
|
|
232
|
-
|
|
233
|
-
|
|
234
196
|
class DType(Primitive):
|
|
235
197
|
"""
|
|
236
198
|
Returns the data type of the input tensor as mindspore.dtype.
|
|
@@ -300,85 +262,6 @@ class CheckNumerics(Primitive):
|
|
|
300
262
|
self.init_prim_io_names(inputs=['x'], outputs=['y'])
|
|
301
263
|
|
|
302
264
|
|
|
303
|
-
class Cast(PrimitiveWithCheck):
|
|
304
|
-
"""
|
|
305
|
-
Returns a tensor with the new specified data type.
|
|
306
|
-
|
|
307
|
-
Note:
|
|
308
|
-
When converting complex numbers to boolean type, the imaginary part of the complex number is not
|
|
309
|
-
taken into account. As long as the real part is non-zero, it returns True; otherwise, it returns False.
|
|
310
|
-
|
|
311
|
-
Inputs:
|
|
312
|
-
- **input_x** (Union[Tensor, Number]) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
|
|
313
|
-
The tensor to be cast.
|
|
314
|
-
- **type** (dtype.Number) - The valid data type of the output tensor. Only constant value is allowed.
|
|
315
|
-
|
|
316
|
-
Outputs:
|
|
317
|
-
Tensor, the shape of tensor is the same as `input_x`, :math:`(x_1, x_2, ..., x_R)`.
|
|
318
|
-
|
|
319
|
-
Raises:
|
|
320
|
-
TypeError: If `input_x` is neither Tensor nor Number.
|
|
321
|
-
TypeError: If `type` is not a Number.
|
|
322
|
-
|
|
323
|
-
Supported Platforms:
|
|
324
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
325
|
-
|
|
326
|
-
Examples:
|
|
327
|
-
>>> import mindspore
|
|
328
|
-
>>> import numpy as np
|
|
329
|
-
>>> from mindspore import Tensor, ops
|
|
330
|
-
>>> input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
|
|
331
|
-
>>> input_x = Tensor(input_np)
|
|
332
|
-
>>> type_dst = mindspore.int32
|
|
333
|
-
>>> cast = ops.Cast()
|
|
334
|
-
>>> output = cast(input_x, type_dst)
|
|
335
|
-
>>> print(output.dtype)
|
|
336
|
-
Int32
|
|
337
|
-
>>> print(output.shape)
|
|
338
|
-
(2, 3, 4, 5)
|
|
339
|
-
"""
|
|
340
|
-
|
|
341
|
-
@prim_attr_register
|
|
342
|
-
def __init__(self):
|
|
343
|
-
"""Initialize Cast"""
|
|
344
|
-
self.init_prim_io_names(inputs=['x', 'dst_type'], outputs=['output'])
|
|
345
|
-
|
|
346
|
-
def check_elim(self, x, dtype):
|
|
347
|
-
if isinstance(x, (Tensor, numbers.Number, Parameter)):
|
|
348
|
-
if isinstance(x, Parameter):
|
|
349
|
-
data = x.data
|
|
350
|
-
if data.dtype == dtype:
|
|
351
|
-
return (True, x)
|
|
352
|
-
if isinstance(x, Tensor) and x.dtype == dtype and not PackFunc.is_tracing():
|
|
353
|
-
x = Tensor(x)
|
|
354
|
-
x.set_cast_dtype()
|
|
355
|
-
return (True, x)
|
|
356
|
-
if isinstance(x, numbers.Number):
|
|
357
|
-
return (True, Tensor(x, dtype=dtype))
|
|
358
|
-
return (False, None)
|
|
359
|
-
|
|
360
|
-
def infer_value(self, x, dst_type):
|
|
361
|
-
if x is None:
|
|
362
|
-
return None
|
|
363
|
-
src_type = mstype.get_py_obj_dtype(x)
|
|
364
|
-
validator.check_subclass("input_x", src_type,
|
|
365
|
-
[mstype.tensor_type, mstype.number], self.name)
|
|
366
|
-
validator.check_subclass("type", dst_type, mstype.number, self.name)
|
|
367
|
-
|
|
368
|
-
if isinstance(src_type, type(mstype.tensor_type)):
|
|
369
|
-
src_type = src_type.element_type()
|
|
370
|
-
if isinstance(dst_type, type(mstype.tensor_type)):
|
|
371
|
-
dst_type = dst_type.element_type()
|
|
372
|
-
|
|
373
|
-
value = None
|
|
374
|
-
np_dst_type = mstype.dtype_to_nptype(dst_type)
|
|
375
|
-
if isinstance(x, (int, float)):
|
|
376
|
-
value = Tensor(np.array(x).astype(np_dst_type), dtype=dst_type)
|
|
377
|
-
else:
|
|
378
|
-
value = Tensor(x.asnumpy().astype(np_dst_type), dtype=dst_type)
|
|
379
|
-
return value
|
|
380
|
-
|
|
381
|
-
|
|
382
265
|
class Im2Col(Primitive):
|
|
383
266
|
r"""
|
|
384
267
|
Extracts sliding local blocks from a batched input tensor.
|
|
@@ -427,7 +310,6 @@ class Im2Col(Primitive):
|
|
|
427
310
|
|
|
428
311
|
- If one int, :math:`pad\_height = pad\_width`.
|
|
429
312
|
- If two int, :math:`pad\_height = pads[0]`, :math:`pad\_width = pads[1]`.
|
|
430
|
-
- If four int, :math:`pads = [pad\_height\_top, pad\_height\_bottom, pad\_width\_left, pad\_width\_right]`.
|
|
431
313
|
|
|
432
314
|
Inputs:
|
|
433
315
|
- **x** (Tensor) - input tensor, only 4-D input tensors (batched image-like tensors) are supported.
|
|
@@ -492,11 +374,10 @@ class Im2Col(Primitive):
|
|
|
492
374
|
|
|
493
375
|
class Col2Im(Primitive):
|
|
494
376
|
r"""
|
|
495
|
-
|
|
377
|
+
Rearranges a row vector to an image. It is
|
|
496
378
|
usually used to reconstruct an image from a set of image patches(or sliding local blocks).
|
|
497
379
|
|
|
498
|
-
Consider
|
|
499
|
-
e.g., patches of images, of shape :math:`(N, C, \prod(\text{kernel_size}), L)`,
|
|
380
|
+
Consider an input Tensor of shape :math:`(N, C, \prod(\text{kernel_size}), L)`,
|
|
500
381
|
where :math:`N` is batch dimension, :math:`C` is channel dimension,
|
|
501
382
|
:math:`\prod(\text{kernel_size})` is the block size, and
|
|
502
383
|
:math:`L` is the total number of blocks. This operation combines these
|
|
@@ -583,149 +464,6 @@ class Col2Im(Primitive):
|
|
|
583
464
|
self.add_prim_attr('stride', self.stride)
|
|
584
465
|
|
|
585
466
|
|
|
586
|
-
class Reshape(PrimitiveWithCheck):
|
|
587
|
-
"""
|
|
588
|
-
Rearranges the input Tensor based on the given shape.
|
|
589
|
-
|
|
590
|
-
Refer to :func:`mindspore.ops.reshape` for more details.
|
|
591
|
-
|
|
592
|
-
Inputs:
|
|
593
|
-
- **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
|
|
594
|
-
- **input_shape** (tuple[int]) - The input tuple is constructed by multiple
|
|
595
|
-
integers, i.e., :math:`(y_1, y_2, ..., y_S)`.
|
|
596
|
-
|
|
597
|
-
Outputs:
|
|
598
|
-
Tensor, the shape of tensor is :math:`(y_1, y_2, ..., y_S)`.
|
|
599
|
-
|
|
600
|
-
Supported Platforms:
|
|
601
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
602
|
-
|
|
603
|
-
Examples:
|
|
604
|
-
>>> import mindspore
|
|
605
|
-
>>> import numpy as np
|
|
606
|
-
>>> from mindspore import Tensor, ops
|
|
607
|
-
>>> input_x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32)
|
|
608
|
-
>>> reshape = ops.Reshape()
|
|
609
|
-
>>> output = reshape(input_x, (3, 2))
|
|
610
|
-
>>> print(output)
|
|
611
|
-
[[-0.1 0.3]
|
|
612
|
-
[ 3.6 0.4]
|
|
613
|
-
[ 0.5 -3.2]]
|
|
614
|
-
"""
|
|
615
|
-
|
|
616
|
-
@prim_attr_register
|
|
617
|
-
def __init__(self):
|
|
618
|
-
"""Initialize Reshape"""
|
|
619
|
-
self.init_prim_io_names(inputs=['tensor', 'shape'], outputs=['output'])
|
|
620
|
-
|
|
621
|
-
def infer_value(self, x, shape):
|
|
622
|
-
"""infer value"""
|
|
623
|
-
# for shape is not constant
|
|
624
|
-
if shape is None or self.none_in_tuple_or_list(shape) or x is None:
|
|
625
|
-
return None
|
|
626
|
-
|
|
627
|
-
if isinstance(shape, (Tensor, Tensor_)):
|
|
628
|
-
validator.check_tensor_dtype_valid("shape", mstype.TensorType(shape.dtype),
|
|
629
|
-
[mstype.int32, mstype.int64], self.name)
|
|
630
|
-
shape = shape.asnumpy().tolist()
|
|
631
|
-
else:
|
|
632
|
-
validator.check_value_type("shape", shape, [tuple], self.name)
|
|
633
|
-
shape = list(shape)
|
|
634
|
-
|
|
635
|
-
neg_index = -1
|
|
636
|
-
dim_prod = 1
|
|
637
|
-
for i, shp_i in enumerate(shape):
|
|
638
|
-
validator.check_value_type("shape[%d]" % i, shp_i, [int], self.name)
|
|
639
|
-
if shp_i == -1:
|
|
640
|
-
if neg_index != -1:
|
|
641
|
-
raise ValueError(f"For '{self.name}', there can be at most one '-1' in 'input_shape', "
|
|
642
|
-
f"but got {shape}.")
|
|
643
|
-
neg_index = i
|
|
644
|
-
else:
|
|
645
|
-
dim_prod *= shp_i
|
|
646
|
-
out = None
|
|
647
|
-
if not is_shape_unknown(x.shape):
|
|
648
|
-
x_shp = x.shape
|
|
649
|
-
if dim_prod <= 0:
|
|
650
|
-
raise ValueError(f"For '{self.name}', the shape of 'input_x' is {x_shp}, "
|
|
651
|
-
f"the value of 'input_shape' is {shape}. "
|
|
652
|
-
f"The product of 'input_shape' should > 0, but got {dim_prod}.")
|
|
653
|
-
arr_prod = np.prod(x_shp)
|
|
654
|
-
if neg_index != -1:
|
|
655
|
-
shape[neg_index] = int(arr_prod // dim_prod)
|
|
656
|
-
dim_prod *= shape[neg_index]
|
|
657
|
-
if dim_prod != arr_prod:
|
|
658
|
-
raise ValueError(f"For '{self.name}', the product of the 'input_x' shape "
|
|
659
|
-
f"should be equal to product of 'input_shape', but got product of the"
|
|
660
|
-
f" shape of 'input_x': {arr_prod}, product of 'input_shape': {dim_prod}.")
|
|
661
|
-
out = Tensor(x.asnumpy().reshape(shape))
|
|
662
|
-
return out
|
|
663
|
-
|
|
664
|
-
def none_in_tuple_or_list(self, x):
|
|
665
|
-
return isinstance(x, (tuple, list)) and None in x
|
|
666
|
-
|
|
667
|
-
|
|
668
|
-
class Shape(Primitive):
|
|
669
|
-
"""
|
|
670
|
-
Returns the shape of the input tensor.
|
|
671
|
-
|
|
672
|
-
Refer to :func:`mindspore.ops.shape` for more details.
|
|
673
|
-
|
|
674
|
-
Inputs:
|
|
675
|
-
- **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
|
|
676
|
-
|
|
677
|
-
Outputs:
|
|
678
|
-
tuple[int], the output tuple is constructed by multiple integers,
|
|
679
|
-
:math:`(x_1, x_2, ..., x_R)`.
|
|
680
|
-
|
|
681
|
-
Supported Platforms:
|
|
682
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
683
|
-
|
|
684
|
-
Examples:
|
|
685
|
-
>>> import mindspore
|
|
686
|
-
>>> import numpy as np
|
|
687
|
-
>>> from mindspore import Tensor, ops
|
|
688
|
-
>>> input_x = Tensor(np.ones(shape=[3, 2, 1]), mindspore.float32)
|
|
689
|
-
>>> shape = ops.Shape()
|
|
690
|
-
>>> output = shape(input_x)
|
|
691
|
-
>>> print(output)
|
|
692
|
-
(3, 2, 1)
|
|
693
|
-
"""
|
|
694
|
-
|
|
695
|
-
@prim_attr_register
|
|
696
|
-
def __init__(self):
|
|
697
|
-
"""Initialize Shape"""
|
|
698
|
-
|
|
699
|
-
def __call__(self, x):
|
|
700
|
-
if isinstance(x, (Tensor, COOTensor, CSRTensor, Tensor_)):
|
|
701
|
-
return x.shape
|
|
702
|
-
raise TypeError(f"For primitive[{self.name}], the input argument must be Tensor, but got {type(x)}.")
|
|
703
|
-
|
|
704
|
-
|
|
705
|
-
class TensorShape(Primitive):
|
|
706
|
-
"""
|
|
707
|
-
Returns the shape of the input tensor.
|
|
708
|
-
|
|
709
|
-
Supported Platforms:
|
|
710
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
711
|
-
|
|
712
|
-
Examples:
|
|
713
|
-
>>> import mindspore
|
|
714
|
-
>>> import numpy as np
|
|
715
|
-
>>> from mindspore import Tensor, ops
|
|
716
|
-
>>> input_x = Tensor(np.ones(shape=[3, 2, 1]), mindspore.float32)
|
|
717
|
-
>>> shape = ops.TensorShape()
|
|
718
|
-
>>> output = shape(input_x)
|
|
719
|
-
>>> print(output)
|
|
720
|
-
[3 2 1]
|
|
721
|
-
"""
|
|
722
|
-
|
|
723
|
-
@prim_attr_register
|
|
724
|
-
def __init__(self):
|
|
725
|
-
"""init Shape"""
|
|
726
|
-
self.init_prim_io_names(inputs=['input_x'], outputs=['output'])
|
|
727
|
-
|
|
728
|
-
|
|
729
467
|
class Unsqueeze(PrimitiveWithCheck):
|
|
730
468
|
"""Unsqueeze"""
|
|
731
469
|
|
|
@@ -781,48 +519,6 @@ class Squeeze(Primitive):
|
|
|
781
519
|
self.add_prim_attr("axis", (axis,))
|
|
782
520
|
|
|
783
521
|
|
|
784
|
-
class Transpose(Primitive):
|
|
785
|
-
"""
|
|
786
|
-
Permutes the dimensions of the input tensor according to input permutation.
|
|
787
|
-
|
|
788
|
-
Refer to :func:`mindspore.ops.transpose` for more details.
|
|
789
|
-
|
|
790
|
-
Inputs:
|
|
791
|
-
- **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
|
|
792
|
-
- **input_perm** (tuple[int]) - The permutation to be converted. The elements in `input_perm` are composed of
|
|
793
|
-
the indexes of each dimension of `input_x`. The length of `input_perm` and the shape of `input_x` must be
|
|
794
|
-
the same. Only constant value is allowed. Must be in the range [0, rank(input_x)).
|
|
795
|
-
|
|
796
|
-
Outputs:
|
|
797
|
-
Tensor, the type of output tensor is the same as `input_x` and the shape of output tensor is decided by the
|
|
798
|
-
shape of `input_x` and the value of `input_perm`.
|
|
799
|
-
|
|
800
|
-
Supported Platforms:
|
|
801
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
802
|
-
|
|
803
|
-
Examples:
|
|
804
|
-
>>> import mindspore
|
|
805
|
-
>>> import numpy as np
|
|
806
|
-
>>> from mindspore import Tensor, ops
|
|
807
|
-
>>> input_x = Tensor(np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]), mindspore.float32)
|
|
808
|
-
>>> input_perm = (0, 2, 1)
|
|
809
|
-
>>> transpose = ops.Transpose()
|
|
810
|
-
>>> output = transpose(input_x, input_perm)
|
|
811
|
-
>>> print(output)
|
|
812
|
-
[[[ 1. 4.]
|
|
813
|
-
[ 2. 5.]
|
|
814
|
-
[ 3. 6.]]
|
|
815
|
-
[[ 7. 10.]
|
|
816
|
-
[ 8. 11.]
|
|
817
|
-
[ 9. 12.]]]
|
|
818
|
-
"""
|
|
819
|
-
|
|
820
|
-
@prim_attr_register
|
|
821
|
-
def __init__(self):
|
|
822
|
-
"""Initialize Transpose"""
|
|
823
|
-
self.init_prim_io_names(inputs=['x', 'perm'], outputs=['output'])
|
|
824
|
-
|
|
825
|
-
|
|
826
522
|
class ConjugateTranspose(Primitive):
|
|
827
523
|
"""
|
|
828
524
|
Calculate the conjugate matrix of input x which has been transposed according to input perm.
|
|
@@ -992,99 +688,6 @@ class UniqueConsecutive(Primitive):
|
|
|
992
688
|
self.add_prim_attr("axis", axis)
|
|
993
689
|
|
|
994
690
|
|
|
995
|
-
class Gather(Primitive):
|
|
996
|
-
r"""
|
|
997
|
-
Returns the slice of the input tensor corresponding to the elements of `input_indices` on the specified `axis`.
|
|
998
|
-
|
|
999
|
-
Refer to :func:`mindspore.ops.gather` for more details.
|
|
1000
|
-
|
|
1001
|
-
Args:
|
|
1002
|
-
batch_dims (int, optional): Specifies the number of batch dimensions.
|
|
1003
|
-
It must be less than or equal to the rank of `input_indices`. Default: ``0`` .
|
|
1004
|
-
|
|
1005
|
-
Inputs:
|
|
1006
|
-
- **input_params** (Tensor) - The original Tensor. The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
|
|
1007
|
-
- **input_indices** (Tensor) - Index tensor to be sliced, the shape of tensor is :math:`(y_1, y_2, ..., y_S)`.
|
|
1008
|
-
Specifies the indices of elements of the original Tensor. The data type can be int32 or int64.
|
|
1009
|
-
- **axis** (Union(int, Tensor[int])) - Specifies the dimension index to gather indices.
|
|
1010
|
-
When axis is Tensor, the size must be 1.
|
|
1011
|
-
|
|
1012
|
-
Outputs:
|
|
1013
|
-
Tensor, the shape of tensor is
|
|
1014
|
-
:math:`input\_params.shape[:axis] + input\_indices.shape + input\_params.shape[axis + 1:]`.
|
|
1015
|
-
|
|
1016
|
-
Supported Platforms:
|
|
1017
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
1018
|
-
|
|
1019
|
-
Examples:
|
|
1020
|
-
>>> import mindspore
|
|
1021
|
-
>>> import numpy as np
|
|
1022
|
-
>>> from mindspore import Tensor, ops
|
|
1023
|
-
>>> # case1: input_indices is a Tensor with shape (5, ).
|
|
1024
|
-
>>> input_params = Tensor(np.array([1, 2, 3, 4, 5, 6, 7]), mindspore.float32)
|
|
1025
|
-
>>> input_indices = Tensor(np.array([0, 2, 4, 2, 6]), mindspore.int32)
|
|
1026
|
-
>>> axis = 0
|
|
1027
|
-
>>> output = ops.Gather()(input_params, input_indices, axis)
|
|
1028
|
-
>>> print(output)
|
|
1029
|
-
[1. 3. 5. 3. 7.]
|
|
1030
|
-
>>> # case2: input_indices is a Tensor with shape (2, 2). When the input_params has one dimension,
|
|
1031
|
-
the output shape is equal to the input_indices shape.
|
|
1032
|
-
>>> input_indices = Tensor(np.array([[0, 2], [2, 6]]), mindspore.int32)
|
|
1033
|
-
>>> axis = 0
|
|
1034
|
-
>>> output = ops.Gather()(input_params, input_indices, axis)
|
|
1035
|
-
>>> print(output)
|
|
1036
|
-
[[ 1. 3.]
|
|
1037
|
-
[ 3. 7.]]
|
|
1038
|
-
>>> # case3: input_indices is a Tensor with shape (2, ). input_params is a Tensor with shape (3, 4) and axis is 0.
|
|
1039
|
-
>>> input_params = Tensor(np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]), mindspore.float32)
|
|
1040
|
-
>>> input_indices = Tensor(np.array([0, 2]), mindspore.int32)
|
|
1041
|
-
>>> axis = 0
|
|
1042
|
-
>>> output = ops.Gather()(input_params, input_indices, axis)
|
|
1043
|
-
>>> print(output)
|
|
1044
|
-
[[1. 2. 3. 4.]
|
|
1045
|
-
[9. 10. 11. 12.]]
|
|
1046
|
-
>>> # case4: input_indices is a Tensor with shape (2, ).
|
|
1047
|
-
>>> # input_params is a Tensor with shape (3, 4) and axis is 1, batch_dims is 1.
|
|
1048
|
-
>>> input_params = Tensor(np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]), mindspore.float32)
|
|
1049
|
-
>>> input_indices = Tensor(np.array([0, 2, 1]), mindspore.int32)
|
|
1050
|
-
>>> axis = 1
|
|
1051
|
-
>>> batch_dims = 1
|
|
1052
|
-
>>> output = ops.Gather(batch_dims)(input_params, input_indices, axis)
|
|
1053
|
-
>>> print(output)
|
|
1054
|
-
[ 1. 7. 10.]
|
|
1055
|
-
"""
|
|
1056
|
-
|
|
1057
|
-
@prim_attr_register
|
|
1058
|
-
def __init__(self, batch_dims=0):
|
|
1059
|
-
"""Initialize Gather"""
|
|
1060
|
-
validator.check_value_type("batch_dims", batch_dims, [int], self.name)
|
|
1061
|
-
self.add_prim_attr("batch_dims", batch_dims)
|
|
1062
|
-
self.init_prim_io_names(inputs=['params', 'indices', 'axis'], outputs=['output'])
|
|
1063
|
-
|
|
1064
|
-
|
|
1065
|
-
class GatherV2(PrimitiveWithCheck):
|
|
1066
|
-
"""
|
|
1067
|
-
Same as operator Gather. GatherV2 will be deprecated in the future.
|
|
1068
|
-
Please use Gather instead.
|
|
1069
|
-
"""
|
|
1070
|
-
|
|
1071
|
-
@deprecated("1.1", "Gather", True)
|
|
1072
|
-
@prim_attr_register
|
|
1073
|
-
def __init__(self):
|
|
1074
|
-
"""Initialize GatherV2"""
|
|
1075
|
-
self.add_prim_attr("batch_dims", 0)
|
|
1076
|
-
self.init_prim_io_names(inputs=['params', 'indices', 'axis'], outputs=['output'])
|
|
1077
|
-
|
|
1078
|
-
def __check__(self, params, indices, axis):
|
|
1079
|
-
validator.check_subclass("params", params['dtype'], mstype.tensor_type, self.name)
|
|
1080
|
-
validator.check_tensor_dtype_valid("indices", indices['dtype'], mstype.int_type, self.name)
|
|
1081
|
-
validator.check_subclass("axis", axis['dtype'], [mstype.number], self.name)
|
|
1082
|
-
axis_v = axis['value']
|
|
1083
|
-
validator.check_value_type('axis', axis_v, [int], self.name)
|
|
1084
|
-
rank = len(params['shape'])
|
|
1085
|
-
validator.check_int_range(axis_v, -rank, rank, validator.INC_LEFT, "axis", self.name)
|
|
1086
|
-
|
|
1087
|
-
|
|
1088
691
|
class SparseGatherV2(Primitive):
|
|
1089
692
|
"""
|
|
1090
693
|
Returns a slice of input tensor based on the specified indices and axis.
|
|
@@ -1207,100 +810,6 @@ class UniqueWithPad(Primitive):
|
|
|
1207
810
|
self.init_prim_io_names(inputs=['x', 'pad_num'], outputs=['y', 'idx'])
|
|
1208
811
|
|
|
1209
812
|
|
|
1210
|
-
class Split(Primitive):
|
|
1211
|
-
r"""
|
|
1212
|
-
Splits the input tensor into output_num of tensors along the given axis and output numbers.
|
|
1213
|
-
|
|
1214
|
-
Refer to :func:`mindspore.ops.split` for more details.
|
|
1215
|
-
|
|
1216
|
-
Args:
|
|
1217
|
-
axis (int): Index of the split position. Default: ``0`` .
|
|
1218
|
-
output_num (int): The number of output tensors. Must be positive int. Default: ``1`` .
|
|
1219
|
-
|
|
1220
|
-
Inputs:
|
|
1221
|
-
- **input_x** (Tensor) - The shape of tensor is :math:`(x_0, x_1, ..., x_{R-1})`, R >= 1.
|
|
1222
|
-
|
|
1223
|
-
Outputs:
|
|
1224
|
-
tuple[Tensor], the shape of each output tensor is the same, which is
|
|
1225
|
-
:math:`(x_0, x_1, ..., x_{axis}/{output\_num}, ..., x_{R-1})`.
|
|
1226
|
-
And the data type is the same as `input_x`.
|
|
1227
|
-
|
|
1228
|
-
Supported Platforms:
|
|
1229
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
1230
|
-
|
|
1231
|
-
Examples:
|
|
1232
|
-
>>> import mindspore
|
|
1233
|
-
>>> import numpy as np
|
|
1234
|
-
>>> from mindspore import Tensor, ops
|
|
1235
|
-
>>> split = ops.Split(1, 2)
|
|
1236
|
-
>>> x = Tensor(np.array([[1, 1, 1, 1], [2, 2, 2, 2]]), mindspore.int32)
|
|
1237
|
-
>>> print(x)
|
|
1238
|
-
[[1 1 1 1]
|
|
1239
|
-
[2 2 2 2]]
|
|
1240
|
-
>>> output = split(x)
|
|
1241
|
-
>>> print(output)
|
|
1242
|
-
(Tensor(shape=[2, 2], dtype=Int32, value=
|
|
1243
|
-
[[1, 1],
|
|
1244
|
-
[2, 2]]), Tensor(shape=[2, 2], dtype=Int32, value=
|
|
1245
|
-
[[1, 1],
|
|
1246
|
-
[2, 2]]))
|
|
1247
|
-
>>> split = ops.Split(1, 4)
|
|
1248
|
-
>>> output = split(x)
|
|
1249
|
-
>>> print(output)
|
|
1250
|
-
(Tensor(shape=[2, 1], dtype=Int32, value=
|
|
1251
|
-
[[1],
|
|
1252
|
-
[2]]), Tensor(shape=[2, 1], dtype=Int32, value=
|
|
1253
|
-
[[1],
|
|
1254
|
-
[2]]), Tensor(shape=[2, 1], dtype=Int32, value=
|
|
1255
|
-
[[1],
|
|
1256
|
-
[2]]), Tensor(shape=[2, 1], dtype=Int32, value=
|
|
1257
|
-
[[1],
|
|
1258
|
-
[2]]))
|
|
1259
|
-
"""
|
|
1260
|
-
|
|
1261
|
-
@prim_attr_register
|
|
1262
|
-
def __init__(self, axis=0, output_num=1):
|
|
1263
|
-
"""Initialize Split"""
|
|
1264
|
-
validator.check_value_type("axis", axis, [int], self.name)
|
|
1265
|
-
validator.check_value_type("output_num", output_num, [int], self.name)
|
|
1266
|
-
validator.check_positive_int(output_num, "output_num", self.name)
|
|
1267
|
-
self.axis = axis
|
|
1268
|
-
self.output_num = output_num
|
|
1269
|
-
self.add_prim_attr('num_split', self.output_num)
|
|
1270
|
-
|
|
1271
|
-
|
|
1272
|
-
class Rank(Primitive):
|
|
1273
|
-
"""
|
|
1274
|
-
Returns the rank of a tensor.
|
|
1275
|
-
|
|
1276
|
-
Refer to :func:`mindspore.ops.rank` for more details.
|
|
1277
|
-
|
|
1278
|
-
Supported Platforms:
|
|
1279
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
1280
|
-
|
|
1281
|
-
Examples:
|
|
1282
|
-
>>> import mindspore
|
|
1283
|
-
>>> import numpy as np
|
|
1284
|
-
>>> from mindspore import Tensor, ops
|
|
1285
|
-
>>> input_tensor = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32)
|
|
1286
|
-
>>> rank = ops.Rank()
|
|
1287
|
-
>>> output = rank(input_tensor)
|
|
1288
|
-
>>> print(output)
|
|
1289
|
-
2
|
|
1290
|
-
>>> print(type(output))
|
|
1291
|
-
<class 'int'>
|
|
1292
|
-
"""
|
|
1293
|
-
|
|
1294
|
-
@prim_attr_register
|
|
1295
|
-
def __init__(self):
|
|
1296
|
-
"""Initialize Rank"""
|
|
1297
|
-
|
|
1298
|
-
def __call__(self, x):
|
|
1299
|
-
if not isinstance(x, (Tensor, Tensor_)):
|
|
1300
|
-
raise TypeError("the input x must be Tensor!")
|
|
1301
|
-
return len(x.shape)
|
|
1302
|
-
|
|
1303
|
-
|
|
1304
813
|
class Size(Primitive):
|
|
1305
814
|
r"""
|
|
1306
815
|
Returns a Scalar of type int that represents the size of the input Tensor and the total number of elements in the
|
|
@@ -1310,7 +819,7 @@ class Size(Primitive):
|
|
|
1310
819
|
|
|
1311
820
|
Inputs:
|
|
1312
821
|
- **input_x** (Tensor) - Input parameters, the shape of tensor is :math:`(x_1, x_2, ..., x_R)`. The data type is
|
|
1313
|
-
`number <https://www.mindspore.cn/docs/en/
|
|
822
|
+
`number <https://www.mindspore.cn/docs/en/master/api_python/mindspore.html#mindspore.dtype>`_.
|
|
1314
823
|
|
|
1315
824
|
Outputs:
|
|
1316
825
|
int. A scalar representing the elements' size of `input_x`, tensor is the number of elements
|
|
@@ -1497,7 +1006,7 @@ class MatrixDiagPartV3(Primitive):
|
|
|
1497
1006
|
class MatrixSetDiagV3(Primitive):
|
|
1498
1007
|
r"""
|
|
1499
1008
|
Updates the diagonal part of a batched tensor.
|
|
1500
|
-
It takes
|
|
1009
|
+
It takes a Tensor `x` and `diagonal` as input and returns a Tensor in which
|
|
1501
1010
|
the specified diagonal values in the innermost matrices will be replaced
|
|
1502
1011
|
by the values in the `diagonal`.
|
|
1503
1012
|
|
|
@@ -1763,186 +1272,49 @@ class FillV2(PrimitiveWithCheck):
|
|
|
1763
1272
|
self.init_prim_io_names(inputs=['shape', 'value'], outputs=['y'])
|
|
1764
1273
|
|
|
1765
1274
|
def check_elim(self, dims, x):
|
|
1766
|
-
|
|
1767
|
-
|
|
1768
|
-
|
|
1769
|
-
if x_is_invalid or dims_is_invalid:
|
|
1275
|
+
if x is None or (not isinstance(x, (Tensor, Tensor_))) or (x.shape != ()) or \
|
|
1276
|
+
dims is None or (isinstance(dims, (tuple, list)) and dims) or \
|
|
1277
|
+
isinstance(dims, (Tensor, Tensor_)):
|
|
1770
1278
|
return (False, None)
|
|
1771
1279
|
return (True, x)
|
|
1772
1280
|
|
|
1773
1281
|
def infer_value(self, dims, x):
|
|
1774
|
-
|
|
1775
|
-
(isinstance(dims, (tuple, list)) and dims) or\
|
|
1776
|
-
isinstance(dims, (Tensor, Tensor_))
|
|
1777
|
-
if x is None or dims_is_invalid:
|
|
1282
|
+
if x is None or dims is None or isinstance(dims, (Tensor, Tensor_)):
|
|
1778
1283
|
return None
|
|
1779
|
-
|
|
1284
|
+
if isinstance(dims, (tuple, list)) and None in dims:
|
|
1285
|
+
return None
|
|
1286
|
+
if 0 in dims:
|
|
1287
|
+
init_func = Zero()
|
|
1288
|
+
init_func.__enable_zero_dim__ = True
|
|
1289
|
+
out = Tensor(shape=dims, dtype=x.dtype, init=init_func)
|
|
1290
|
+
return out
|
|
1291
|
+
return Tensor(np.full(dims, x.asnumpy()))
|
|
1780
1292
|
|
|
1781
1293
|
|
|
1782
|
-
class
|
|
1783
|
-
|
|
1784
|
-
|
|
1294
|
+
class TupleToArray(PrimitiveWithInfer):
|
|
1295
|
+
"""
|
|
1296
|
+
Converts a tuple to a tensor.
|
|
1785
1297
|
|
|
1786
|
-
Refer to :func:`mindspore.ops.
|
|
1298
|
+
Refer to :func:`mindspore.ops.tuple_to_array` for more details.
|
|
1787
1299
|
|
|
1788
1300
|
Inputs:
|
|
1789
|
-
- **
|
|
1790
|
-
|
|
1301
|
+
- **input_x** (tuple) - A tuple of numbers. These numbers have the same type.
|
|
1302
|
+
The shape is :math:`(N,*)` where :math:`*` means any number of additional dimensions.
|
|
1791
1303
|
|
|
1792
1304
|
Outputs:
|
|
1793
|
-
Tensor,
|
|
1305
|
+
Tensor, if the input tuple contains `N` numbers, then the shape of the output tensor is :math:`(N,)`.
|
|
1794
1306
|
|
|
1795
1307
|
Supported Platforms:
|
|
1796
1308
|
``Ascend`` ``GPU`` ``CPU``
|
|
1797
1309
|
|
|
1798
1310
|
Examples:
|
|
1799
|
-
>>> import mindspore
|
|
1800
1311
|
>>> from mindspore import ops
|
|
1801
|
-
>>>
|
|
1802
|
-
>>>
|
|
1803
|
-
|
|
1804
|
-
|
|
1805
|
-
|
|
1806
|
-
|
|
1807
|
-
>>> print(output)
|
|
1808
|
-
[[1. 1. 1.]
|
|
1809
|
-
[1. 1. 1.]
|
|
1810
|
-
[1. 1. 1.]]
|
|
1811
|
-
"""
|
|
1812
|
-
|
|
1813
|
-
@prim_attr_register
|
|
1814
|
-
def __init__(self):
|
|
1815
|
-
"""Initialize Ones"""
|
|
1816
|
-
|
|
1817
|
-
|
|
1818
|
-
class Zeros(Primitive):
|
|
1819
|
-
r"""
|
|
1820
|
-
Zeros will be deprecated in the future. Please use class `mindspore.ops.zeros` instead.
|
|
1821
|
-
|
|
1822
|
-
Creates a tensor filled with value zeros.
|
|
1823
|
-
|
|
1824
|
-
Creates a tensor with shape described by the first argument and
|
|
1825
|
-
fills it with value zeros in type of the second argument.
|
|
1826
|
-
|
|
1827
|
-
Inputs:
|
|
1828
|
-
- **shape** (Union[tuple[int], int]) - The specified shape of output tensor.
|
|
1829
|
-
- **type** (mindspore.dtype) - The specified type of output tensor.
|
|
1830
|
-
|
|
1831
|
-
Outputs:
|
|
1832
|
-
Tensor, has the same type and shape as input shape value.
|
|
1833
|
-
|
|
1834
|
-
Raises:
|
|
1835
|
-
TypeError: If `shape` is neither int nor tuple.
|
|
1836
|
-
TypeError: If `shape` is a tuple whose elements are not all int.
|
|
1837
|
-
|
|
1838
|
-
Supported Platforms:
|
|
1839
|
-
Deprecated
|
|
1840
|
-
|
|
1841
|
-
Examples:
|
|
1842
|
-
>>> import mindspore
|
|
1843
|
-
>>> from mindspore import ops
|
|
1844
|
-
>>> zeros = ops.Zeros()
|
|
1845
|
-
>>> output = zeros((2, 2), mindspore.float32)
|
|
1846
|
-
>>> print(output)
|
|
1847
|
-
[[0. 0.]
|
|
1848
|
-
[0. 0.]]
|
|
1849
|
-
|
|
1850
|
-
"""
|
|
1851
|
-
|
|
1852
|
-
@prim_attr_register
|
|
1853
|
-
def __init__(self):
|
|
1854
|
-
"""Initialize Zeros"""
|
|
1855
|
-
|
|
1856
|
-
|
|
1857
|
-
class OnesLike(Primitive):
|
|
1858
|
-
"""
|
|
1859
|
-
Returns a Tensor with a value of 1 and its shape and data type is the same as the input.
|
|
1860
|
-
|
|
1861
|
-
Refer to :func:`mindspore.ops.ones_like` for more details.
|
|
1862
|
-
|
|
1863
|
-
Inputs:
|
|
1864
|
-
- **input_x** (Tensor) - Tensor of any dimension.
|
|
1865
|
-
|
|
1866
|
-
Outputs:
|
|
1867
|
-
Tensor, has the same shape and type as `input_x` but filled with ones.
|
|
1868
|
-
|
|
1869
|
-
Supported Platforms:
|
|
1870
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
1871
|
-
|
|
1872
|
-
Examples:
|
|
1873
|
-
>>> import numpy as np
|
|
1874
|
-
>>> from mindspore import Tensor, ops
|
|
1875
|
-
>>> oneslike = ops.OnesLike()
|
|
1876
|
-
>>> input_x = Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))
|
|
1877
|
-
>>> output = oneslike(input_x)
|
|
1878
|
-
>>> print(output)
|
|
1879
|
-
[[1 1]
|
|
1880
|
-
[1 1]]
|
|
1881
|
-
"""
|
|
1882
|
-
|
|
1883
|
-
@prim_attr_register
|
|
1884
|
-
def __init__(self):
|
|
1885
|
-
"""Initialize OnesLike"""
|
|
1886
|
-
self.init_prim_io_names(inputs=['x'], outputs=['y'])
|
|
1887
|
-
|
|
1888
|
-
|
|
1889
|
-
class ZerosLike(Primitive):
|
|
1890
|
-
"""
|
|
1891
|
-
Returns a Tensor with a value of 0 and its shape and data type is the same as the input.
|
|
1892
|
-
|
|
1893
|
-
Inputs:
|
|
1894
|
-
- **input_x** (Tensor) - Input Tensor of any dimension.
|
|
1895
|
-
|
|
1896
|
-
Outputs:
|
|
1897
|
-
Tensor, has the same shape and data type as `input_x` but filled with zeros.
|
|
1898
|
-
|
|
1899
|
-
Raises:
|
|
1900
|
-
TypeError: If `input_x` is not a Tensor.
|
|
1901
|
-
|
|
1902
|
-
Supported Platforms:
|
|
1903
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
1904
|
-
|
|
1905
|
-
Examples:
|
|
1906
|
-
>>> import numpy as np
|
|
1907
|
-
>>> from mindspore import Tensor, ops
|
|
1908
|
-
>>> zeroslike = ops.ZerosLike()
|
|
1909
|
-
>>> input_x = Tensor(np.array([[0, 1], [2, 1]]).astype(np.float32))
|
|
1910
|
-
>>> output = zeroslike(input_x)
|
|
1911
|
-
>>> print(output)
|
|
1912
|
-
[[0. 0.]
|
|
1913
|
-
[0. 0.]]
|
|
1914
|
-
"""
|
|
1915
|
-
|
|
1916
|
-
@prim_attr_register
|
|
1917
|
-
def __init__(self):
|
|
1918
|
-
"""Initialize ZerosLike"""
|
|
1919
|
-
self.init_prim_io_names(inputs=['x'], outputs=['y'])
|
|
1920
|
-
|
|
1921
|
-
|
|
1922
|
-
class TupleToArray(PrimitiveWithInfer):
|
|
1923
|
-
"""
|
|
1924
|
-
Converts a tuple to a tensor.
|
|
1925
|
-
|
|
1926
|
-
Refer to :func:`mindspore.ops.tuple_to_array` for more details.
|
|
1927
|
-
|
|
1928
|
-
Inputs:
|
|
1929
|
-
- **input_x** (tuple) - A tuple of numbers. These numbers have the same type.
|
|
1930
|
-
The shape is :math:`(N,*)` where :math:`*` means any number of additional dimensions.
|
|
1931
|
-
|
|
1932
|
-
Outputs:
|
|
1933
|
-
Tensor, if the input tuple contains `N` numbers, then the shape of the output tensor is :math:`(N,)`.
|
|
1934
|
-
|
|
1935
|
-
Supported Platforms:
|
|
1936
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
1937
|
-
|
|
1938
|
-
Examples:
|
|
1939
|
-
>>> from mindspore import ops
|
|
1940
|
-
>>> input_x = (1,2,3)
|
|
1941
|
-
>>> print(type(input_x))
|
|
1942
|
-
<class 'tuple'>
|
|
1943
|
-
>>> output = ops.TupleToArray()(input_x)
|
|
1944
|
-
>>> print(type(output))
|
|
1945
|
-
<class 'mindspore.common.tensor.Tensor'>
|
|
1312
|
+
>>> input_x = (1,2,3)
|
|
1313
|
+
>>> print(type(input_x))
|
|
1314
|
+
<class 'tuple'>
|
|
1315
|
+
>>> output = ops.TupleToArray()(input_x)
|
|
1316
|
+
>>> print(type(output))
|
|
1317
|
+
<class 'mindspore.common.tensor.Tensor'>
|
|
1946
1318
|
>>> print(output)
|
|
1947
1319
|
[1 2 3]
|
|
1948
1320
|
"""
|
|
@@ -1975,42 +1347,6 @@ class TupleToArray(PrimitiveWithInfer):
|
|
|
1975
1347
|
return _run_op(self, self.name, args)
|
|
1976
1348
|
|
|
1977
1349
|
|
|
1978
|
-
class ScalarToTensor(PrimitiveWithInfer):
|
|
1979
|
-
"""
|
|
1980
|
-
Converts a scalar to a `Tensor`, and converts the data type to the specified type.
|
|
1981
|
-
|
|
1982
|
-
Refer to :func:`mindspore.ops.scalar_to_tensor` for more details.
|
|
1983
|
-
|
|
1984
|
-
Inputs:
|
|
1985
|
-
- **input_x** (Union[int, float]) - The input is a scalar. Only constant value is allowed.
|
|
1986
|
-
- **dtype** (mindspore.dtype) - The target data type. Default: ``mindspore.float32`` . Only
|
|
1987
|
-
constant value is allowed.
|
|
1988
|
-
|
|
1989
|
-
Outputs:
|
|
1990
|
-
Tensor. 0-D Tensor and the content is the input.
|
|
1991
|
-
|
|
1992
|
-
Supported Platforms:
|
|
1993
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
1994
|
-
|
|
1995
|
-
Examples:
|
|
1996
|
-
>>> import mindspore
|
|
1997
|
-
>>> from mindspore import ops
|
|
1998
|
-
>>> op = ops.ScalarToTensor()
|
|
1999
|
-
>>> data = 1
|
|
2000
|
-
>>> output = op(data, mindspore.float32)
|
|
2001
|
-
>>> print(output)
|
|
2002
|
-
1.0
|
|
2003
|
-
"""
|
|
2004
|
-
|
|
2005
|
-
@prim_attr_register
|
|
2006
|
-
def __init__(self):
|
|
2007
|
-
self.init_prim_io_names(inputs=['input_scalar', 'dtype'], outputs=['output_data'])
|
|
2008
|
-
|
|
2009
|
-
def __call__(self, x, dtype=mstype.float32):
|
|
2010
|
-
validator.check_value_type("x", x, [bool, int, float], self.name)
|
|
2011
|
-
validator.check_subclass("dtype", dtype, mstype.number, self.name)
|
|
2012
|
-
data_type = mstype.dtype_to_nptype(dtype)
|
|
2013
|
-
return Tensor(np.array(x, data_type), dtype=dtype)
|
|
2014
1350
|
|
|
2015
1351
|
|
|
2016
1352
|
class InvertPermutation(PrimitiveWithInfer):
|
|
@@ -2092,94 +1428,6 @@ class InvertPermutation(PrimitiveWithInfer):
|
|
|
2092
1428
|
'value': tuple(y)}
|
|
2093
1429
|
|
|
2094
1430
|
|
|
2095
|
-
class Argmax(Primitive):
|
|
2096
|
-
"""
|
|
2097
|
-
Returns the indices of the maximum value along a specified `axis` of a Tensor.
|
|
2098
|
-
|
|
2099
|
-
Refer to :func:`mindspore.ops.argmax` for more details.
|
|
2100
|
-
|
|
2101
|
-
Args:
|
|
2102
|
-
axis (int): Axis where the Argmax operation applies to. Default: ``-1`` .
|
|
2103
|
-
output_type (:class:`mindspore.dtype`): Output data type.
|
|
2104
|
-
Supported types: ``mstype.int32`` , ``mstype.int64`` . Default: ``mstype.int32`` .
|
|
2105
|
-
|
|
2106
|
-
Inputs:
|
|
2107
|
-
- **input_x** (Tensor) - The input tensor. :math:`(N, *)` where :math:`*` means, any number of additional
|
|
2108
|
-
dimensions.
|
|
2109
|
-
|
|
2110
|
-
Outputs:
|
|
2111
|
-
Tensor, indices of the max value of input tensor across the axis.
|
|
2112
|
-
|
|
2113
|
-
Supported Platforms:
|
|
2114
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
2115
|
-
|
|
2116
|
-
Examples:
|
|
2117
|
-
>>> import mindspore
|
|
2118
|
-
>>> import numpy as np
|
|
2119
|
-
>>> from mindspore import Tensor, ops
|
|
2120
|
-
>>> input_x = Tensor(np.array([[1, 20, 5], [67, 8, 9], [130, 24, 15]]).astype(np.float32))
|
|
2121
|
-
>>> output = ops.Argmax(output_type=mindspore.int32)(input_x)
|
|
2122
|
-
>>> print(output)
|
|
2123
|
-
[1 0 0]
|
|
2124
|
-
"""
|
|
2125
|
-
|
|
2126
|
-
@prim_attr_register
|
|
2127
|
-
def __init__(self, axis=-1, output_type=mstype.int32):
|
|
2128
|
-
"""Initialize Argmax"""
|
|
2129
|
-
self.init_prim_io_names(inputs=['x'], outputs=['output'])
|
|
2130
|
-
validator.check_value_type("axis", axis, [int], self.name)
|
|
2131
|
-
validator.check_types_same_and_valid({'output': output_type}, [mstype.int32, mstype.int64], self.name)
|
|
2132
|
-
self.axis = axis
|
|
2133
|
-
self.add_prim_attr('output_type', output_type)
|
|
2134
|
-
|
|
2135
|
-
|
|
2136
|
-
class Argmin(Primitive):
|
|
2137
|
-
"""
|
|
2138
|
-
Returns the indices of the minimum value along a specified `axis` of a Tensor.
|
|
2139
|
-
|
|
2140
|
-
If the shape of input tensor is :math:`(x_1, ..., x_N)`, the shape of the output tensor is
|
|
2141
|
-
:math:`(x_1, ..., x_{axis-1}, x_{axis+1}, ..., x_N)`.
|
|
2142
|
-
|
|
2143
|
-
Args:
|
|
2144
|
-
axis (int): Axis where the Argmin operation applies to. Default: ``-1`` .
|
|
2145
|
-
output_type (:class:`mindspore.dtype`): Output data type.
|
|
2146
|
-
Supported types: ``mstype.int32`` , ``mstype.int64`` . Default: ``mstype.int32`` .
|
|
2147
|
-
|
|
2148
|
-
Inputs:
|
|
2149
|
-
- **input_x** (Tensor) - Input tensor.
|
|
2150
|
-
The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions.
|
|
2151
|
-
|
|
2152
|
-
Outputs:
|
|
2153
|
-
Tensor, whose dtype is determined by `output_type`.
|
|
2154
|
-
|
|
2155
|
-
Raises:
|
|
2156
|
-
TypeError: If `axis` is not an int.
|
|
2157
|
-
TypeError: If `output_type` is neither int32 nor int64.
|
|
2158
|
-
|
|
2159
|
-
Supported Platforms:
|
|
2160
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
2161
|
-
|
|
2162
|
-
Examples:
|
|
2163
|
-
>>> import mindspore
|
|
2164
|
-
>>> import numpy as np
|
|
2165
|
-
>>> from mindspore import Tensor, ops
|
|
2166
|
-
>>> input_x = Tensor(np.array([2.0, 3.1, 1.2]), mindspore.float32)
|
|
2167
|
-
>>> index = ops.Argmin()(input_x)
|
|
2168
|
-
>>> print(index)
|
|
2169
|
-
2
|
|
2170
|
-
"""
|
|
2171
|
-
|
|
2172
|
-
@prim_attr_register
|
|
2173
|
-
def __init__(self, axis=-1, output_type=mstype.int32):
|
|
2174
|
-
"""Initialize Argmin"""
|
|
2175
|
-
self.init_prim_io_names(inputs=['x'], outputs=['output'])
|
|
2176
|
-
validator.check_value_type("axis", axis, [int], self.name)
|
|
2177
|
-
validator.check_type_name("output_type", output_type, [mstype.int32, mstype.int64], self.name)
|
|
2178
|
-
self.axis = axis
|
|
2179
|
-
self.add_prim_attr('output_type', output_type)
|
|
2180
|
-
self.add_prim_attr('axis', axis)
|
|
2181
|
-
|
|
2182
|
-
|
|
2183
1431
|
class ArgminV2(Primitive):
|
|
2184
1432
|
"""
|
|
2185
1433
|
Returns the indices of the minimum value of a tensor across the axis.
|
|
@@ -2238,328 +1486,6 @@ class ArgminV2(Primitive):
|
|
|
2238
1486
|
return output
|
|
2239
1487
|
|
|
2240
1488
|
|
|
2241
|
-
class ArgMaxWithValue(Primitive):
|
|
2242
|
-
"""
|
|
2243
|
-
Calculates the maximum value along with the given axis for the input tensor, and returns the maximum values and
|
|
2244
|
-
indices.
|
|
2245
|
-
|
|
2246
|
-
Note:
|
|
2247
|
-
In auto_parallel and semi_auto_parallel mode, the first output index can not be used.
|
|
2248
|
-
|
|
2249
|
-
.. warning::
|
|
2250
|
-
- If there are multiple maximum values, the index of the first maximum value is used.
|
|
2251
|
-
- The value range of "axis" is [-dims, dims - 1]. "dims" is the dimension length of "x".
|
|
2252
|
-
|
|
2253
|
-
Also see :func:`mindspore.ops.max`.
|
|
2254
|
-
|
|
2255
|
-
Args:
|
|
2256
|
-
axis (int): The dimension to reduce. Default: ``0`` .
|
|
2257
|
-
keep_dims (bool): Whether to reduce dimension, if ``True`` , the output will keep same dimension with the
|
|
2258
|
-
input, the output will reduce dimension if ``false`` . Default: ``False`` .
|
|
2259
|
-
|
|
2260
|
-
Inputs:
|
|
2261
|
-
- **x** (Tensor) - The input tensor, can be any dimension. Set the shape of input tensor as
|
|
2262
|
-
:math:`(x_1, x_2, ..., x_N)`.
|
|
2263
|
-
|
|
2264
|
-
Outputs:
|
|
2265
|
-
tuple (Tensor), tuple of 2 tensors, containing the corresponding index and the maximum value of the input
|
|
2266
|
-
tensor.
|
|
2267
|
-
|
|
2268
|
-
- **index** (Tensor) - The index for the maximum value of the input tensor, with dtype int32. If `keep_dims`
|
|
2269
|
-
is ``True`` , the shape of output tensors is :math:`(x_1, x_2, ..., x_{axis-1}, 1, x_{axis+1}, ..., x_N)`.
|
|
2270
|
-
Otherwise, the shape is :math:`(x_1, x_2, ..., x_{axis-1}, x_{axis+1}, ..., x_N)` .
|
|
2271
|
-
- **values** (Tensor) - The maximum value of input tensor, with the same shape as index, and same dtype as x.
|
|
2272
|
-
|
|
2273
|
-
Raises:
|
|
2274
|
-
TypeError: If `x` is not Tensor.
|
|
2275
|
-
TypeError: If `keep_dims` is not a bool.
|
|
2276
|
-
TypeError: If `axis` is not an int.
|
|
2277
|
-
|
|
2278
|
-
Supported Platforms:
|
|
2279
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
2280
|
-
|
|
2281
|
-
Examples:
|
|
2282
|
-
>>> import mindspore
|
|
2283
|
-
>>> import numpy as np
|
|
2284
|
-
>>> from mindspore import Tensor, ops
|
|
2285
|
-
>>> input_x = Tensor(np.array([0.0, 0.4, 0.6, 0.7, 0.1]), mindspore.float32)
|
|
2286
|
-
>>> index, output = ops.ArgMaxWithValue()(input_x)
|
|
2287
|
-
>>> print(index, output)
|
|
2288
|
-
3 0.7
|
|
2289
|
-
>>> index, output = ops.ArgMaxWithValue(keep_dims=True)(input_x)
|
|
2290
|
-
>>> print(index, output)
|
|
2291
|
-
[3] [0.7]
|
|
2292
|
-
"""
|
|
2293
|
-
|
|
2294
|
-
@prim_attr_register
|
|
2295
|
-
def __init__(self, axis=0, keep_dims=False):
|
|
2296
|
-
"""Initialize ArgMaxWithValue"""
|
|
2297
|
-
self.init_prim_io_names(inputs=['x'], outputs=['index', 'values'])
|
|
2298
|
-
validator.check_value_type("axis", axis, [int], self.name)
|
|
2299
|
-
validator.check_value_type('keep_dims', keep_dims, [bool], self.name)
|
|
2300
|
-
self.axis = axis
|
|
2301
|
-
self.keep_dims = keep_dims
|
|
2302
|
-
self.add_prim_attr('dimension', self.axis)
|
|
2303
|
-
|
|
2304
|
-
|
|
2305
|
-
class ArgMinWithValue(Primitive):
|
|
2306
|
-
"""
|
|
2307
|
-
Calculates the minimum value along with the given axis for the input tensor, and returns the minimum values and
|
|
2308
|
-
indices.
|
|
2309
|
-
|
|
2310
|
-
Note:
|
|
2311
|
-
In auto_parallel and semi_auto_parallel mode, the first output index can not be used.
|
|
2312
|
-
|
|
2313
|
-
.. warning::
|
|
2314
|
-
- If there are multiple minimum values, the index of the first minimum value is used.
|
|
2315
|
-
- The value range of "axis" is [-dims, dims - 1]. "dims" is the dimension length of "x".
|
|
2316
|
-
|
|
2317
|
-
Also see :func:`mindspore.ops.min`.
|
|
2318
|
-
|
|
2319
|
-
Args:
|
|
2320
|
-
axis (int): The dimension to reduce. Default: ``0`` .
|
|
2321
|
-
keep_dims (bool): Whether to reduce dimension, if ``True`` the output will keep the same dimension as the
|
|
2322
|
-
input, the output will reduce dimension if ``false`` . Default: ``False`` .
|
|
2323
|
-
|
|
2324
|
-
Inputs:
|
|
2325
|
-
- **x** (Tensor) - The input tensor, can be any dimension. Set the shape of input tensor as
|
|
2326
|
-
:math:`(x_1, x_2, ..., x_N)` .Complex tensor is not supported.
|
|
2327
|
-
|
|
2328
|
-
Outputs:
|
|
2329
|
-
tuple (Tensor), tuple of 2 tensors, containing the corresponding index and the minimum value of the input
|
|
2330
|
-
tensor.
|
|
2331
|
-
|
|
2332
|
-
- **index** (Tensor) - The index for the minimum value of the input tensor, with dtype int32. If `keep_dims`
|
|
2333
|
-
is ``True`` , the shape of output tensors is :math:`(x_1, x_2, ..., x_{axis-1}, 1, x_{axis+1}, ..., x_N)`.
|
|
2334
|
-
Otherwise, the shape is :math:`(x_1, x_2, ..., x_{axis-1}, x_{axis+1}, ..., x_N)` .
|
|
2335
|
-
- **values** (Tensor) - The minimum value of input tensor, with the same
|
|
2336
|
-
shape as `index`, and same dtype as `x`.
|
|
2337
|
-
|
|
2338
|
-
Raises:
|
|
2339
|
-
TypeError: If `x` is not Tensor.
|
|
2340
|
-
TypeError: If `keep_dims` is not a bool.
|
|
2341
|
-
TypeError: If `axis` is not an int.
|
|
2342
|
-
|
|
2343
|
-
Supported Platforms:
|
|
2344
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
2345
|
-
|
|
2346
|
-
Examples:
|
|
2347
|
-
>>> import mindspore
|
|
2348
|
-
>>> import numpy as np
|
|
2349
|
-
>>> from mindspore import Tensor, ops
|
|
2350
|
-
>>> x = Tensor(np.array([0.0, 0.4, 0.6, 0.7, 0.1]), mindspore.float32)
|
|
2351
|
-
>>> index, output = ops.ArgMinWithValue()(x)
|
|
2352
|
-
>>> print(index, output)
|
|
2353
|
-
0 0.0
|
|
2354
|
-
>>> index, output = ops.ArgMinWithValue(keep_dims=True)(x)
|
|
2355
|
-
>>> print(index, output)
|
|
2356
|
-
[0] [0.0]
|
|
2357
|
-
"""
|
|
2358
|
-
|
|
2359
|
-
@prim_attr_register
|
|
2360
|
-
def __init__(self, axis=0, keep_dims=False):
|
|
2361
|
-
"""Initialize ArgMinWithValue"""
|
|
2362
|
-
self.init_prim_io_names(inputs=['x'], outputs=['index', 'values'])
|
|
2363
|
-
validator.check_value_type("axis", axis, [int], self.name)
|
|
2364
|
-
validator.check_value_type('keep_dims', keep_dims, [bool], self.name)
|
|
2365
|
-
self.axis = axis
|
|
2366
|
-
self.keep_dims = keep_dims
|
|
2367
|
-
self.add_prim_attr('dimension', self.axis)
|
|
2368
|
-
|
|
2369
|
-
|
|
2370
|
-
class Tile(PrimitiveWithInfer):
|
|
2371
|
-
r"""
|
|
2372
|
-
Replicates an input tensor with given multiples times.
|
|
2373
|
-
|
|
2374
|
-
Refer to :func:`mindspore.ops.tile` for more details.
|
|
2375
|
-
|
|
2376
|
-
Inputs:
|
|
2377
|
-
- **input_x** (Tensor) - 1-D or higher dimensional Tensor. Set the shape of input tensor as
|
|
2378
|
-
:math:`(x_1, x_2, ..., x_S)` .
|
|
2379
|
-
- **multiples** (tuple[int]) - The parameter that specifies the number of replications,
|
|
2380
|
-
the parameter type is tuple, and the data type is int, i.e., :math:`(y_1, y_2, ..., y_S)`.
|
|
2381
|
-
The length of `multiples` cannot be smaller than the length of the shape of `input_x`.
|
|
2382
|
-
Only constant value is allowed.
|
|
2383
|
-
|
|
2384
|
-
Outputs:
|
|
2385
|
-
Tensor, has the same data type as the `input_x`. Suppose the length of `multiples` is `d`,
|
|
2386
|
-
the dimension of `input_x` is `input_x.dim`, and the shape of `input_x` is :math:`(x_1, x_2, ..., x_S)`.
|
|
2387
|
-
|
|
2388
|
-
- If `input_x.dim = d`, then the shape of their corresponding positions can be multiplied, and
|
|
2389
|
-
the shape of Outputs is :math:`(x_1*y_1, x_2*y_2, ..., x_S*y_S)`.
|
|
2390
|
-
- If `input_x.dim < d`, fill in multiple 1 in the length of the shape of `input_x` until their
|
|
2391
|
-
lengths are consistent. Such as set the shape of `input_x` as :math:`(1, ..., x_1, x_2, ..., x_S)`,
|
|
2392
|
-
then the shape of their corresponding positions can be multiplied, and the shape of Outputs is
|
|
2393
|
-
:math:`(1*y_1, ..., x_R*y_R, x_S*y_S)`.
|
|
2394
|
-
|
|
2395
|
-
Supported Platforms:
|
|
2396
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
2397
|
-
|
|
2398
|
-
Examples:
|
|
2399
|
-
>>> import mindspore
|
|
2400
|
-
>>> import numpy as np
|
|
2401
|
-
>>> from mindspore import Tensor, ops
|
|
2402
|
-
>>> tile = ops.Tile()
|
|
2403
|
-
>>> input_x = Tensor(np.array([[1, 2], [3, 4]]), mindspore.float32)
|
|
2404
|
-
>>> multiples = (2, 3)
|
|
2405
|
-
>>> output = tile(input_x, multiples)
|
|
2406
|
-
>>> print(output)
|
|
2407
|
-
[[1. 2. 1. 2. 1. 2.]
|
|
2408
|
-
[3. 4. 3. 4. 3. 4.]
|
|
2409
|
-
[1. 2. 1. 2. 1. 2.]
|
|
2410
|
-
[3. 4. 3. 4. 3. 4.]]
|
|
2411
|
-
>>> multiples = (2, 3, 2)
|
|
2412
|
-
>>> output = tile(input_x, multiples)
|
|
2413
|
-
>>> print(output)
|
|
2414
|
-
[[[1. 2. 1. 2.]
|
|
2415
|
-
[3. 4. 3. 4.]
|
|
2416
|
-
[1. 2. 1. 2.]
|
|
2417
|
-
[3. 4. 3. 4.]
|
|
2418
|
-
[1. 2. 1. 2.]
|
|
2419
|
-
[3. 4. 3. 4.]]
|
|
2420
|
-
[[1. 2. 1. 2.]
|
|
2421
|
-
[3. 4. 3. 4.]
|
|
2422
|
-
[1. 2. 1. 2.]
|
|
2423
|
-
[3. 4. 3. 4.]
|
|
2424
|
-
[1. 2. 1. 2.]
|
|
2425
|
-
[3. 4. 3. 4.]]]
|
|
2426
|
-
"""
|
|
2427
|
-
|
|
2428
|
-
@prim_attr_register
|
|
2429
|
-
def __init__(self):
|
|
2430
|
-
"""Initialize Tile"""
|
|
2431
|
-
self.init_prim_io_names(inputs=['x', 'multiples'], outputs=['output'])
|
|
2432
|
-
|
|
2433
|
-
def check_elim(self, *args):
|
|
2434
|
-
base_tensor, multiplier = args
|
|
2435
|
-
if PackFunc.is_tracing() and not PackFunc.current.is_pynative_mode:
|
|
2436
|
-
return (False, None)
|
|
2437
|
-
if not isinstance(base_tensor, Tensor):
|
|
2438
|
-
raise TypeError(f"For '{self.name}', the type of 'input_x' must be Tensor, "
|
|
2439
|
-
f"but got {type(base_tensor).__name__}.")
|
|
2440
|
-
if not isinstance(multiplier, tuple):
|
|
2441
|
-
raise TypeError(f"For '{self.name}', the type of 'multiplier' must be tuple, "
|
|
2442
|
-
f"but got {type(multiplier).__name__}.")
|
|
2443
|
-
|
|
2444
|
-
if all(v == 1 for v in multiplier) and len(base_tensor.shape) >= len(multiplier):
|
|
2445
|
-
ret = Identity()(base_tensor)
|
|
2446
|
-
return (True, ret)
|
|
2447
|
-
return (False, None)
|
|
2448
|
-
|
|
2449
|
-
def _get_shape_and_range(self, x, multiples):
|
|
2450
|
-
"""calculate tile shape and value"""
|
|
2451
|
-
x_shp = x['shape']
|
|
2452
|
-
if is_dim_unknown(x_shp):
|
|
2453
|
-
return {'shape': x_shp}, None
|
|
2454
|
-
multiples_v = multiples['value']
|
|
2455
|
-
value = None
|
|
2456
|
-
len_sub = len(multiples_v) - len(x_shp)
|
|
2457
|
-
multiples_w = None
|
|
2458
|
-
if len_sub == 0:
|
|
2459
|
-
multiples_w = multiples_v
|
|
2460
|
-
if len_sub > 0:
|
|
2461
|
-
for _ in range(0, len_sub):
|
|
2462
|
-
x_shp.insert(0, 1)
|
|
2463
|
-
multiples_w = multiples_v
|
|
2464
|
-
elif len_sub < 0:
|
|
2465
|
-
raise ValueError(f"For '{self.name}', the length of 'multiples' can not be smaller than "
|
|
2466
|
-
f"the dimension of 'input_x', but got length of 'multiples': {len(multiples_v)} "
|
|
2467
|
-
f"and dimension of 'input_x': {len(x_shp)}.")
|
|
2468
|
-
|
|
2469
|
-
for i, a in enumerate(multiples_w):
|
|
2470
|
-
if x_shp[i] >= 0:
|
|
2471
|
-
x_shp[i] *= a
|
|
2472
|
-
if x['value'] is not None:
|
|
2473
|
-
value = Tensor(np.tile(x['value'].asnumpy(), multiples_w))
|
|
2474
|
-
out_shape = {
|
|
2475
|
-
'shape': x_shp
|
|
2476
|
-
}
|
|
2477
|
-
return out_shape, value
|
|
2478
|
-
|
|
2479
|
-
def __infer__(self, x, multiples):
|
|
2480
|
-
multiples_v = multiples['value']
|
|
2481
|
-
if multiples_v is None or None in multiples_v:
|
|
2482
|
-
if 'max_value' not in multiples or 'min_value' not in multiples:
|
|
2483
|
-
if multiples_v is not None:
|
|
2484
|
-
shape = [len(multiples['shape'])]
|
|
2485
|
-
else:
|
|
2486
|
-
shape = multiples['shape']
|
|
2487
|
-
if len(shape) != 1:
|
|
2488
|
-
raise ValueError(f'For \'{self.name}\', the dim of multiples must be 1.')
|
|
2489
|
-
rank = max(len(x['shape']), shape[0])
|
|
2490
|
-
out_shape = [-1] * rank
|
|
2491
|
-
if -2 in x['shape']:
|
|
2492
|
-
out_shape = [-2]
|
|
2493
|
-
return {
|
|
2494
|
-
'shape': out_shape,
|
|
2495
|
-
'dtype': x['dtype'],
|
|
2496
|
-
'value': None
|
|
2497
|
-
}
|
|
2498
|
-
out_shape, value = self._get_shape_and_range(x, multiples)
|
|
2499
|
-
shape = out_shape.get('shape', None)
|
|
2500
|
-
out = {'shape': shape,
|
|
2501
|
-
'dtype': x['dtype'],
|
|
2502
|
-
'value': value}
|
|
2503
|
-
return out
|
|
2504
|
-
|
|
2505
|
-
validator.check_value_type(
|
|
2506
|
-
"multiples", multiples_v, [tuple], self.name)
|
|
2507
|
-
for i, multiple in enumerate(multiples_v):
|
|
2508
|
-
validator.check_positive_int(
|
|
2509
|
-
multiple, "multiples[%d]" % i, self.name)
|
|
2510
|
-
validator.check_value_type(
|
|
2511
|
-
"x[\'dtype\']", x["dtype"], mstype.TensorType, self.name)
|
|
2512
|
-
out_shp, value = self._get_shape_and_range(x, multiples)
|
|
2513
|
-
shp = out_shp.get('shape', None)
|
|
2514
|
-
out = {'shape': shp,
|
|
2515
|
-
'dtype': x['dtype'],
|
|
2516
|
-
'value': value}
|
|
2517
|
-
return out
|
|
2518
|
-
|
|
2519
|
-
|
|
2520
|
-
class UnsortedSegmentSum(Primitive):
|
|
2521
|
-
r"""
|
|
2522
|
-
Computes the sum of a tensor along segments.
|
|
2523
|
-
|
|
2524
|
-
Refer to :func:`mindspore.ops.unsorted_segment_sum` for more details.
|
|
2525
|
-
|
|
2526
|
-
Inputs:
|
|
2527
|
-
- **input_x** (Tensor) - Input Tensor contains the data to be summed.
|
|
2528
|
-
The shape is :math:`(x_1, x_2, ..., x_R)`.
|
|
2529
|
-
- **segment_ids** (Tensor) - The label indicates the segment to which each element belongs.
|
|
2530
|
-
Set the shape as :math:`(x_1, x_2, ..., x_N)`, where 0 < N <= R.
|
|
2531
|
-
- **num_segments** (int) - Set :math:`z` as num_segments, it can be an int or 0-D Tensor.
|
|
2532
|
-
|
|
2533
|
-
Outputs:
|
|
2534
|
-
Tensor, the shape is :math:`(z, x_{N+1}, ..., x_R)`.
|
|
2535
|
-
|
|
2536
|
-
Supported Platforms:
|
|
2537
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
2538
|
-
|
|
2539
|
-
Examples:
|
|
2540
|
-
>>> from mindspore import Tensor
|
|
2541
|
-
>>> from mindspore import ops
|
|
2542
|
-
>>> import mindspore
|
|
2543
|
-
>>> input_x = Tensor([1, 2, 3, 4], mindspore.float32)
|
|
2544
|
-
>>> segment_ids = Tensor([0, 0, 1, 2], mindspore.int32)
|
|
2545
|
-
>>> num_segments = 4
|
|
2546
|
-
>>> output = ops.UnsortedSegmentSum()(input_x, segment_ids, num_segments)
|
|
2547
|
-
>>> print(output)
|
|
2548
|
-
[3. 3. 4. 0.]
|
|
2549
|
-
>>> input_x = Tensor([1, 2, 3, 4, 2, 5], mindspore.float32)
|
|
2550
|
-
>>> segment_ids = Tensor([0, 0, 1, 2, 3, 4], mindspore.int32)
|
|
2551
|
-
>>> num_segments = 6
|
|
2552
|
-
>>> output = ops.UnsortedSegmentSum()(input_x, segment_ids, num_segments)
|
|
2553
|
-
>>> print(output)
|
|
2554
|
-
[3. 3. 4. 2. 5. 0.]
|
|
2555
|
-
"""
|
|
2556
|
-
|
|
2557
|
-
@prim_attr_register
|
|
2558
|
-
def __init__(self):
|
|
2559
|
-
"""Initialize UnsortedSegmentSum"""
|
|
2560
|
-
self.init_prim_io_names(inputs=['x', 'segment_ids', 'num_segments'], outputs=['y'])
|
|
2561
|
-
|
|
2562
|
-
|
|
2563
1489
|
class UnsortedSegmentMin(PrimitiveWithCheck):
|
|
2564
1490
|
r"""
|
|
2565
1491
|
Computes the minimum of a tensor along segments.
|
|
@@ -2571,10 +1497,10 @@ class UnsortedSegmentMin(PrimitiveWithCheck):
|
|
|
2571
1497
|
The data type must be float16, float32 or int32.
|
|
2572
1498
|
- **segment_ids** (Tensor) - The label indicates the segment to which each element belongs.
|
|
2573
1499
|
Set the shape as :math:`(x_1, x_2, ..., x_N)`, where 0 < N <= R.
|
|
2574
|
-
- **num_segments** (int) -
|
|
1500
|
+
- **num_segments** (Union[int, Tensor]) - Set :math:`z` as num_segments, it can be an int or 0-D Tensor.
|
|
2575
1501
|
|
|
2576
1502
|
Outputs:
|
|
2577
|
-
Tensor,
|
|
1503
|
+
Tensor, the shape is :math:`(z, x_{N+1}, ..., x_R)`.
|
|
2578
1504
|
|
|
2579
1505
|
Supported Platforms:
|
|
2580
1506
|
``Ascend`` ``GPU`` ``CPU``
|
|
@@ -2633,10 +1559,10 @@ class UnsortedSegmentMax(PrimitiveWithCheck):
|
|
|
2633
1559
|
The data type must be float16, float32 or int32.
|
|
2634
1560
|
- **segment_ids** (Tensor) - The label indicates the segment to which each element belongs.
|
|
2635
1561
|
Set the shape as :math:`(x_1, x_2, ..., x_N)`, where 0 < N <= R.
|
|
2636
|
-
- **num_segments** (int) -
|
|
1562
|
+
- **num_segments** (Union[int, Tensor]) - Set :math:`z` as num_segments, it can be an int or 0-D Tensor.
|
|
2637
1563
|
|
|
2638
1564
|
Outputs:
|
|
2639
|
-
Tensor,
|
|
1565
|
+
Tensor, the shape is :math:`(z, x_{N+1}, ..., x_R)`.
|
|
2640
1566
|
|
|
2641
1567
|
Supported Platforms:
|
|
2642
1568
|
``Ascend`` ``GPU`` ``CPU``
|
|
@@ -2752,13 +1678,12 @@ class UnsortedSegmentProd(Primitive):
|
|
|
2752
1678
|
Inputs:
|
|
2753
1679
|
- **input_x** (Tensor) - The shape is :math:`(x_1, x_2, ..., x_R)`.
|
|
2754
1680
|
With float16, float32 or int32 data type.
|
|
2755
|
-
- **segment_ids** (Tensor) -
|
|
2756
|
-
Data type must be int32.
|
|
2757
|
-
- **num_segments** (int) -
|
|
2758
|
-
must be greater than 0.
|
|
1681
|
+
- **segment_ids** (Tensor) - The label indicates the segment to which each element belongs.
|
|
1682
|
+
Set the shape as :math:`(x_1, x_2, ..., x_N)`, where 0 < N <= R. Data type must be int32.
|
|
1683
|
+
- **num_segments** (Union[int, Tensor]) - Set :math:`z` as num_segments, it can be an int or 0-D Tensor.
|
|
2759
1684
|
|
|
2760
1685
|
Outputs:
|
|
2761
|
-
Tensor,
|
|
1686
|
+
Tensor, the shape is :math:`(z, x_{N+1}, ..., x_R)`.
|
|
2762
1687
|
|
|
2763
1688
|
Supported Platforms:
|
|
2764
1689
|
``Ascend`` ``GPU`` ``CPU``
|
|
@@ -2783,62 +1708,6 @@ class UnsortedSegmentProd(Primitive):
|
|
|
2783
1708
|
self.init_prim_io_names(inputs=['x', 'segment_ids', 'num_segments'], outputs=['y'])
|
|
2784
1709
|
|
|
2785
1710
|
|
|
2786
|
-
class Concat(PrimitiveWithCheck):
|
|
2787
|
-
r"""
|
|
2788
|
-
Connect tensor in the specified axis.
|
|
2789
|
-
|
|
2790
|
-
Refer to :func:`mindspore.ops.concat` for more details.
|
|
2791
|
-
|
|
2792
|
-
Args:
|
|
2793
|
-
axis (int, optional): The specified axis. Default: ``0`` .
|
|
2794
|
-
|
|
2795
|
-
Inputs:
|
|
2796
|
-
- **input_x** (Union[tuple, list]) - A tuple or a list of input tensors.
|
|
2797
|
-
Suppose there are two tensors in this tuple or list, namely x1 and x2.
|
|
2798
|
-
To perform `Concat` in the axis 0 direction, except for the 0th axis, all other axes should be equal,
|
|
2799
|
-
that is, :math:`x1.shape[1] == x2.shape[1], x1.shape[2] == x2.shape[2], ..., x1.shape[R] == x2.shape[R]`,
|
|
2800
|
-
where the :math:`R` indicates the last axis.
|
|
2801
|
-
|
|
2802
|
-
Outputs:
|
|
2803
|
-
- Tensor, the shape is :math:`(x_1, x_2, ..., \sum_{i=1}^Nx_{mi}, ..., x_R)`.
|
|
2804
|
-
The data type is the same with `input_x`.
|
|
2805
|
-
|
|
2806
|
-
Supported Platforms:
|
|
2807
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
2808
|
-
|
|
2809
|
-
Examples:
|
|
2810
|
-
>>> import numpy as np
|
|
2811
|
-
>>> from mindspore import Tensor, ops
|
|
2812
|
-
>>> input_x1 = Tensor(np.array([[0, 1], [2, 1]]).astype(np.float32))
|
|
2813
|
-
>>> input_x2 = Tensor(np.array([[0, 1], [2, 1]]).astype(np.float32))
|
|
2814
|
-
>>> op = ops.Concat()
|
|
2815
|
-
>>> output = op((input_x1, input_x2))
|
|
2816
|
-
>>> print(output)
|
|
2817
|
-
[[0. 1.]
|
|
2818
|
-
[2. 1.]
|
|
2819
|
-
[0. 1.]
|
|
2820
|
-
[2. 1.]]
|
|
2821
|
-
>>> op = ops.Concat(1)
|
|
2822
|
-
>>> output = op((input_x1, input_x2))
|
|
2823
|
-
>>> print(output)
|
|
2824
|
-
[[0. 1. 0. 1.]
|
|
2825
|
-
[2. 1. 2. 1.]]
|
|
2826
|
-
"""
|
|
2827
|
-
|
|
2828
|
-
@prim_attr_register
|
|
2829
|
-
def __init__(self, axis=0):
|
|
2830
|
-
"""Initialize Concat"""
|
|
2831
|
-
self.axis = axis
|
|
2832
|
-
validator.check_value_type("axis", axis, [int], self.name)
|
|
2833
|
-
|
|
2834
|
-
def infer_value(self, input_x):
|
|
2835
|
-
"""Implement Concat infer value"""
|
|
2836
|
-
value = None
|
|
2837
|
-
if input_x is not None and None not in input_x:
|
|
2838
|
-
value = Tensor(np.concatenate([x.asnumpy() for x in input_x], axis=self.axis))
|
|
2839
|
-
return value
|
|
2840
|
-
|
|
2841
|
-
|
|
2842
1711
|
class ConcatOffsetV1(Primitive):
|
|
2843
1712
|
r"""
|
|
2844
1713
|
primitive for computing Concat’s gradient.
|
|
@@ -2952,7 +1821,7 @@ def _get_stack_shape(value, x_shape, x_type, axis, prim_name):
|
|
|
2952
1821
|
|
|
2953
1822
|
out_n = len(x_shape)
|
|
2954
1823
|
for i in range(1, out_n):
|
|
2955
|
-
if x_type[i] != x_type[i-1]:
|
|
1824
|
+
if x_type[i] != x_type[i - 1]:
|
|
2956
1825
|
raise TypeError(f"For {prim_name}, all types should be same, but got {x_type}")
|
|
2957
1826
|
|
|
2958
1827
|
new_x_shape = []
|
|
@@ -3040,6 +1909,7 @@ class Stack(PrimitiveWithInfer):
|
|
|
3040
1909
|
tuple_value = value['value']
|
|
3041
1910
|
input_array = []
|
|
3042
1911
|
infered_value = None
|
|
1912
|
+
dtype = x_type[0]
|
|
3043
1913
|
if tuple_value is not None and None not in tuple_value:
|
|
3044
1914
|
for item in tuple_value:
|
|
3045
1915
|
npy_item = item.asnumpy()
|
|
@@ -3048,23 +1918,9 @@ class Stack(PrimitiveWithInfer):
|
|
|
3048
1918
|
|
|
3049
1919
|
shape = all_shape.get('shape') if isinstance(all_shape, dict) else all_shape
|
|
3050
1920
|
out = {'shape': shape,
|
|
3051
|
-
'dtype':
|
|
1921
|
+
'dtype': dtype,
|
|
3052
1922
|
'value': infered_value}
|
|
3053
1923
|
|
|
3054
|
-
def unpack(x):
|
|
3055
|
-
if isinstance(x, (tuple, list)) and len(x) == 1:
|
|
3056
|
-
return unpack(x[0])
|
|
3057
|
-
return x
|
|
3058
|
-
|
|
3059
|
-
if 'shape_value' in value and value['shape_value'] is not None:
|
|
3060
|
-
input_shape_value = []
|
|
3061
|
-
for item in value['shape_value']:
|
|
3062
|
-
item = unpack(item)
|
|
3063
|
-
item = np.array(item)
|
|
3064
|
-
input_shape_value.append(item)
|
|
3065
|
-
infered_shape_value = np.stack(input_shape_value, axis=self.axis)
|
|
3066
|
-
infered_shape_value = tuple(infered_shape_value.tolist())
|
|
3067
|
-
out['shape_value'] = infered_shape_value
|
|
3068
1924
|
return out
|
|
3069
1925
|
|
|
3070
1926
|
|
|
@@ -3217,61 +2073,6 @@ class Coalesce(Primitive):
|
|
|
3217
2073
|
outputs=['y_indices', 'y_values', 'y_shape'])
|
|
3218
2074
|
|
|
3219
2075
|
|
|
3220
|
-
class ReverseV2(Primitive):
|
|
3221
|
-
"""
|
|
3222
|
-
Reverses specific dimensions of a tensor.
|
|
3223
|
-
|
|
3224
|
-
.. warning::
|
|
3225
|
-
The value range of "axis" is [-dims, dims - 1]. "dims" is the dimension length of "input_x".
|
|
3226
|
-
|
|
3227
|
-
Args:
|
|
3228
|
-
axis (Union[tuple(int), list(int)]): The indices of the dimensions to reverse.
|
|
3229
|
-
|
|
3230
|
-
Inputs:
|
|
3231
|
-
- **input_x** (Tensor) - The target tensor.
|
|
3232
|
-
The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions.
|
|
3233
|
-
|
|
3234
|
-
Outputs:
|
|
3235
|
-
Tensor, has the same shape and type as `input_x`.
|
|
3236
|
-
|
|
3237
|
-
Raises:
|
|
3238
|
-
TypeError: If `axis` is neither list nor tuple.
|
|
3239
|
-
TypeError: If element of `axis` is not an int.
|
|
3240
|
-
ValueError: There are multiple identical axes in `axis`.
|
|
3241
|
-
|
|
3242
|
-
Supported Platforms:
|
|
3243
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
3244
|
-
|
|
3245
|
-
Examples:
|
|
3246
|
-
>>> import mindspore
|
|
3247
|
-
>>> import numpy as np
|
|
3248
|
-
>>> from mindspore import Tensor, ops
|
|
3249
|
-
>>> input_x = Tensor(np.array([[1, 2, 3, 4], [5, 6, 7, 8]]), mindspore.int32)
|
|
3250
|
-
>>> op = ops.ReverseV2(axis=[1])
|
|
3251
|
-
>>> output = op(input_x)
|
|
3252
|
-
>>> print(output)
|
|
3253
|
-
[[4 3 2 1]
|
|
3254
|
-
[8 7 6 5]]
|
|
3255
|
-
>>> op = ops.ReverseV2(axis=[1, 0])
|
|
3256
|
-
>>> output = op(input_x)
|
|
3257
|
-
>>> print(output)
|
|
3258
|
-
[[8 7 6 5]
|
|
3259
|
-
[4 3 2 1]]
|
|
3260
|
-
"""
|
|
3261
|
-
|
|
3262
|
-
@prim_attr_register
|
|
3263
|
-
def __init__(self, axis):
|
|
3264
|
-
"""Initialize ReverseV2."""
|
|
3265
|
-
validator.check_value_type('axis', axis, [list, tuple], self.name)
|
|
3266
|
-
for i, each in enumerate(axis):
|
|
3267
|
-
validator.check_value_type(f'axis[{i}]', each, [int], self.name)
|
|
3268
|
-
self.axis = axis
|
|
3269
|
-
if isinstance(axis, list):
|
|
3270
|
-
self.axis = tuple(axis)
|
|
3271
|
-
self.add_prim_attr('axis', self.axis)
|
|
3272
|
-
self.init_prim_io_names(inputs=['x'], outputs=['output'])
|
|
3273
|
-
|
|
3274
|
-
|
|
3275
2076
|
class Rint(Primitive):
|
|
3276
2077
|
"""
|
|
3277
2078
|
Returns an integer that is closest to `input_x` element-wise.
|
|
@@ -3311,54 +2112,6 @@ class Rint(Primitive):
|
|
|
3311
2112
|
self.init_prim_io_names(inputs=['x'], outputs=['output'])
|
|
3312
2113
|
|
|
3313
2114
|
|
|
3314
|
-
class Select(Primitive):
|
|
3315
|
-
r"""
|
|
3316
|
-
The conditional tensor determines whether the corresponding element in the output must be
|
|
3317
|
-
selected from `x` (if True) or `y` (if False) based on the value of each
|
|
3318
|
-
element.
|
|
3319
|
-
|
|
3320
|
-
It can be defined as:
|
|
3321
|
-
|
|
3322
|
-
.. math::
|
|
3323
|
-
out_i = \begin{cases}
|
|
3324
|
-
x_i, & \text{if } condition_i \\
|
|
3325
|
-
y_i, & \text{otherwise}
|
|
3326
|
-
\end{cases}
|
|
3327
|
-
|
|
3328
|
-
Inputs:
|
|
3329
|
-
- **condition** (Tensor[bool]) - The condition tensor, decides which element is chosen.
|
|
3330
|
-
The shape is :math:`(x_1, x_2, ..., x_N, ..., x_R)`.
|
|
3331
|
-
- **x** (Tensor) - The first tensor to be selected and the shape is :math:`(x_1, x_2, ..., x_N, ..., x_R)`.
|
|
3332
|
-
- **y** (Tensor) - The second tensor to be selected and the shape is :math:`(x_1, x_2, ..., x_N, ..., x_R)`.
|
|
3333
|
-
|
|
3334
|
-
Outputs:
|
|
3335
|
-
Tensor, has the same shape as `condition`.
|
|
3336
|
-
|
|
3337
|
-
Raises:
|
|
3338
|
-
TypeError: If `x` or `y` is not a Tensor.
|
|
3339
|
-
ValueError: If shape of the three inputs are different.
|
|
3340
|
-
|
|
3341
|
-
Supported Platforms:
|
|
3342
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
3343
|
-
|
|
3344
|
-
Examples:
|
|
3345
|
-
>>> import mindspore
|
|
3346
|
-
>>> from mindspore import Tensor, ops
|
|
3347
|
-
>>> select = ops.Select()
|
|
3348
|
-
>>> input_cond = Tensor([True, False])
|
|
3349
|
-
>>> input_x = Tensor([2,3], mindspore.float32)
|
|
3350
|
-
>>> input_y = Tensor([1,2], mindspore.float32)
|
|
3351
|
-
>>> output = select(input_cond, input_x, input_y)
|
|
3352
|
-
>>> print(output)
|
|
3353
|
-
[2. 2.]
|
|
3354
|
-
"""
|
|
3355
|
-
|
|
3356
|
-
@prim_attr_register
|
|
3357
|
-
def __init__(self):
|
|
3358
|
-
"""Initialize Select."""
|
|
3359
|
-
self.init_prim_io_names(inputs=['condition', 'x', 'y'], outputs=['output'])
|
|
3360
|
-
|
|
3361
|
-
|
|
3362
2115
|
class StridedSliceV2(Primitive):
|
|
3363
2116
|
r"""
|
|
3364
2117
|
StridedSliceV2 will be deprecated by StridedSlice in the future.
|
|
@@ -3374,151 +2127,32 @@ class StridedSliceV2(Primitive):
|
|
|
3374
2127
|
|
|
3375
2128
|
Inputs:
|
|
3376
2129
|
- **input_x** (Tensor) - The input Tensor.
|
|
3377
|
-
- **begin** (tuple[int]) - A tuple which represents the location where to start. Only
|
|
3378
|
-
constant value is allowed.
|
|
3379
|
-
- **end** (tuple[int]) - A tuple or which represents the maximum location where to end.
|
|
3380
|
-
Only constant value is allowed.
|
|
3381
|
-
- **strides** (tuple[int]) - A tuple which represents the stride is continuously added
|
|
3382
|
-
before reaching the maximum location. Only constant value is allowed.
|
|
3383
|
-
|
|
3384
|
-
Outputs:
|
|
3385
|
-
Tensor, The output is explained by following example.
|
|
3386
|
-
|
|
3387
|
-
Raises:
|
|
3388
|
-
TypeError: If `begin_mask`, `end_mask`, `ellipsis_mask`, `new_axis_mask` or `shrink_axis_mask` is not an int.
|
|
3389
|
-
TypeError: If `begin`, `end` or `strides` is not a tuple.
|
|
3390
|
-
ValueError: If `begin_mask`, `end_mask`, `ellipsis_mask`, `new_axis_mask` or `shrink_axis_mask` is less than 0.
|
|
3391
|
-
|
|
3392
|
-
Supported Platforms:
|
|
3393
|
-
``Ascend`` ``CPU``
|
|
3394
|
-
|
|
3395
|
-
Examples:
|
|
3396
|
-
>>> input_x = Tensor([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]],
|
|
3397
|
-
... [[5, 5, 5], [6, 6, 6]]], mindspore.float32)
|
|
3398
|
-
>>> strided_slice_v2 = ops.StridedSliceV2()
|
|
3399
|
-
>>> output = strided_slice_v2(input_x, (1, 0, 2), (3, 1, 3), (1, 1, 1))
|
|
3400
|
-
>>> print(output)
|
|
3401
|
-
[[[3.]]
|
|
3402
|
-
[[5.]]]
|
|
3403
|
-
"""
|
|
3404
|
-
|
|
3405
|
-
@prim_attr_register
|
|
3406
|
-
def __init__(self,
|
|
3407
|
-
begin_mask=0,
|
|
3408
|
-
end_mask=0,
|
|
3409
|
-
ellipsis_mask=0,
|
|
3410
|
-
new_axis_mask=0,
|
|
3411
|
-
shrink_axis_mask=0):
|
|
3412
|
-
"""Initialize StridedSliceV2"""
|
|
3413
|
-
self.init_prim_io_names(inputs=['x', 'begin', 'end', 'strides'], outputs=['output'])
|
|
3414
|
-
|
|
3415
|
-
|
|
3416
|
-
class StridedSlice(PrimitiveWithInfer):
|
|
3417
|
-
r"""
|
|
3418
|
-
|
|
3419
|
-
Extracts a strided slice of a tensor.
|
|
3420
|
-
|
|
3421
|
-
Refer to :func:`mindspore.ops.strided_slice` for more details.
|
|
3422
|
-
|
|
3423
|
-
Args:
|
|
3424
|
-
begin_mask (int, optional): Starting index of the slice. Default: ``0`` .
|
|
3425
|
-
end_mask (int, optional): Ending index of the slice. Default: ``0`` .
|
|
3426
|
-
ellipsis_mask (int, optional): An int mask, ignore slicing operation when set to 1. Default: ``0`` .
|
|
3427
|
-
new_axis_mask (int, optional): An int mask for adding new dims. Default: ``0`` .
|
|
3428
|
-
shrink_axis_mask (int, optional): An int mask for shrinking dims. Default: ``0`` .
|
|
3429
|
-
|
|
3430
|
-
Inputs:
|
|
3431
|
-
- **input_x** (Tensor) - The input Tensor to be extracted from.
|
|
3432
|
-
- **begin** (tuple[int]) - A tuple which represents the location where to start.
|
|
2130
|
+
- **begin** (tuple[int]) - A tuple which represents the location where to start. Only
|
|
2131
|
+
constant value is allowed.
|
|
3433
2132
|
- **end** (tuple[int]) - A tuple or which represents the maximum location where to end.
|
|
3434
|
-
|
|
3435
|
-
|
|
3436
|
-
|
|
2133
|
+
Only constant value is allowed.
|
|
2134
|
+
- **strides** (tuple[int]) - A tuple which represents the stride is continuously added
|
|
2135
|
+
before reaching the maximum location. Only constant value is allowed.
|
|
3437
2136
|
|
|
3438
2137
|
Outputs:
|
|
3439
|
-
Tensor,
|
|
2138
|
+
Tensor, The output is explained by following example.
|
|
2139
|
+
|
|
2140
|
+
Raises:
|
|
2141
|
+
TypeError: If `begin_mask`, `end_mask`, `ellipsis_mask`, `new_axis_mask` or `shrink_axis_mask` is not an int.
|
|
2142
|
+
TypeError: If `begin`, `end` or `strides` is not a tuple.
|
|
2143
|
+
ValueError: If `begin_mask`, `end_mask`, `ellipsis_mask`, `new_axis_mask` or `shrink_axis_mask` is less than 0.
|
|
3440
2144
|
|
|
3441
2145
|
Supported Platforms:
|
|
3442
|
-
``Ascend`` ``
|
|
2146
|
+
``Ascend`` ``CPU``
|
|
3443
2147
|
|
|
3444
2148
|
Examples:
|
|
3445
|
-
>>> import mindspore
|
|
3446
|
-
>>> from mindspore import Tensor, ops
|
|
3447
2149
|
>>> input_x = Tensor([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]],
|
|
3448
2150
|
... [[5, 5, 5], [6, 6, 6]]], mindspore.float32)
|
|
3449
|
-
>>>
|
|
3450
|
-
>>>
|
|
3451
|
-
>>> #
|
|
3452
|
-
>>> # [[3. 3. 3.]
|
|
3453
|
-
>>> # [4. 4. 4.]]
|
|
3454
|
-
>>> #
|
|
3455
|
-
>>> # [[5. 5. 5.]
|
|
3456
|
-
>>> # [6. 6. 6.]]]
|
|
3457
|
-
>>> # In order to visually view the multi-dimensional array, write the above as follows
|
|
3458
|
-
>>> # [
|
|
3459
|
-
>>> # [
|
|
3460
|
-
>>> # [1,1,1]
|
|
3461
|
-
>>> # [2,2,2]
|
|
3462
|
-
>>> # ]
|
|
3463
|
-
>>> # [
|
|
3464
|
-
>>> # [3,3,3]
|
|
3465
|
-
>>> # [4,4,4]
|
|
3466
|
-
>>> # ]
|
|
3467
|
-
>>> # [
|
|
3468
|
-
>>> # [5,5,5]
|
|
3469
|
-
>>> # [6,6,6]
|
|
3470
|
-
>>> # ]
|
|
3471
|
-
>>> # ]
|
|
3472
|
-
>>> strided_slice = ops.StridedSlice()
|
|
3473
|
-
>>> output = strided_slice(input_x, (1, 0, 2), (3, 1, 3), (1, 1, 1))
|
|
3474
|
-
>>> # Take this " output = strided_slice(input_x, (1, 0, 2), (3, 1, 3), (1, 1, 1)) " as an example,
|
|
3475
|
-
>>> # start = [1, 0, 2] , end = [3, 1, 3], stride = [1, 1, 1], Find a segment of (start, end),
|
|
3476
|
-
>>> # note that end is an open interval
|
|
3477
|
-
>>> # To facilitate understanding, this operator can be divided into three steps:
|
|
3478
|
-
>>> # Step 1: Calculation of the first dimension:
|
|
3479
|
-
>>> # start = 1, end = 3, stride = 1, So can take 1st, 2nd rows, and then gets the final output at this time.
|
|
3480
|
-
>>> # output_1th =
|
|
3481
|
-
>>> # [
|
|
3482
|
-
>>> # [
|
|
3483
|
-
>>> # [3,3,3]
|
|
3484
|
-
>>> # [4,4,4]
|
|
3485
|
-
>>> # ]
|
|
3486
|
-
>>> # [
|
|
3487
|
-
>>> # [5,5,5]
|
|
3488
|
-
>>> # [6,6,6]
|
|
3489
|
-
>>> # ]
|
|
3490
|
-
>>> # ]
|
|
3491
|
-
>>> # Step 2: Calculation of the second dimension
|
|
3492
|
-
>>> # 2nd dimension, start = 0, end = 1, stride = 1. So only 0th rows can be taken, and the output at this time.
|
|
3493
|
-
>>> # output_2nd =
|
|
3494
|
-
>>> # [
|
|
3495
|
-
>>> # [
|
|
3496
|
-
>>> # [3,3,3]
|
|
3497
|
-
>>> # ]
|
|
3498
|
-
>>> # [
|
|
3499
|
-
>>> # [5,5,5]
|
|
3500
|
-
>>> # ]
|
|
3501
|
-
>>> # ]
|
|
3502
|
-
>>> # Step 3: Calculation of the third dimension
|
|
3503
|
-
>>> # 3nd dimension,start = 2, end = 3, stride = 1, So can take 2th cols,
|
|
3504
|
-
>>> # and you get the final output at this time.
|
|
3505
|
-
>>> # output_3ed =
|
|
3506
|
-
>>> # [
|
|
3507
|
-
>>> # [
|
|
3508
|
-
>>> # [3]
|
|
3509
|
-
>>> # ]
|
|
3510
|
-
>>> # [
|
|
3511
|
-
>>> # [5]
|
|
3512
|
-
>>> # ]
|
|
3513
|
-
>>> # ]
|
|
3514
|
-
>>> # The final output after finishing is:
|
|
2151
|
+
>>> strided_slice_v2 = ops.StridedSliceV2()
|
|
2152
|
+
>>> output = strided_slice_v2(input_x, (1, 0, 2), (3, 1, 3), (1, 1, 1))
|
|
3515
2153
|
>>> print(output)
|
|
3516
2154
|
[[[3.]]
|
|
3517
2155
|
[[5.]]]
|
|
3518
|
-
>>> # another example like :
|
|
3519
|
-
>>> output = strided_slice(input_x, (1, 0, 0), (2, 1, 3), (1, 1, 1))
|
|
3520
|
-
>>> print(output)
|
|
3521
|
-
[[[3. 3. 3.]]]
|
|
3522
2156
|
"""
|
|
3523
2157
|
|
|
3524
2158
|
@prim_attr_register
|
|
@@ -3528,407 +2162,9 @@ class StridedSlice(PrimitiveWithInfer):
|
|
|
3528
2162
|
ellipsis_mask=0,
|
|
3529
2163
|
new_axis_mask=0,
|
|
3530
2164
|
shrink_axis_mask=0):
|
|
3531
|
-
"""Initialize
|
|
2165
|
+
"""Initialize StridedSliceV2"""
|
|
3532
2166
|
self.init_prim_io_names(inputs=['x', 'begin', 'end', 'strides'], outputs=['output'])
|
|
3533
2167
|
|
|
3534
|
-
validator.check_non_negative_int(begin_mask, 'begin_mask', self.name)
|
|
3535
|
-
validator.check_non_negative_int(end_mask, 'end_mask', self.name)
|
|
3536
|
-
validator.check_non_negative_int(ellipsis_mask, 'ellipsis_mask', self.name)
|
|
3537
|
-
if len(tuple(filter(lambda x: x == '1', bin(ellipsis_mask)[-1:1:-1]))) > 1:
|
|
3538
|
-
raise ValueError(f"For '{self.name}', only support one ellipsis in the index, but got {ellipsis_mask}.")
|
|
3539
|
-
validator.check_non_negative_int(new_axis_mask, 'new_axis_mask', self.name)
|
|
3540
|
-
validator.check_non_negative_int(shrink_axis_mask, 'shrink_axis_mask',
|
|
3541
|
-
self.name)
|
|
3542
|
-
|
|
3543
|
-
def __infer__(self, x, begin, end, strides):
|
|
3544
|
-
begin_v, begin_len = self._check_and_get_value(begin, 'begin')
|
|
3545
|
-
end_v, end_len = self._check_and_get_value(end, 'end')
|
|
3546
|
-
strides_v, strides_len = self._check_and_get_value(strides, 'strides')
|
|
3547
|
-
|
|
3548
|
-
is_dynamic_tuple = (self._is_none_in_tuple(begin_v.get('value'))
|
|
3549
|
-
or self._is_none_in_tuple(end_v.get('value'))
|
|
3550
|
-
or self._is_none_in_tuple(strides_v.get('value')))
|
|
3551
|
-
is_dynamic = None in (begin_v.get('value'), end_v.get('value'), strides_v.get('value'))
|
|
3552
|
-
|
|
3553
|
-
if not is_dynamic and (begin_len != strides_len or end_len != strides_len):
|
|
3554
|
-
raise ValueError(
|
|
3555
|
-
f"For '{self.name}', 'begin', 'end' and 'strides' must be the same length, but got "
|
|
3556
|
-
f"'begin' length: {begin_len}, 'end' length: {end_len}, 'strides' length: {strides_len}."
|
|
3557
|
-
)
|
|
3558
|
-
|
|
3559
|
-
if is_dynamic or is_dynamic_tuple or is_shape_unknown(x['shape']):
|
|
3560
|
-
ret_shape = self._compute_dynamic_slicing_shape(x, begin_v, end_v, strides_v, begin_len)
|
|
3561
|
-
rets = {'shape': ret_shape,
|
|
3562
|
-
'dtype': x['dtype'],
|
|
3563
|
-
'value': None}
|
|
3564
|
-
return rets
|
|
3565
|
-
|
|
3566
|
-
ret_shape = self._compute_slicing_shape(x['shape'], begin_v['value'], end_v['value'], strides_v['value'])
|
|
3567
|
-
if all(ret_shape):
|
|
3568
|
-
value = None
|
|
3569
|
-
else:
|
|
3570
|
-
init_func = Zero()
|
|
3571
|
-
init_func.__enable_zero_dim__ = True
|
|
3572
|
-
value = Tensor(dtype=x['dtype'].element_type(), shape=ret_shape, init=init_func)
|
|
3573
|
-
|
|
3574
|
-
if "max_value" in x and "min_value" in x:
|
|
3575
|
-
validator.check_value_type("min_value", x["min_value"], [tuple, list], self.name)
|
|
3576
|
-
validator.check_value_type("max_value", x["max_value"], [tuple, list], self.name)
|
|
3577
|
-
max_value_slice = self._compute_dynamic_slicing_value(x["max_value"], begin_v, end_v, strides_v)
|
|
3578
|
-
min_value_slice = self._compute_dynamic_slicing_value(x["min_value"], begin_v, end_v, strides_v)
|
|
3579
|
-
return {'shape': ret_shape,
|
|
3580
|
-
'dtype': x['dtype'],
|
|
3581
|
-
'value': value,
|
|
3582
|
-
'max_value': max_value_slice,
|
|
3583
|
-
'min_value': min_value_slice}
|
|
3584
|
-
|
|
3585
|
-
if "shape_value" in x:
|
|
3586
|
-
validator.check_value_type("shape_value", x["shape_value"], [tuple], self.name)
|
|
3587
|
-
shape_value_slice = self._compute_dynamic_slicing_value(x["shape_value"], begin_v, end_v, strides_v)
|
|
3588
|
-
return {'shape': ret_shape,
|
|
3589
|
-
'dtype': x['dtype'],
|
|
3590
|
-
'shape_value': shape_value_slice,
|
|
3591
|
-
'value': value}
|
|
3592
|
-
return {'shape': ret_shape,
|
|
3593
|
-
'dtype': x['dtype'],
|
|
3594
|
-
'value': value}
|
|
3595
|
-
|
|
3596
|
-
@staticmethod
|
|
3597
|
-
def _compute_slicing_len_for_positive_stride(begin, end, stride, x_dim):
|
|
3598
|
-
"""Compute slice length for positive stride."""
|
|
3599
|
-
if x_dim == -1:
|
|
3600
|
-
if begin >= end:
|
|
3601
|
-
# When slicing forward, if begin >= end, the length of the slicing is 0.
|
|
3602
|
-
slicing_length = 0
|
|
3603
|
-
else:
|
|
3604
|
-
slicing_length = -1
|
|
3605
|
-
return slicing_length
|
|
3606
|
-
# When slicing forward, convert begin and end to positive numbers.
|
|
3607
|
-
if begin >= x_dim or end < -x_dim:
|
|
3608
|
-
# When slicing forward, if begin >= x_dim or end < -x_dim, the length of the slicing is 0.
|
|
3609
|
-
slicing_length = 0
|
|
3610
|
-
else:
|
|
3611
|
-
if -x_dim <= begin < 0:
|
|
3612
|
-
begin += x_dim
|
|
3613
|
-
if begin < -x_dim:
|
|
3614
|
-
# When slicing forward, if begin < -x_dim, set begin = 0, which means start from the 0th element.
|
|
3615
|
-
begin = 0
|
|
3616
|
-
if -x_dim <= end < 0:
|
|
3617
|
-
end += x_dim
|
|
3618
|
-
if end > x_dim:
|
|
3619
|
-
# When slicing forward, if end > x_dim, set end = x_dims, which means slice to the last element.
|
|
3620
|
-
end = x_dim
|
|
3621
|
-
if begin >= end:
|
|
3622
|
-
# When slicing forward, if begin >= end, the length of the slicing is 0.
|
|
3623
|
-
slicing_length = 0
|
|
3624
|
-
else:
|
|
3625
|
-
slicing_length = 1 + (end - 1 - begin) // stride
|
|
3626
|
-
return slicing_length
|
|
3627
|
-
|
|
3628
|
-
@staticmethod
|
|
3629
|
-
def _compute_slicing_len_for_negative_stride(begin, end, stride, x_dim):
|
|
3630
|
-
"""Compute slice length for negative stride."""
|
|
3631
|
-
if x_dim == -1:
|
|
3632
|
-
if begin <= end:
|
|
3633
|
-
slicing_length = 0
|
|
3634
|
-
else:
|
|
3635
|
-
slicing_length = -1
|
|
3636
|
-
return slicing_length
|
|
3637
|
-
# When slicing backward, convert begin and end to negative numbers.
|
|
3638
|
-
if begin < -x_dim or end >= x_dim:
|
|
3639
|
-
# When slicing backward, if begin < -x_dim or end >= x_dim, the length of the slicing is 0.
|
|
3640
|
-
slicing_length = 0
|
|
3641
|
-
else:
|
|
3642
|
-
if 0 <= begin < x_dim:
|
|
3643
|
-
begin += -x_dim
|
|
3644
|
-
if begin >= x_dim:
|
|
3645
|
-
begin = -1
|
|
3646
|
-
if 0 <= end < x_dim:
|
|
3647
|
-
end += -x_dim
|
|
3648
|
-
if end < -x_dim - 1:
|
|
3649
|
-
# Slicing to the 0th element.
|
|
3650
|
-
end = -x_dim - 1
|
|
3651
|
-
if begin <= end:
|
|
3652
|
-
slicing_length = 0
|
|
3653
|
-
else:
|
|
3654
|
-
slicing_length = 1 + (end + 1 - begin) // stride
|
|
3655
|
-
return slicing_length
|
|
3656
|
-
|
|
3657
|
-
@staticmethod
|
|
3658
|
-
def _get_slice_value(begin_v, end_v, strides_v):
|
|
3659
|
-
"""Get the slice value from value or shape_value."""
|
|
3660
|
-
begin_value = begin_v['value']
|
|
3661
|
-
end_value = end_v['value']
|
|
3662
|
-
strides_value = strides_v['value']
|
|
3663
|
-
if begin_value is None:
|
|
3664
|
-
begin_value = begin_v['shape_value']
|
|
3665
|
-
if end_value is None:
|
|
3666
|
-
end_value = end_v['shape_value']
|
|
3667
|
-
if strides_value is None:
|
|
3668
|
-
strides_value = strides_v['shape_value']
|
|
3669
|
-
return begin_value, end_value, strides_value
|
|
3670
|
-
|
|
3671
|
-
def _is_none_in_tuple(self, x):
|
|
3672
|
-
return isinstance(x, tuple) and None in x
|
|
3673
|
-
|
|
3674
|
-
def _compute_slicing_length(self, begin, end, stride, x_dim):
|
|
3675
|
-
"""Computes the length of the slicing."""
|
|
3676
|
-
if stride > 0:
|
|
3677
|
-
slicing_length = self._compute_slicing_len_for_positive_stride(begin, end, stride, x_dim)
|
|
3678
|
-
else:
|
|
3679
|
-
slicing_length = self._compute_slicing_len_for_negative_stride(begin, end, stride, x_dim)
|
|
3680
|
-
return slicing_length
|
|
3681
|
-
|
|
3682
|
-
def _compute_slicing_shape(self, x_shape, begin_v, end_v, strides_v):
|
|
3683
|
-
"""Computes the shape of the slicing."""
|
|
3684
|
-
x_rank = len(x_shape)
|
|
3685
|
-
slice_len = len(begin_v)
|
|
3686
|
-
|
|
3687
|
-
# After the integer is converted to binary, it is a str and the first two chars are the flag char '0b'.
|
|
3688
|
-
begin_pos = bin(self.begin_mask)[-1:1:-1]
|
|
3689
|
-
end_pos = bin(self.end_mask)[-1:1:-1]
|
|
3690
|
-
ellipsis_pos = bin(self.ellipsis_mask)[-1:1:-1]
|
|
3691
|
-
new_axis_pos = bin(self.new_axis_mask)[-1:1:-1]
|
|
3692
|
-
shrink_axis_pos = bin(self.shrink_axis_mask)[-1:1:-1]
|
|
3693
|
-
|
|
3694
|
-
ret_shape = []
|
|
3695
|
-
i, j = 0, 0
|
|
3696
|
-
has_ellipsis = False
|
|
3697
|
-
while i < x_rank or j < slice_len:
|
|
3698
|
-
if j < slice_len:
|
|
3699
|
-
begin, end, stride = begin_v[j], end_v[j], strides_v[j]
|
|
3700
|
-
|
|
3701
|
-
if j < len(ellipsis_pos) and ellipsis_pos[j] == '1':
|
|
3702
|
-
# When there is ellipsis, the latter part of the ellipsis will be processed separately.
|
|
3703
|
-
has_ellipsis = True
|
|
3704
|
-
break
|
|
3705
|
-
if j < len(begin_pos) and begin_pos[j] == '1':
|
|
3706
|
-
begin = -1 if strides_v[j] < 0 else 0
|
|
3707
|
-
if j < len(end_pos) and end_pos[j] == '1':
|
|
3708
|
-
end = -(x_shape[i] + 1) if strides_v[j] < 0 else x_shape[i]
|
|
3709
|
-
if j < len(new_axis_pos) and new_axis_pos[j] == '1':
|
|
3710
|
-
ret_shape.append(1)
|
|
3711
|
-
j += 1
|
|
3712
|
-
continue
|
|
3713
|
-
if j < len(shrink_axis_pos) and shrink_axis_pos[j] == '1':
|
|
3714
|
-
if (not -x_shape[i] <= begin < x_shape[i]) or stride < 0:
|
|
3715
|
-
raise IndexError(f"For '{self.name}', the 'strides[{i}]' cannot be negative number and "
|
|
3716
|
-
f"'begin[{i}]' must be in [-{x_shape[i]}, {x_shape[i]}) "
|
|
3717
|
-
f"when 'shrink_axis_mask' is greater than 0, "
|
|
3718
|
-
f"but got 'shrink_axis_mask': {self.shrink_axis_mask}, "
|
|
3719
|
-
f"'strides[{i}]': {stride}, 'begin[{i}]': {begin}.")
|
|
3720
|
-
j += 1
|
|
3721
|
-
i += 1
|
|
3722
|
-
continue
|
|
3723
|
-
else:
|
|
3724
|
-
begin, end, stride = 0, x_shape[i], 1
|
|
3725
|
-
|
|
3726
|
-
slicing_length = self._compute_slicing_length(begin, end, stride, x_shape[i])
|
|
3727
|
-
ret_shape.append(slicing_length)
|
|
3728
|
-
i += 1
|
|
3729
|
-
j += 1
|
|
3730
|
-
if has_ellipsis:
|
|
3731
|
-
# When there is ellipsis, handle the second half of the ellipsis split.
|
|
3732
|
-
ellipsis_occupied_dims = x_rank - i - (slice_len - (j + 1)) + \
|
|
3733
|
-
len(tuple(filter(lambda x: x == '1', new_axis_pos[j + 1:slice_len])))
|
|
3734
|
-
ret_shape.extend(x_shape[i:i + ellipsis_occupied_dims])
|
|
3735
|
-
j += 1
|
|
3736
|
-
i += ellipsis_occupied_dims
|
|
3737
|
-
|
|
3738
|
-
while i < x_rank or j < slice_len:
|
|
3739
|
-
begin, end, stride = begin_v[j], end_v[j], strides_v[j]
|
|
3740
|
-
|
|
3741
|
-
if j < len(begin_pos) and begin_pos[j] == '1':
|
|
3742
|
-
begin = -1 if strides_v[j] < 0 else 0
|
|
3743
|
-
if j < len(end_pos) and end_pos[j] == '1':
|
|
3744
|
-
end = -(x_shape[i] + 1) if strides_v[j] < 0 else x_shape[i]
|
|
3745
|
-
if j < len(new_axis_pos) and new_axis_pos[j] == '1':
|
|
3746
|
-
ret_shape.append(1)
|
|
3747
|
-
j += 1
|
|
3748
|
-
continue
|
|
3749
|
-
if j < len(shrink_axis_pos) and shrink_axis_pos[j] == '1':
|
|
3750
|
-
if (not -x_shape[i] <= begin < x_shape[i]) or stride < 0:
|
|
3751
|
-
raise IndexError(f"For '{self.name}', the 'strides[{i}]' can not be negative number and "
|
|
3752
|
-
f"'begin[{i}]' must be in [-{x_shape[i]}, {x_shape[i]}) "
|
|
3753
|
-
f"when 'shrink_axis_mask' is greater than 0, "
|
|
3754
|
-
f"but got 'shrink_axis_mask': {self.shrink_axis_mask}, "
|
|
3755
|
-
f"'strides[{i}]': {stride}, 'begin[{i}]': {begin}.")
|
|
3756
|
-
j += 1
|
|
3757
|
-
i += 1
|
|
3758
|
-
continue
|
|
3759
|
-
|
|
3760
|
-
slicing_length = self._compute_slicing_length(begin, end, stride, x_shape[i])
|
|
3761
|
-
ret_shape.append(slicing_length)
|
|
3762
|
-
i += 1
|
|
3763
|
-
j += 1
|
|
3764
|
-
return ret_shape
|
|
3765
|
-
|
|
3766
|
-
def _compute_dynamic_slicing_value(self, shape_value, begin_v, end_v, strides_v):
|
|
3767
|
-
"""Computes the length of the slicing for dynamic shape."""
|
|
3768
|
-
shape_value_np = np.array(shape_value)
|
|
3769
|
-
slice_index = []
|
|
3770
|
-
for begin_i, end_i, strides_i in zip(begin_v['value'], end_v['value'], strides_v['value']):
|
|
3771
|
-
s = slice(begin_i, end_i, strides_i)
|
|
3772
|
-
slice_index.append(s)
|
|
3773
|
-
slice_index = tuple(slice_index)
|
|
3774
|
-
shape_value_slice = shape_value_np[slice_index]
|
|
3775
|
-
shape_value_slice = tuple(shape_value_slice.tolist())
|
|
3776
|
-
return shape_value_slice
|
|
3777
|
-
|
|
3778
|
-
def _compute_dynamic_slicing_length(self, begin, end, stride, x_dim):
|
|
3779
|
-
"""Computes the length of the slicing for dynamic shape."""
|
|
3780
|
-
slicing_length = -1
|
|
3781
|
-
if None in (begin, end, stride) or -1 in (begin, end, stride):
|
|
3782
|
-
return slicing_length
|
|
3783
|
-
slicing_length = self._compute_slicing_length(begin, end, stride, x_dim)
|
|
3784
|
-
return slicing_length
|
|
3785
|
-
|
|
3786
|
-
def _compute_dynamic_slicing_shape(self, x, begin_v, end_v, strides_v, slice_len):
|
|
3787
|
-
"""Computes the shape of the slicing for dynamic shape, mask is currently not supported."""
|
|
3788
|
-
x_shape = x['shape']
|
|
3789
|
-
if is_dim_unknown(x_shape):
|
|
3790
|
-
return [-2]
|
|
3791
|
-
x_rank = len(x_shape)
|
|
3792
|
-
new_axis_pos = bin(self.new_axis_mask)[-1:1:-1]
|
|
3793
|
-
shrink_axis_pos = bin(self.shrink_axis_mask)[-1:1:-1]
|
|
3794
|
-
if self.ellipsis_mask:
|
|
3795
|
-
raise ValueError("Ellipsis Mask is currently not supported in dynamic shape.")
|
|
3796
|
-
ret_shape = []
|
|
3797
|
-
i, j = 0, 0
|
|
3798
|
-
slice_has_special_value = False
|
|
3799
|
-
begin_value, end_value, strides_value = self._get_slice_value(
|
|
3800
|
-
begin_v, end_v, strides_v)
|
|
3801
|
-
is_dynamic_tuple = (self._is_none_in_tuple(begin_value)
|
|
3802
|
-
or self._is_none_in_tuple(end_value)
|
|
3803
|
-
or self._is_none_in_tuple(strides_value))
|
|
3804
|
-
if None in (begin_v['value'], end_v['value'], strides_v['value']) or is_dynamic_tuple:
|
|
3805
|
-
slice_has_special_value = True
|
|
3806
|
-
while i < x_rank or j < slice_len:
|
|
3807
|
-
slicing_length = -1
|
|
3808
|
-
if j < slice_len:
|
|
3809
|
-
if j < len(new_axis_pos) and new_axis_pos[j] == '1':
|
|
3810
|
-
ret_shape.append(1)
|
|
3811
|
-
j += 1
|
|
3812
|
-
continue
|
|
3813
|
-
if j < len(shrink_axis_pos) and shrink_axis_pos[j] == '1':
|
|
3814
|
-
j += 1
|
|
3815
|
-
i += 1
|
|
3816
|
-
continue
|
|
3817
|
-
if None in (begin_value, end_value, strides_value):
|
|
3818
|
-
slicing_length = -1
|
|
3819
|
-
elif slice_has_special_value:
|
|
3820
|
-
slicing_length = self._compute_dynamic_slicing_length(
|
|
3821
|
-
begin_value[j], end_value[j], strides_value[j], x_shape[i])
|
|
3822
|
-
else:
|
|
3823
|
-
slicing_length = \
|
|
3824
|
-
self._compute_slicing_length(begin_value[j], end_value[j], strides_value[j], x_shape[i])
|
|
3825
|
-
else:
|
|
3826
|
-
if i >= len(x_shape):
|
|
3827
|
-
raise ValueError(f"For 'StridedSlice', the index must be less than or equal to "
|
|
3828
|
-
f"the dimension of 'input_x', but got the dimension of 'input_x': {len(x_shape)} "
|
|
3829
|
-
f"and the index: {i}.")
|
|
3830
|
-
begin, end, stride = 0, x_shape[i], 1
|
|
3831
|
-
if end > 0:
|
|
3832
|
-
slicing_length = self._compute_slicing_length(begin, end, stride, x_shape[i])
|
|
3833
|
-
ret_shape.append(slicing_length)
|
|
3834
|
-
i += 1
|
|
3835
|
-
j += 1
|
|
3836
|
-
return ret_shape
|
|
3837
|
-
|
|
3838
|
-
def _check_and_get_value(self, slice_input, name):
|
|
3839
|
-
"""Check begin, end, strides. Get its length and value."""
|
|
3840
|
-
slice_value = slice_input['value']
|
|
3841
|
-
slice_min = None
|
|
3842
|
-
slice_max = None
|
|
3843
|
-
slice_special_value = None
|
|
3844
|
-
if "min_value" in slice_input and "max_value" in slice_input:
|
|
3845
|
-
slice_min = slice_input["min_value"]
|
|
3846
|
-
slice_max = slice_input["max_value"]
|
|
3847
|
-
elif "shape_value" in slice_input:
|
|
3848
|
-
slice_special_value = slice_input["shape_value"]
|
|
3849
|
-
if slice_value is None:
|
|
3850
|
-
validator.check_tensor_dtype_valid(name, slice_input['dtype'], [mstype.int32, mstype.int64], self.name)
|
|
3851
|
-
slice_shape = slice_input['shape']
|
|
3852
|
-
if len(slice_shape) != 1:
|
|
3853
|
-
raise ValueError(f"For '{self.name}', both the 'begins', 'ends', and 'strides' must be 1-D, "
|
|
3854
|
-
f"but got '{name}' shape: {slice_shape}.")
|
|
3855
|
-
# not support scalar
|
|
3856
|
-
slices = {
|
|
3857
|
-
'value': slice_value,
|
|
3858
|
-
'shape_value': slice_special_value,
|
|
3859
|
-
'min_value': slice_min,
|
|
3860
|
-
'max_value': slice_max
|
|
3861
|
-
}
|
|
3862
|
-
return slices, slice_shape[0]
|
|
3863
|
-
|
|
3864
|
-
if isinstance(slice_value, (Tensor, Tensor_)):
|
|
3865
|
-
validator.check_tensor_dtype_valid(name, slice_input['dtype'], [mstype.int64], self.name)
|
|
3866
|
-
slice_value = slice_value.asnumpy().tolist()
|
|
3867
|
-
elif not isinstance(slice_value, tuple):
|
|
3868
|
-
raise TypeError(f"For '{self.name}', both the 'begin', 'end', and 'strides' must be a tuple or Tensor, "
|
|
3869
|
-
f"but got '{name}': {slice_value}.")
|
|
3870
|
-
|
|
3871
|
-
if tuple(filter(lambda x: x is not None and not isinstance(x, int), slice_value)):
|
|
3872
|
-
raise TypeError(f"For '{self.name}', the elements of 'begin', 'end', and 'strides' must be int, "
|
|
3873
|
-
f"but got {name}: {slice_value}.")
|
|
3874
|
-
|
|
3875
|
-
if name == 'strides':
|
|
3876
|
-
if slice_value is not None and tuple(filter(lambda x: x == 0, slice_value)):
|
|
3877
|
-
raise ValueError(f"For '{self.name}', 'strides' cannot contain 0, but got 'strides': {slice_value}.")
|
|
3878
|
-
|
|
3879
|
-
slices = {
|
|
3880
|
-
'value': slice_value,
|
|
3881
|
-
'shape_value': slice_special_value,
|
|
3882
|
-
'min_value': slice_min,
|
|
3883
|
-
'max_value': slice_max
|
|
3884
|
-
}
|
|
3885
|
-
return slices, len(slice_value)
|
|
3886
|
-
|
|
3887
|
-
|
|
3888
|
-
class Diag(PrimitiveWithCheck):
|
|
3889
|
-
r"""
|
|
3890
|
-
|
|
3891
|
-
Constructs a diagonal tensor with a given diagonal values.
|
|
3892
|
-
|
|
3893
|
-
.. warning::
|
|
3894
|
-
This is an experimental API that is subject to change or deletion.
|
|
3895
|
-
|
|
3896
|
-
Refer to :func:`mindspore.ops.diag` for more details.
|
|
3897
|
-
|
|
3898
|
-
Inputs:
|
|
3899
|
-
- **input_x** (Tensor) - The input tensor.
|
|
3900
|
-
|
|
3901
|
-
Outputs:
|
|
3902
|
-
Tensor, has the same dtype as the `input_x`.
|
|
3903
|
-
|
|
3904
|
-
Supported Platforms:
|
|
3905
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
3906
|
-
|
|
3907
|
-
Examples:
|
|
3908
|
-
>>> from mindspore import Tensor, ops
|
|
3909
|
-
>>> input_x = Tensor([1, 2, 3, 4]).astype('int32')
|
|
3910
|
-
>>> diag = ops.Diag()
|
|
3911
|
-
>>> output = diag(input_x)
|
|
3912
|
-
>>> print(output)
|
|
3913
|
-
[[1 0 0 0]
|
|
3914
|
-
[0 2 0 0]
|
|
3915
|
-
[0 0 3 0]
|
|
3916
|
-
[0 0 0 4]]
|
|
3917
|
-
"""
|
|
3918
|
-
|
|
3919
|
-
@prim_attr_register
|
|
3920
|
-
def __init__(self):
|
|
3921
|
-
"""Initialize Diag"""
|
|
3922
|
-
|
|
3923
|
-
def infer_value(self, x):
|
|
3924
|
-
if x is None:
|
|
3925
|
-
return None
|
|
3926
|
-
# do constant-folding only when x rank is 1
|
|
3927
|
-
if len(x.shape) != 1:
|
|
3928
|
-
return None
|
|
3929
|
-
ret = np.diag(x.asnumpy())
|
|
3930
|
-
return Tensor(ret)
|
|
3931
|
-
|
|
3932
2168
|
|
|
3933
2169
|
class DiagPart(PrimitiveWithCheck):
|
|
3934
2170
|
r"""
|
|
@@ -4022,280 +2258,6 @@ class Mvlgamma(Primitive):
|
|
|
4022
2258
|
validator.check_positive_int(p, 'p', self.name)
|
|
4023
2259
|
|
|
4024
2260
|
|
|
4025
|
-
class Eye(Primitive):
|
|
4026
|
-
"""
|
|
4027
|
-
Creates a tensor with ones on the diagonal and zeros in the rest.
|
|
4028
|
-
|
|
4029
|
-
Refer to :func:`mindspore.ops.eye` for more details.
|
|
4030
|
-
|
|
4031
|
-
Inputs:
|
|
4032
|
-
- **n** (int) - The number of rows of returned tensor. Constant value only.
|
|
4033
|
-
- **m** (int) - The number of columns of returned tensor. Constant value only.
|
|
4034
|
-
- **t** (mindspore.dtype) - MindSpore's dtype, the data type of the returned tensor.
|
|
4035
|
-
Default: ``None`` , the data type of the returned tensor is mindspore.float32.
|
|
4036
|
-
|
|
4037
|
-
Outputs:
|
|
4038
|
-
Tensor, a tensor with ones on the diagonal and the rest of elements are zero. The shape of `output` depends on
|
|
4039
|
-
the user's Inputs `n` and `m`. And the data type depends on Inputs `t`.
|
|
4040
|
-
|
|
4041
|
-
Supported Platforms:
|
|
4042
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
4043
|
-
|
|
4044
|
-
Examples:
|
|
4045
|
-
>>> import mindspore
|
|
4046
|
-
>>> from mindspore import ops
|
|
4047
|
-
>>> eye = ops.Eye()
|
|
4048
|
-
>>> output = eye(2, 2, mindspore.int32)
|
|
4049
|
-
>>> print(output)
|
|
4050
|
-
[[1 0]
|
|
4051
|
-
[0 1]]
|
|
4052
|
-
>>> print(output.dtype)
|
|
4053
|
-
Int32
|
|
4054
|
-
>>> output = eye(1, 2, mindspore.float64)
|
|
4055
|
-
>>> print(output)
|
|
4056
|
-
[[1. 0.]]
|
|
4057
|
-
>>> print(output.dtype)
|
|
4058
|
-
Float64
|
|
4059
|
-
"""
|
|
4060
|
-
|
|
4061
|
-
@prim_attr_register
|
|
4062
|
-
def __init__(self):
|
|
4063
|
-
"""Initialize Eye"""
|
|
4064
|
-
self.init_prim_io_names(inputs=['n', 'm', 't'], outputs=['output'])
|
|
4065
|
-
|
|
4066
|
-
|
|
4067
|
-
class ScatterNd(Primitive):
|
|
4068
|
-
r"""
|
|
4069
|
-
Scatters a tensor into a new tensor depending on the specified indices.
|
|
4070
|
-
|
|
4071
|
-
Refer to :func:`mindspore.ops.scatter_nd` for more details.
|
|
4072
|
-
|
|
4073
|
-
Inputs:
|
|
4074
|
-
- **indices** (Tensor) - The index of scattering in the new tensor with int32 or int64 data type.
|
|
4075
|
-
The rank of indices must be at least 2 and `indices_shape[-1] <= len(shape)`.
|
|
4076
|
-
- **updates** (Tensor) - The source Tensor to be scattered.
|
|
4077
|
-
It has shape `indices_shape[:-1] + shape[indices_shape[-1]:]`.
|
|
4078
|
-
- **shape** (tuple[int]) - Define the shape of the output tensor, has the same data type as indices.
|
|
4079
|
-
The shape of `shape` is :math:`(x_1, x_2, ..., x_R)`, and the length of 'shape' is greater than or equal to 2.
|
|
4080
|
-
In other words, the shape of `shape` is at least :math:`(x_1, x_2)`.
|
|
4081
|
-
And the value of any element in `shape` must be greater than or equal to 1.
|
|
4082
|
-
In other words, :math:`x_1` >= 1, :math:`x_2` >= 1.
|
|
4083
|
-
|
|
4084
|
-
Outputs:
|
|
4085
|
-
Tensor, the new tensor, has the same type as `update` and the same shape as `shape`.
|
|
4086
|
-
|
|
4087
|
-
Supported Platforms:
|
|
4088
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
4089
|
-
|
|
4090
|
-
Examples:
|
|
4091
|
-
>>> import mindspore
|
|
4092
|
-
>>> import numpy as np
|
|
4093
|
-
>>> from mindspore import Tensor, ops
|
|
4094
|
-
>>> op = ops.ScatterNd()
|
|
4095
|
-
>>> indices = Tensor(np.array([[0], [2]]), mindspore.int32)
|
|
4096
|
-
>>> updates = Tensor(np.array([[[1, 1, 1, 1], [2, 2, 2, 2],
|
|
4097
|
-
... [3, 3, 3, 3], [4, 4, 4, 4]],
|
|
4098
|
-
... [[1, 1, 1, 1], [2, 2, 2, 2],
|
|
4099
|
-
... [3, 3, 3, 3], [4, 4, 4, 4]]]), mindspore.float32)
|
|
4100
|
-
>>> shape = (4, 4, 4)
|
|
4101
|
-
>>> output = op(indices, updates, shape)
|
|
4102
|
-
>>> print(output)
|
|
4103
|
-
[[[1. 1. 1. 1.]
|
|
4104
|
-
[2. 2. 2. 2.]
|
|
4105
|
-
[3. 3. 3. 3.]
|
|
4106
|
-
[4. 4. 4. 4.]]
|
|
4107
|
-
[[0. 0. 0. 0.]
|
|
4108
|
-
[0. 0. 0. 0.]
|
|
4109
|
-
[0. 0. 0. 0.]
|
|
4110
|
-
[0. 0. 0. 0.]]
|
|
4111
|
-
[[1. 1. 1. 1.]
|
|
4112
|
-
[2. 2. 2. 2.]
|
|
4113
|
-
[3. 3. 3. 3.]
|
|
4114
|
-
[4. 4. 4. 4.]]
|
|
4115
|
-
[[0. 0. 0. 0.]
|
|
4116
|
-
[0. 0. 0. 0.]
|
|
4117
|
-
[0. 0. 0. 0.]
|
|
4118
|
-
[0. 0. 0. 0.]]]
|
|
4119
|
-
>>> indices = Tensor(np.array([[0, 1], [1, 1]]), mindspore.int32)
|
|
4120
|
-
>>> updates = Tensor(np.array([3.2, 1.1]), mindspore.float32)
|
|
4121
|
-
>>> shape = (3, 3)
|
|
4122
|
-
>>> output = op(indices, updates, shape)
|
|
4123
|
-
>>> # In order to facilitate understanding, explain the operator pseudo-operation process step by step:
|
|
4124
|
-
>>> # Step 1: Generate an empty Tensor of the specified shape according to the shape
|
|
4125
|
-
>>> # [
|
|
4126
|
-
>>> # [0. 0. 0.]
|
|
4127
|
-
>>> # [0. 0. 0.]
|
|
4128
|
-
>>> # [0. 0. 0.]
|
|
4129
|
-
>>> # ]
|
|
4130
|
-
>>> # Step 2: Modify the data at the specified location according to the indicators
|
|
4131
|
-
>>> # 0th row of indices is [0, 1], 0th row of updates is 3.2.
|
|
4132
|
-
>>> # means that the empty tensor in the 0th row and 1st col set to 3.2
|
|
4133
|
-
>>> # [
|
|
4134
|
-
>>> # [0. 3.2. 0.]
|
|
4135
|
-
>>> # [0. 0. 0.]
|
|
4136
|
-
>>> # [0. 0. 0.]
|
|
4137
|
-
>>> # ]
|
|
4138
|
-
>>> # 1th row of indices is [1, 1], 1th row of updates is 1.1.
|
|
4139
|
-
>>> # means that the empty tensor in the 1th row and 1st col set to 1.1
|
|
4140
|
-
>>> # [
|
|
4141
|
-
>>> # [0. 3.2. 0.]
|
|
4142
|
-
>>> # [0. 1.1 0.]
|
|
4143
|
-
>>> # [0. 0. 0.]
|
|
4144
|
-
>>> # ]
|
|
4145
|
-
>>> # The final result is as follows:
|
|
4146
|
-
>>> print(output)
|
|
4147
|
-
[[0. 3.2 0.]
|
|
4148
|
-
[0. 1.1 0.]
|
|
4149
|
-
[0. 0. 0.]]
|
|
4150
|
-
"""
|
|
4151
|
-
|
|
4152
|
-
@prim_attr_register
|
|
4153
|
-
def __init__(self):
|
|
4154
|
-
"""Initialize ScatterNd"""
|
|
4155
|
-
self.init_prim_io_names(inputs=['indices', 'update', 'shape'], outputs=['output'])
|
|
4156
|
-
|
|
4157
|
-
|
|
4158
|
-
class ResizeNearestNeighbor(Primitive):
|
|
4159
|
-
r"""
|
|
4160
|
-
Resizes the input tensor to a given size by using the nearest neighbor algorithm. The nearest
|
|
4161
|
-
neighbor algorithm selects the value of the nearest point and does not consider the
|
|
4162
|
-
values of neighboring points at all, yielding a piecewise-constant interpolant.
|
|
4163
|
-
|
|
4164
|
-
Args:
|
|
4165
|
-
size (Union[tuple, list]): The target size. The dimension of size must be 2.
|
|
4166
|
-
align_corners (bool): Whether the centers of the 4 corner pixels of the input
|
|
4167
|
-
and output tensors are aligned. Default: ``False`` .
|
|
4168
|
-
|
|
4169
|
-
Inputs:
|
|
4170
|
-
- **input_x** (Tensor) - The input tensor. The shape of the tensor is :math:`(N, C, H, W)`.
|
|
4171
|
-
|
|
4172
|
-
Outputs:
|
|
4173
|
-
Tensor, the shape of the output tensor is :math:`(N, C, NEW\_H, NEW\_W)`.
|
|
4174
|
-
The data type is the same as the `input_x`.
|
|
4175
|
-
|
|
4176
|
-
Raises:
|
|
4177
|
-
TypeError: If `size` is neither tuple nor list.
|
|
4178
|
-
TypeError: If `align_corners` is not a bool.
|
|
4179
|
-
ValueError: If length of `size` is not equal to 2.
|
|
4180
|
-
|
|
4181
|
-
Supported Platforms:
|
|
4182
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
4183
|
-
|
|
4184
|
-
Examples:
|
|
4185
|
-
>>> import numpy as np
|
|
4186
|
-
>>> import mindspore
|
|
4187
|
-
>>> from mindspore import Tensor, ops
|
|
4188
|
-
>>> input_tensor = Tensor(np.array([[[[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]]]), mindspore.float32)
|
|
4189
|
-
>>> size = (2, 2)
|
|
4190
|
-
>>> output = ops.ResizeNearestNeighbor(size=size)(input_tensor)
|
|
4191
|
-
>>> print(output)
|
|
4192
|
-
[[[[-0.1 0.3]
|
|
4193
|
-
[ 0.4 0.5]]]]
|
|
4194
|
-
"""
|
|
4195
|
-
|
|
4196
|
-
@prim_attr_register
|
|
4197
|
-
def __init__(self, size, align_corners=False):
|
|
4198
|
-
"""Initialize ResizeNearestNeighbor"""
|
|
4199
|
-
validator.check_value_type("size", size, [tuple, list], self.name)
|
|
4200
|
-
validator.check_value_type("align_corners", align_corners, [bool], self.name)
|
|
4201
|
-
validator.check_equal_int(len(size), 2, "length of size", self.name)
|
|
4202
|
-
for i, value in enumerate(size):
|
|
4203
|
-
validator.check_non_negative_int(value, f'{i}th value of size', self.name)
|
|
4204
|
-
self.init_prim_io_names(inputs=['image_in'], outputs=['image_out'])
|
|
4205
|
-
|
|
4206
|
-
|
|
4207
|
-
class ResizeNearestNeighborV2(Primitive):
|
|
4208
|
-
r"""
|
|
4209
|
-
Resizes the input tensor to specific size by using the nearest neighbor algorithm.
|
|
4210
|
-
|
|
4211
|
-
The nearest neighbor algorithm selects the value of the nearest point and does not consider the
|
|
4212
|
-
values of neighboring points at all, yielding a piecewise-constant interpolant.
|
|
4213
|
-
|
|
4214
|
-
Args:
|
|
4215
|
-
align_corners (bool, optional): If ``True`` , the centers of the 4 corner pixels of the input and output
|
|
4216
|
-
tensors are aligned, preserving the values at the corner pixels. Default: ``False`` .
|
|
4217
|
-
half_pixel_centers (bool, optional): Whether half pixel center. If set to ``True`` ,
|
|
4218
|
-
`align_corners` should be False. Default: ``False`` .
|
|
4219
|
-
|
|
4220
|
-
Inputs:
|
|
4221
|
-
- **x** (Tensor) - 4-D with shape :math:`(batch, channels, height, width)` .
|
|
4222
|
-
- **size** (Tensor) - The new size for the images. A 1-D int32 Tensor
|
|
4223
|
-
of 2 elements: [`new_height, new_width`].
|
|
4224
|
-
|
|
4225
|
-
Outputs:
|
|
4226
|
-
- **y** (Tensor) - The resized images. A 4-D with shape
|
|
4227
|
-
:math:`(batch, channels, new\_height, new\_width)`. It has the same dtype as `x`.
|
|
4228
|
-
|
|
4229
|
-
Raises:
|
|
4230
|
-
TypeError: If `x` or `size` is not a Tensor.
|
|
4231
|
-
TypeError: If the data type of `size` is not int32.
|
|
4232
|
-
TypeError: If `align_corners` or `half_pixel_centers` is not bool.
|
|
4233
|
-
ValueError: If any value of `size` is non positive.
|
|
4234
|
-
ValueError: If the dimension of `x` is not 4.
|
|
4235
|
-
ValueError: If the dimension of `size` is not 1.
|
|
4236
|
-
ValueError: If the elements number of `size` is not 2.
|
|
4237
|
-
ValueError: If attr `half_pixel_centers` and `align_corners` are True at the same time.
|
|
4238
|
-
|
|
4239
|
-
Supported Platforms:
|
|
4240
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
4241
|
-
|
|
4242
|
-
Examples:
|
|
4243
|
-
>>> import numpy as np
|
|
4244
|
-
>>> from mindspore import Tensor, ops
|
|
4245
|
-
>>> from mindspore import dtype as mstype
|
|
4246
|
-
>>> input_tensor = Tensor(np.ones((1, 1, 4, 4)), mstype.float32)
|
|
4247
|
-
>>> size = Tensor([2, 2], mstype.int32)
|
|
4248
|
-
>>> resize = ops.ResizeNearestNeighborV2()
|
|
4249
|
-
>>> output = resize(input_tensor, size)
|
|
4250
|
-
>>> print(output)
|
|
4251
|
-
[[[[1. 1.]
|
|
4252
|
-
[1. 1.]]]]
|
|
4253
|
-
>>> print(output.shape)
|
|
4254
|
-
(1, 1, 2, 2)
|
|
4255
|
-
"""
|
|
4256
|
-
|
|
4257
|
-
@prim_attr_register
|
|
4258
|
-
def __init__(self, align_corners=False, half_pixel_centers=False):
|
|
4259
|
-
"""Initialize ResizeNearestNeighborV2"""
|
|
4260
|
-
self.init_prim_io_names(inputs=['x', 'size'], outputs=['y'])
|
|
4261
|
-
validator.check_bool(align_corners, 'align_corners', self.name)
|
|
4262
|
-
validator.check_bool(half_pixel_centers, 'half_pixel_centers', self.name)
|
|
4263
|
-
|
|
4264
|
-
|
|
4265
|
-
class GatherNd(Primitive):
|
|
4266
|
-
r"""
|
|
4267
|
-
Gathers slices from a tensor by indices.
|
|
4268
|
-
|
|
4269
|
-
Refer to :func:`mindspore.ops.gather_nd` for more details.
|
|
4270
|
-
|
|
4271
|
-
Inputs:
|
|
4272
|
-
- **input_x** (Tensor) - The target tensor to gather values.
|
|
4273
|
-
- **indices** (Tensor) - The index tensor, with int32 or int64 data type.
|
|
4274
|
-
|
|
4275
|
-
Outputs:
|
|
4276
|
-
Tensor, has the same type as `input_x` and the shape is indices_shape[:-1] + x_shape[indices_shape[-1]:].
|
|
4277
|
-
|
|
4278
|
-
Supported Platforms:
|
|
4279
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
4280
|
-
|
|
4281
|
-
Examples:
|
|
4282
|
-
>>> import mindspore
|
|
4283
|
-
>>> import numpy as np
|
|
4284
|
-
>>> from mindspore import Tensor, ops
|
|
4285
|
-
>>> op = ops.GatherNd()
|
|
4286
|
-
>>> input_x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32)
|
|
4287
|
-
>>> indices = Tensor(np.array([[0, 0], [1, 1]]), mindspore.int32)
|
|
4288
|
-
>>> output = op(input_x, indices)
|
|
4289
|
-
>>> print(output)
|
|
4290
|
-
[-0.1 0.5]
|
|
4291
|
-
"""
|
|
4292
|
-
|
|
4293
|
-
@prim_attr_register
|
|
4294
|
-
def __init__(self):
|
|
4295
|
-
"""Initialize GatherNd"""
|
|
4296
|
-
self.init_prim_io_names(inputs=['input_x', 'indices'], outputs=['y'])
|
|
4297
|
-
|
|
4298
|
-
|
|
4299
2261
|
class ScatterUpdate(Primitive):
|
|
4300
2262
|
r"""
|
|
4301
2263
|
Updates tensor values by using input indices and value.
|
|
@@ -4798,80 +2760,6 @@ class ScatterSub(Primitive):
|
|
|
4798
2760
|
self.add_prim_attr('side_effect_mem', True)
|
|
4799
2761
|
|
|
4800
2762
|
|
|
4801
|
-
class Triu(Primitive):
|
|
4802
|
-
"""
|
|
4803
|
-
Returns the upper triangular portion of the 2-D matrix or the set of matrices
|
|
4804
|
-
in a batch. The remaining elements of the resulting Tensor are assigned a value of 0.
|
|
4805
|
-
The upper triangular section of the matrix comprises of the
|
|
4806
|
-
elements present on and above the main diagonal.
|
|
4807
|
-
|
|
4808
|
-
.. warning::
|
|
4809
|
-
This is an experimental API that is subject to change or deletion.
|
|
4810
|
-
|
|
4811
|
-
Args:
|
|
4812
|
-
diagonal (int, optional): The index of diagonal. Default: ``0`` , indicating the main diagonal.
|
|
4813
|
-
|
|
4814
|
-
Inputs:
|
|
4815
|
-
- **x** (Tensor) - The input tensor with shape :math:`(M, N, *)`
|
|
4816
|
-
where :math:`*` means any number of additional dimensions.
|
|
4817
|
-
|
|
4818
|
-
Outputs:
|
|
4819
|
-
- **y** (Tensor) - A tensor has the same shape and data type as input.
|
|
4820
|
-
|
|
4821
|
-
Raises:
|
|
4822
|
-
TypeError: If `x` is not an Tensor.
|
|
4823
|
-
TypeError: If `diagonal` is not an int.
|
|
4824
|
-
ValueError: If the dimension of `input` is less than 2.
|
|
4825
|
-
|
|
4826
|
-
Supported Platforms:
|
|
4827
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
4828
|
-
|
|
4829
|
-
Examples:
|
|
4830
|
-
>>> import numpy as np
|
|
4831
|
-
>>> from mindspore import Tensor, ops
|
|
4832
|
-
>>> x = Tensor(np.array([[ 1, 2, 3, 4],
|
|
4833
|
-
... [ 5, 6, 7, 8],
|
|
4834
|
-
... [10, 11, 12, 13],
|
|
4835
|
-
... [14, 15, 16, 17]]))
|
|
4836
|
-
>>> triu = ops.Triu()
|
|
4837
|
-
>>> result = triu(x)
|
|
4838
|
-
>>> print(result)
|
|
4839
|
-
[[ 1 2 3 4]
|
|
4840
|
-
[ 0 6 7 8]
|
|
4841
|
-
[ 0 0 12 13]
|
|
4842
|
-
[ 0 0 0 17]]
|
|
4843
|
-
>>> x = Tensor(np.array([[ 1, 2, 3, 4],
|
|
4844
|
-
... [ 5, 6, 7, 8],
|
|
4845
|
-
... [10, 11, 12, 13],
|
|
4846
|
-
... [14, 15, 16, 17]]))
|
|
4847
|
-
>>> triu = ops.Triu(diagonal=1)
|
|
4848
|
-
>>> result = triu(x)
|
|
4849
|
-
>>> print(result)
|
|
4850
|
-
[[ 0 2 3 4]
|
|
4851
|
-
[ 0 0 7 8]
|
|
4852
|
-
[ 0 0 0 13]
|
|
4853
|
-
[ 0 0 0 0]]
|
|
4854
|
-
>>> x = Tensor(np.array([[ 1, 2, 3, 4],
|
|
4855
|
-
... [ 5, 6, 7, 8],
|
|
4856
|
-
... [10, 11, 12, 13],
|
|
4857
|
-
... [14, 15, 16, 17]]))
|
|
4858
|
-
>>> triu = ops.Triu(diagonal=-1)
|
|
4859
|
-
>>> result = triu(x)
|
|
4860
|
-
>>> print(result)
|
|
4861
|
-
[[ 1 2 3 4]
|
|
4862
|
-
[ 5 6 7 8]
|
|
4863
|
-
[ 0 11 12 13]
|
|
4864
|
-
[ 0 0 16 17]]
|
|
4865
|
-
"""
|
|
4866
|
-
|
|
4867
|
-
@prim_attr_register
|
|
4868
|
-
def __init__(self, diagonal=0):
|
|
4869
|
-
"""Initialize Triu"""
|
|
4870
|
-
validator.check_value_type("diagonal", diagonal, [int], self.name)
|
|
4871
|
-
self.diagonal = diagonal
|
|
4872
|
-
self.init_prim_io_names(inputs=['x'], outputs=['y'])
|
|
4873
|
-
|
|
4874
|
-
|
|
4875
2763
|
class ScatterMul(_ScatterOpDynamic):
|
|
4876
2764
|
r"""
|
|
4877
2765
|
Updates the value of the input tensor through the multiply operation.
|
|
@@ -5837,6 +3725,9 @@ class SpaceToBatchND(Primitive):
|
|
|
5837
3725
|
``Ascend`` ``GPU`` ``CPU``
|
|
5838
3726
|
|
|
5839
3727
|
Examples:
|
|
3728
|
+
>>> import mindspore
|
|
3729
|
+
>>> from mindspore import Tensor, ops
|
|
3730
|
+
>>> import numpy as np
|
|
5840
3731
|
>>> block_shape = [2, 2]
|
|
5841
3732
|
>>> paddings = [[0, 0], [0, 0]]
|
|
5842
3733
|
>>> space_to_batch_nd = ops.SpaceToBatchND(block_shape, paddings)
|
|
@@ -5896,84 +3787,31 @@ class BatchToSpaceNDV2(Primitive):
|
|
|
5896
3787
|
same, equal to `block_shape`. In this case of Ascend, M must be 2.
|
|
5897
3788
|
- **crops** (Union[list(int), tuple(int)]) - The crops values for spatial dimensions, containing
|
|
5898
3789
|
M subtraction list. Each contains 2 integer values. All values must be >= 0. crops[i] specifies
|
|
5899
|
-
the crops values for spatial dimension i, which corresponds to input dimension i + offset,
|
|
5900
|
-
where offset = N-M, and N is the number of input dimensions. It is required that
|
|
5901
|
-
:math:`input\_shape[i+offset]*block\_shape[i] > crops[i][0]+crops[i][1]`
|
|
5902
|
-
|
|
5903
|
-
Outputs:
|
|
5904
|
-
Tensor, contains the result of batch division and rearrangement of the original Tensor.
|
|
5905
|
-
|
|
5906
|
-
Supported Platforms:
|
|
5907
|
-
``Ascend``
|
|
5908
|
-
|
|
5909
|
-
Examples:
|
|
5910
|
-
>>> block_shape = Tensor(np.array([2, 2]), mindspore.int32)
|
|
5911
|
-
>>> crops = [[0, 0], [0, 0]]
|
|
5912
|
-
>>> input_x = Tensor(np.array([[[[1]]], [[[2]]], [[[3]]], [[[4]]]]), mindspore.float32)
|
|
5913
|
-
>>> output = ops.BatchToSpaceNDV2(input_x, block_shape, crops)
|
|
5914
|
-
>>> print(output)
|
|
5915
|
-
[[[[1. 2.]
|
|
5916
|
-
[3. 4.]]]]
|
|
5917
|
-
"""
|
|
5918
|
-
|
|
5919
|
-
@prim_attr_register
|
|
5920
|
-
def __init__(self):
|
|
5921
|
-
"""Initialize BatchToSpaceNDV2"""
|
|
5922
|
-
self.init_prim_io_names(inputs=['input_x', 'block_shape', 'crops'], outputs=['y'])
|
|
5923
|
-
self.add_prim_attr('origin_format', 'NHWC')
|
|
5924
|
-
|
|
5925
|
-
|
|
5926
|
-
class BroadcastTo(PrimitiveWithCheck):
|
|
5927
|
-
"""
|
|
5928
|
-
Broadcasts input tensor to a given shape.
|
|
5929
|
-
|
|
5930
|
-
Refer to :func:`mindspore.ops.broadcast_to` for more details.
|
|
5931
|
-
|
|
5932
|
-
Args:
|
|
5933
|
-
shape (tuple): The target shape to broadcast. Can be fully specified, or have -1 in one position
|
|
5934
|
-
where it will be substituted by the input tensor's shape in that position, see example.
|
|
5935
|
-
|
|
5936
|
-
Inputs:
|
|
5937
|
-
- **input_x** (Tensor) - The input tensor of any dimension.
|
|
3790
|
+
the crops values for spatial dimension i, which corresponds to input dimension i + offset,
|
|
3791
|
+
where offset = N-M, and N is the number of input dimensions. It is required that
|
|
3792
|
+
:math:`input\_shape[i+offset]*block\_shape[i] > crops[i][0]+crops[i][1]`
|
|
5938
3793
|
|
|
5939
3794
|
Outputs:
|
|
5940
|
-
Tensor,
|
|
3795
|
+
Tensor, contains the result of batch division and rearrangement of the original Tensor.
|
|
5941
3796
|
|
|
5942
3797
|
Supported Platforms:
|
|
5943
|
-
``Ascend``
|
|
3798
|
+
``Ascend``
|
|
5944
3799
|
|
|
5945
3800
|
Examples:
|
|
5946
|
-
>>>
|
|
5947
|
-
>>>
|
|
5948
|
-
>>>
|
|
5949
|
-
>>>
|
|
5950
|
-
>>> output = ops.BroadcastTo(shape=shape)(x)
|
|
5951
|
-
>>> print(output)
|
|
5952
|
-
[[1. 2. 3.]
|
|
5953
|
-
[1. 2. 3.]]
|
|
5954
|
-
>>>
|
|
5955
|
-
>>> shape = (-1, 2)
|
|
5956
|
-
>>> x = Tensor(np.array([[1], [2]]).astype(np.float32))
|
|
5957
|
-
>>> output = ops.BroadcastTo(shape=shape)(x)
|
|
3801
|
+
>>> block_shape = Tensor(np.array([2, 2]), mindspore.int32)
|
|
3802
|
+
>>> crops = [[0, 0], [0, 0]]
|
|
3803
|
+
>>> input_x = Tensor(np.array([[[[1]]], [[[2]]], [[[3]]], [[[4]]]]), mindspore.float32)
|
|
3804
|
+
>>> output = ops.BatchToSpaceNDV2(input_x, block_shape, crops)
|
|
5958
3805
|
>>> print(output)
|
|
5959
|
-
[[1.
|
|
5960
|
-
|
|
3806
|
+
[[[[1. 2.]
|
|
3807
|
+
[3. 4.]]]]
|
|
5961
3808
|
"""
|
|
5962
3809
|
|
|
5963
3810
|
@prim_attr_register
|
|
5964
|
-
def __init__(self
|
|
5965
|
-
"""Initialize
|
|
5966
|
-
|
|
5967
|
-
|
|
5968
|
-
for ix, i in enumerate(shape):
|
|
5969
|
-
validator.check_value_type('target shape index -> ' + str(ix), i, [int], self.name)
|
|
5970
|
-
validator.check("shape element", i, "shape element min limit", -1, validator.GE, self.name)
|
|
5971
|
-
self.shape = shape
|
|
5972
|
-
|
|
5973
|
-
def infer_value(self, x):
|
|
5974
|
-
if x is None:
|
|
5975
|
-
return None
|
|
5976
|
-
return Tensor(np.broadcast_to(x.asnumpy(), self.shape))
|
|
3811
|
+
def __init__(self):
|
|
3812
|
+
"""Initialize BatchToSpaceNDV2"""
|
|
3813
|
+
self.init_prim_io_names(inputs=['input_x', 'block_shape', 'crops'], outputs=['y'])
|
|
3814
|
+
self.add_prim_attr('origin_format', 'NHWC')
|
|
5977
3815
|
|
|
5978
3816
|
|
|
5979
3817
|
class Meshgrid(PrimitiveWithInfer):
|
|
@@ -5983,13 +3821,13 @@ class Meshgrid(PrimitiveWithInfer):
|
|
|
5983
3821
|
Refer to :func:`mindspore.ops.meshgrid` for more details.
|
|
5984
3822
|
|
|
5985
3823
|
Args:
|
|
5986
|
-
indexing (str, optional): Cartesian
|
|
5987
|
-
matrix
|
|
3824
|
+
indexing (str, optional): Cartesian ``'xy'`` or
|
|
3825
|
+
matrix ``'ij'`` indexing of output. In the 2-D case with
|
|
5988
3826
|
inputs of length `M` and `N`, the outputs are of shape :math:`(N, M)`
|
|
5989
|
-
for 'xy' indexing and :math:`(M, N)` for 'ij' indexing. In the 3-D
|
|
3827
|
+
for ``'xy'`` indexing and :math:`(M, N)` for ``'ij'`` indexing. In the 3-D
|
|
5990
3828
|
case with inputs of length `M`, `N` and `P`, outputs are of shape
|
|
5991
|
-
:math:`(N, M, P)` for 'xy' indexing and :math:`(M, N, P)` for 'ij' indexing.
|
|
5992
|
-
Default: 'xy'
|
|
3829
|
+
:math:`(N, M, P)` for ``'xy'`` indexing and :math:`(M, N, P)` for ``'ij'`` indexing.
|
|
3830
|
+
Default: ``'xy'``.
|
|
5993
3831
|
|
|
5994
3832
|
Inputs:
|
|
5995
3833
|
- **input** (Union[tuple]) - A Tuple of N 1-D Tensor objects.
|
|
@@ -6216,7 +4054,7 @@ class EditDistance(Primitive):
|
|
|
6216
4054
|
>>> import numpy as np
|
|
6217
4055
|
>>> from mindspore import Tensor
|
|
6218
4056
|
>>> import mindspore.nn as nn
|
|
6219
|
-
>>>
|
|
4057
|
+
>>> from mindspore import ops
|
|
6220
4058
|
>>> class EditDistance(nn.Cell):
|
|
6221
4059
|
... def __init__(self, hypothesis_shape, truth_shape, normalize=True):
|
|
6222
4060
|
... super(EditDistance, self).__init__()
|
|
@@ -6279,8 +4117,8 @@ class Sort(Primitive):
|
|
|
6279
4117
|
Sorts the elements of the input tensor along the given dimension in the specified order.
|
|
6280
4118
|
|
|
6281
4119
|
.. warning::
|
|
6282
|
-
Currently, the data types of
|
|
6283
|
-
|
|
4120
|
+
Currently, the data types of float16, uint8, int8, int16, int32, int64 are well supported.
|
|
4121
|
+
If use float32, it may cause loss of accuracy.
|
|
6284
4122
|
|
|
6285
4123
|
Args:
|
|
6286
4124
|
axis (int, optional): The dimension to sort along. Default: ``-1``, means the last dimension.
|
|
@@ -6380,56 +4218,6 @@ class EmbeddingLookup(Primitive):
|
|
|
6380
4218
|
self.add_prim_attr('bprop_return_sparse', True)
|
|
6381
4219
|
|
|
6382
4220
|
|
|
6383
|
-
class GatherD(Primitive):
|
|
6384
|
-
"""
|
|
6385
|
-
Gathers elements along an axis specified by dim.
|
|
6386
|
-
|
|
6387
|
-
Refer to :func:`mindspore.ops.gather_elements` for more details.
|
|
6388
|
-
|
|
6389
|
-
Inputs:
|
|
6390
|
-
- **x** (Tensor) - The input tensor.
|
|
6391
|
-
- **dim** (int) - The axis along which to index. It must be int32 or int64.
|
|
6392
|
-
- **index** (Tensor) - The indices of elements to gather. It can be one of the following data types:
|
|
6393
|
-
int32, int64. The value range of each index element is [-x_rank[dim], x_rank[dim]).
|
|
6394
|
-
|
|
6395
|
-
Outputs:
|
|
6396
|
-
Tensor, has the same data type with `x`.
|
|
6397
|
-
|
|
6398
|
-
Supported Platforms:
|
|
6399
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
6400
|
-
|
|
6401
|
-
Examples:
|
|
6402
|
-
>>> import mindspore
|
|
6403
|
-
>>> import numpy as np
|
|
6404
|
-
>>> from mindspore import Tensor, ops
|
|
6405
|
-
>>> x = Tensor(np.array([[1, 2], [3, 4]]), mindspore.int32)
|
|
6406
|
-
>>> index = Tensor(np.array([[0, 0], [1, 0]]), mindspore.int32)
|
|
6407
|
-
>>> dim = 1
|
|
6408
|
-
>>> output = ops.GatherD()(x, dim, index)
|
|
6409
|
-
>>> print(output)
|
|
6410
|
-
[[1 1]
|
|
6411
|
-
[4 3]]
|
|
6412
|
-
"""
|
|
6413
|
-
|
|
6414
|
-
@prim_attr_register
|
|
6415
|
-
def __init__(self):
|
|
6416
|
-
"""Initialize GatherD"""
|
|
6417
|
-
self.init_prim_io_names(inputs=['x', 'dim', 'index'], outputs=['output'])
|
|
6418
|
-
|
|
6419
|
-
|
|
6420
|
-
class Identity(Primitive):
|
|
6421
|
-
"""
|
|
6422
|
-
The `mindspore.ops.Identity` interface is deprecated, please use the :func:`mindspore.ops.deepcopy` instead.
|
|
6423
|
-
|
|
6424
|
-
Supported Platforms:
|
|
6425
|
-
Deprecated
|
|
6426
|
-
"""
|
|
6427
|
-
|
|
6428
|
-
@prim_attr_register
|
|
6429
|
-
def __init__(self):
|
|
6430
|
-
pass
|
|
6431
|
-
|
|
6432
|
-
|
|
6433
4221
|
class IdentityN(Primitive):
|
|
6434
4222
|
"""
|
|
6435
4223
|
Return a tuple of tensors with the same shapes and contents as the input.
|
|
@@ -6468,72 +4256,6 @@ class IdentityN(Primitive):
|
|
|
6468
4256
|
self.init_prim_io_names(inputs=['x'], outputs=['y'])
|
|
6469
4257
|
|
|
6470
4258
|
|
|
6471
|
-
class Range(PrimitiveWithCheck):
|
|
6472
|
-
r"""
|
|
6473
|
-
Creates a sequence of numbers that begins at `start` and extlimits by increments of
|
|
6474
|
-
`delta` up to but not including `limit`.
|
|
6475
|
-
|
|
6476
|
-
Refer to :func:`mindspore.ops.range` for more details.
|
|
6477
|
-
|
|
6478
|
-
Args:
|
|
6479
|
-
maxlen (int, optional): Memory that can fit `maxlen` many elements
|
|
6480
|
-
will be allocated for the output. Optional, must be positive. Default: 1000000.
|
|
6481
|
-
If the output has more than `maxlen` elements, a runtime error
|
|
6482
|
-
will occur.
|
|
6483
|
-
|
|
6484
|
-
Inputs:
|
|
6485
|
-
- **start** (Tensor) - A scalar Tensor. The first number in the sequence.
|
|
6486
|
-
- **limit** (Tensor) - A scalar Tensor. Upper limit of the sequence, exclusive.
|
|
6487
|
-
- **delta** (Tensor) - A scalar Tensor. Number that increments `start`.
|
|
6488
|
-
|
|
6489
|
-
Outputs:
|
|
6490
|
-
A 1-D Tensor, with the same type as the inputs.
|
|
6491
|
-
|
|
6492
|
-
Supported Platforms:
|
|
6493
|
-
``GPU`` ``CPU``
|
|
6494
|
-
|
|
6495
|
-
Examples:
|
|
6496
|
-
>>> from mindspore import Tensor, ops
|
|
6497
|
-
>>> from mindspore import dtype as mstype
|
|
6498
|
-
>>> start = Tensor(0, mstype.int32)
|
|
6499
|
-
>>> limit = Tensor(10, mstype.int32)
|
|
6500
|
-
>>> delta = Tensor(4, mstype.int32)
|
|
6501
|
-
>>> output = ops.Range()(start, limit, delta)
|
|
6502
|
-
>>> print(output)
|
|
6503
|
-
[0 4 8]
|
|
6504
|
-
"""
|
|
6505
|
-
|
|
6506
|
-
@prim_attr_register
|
|
6507
|
-
def __init__(self, maxlen=1000000):
|
|
6508
|
-
self.init_prim_io_names(inputs=['start', 'limit', 'delta'], outputs=['output'])
|
|
6509
|
-
validator.check_value_type("maxlen", maxlen, [int], self.name)
|
|
6510
|
-
validator.check_positive_int(maxlen, "maxlen", self.name)
|
|
6511
|
-
self.maxlen = maxlen
|
|
6512
|
-
self.add_prim_attr('maxlen', maxlen)
|
|
6513
|
-
|
|
6514
|
-
def check_shape(self, start_shape, limit_shape, delta_shape):
|
|
6515
|
-
if not is_shape_unknown(start_shape):
|
|
6516
|
-
validator.check("start_shape", len(start_shape), "", 0, validator.EQ, self.name)
|
|
6517
|
-
if not is_shape_unknown(limit_shape):
|
|
6518
|
-
validator.check("limit_shape", len(limit_shape), "", 0, validator.EQ, self.name)
|
|
6519
|
-
if not is_shape_unknown(delta_shape):
|
|
6520
|
-
validator.check("delta_shape", len(delta_shape), "", 0, validator.EQ, self.name)
|
|
6521
|
-
|
|
6522
|
-
def check_dtype(self, start_dtype, limit_dtype, delta_dtype):
|
|
6523
|
-
valid_dtypes = [mstype.int32, mstype.float32, mstype.int64, mstype.float64]
|
|
6524
|
-
inputs = {"start": start_dtype, "limit": limit_dtype, "delta": delta_dtype}
|
|
6525
|
-
validator.check_tensors_dtypes_same_and_valid(inputs, valid_dtypes, self.name)
|
|
6526
|
-
|
|
6527
|
-
def infer_value(self, start_value, limit_value, delat_value):
|
|
6528
|
-
"""Infer the value of input for Range."""
|
|
6529
|
-
if start_value is not None and limit_value is not None and delat_value is not None:
|
|
6530
|
-
start = start_value.asnumpy()
|
|
6531
|
-
limit = limit_value.asnumpy()
|
|
6532
|
-
delat = delat_value.asnumpy()
|
|
6533
|
-
return Tensor(np.arange(start, limit, delat), dtype=start_value.dtype)
|
|
6534
|
-
return None
|
|
6535
|
-
|
|
6536
|
-
|
|
6537
4259
|
class RangeV2(Primitive):
|
|
6538
4260
|
"""
|
|
6539
4261
|
Creates a sequence of numbers that begins at `start`, ends at `limit` but not including `limit`
|
|
@@ -6588,46 +4310,6 @@ class RangeV2(Primitive):
|
|
|
6588
4310
|
validator.check_positive_int(maxlen, "maxlen", self.name)
|
|
6589
4311
|
|
|
6590
4312
|
|
|
6591
|
-
class MaskedFill(Primitive):
|
|
6592
|
-
"""
|
|
6593
|
-
Fills elements with value where mask is True.
|
|
6594
|
-
|
|
6595
|
-
Note:
|
|
6596
|
-
If `value` is a floating-point number of Python, it will be converted to float32 later by default.
|
|
6597
|
-
In this case, if `input_x` is a float16 Tensor, it will be converted to float32 for calculation,
|
|
6598
|
-
and the result type will be converted back to float16 on the CPU and Ascend platforms, which may
|
|
6599
|
-
cause the performance penalty. A TypeError may be raised on the GPU platform. Therefore,
|
|
6600
|
-
it is recommended that 'value' should use a Tensor with the same dtype as `input_x`.
|
|
6601
|
-
|
|
6602
|
-
Refer to :func:`mindspore.ops.masked_fill` for more details.
|
|
6603
|
-
|
|
6604
|
-
Inputs:
|
|
6605
|
-
- **input** (Tensor) - The input Tensor.
|
|
6606
|
-
- **mask** (Tensor[bool]) - The boolean mask.
|
|
6607
|
-
- **value** (Union[float, Tensor]) - The value to fill in with, which dtype is the same as `input`.
|
|
6608
|
-
|
|
6609
|
-
Outputs:
|
|
6610
|
-
Tensor, has the same type and shape as `input`.
|
|
6611
|
-
|
|
6612
|
-
Supported Platforms:
|
|
6613
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
6614
|
-
|
|
6615
|
-
Examples:
|
|
6616
|
-
>>> import mindspore
|
|
6617
|
-
>>> import numpy as np
|
|
6618
|
-
>>> from mindspore import Tensor, ops
|
|
6619
|
-
>>> input = Tensor(np.array([1., 2., 3., 4.]), mindspore.float32)
|
|
6620
|
-
>>> mask = Tensor(np.array([True, True, False, True]), mindspore.bool_)
|
|
6621
|
-
>>> output = ops.MaskedFill()(input, mask, 0.5)
|
|
6622
|
-
>>> print(output)
|
|
6623
|
-
[0.5 0.5 3. 0.5]
|
|
6624
|
-
"""
|
|
6625
|
-
|
|
6626
|
-
@prim_attr_register
|
|
6627
|
-
def __init__(self):
|
|
6628
|
-
self.init_prim_io_names(inputs=['input', 'mask', 'value'], outputs=['output'])
|
|
6629
|
-
|
|
6630
|
-
|
|
6631
4313
|
class MaskedScatter(Primitive):
|
|
6632
4314
|
"""
|
|
6633
4315
|
Updates the value in the input with value in `updates` according to the `mask`.
|
|
@@ -6721,60 +4403,6 @@ class MaskedSelect(PrimitiveWithCheck):
|
|
|
6721
4403
|
validator.check_tensor_dtype_valid('x', x_dtype, (mstype.bool_,) + mstype.number_type, self.name)
|
|
6722
4404
|
|
|
6723
4405
|
|
|
6724
|
-
class SearchSorted(Primitive):
|
|
6725
|
-
"""
|
|
6726
|
-
Returns the indices correspond to the positions where the given numbers in `values` should be inserted
|
|
6727
|
-
into `sorted_sequence` so that the order of the sequence is maintained.
|
|
6728
|
-
|
|
6729
|
-
.. warning::
|
|
6730
|
-
This is an experimental API that is subject to change or deletion.
|
|
6731
|
-
|
|
6732
|
-
Refer to :func:`mindspore.ops.searchsorted` for more details.
|
|
6733
|
-
|
|
6734
|
-
Args:
|
|
6735
|
-
dtype (:class:`mindspore.dtype`, optional): Output data type. An optional data type of
|
|
6736
|
-
``mstype.int32`` and ``mstype.int64``. Default: ``mstype.int64``.
|
|
6737
|
-
right (bool, optional): Search Strategy. If ``True`` , return the last suitable index found;
|
|
6738
|
-
if ``False`` , return the first such index. Default: ``False`` .
|
|
6739
|
-
|
|
6740
|
-
Inputs:
|
|
6741
|
-
- **sorted_sequence** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R-1, x_R)` or `(x_1)`.
|
|
6742
|
-
It must contain a monotonically increasing sequence on the innermost dimension.
|
|
6743
|
-
- **values** (Tensor) - The value that should be inserted.
|
|
6744
|
-
The shape of tensor is :math:`(x_1, x_2, ..., x_R-1, x_S)`.
|
|
6745
|
-
|
|
6746
|
-
Outputs:
|
|
6747
|
-
Tensor containing the indices from the innermost dimension of `sorted_sequence` such that,
|
|
6748
|
-
if insert the corresponding value in the `values` tensor, the order of `sorted_sequence` would be preserved,
|
|
6749
|
-
whose datatype is int32 if out_int32 is True, otherwise int64, and shape is the same as the shape of `values`.
|
|
6750
|
-
|
|
6751
|
-
Supported Platforms:
|
|
6752
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
6753
|
-
|
|
6754
|
-
Examples:
|
|
6755
|
-
>>> import mindspore
|
|
6756
|
-
>>> import numpy as np
|
|
6757
|
-
>>> from mindspore import Tensor, ops
|
|
6758
|
-
>>> sorted_sequence = Tensor(np.array([[0, 1, 3, 5, 7], [2, 4, 6, 8, 10]]), mindspore.float32)
|
|
6759
|
-
>>> values = Tensor(np.array([[3, 6, 9], [3, 6, 9]]), mindspore.float32)
|
|
6760
|
-
>>> output = ops.SearchSorted()(sorted_sequence, values)
|
|
6761
|
-
>>> print(output)
|
|
6762
|
-
[[2 4 5]
|
|
6763
|
-
[1 2 4]]
|
|
6764
|
-
"""
|
|
6765
|
-
|
|
6766
|
-
@prim_attr_register
|
|
6767
|
-
def __init__(self, dtype=mstype.int64, right=False):
|
|
6768
|
-
"""Initialize SearchSorted"""
|
|
6769
|
-
validator.check_value_type("dtype", dtype, [mstype.Type], self.name)
|
|
6770
|
-
valid_values = (mstype.int64, mstype.int32)
|
|
6771
|
-
self.dtype = validator.check_type_name(
|
|
6772
|
-
"dtype", dtype, valid_values, self.name)
|
|
6773
|
-
validator.check_value_type('right', right, [bool], self.name)
|
|
6774
|
-
self.init_prim_io_names(
|
|
6775
|
-
inputs=['sorted_sequence', 'values'], outputs=['output'])
|
|
6776
|
-
|
|
6777
|
-
|
|
6778
4406
|
class _TensorScatterOp(PrimitiveWithInfer):
|
|
6779
4407
|
"""
|
|
6780
4408
|
Defines TensorScatter Base Operators
|
|
@@ -6879,43 +4507,15 @@ class TensorScatterUpdate(_TensorScatterOp):
|
|
|
6879
4507
|
def __init__(self):
|
|
6880
4508
|
self.init_prim_io_names(inputs=['input_x', 'indices', 'updates'], outputs=['y'])
|
|
6881
4509
|
|
|
6882
|
-
def _infer_specified_value(self, input_x_value, indices_value, updates_value):
|
|
6883
|
-
"""Calculate min/max value for output of TensorScatterUpdate op"""
|
|
6884
|
-
if isinstance(input_x_value, tuple):
|
|
6885
|
-
input_x_value = list(input_x_value)
|
|
6886
|
-
if isinstance(input_x_value, (Tensor, Tensor_)):
|
|
6887
|
-
input_x_value = input_x_value.asnumpy()
|
|
6888
|
-
if indices_value is None or updates_value is None:
|
|
6889
|
-
return None
|
|
6890
|
-
if isinstance(indices_value, (Tensor, Tensor_)):
|
|
6891
|
-
indices_value = indices_value.asnumpy()
|
|
6892
|
-
if isinstance(updates_value, (Tensor, Tensor_)):
|
|
6893
|
-
updates_value = updates_value.asnumpy()
|
|
6894
|
-
input_x = np.array(input_x_value)
|
|
6895
|
-
updates = np.array(updates_value)
|
|
6896
|
-
for i, indice in enumerate(indices_value):
|
|
6897
|
-
input_x[indice] = updates[i]
|
|
6898
|
-
output = tuple(input_x.tolist())
|
|
6899
|
-
return output
|
|
6900
|
-
|
|
6901
|
-
def _infer_min_value(self, input_x_value, indices_value, updates_value):
|
|
6902
|
-
return self._infer_specified_value(input_x_value, indices_value, updates_value)
|
|
6903
|
-
|
|
6904
|
-
def _infer_max_value(self, input_x_value, indices_value, updates_value):
|
|
6905
|
-
return self._infer_specified_value(input_x_value, indices_value, updates_value)
|
|
6906
|
-
|
|
6907
4510
|
def infer_dtype(self, input_x_dtype, indices_dtype, updates_dtype):
|
|
6908
4511
|
validator.check_tensor_dtype_valid('indices', indices_dtype, [mstype.int32, mstype.int64], self.name)
|
|
6909
4512
|
args = {"input_x": input_x_dtype, "updates": updates_dtype}
|
|
6910
4513
|
validator.check_tensors_dtypes_same_and_valid(args, (mstype.bool_,) + mstype.number_type, self.name)
|
|
6911
4514
|
return input_x_dtype
|
|
6912
4515
|
|
|
6913
|
-
def _infer_shape_value(self, input_x_value, indices_value, updates_value):
|
|
6914
|
-
return self._infer_specified_value(input_x_value, indices_value, updates_value)
|
|
6915
|
-
|
|
6916
4516
|
|
|
6917
4517
|
class TensorScatterMax(Primitive):
|
|
6918
|
-
"""
|
|
4518
|
+
r"""
|
|
6919
4519
|
By comparing the value at the position indicated by `indices` in `x` with the value in the `updates`,
|
|
6920
4520
|
the value at the index will eventually be equal to the largest one to create a new tensor.
|
|
6921
4521
|
|
|
@@ -6926,7 +4526,7 @@ class TensorScatterMax(Primitive):
|
|
|
6926
4526
|
- **indices** (Tensor) - The index of input tensor whose data type is int32 or int64.
|
|
6927
4527
|
The rank must be at least 2.
|
|
6928
4528
|
- **updates** (Tensor) - The tensor to update the input tensor, has the same type as input,
|
|
6929
|
-
and updates.shape should be equal to indices.shape[:-1] +
|
|
4529
|
+
and updates.shape should be equal to :math:`indices.shape[:-1] + input\_x.shape[indices.shape[-1]:]`.
|
|
6930
4530
|
|
|
6931
4531
|
Outputs:
|
|
6932
4532
|
Tensor, has the same shape and type as `input_x`.
|
|
@@ -6963,7 +4563,7 @@ class TensorScatterMax(Primitive):
|
|
|
6963
4563
|
|
|
6964
4564
|
|
|
6965
4565
|
class TensorScatterMin(Primitive):
|
|
6966
|
-
"""
|
|
4566
|
+
r"""
|
|
6967
4567
|
By comparing the value at the position indicated by `indices` in `input_x` with the value in the `updates`,
|
|
6968
4568
|
the value at the index will eventually be equal to the smallest one to create a new tensor.
|
|
6969
4569
|
|
|
@@ -6974,7 +4574,7 @@ class TensorScatterMin(Primitive):
|
|
|
6974
4574
|
- **indices** (Tensor) - The index of input tensor whose data type is int32 or int64.
|
|
6975
4575
|
The rank must be at least 2.
|
|
6976
4576
|
- **updates** (Tensor) - The tensor to update the input tensor, has the same type as input,
|
|
6977
|
-
and updates.shape should be equal to indices.shape[:-1] +
|
|
4577
|
+
and updates.shape should be equal to :math:`indices.shape[:-1] + input\_x.shape[indices.shape[-1]:]`.
|
|
6978
4578
|
|
|
6979
4579
|
Outputs:
|
|
6980
4580
|
Tensor, has the same shape and type as `input_x`.
|
|
@@ -7019,7 +4619,7 @@ class TensorScatterSub(Primitive):
|
|
|
7019
4619
|
instead of input `Parameter`.
|
|
7020
4620
|
|
|
7021
4621
|
.. math::
|
|
7022
|
-
output[indices] = input\_x
|
|
4622
|
+
output\left [indices \right ] = input\_x- update
|
|
7023
4623
|
|
|
7024
4624
|
Refer to :func:`mindspore.ops.tensor_scatter_sub` for more details.
|
|
7025
4625
|
|
|
@@ -7123,7 +4723,7 @@ class TensorScatterMul(_TensorScatterOp):
|
|
|
7123
4723
|
The updates are applied on output `Tensor` instead of input `Parameter`.
|
|
7124
4724
|
|
|
7125
4725
|
.. math::
|
|
7126
|
-
output[indices] = input\_x
|
|
4726
|
+
output\left [indices \right ] = input\_x\times update
|
|
7127
4727
|
|
|
7128
4728
|
Refer to :func:`mindspore.ops.tensor_scatter_mul` for more details.
|
|
7129
4729
|
|
|
@@ -7132,7 +4732,7 @@ class TensorScatterMul(_TensorScatterOp):
|
|
|
7132
4732
|
- **indices** (Tensor) - The index of input tensor whose data type is int32 or int64.
|
|
7133
4733
|
The rank must be at least 2.
|
|
7134
4734
|
- **updates** (Tensor) - The tensor to update the input tensor, has the same type as `input_x`,
|
|
7135
|
-
and the shape of `updates` should be equal to indices.shape[:-1] +
|
|
4735
|
+
and the shape of `updates` should be equal to :math:`indices.shape[:-1] + input\_x.shape[indices.shape[-1]:]`.
|
|
7136
4736
|
|
|
7137
4737
|
Outputs:
|
|
7138
4738
|
Tensor, has the same shape and type as `input_x`.
|
|
@@ -7169,7 +4769,7 @@ class TensorScatterMul(_TensorScatterOp):
|
|
|
7169
4769
|
|
|
7170
4770
|
|
|
7171
4771
|
class TensorScatterDiv(_TensorScatterOp):
|
|
7172
|
-
"""
|
|
4772
|
+
r"""
|
|
7173
4773
|
Creates a new tensor by dividing the values from the positions in `input_x` indicated by
|
|
7174
4774
|
`indices`, with values from `updates`. When divided values are provided for the same
|
|
7175
4775
|
index, the result of the update will be to divided these values respectively. Except that
|
|
@@ -7182,7 +4782,7 @@ class TensorScatterDiv(_TensorScatterOp):
|
|
|
7182
4782
|
- **indices** (Tensor) - The index of input tensor whose data type is int32 or int64.
|
|
7183
4783
|
The rank must be at least 2.
|
|
7184
4784
|
- **updates** (Tensor) - The tensor to update the input tensor, has the same type as input,
|
|
7185
|
-
and updates.shape should be equal to indices.shape[:-1] +
|
|
4785
|
+
and updates.shape should be equal to :math:`indices.shape[:-1] + input\_x.shape[indices.shape[-1]:]`.
|
|
7186
4786
|
|
|
7187
4787
|
Outputs:
|
|
7188
4788
|
Tensor, has the same shape and type as `input_x`.
|
|
@@ -7386,8 +4986,6 @@ class TensorScatterElements(Primitive):
|
|
|
7386
4986
|
- **indices** (Tensor) - The index of `input_x` to do scatter operation whose data type must be int32 or
|
|
7387
4987
|
int64. It has the same rank as `data`. And accepted range is [-s, s) where s is the size along axis.
|
|
7388
4988
|
- **updates** (Tensor) - The tensor doing the scatter operation with `data`,
|
|
7389
|
-
it has the same shape and type as `data`.
|
|
7390
|
-
- **update** (Tensor) - The tensor doing the scatter operation with `data`,
|
|
7391
4989
|
it has the same type as `data` and the same shape as `indices`.
|
|
7392
4990
|
|
|
7393
4991
|
Outputs:
|
|
@@ -7398,7 +4996,7 @@ class TensorScatterElements(Primitive):
|
|
|
7398
4996
|
|
|
7399
4997
|
Examples:
|
|
7400
4998
|
>>> import mindspore
|
|
7401
|
-
>>>
|
|
4999
|
+
>>> from mindspore import ops
|
|
7402
5000
|
>>> from mindspore import Tensor
|
|
7403
5001
|
>>> op = ops.TensorScatterElements(0, "none")
|
|
7404
5002
|
>>> data = Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), mindspore.float32)
|
|
@@ -7410,7 +5008,7 @@ class TensorScatterElements(Primitive):
|
|
|
7410
5008
|
[ 0.0 5.0 0.0]
|
|
7411
5009
|
[ 7.0 0.0 0.0]]
|
|
7412
5010
|
>>> import mindspore as ms
|
|
7413
|
-
>>>
|
|
5011
|
+
>>> from mindspore import ops
|
|
7414
5012
|
>>> from mindspore import Tensor
|
|
7415
5013
|
>>> op = ops.TensorScatterElements(1, "add")
|
|
7416
5014
|
>>> data = Tensor(np.array([[1, 2, 3, 4, 5]]), mindspore.float32)
|
|
@@ -7436,64 +5034,13 @@ class TensorScatterElements(Primitive):
|
|
|
7436
5034
|
|
|
7437
5035
|
|
|
7438
5036
|
class ExtractVolumePatches(Primitive):
|
|
7439
|
-
|
|
7440
|
-
|
|
7441
|
-
"depth" dimension is the second dim of output.
|
|
7442
|
-
|
|
7443
|
-
.. warning::
|
|
7444
|
-
This is an experimental API that is subject to change or deletion.
|
|
7445
|
-
|
|
7446
|
-
Args:
|
|
7447
|
-
kernel_size (Union[int, tuple[int], list[int]]): A list of ints which's length is 3 or 5.
|
|
7448
|
-
The size of the sliding window for each dimension of input. Must be: :math:`[1, 1, k_d, k_h, k_w]` or
|
|
7449
|
-
:math:`[k_d, k_h, k_w]`. If :math:`k_d = k_h = k_w`, you can enter an integer.
|
|
7450
|
-
strides (Union[int, tuple[int], list[int]]): A list of ints which's length is 3 or 5.
|
|
7451
|
-
How far the centers of two consecutive patches are in input. Must be: :math:`[1, 1, s_d, s_h, s_w]` or
|
|
7452
|
-
:math:`[s_d, s_h, s_w]`. If :math:`s_d = s_h = s_w`, you can enter an integer.
|
|
7453
|
-
padding (str): A string from: ``"SAME"`` , ``"VALID"`` . The type of padding algorithm to use.
|
|
7454
|
-
|
|
7455
|
-
Inputs:
|
|
7456
|
-
- **input_x** (Tensor) - A Tensor. 5-D Tensor with shape :math:`(x_n, x_c, x_d, x_h, x_w)`.
|
|
7457
|
-
|
|
7458
|
-
Outputs:
|
|
7459
|
-
Tensor, has the same type as input.
|
|
7460
|
-
If padding is "VALID", the shape is :math:`(x_n, k_d * k_h * k_w * x_c, 1 + (x_d - k_d) / s_d,
|
|
7461
|
-
1 + (x_h - k_h) / s_h, 1 + (x_w - k_w) / s_w)`; if padding is "SAME", the shape is :math:`(
|
|
7462
|
-
x_n, k_d * k_h * k_w * x_c, (x_d + s_d - 1) / s_d, (x_h + s_h - 1) / s_h, (x_w + s_w - 1) / s_w)`.
|
|
7463
|
-
|
|
7464
|
-
Raises:
|
|
7465
|
-
TypeError: If kernel_size or strides is not a list, a tuple or an int.
|
|
7466
|
-
TypeError: If input_x is not a tensor.
|
|
7467
|
-
TypeError: If padding is not str.
|
|
7468
|
-
ValueError: If the length of kernel_size is neither 3 nor 5 and kernel_size is not an integer.
|
|
7469
|
-
ValueError: If the length of strides is neither 3 nor 5 and strides is not an integer.
|
|
7470
|
-
ValueError: If padding is neither ``"VALID"`` nor ``"SAME"`` .
|
|
7471
|
-
ValueError: If elements of kernel_size or strides are not positive integer.
|
|
7472
|
-
ValueError: If input_x is not a tensor in dimension 5.
|
|
7473
|
-
ValueError: If input_x's shape has zero.
|
|
7474
|
-
ValueError: If one of kernel_size or strides' first two numbers is not 1.
|
|
7475
|
-
ValueError: If padding = "VALID" and :math:`input\_x - kernel\_size` is less than 0 in d, h or w dimension.
|
|
7476
|
-
ValueError: If padding = "SAME" and :math:`padding\_needed = ((input\_x + strides - 1) / strides - 1) *
|
|
7477
|
-
strides + kernel\_size - input\_x` is less than 0 in d, h or w dimension.
|
|
7478
|
-
ValueError: If x_h is not 1 or x_w is not 1 and :math:`x_w + padding\_needed - k_w - s_w` is less than 0.
|
|
7479
|
-
ValueError: If :math:`x_d * x_h * x_w` is greater than 2048.
|
|
5037
|
+
"""
|
|
5038
|
+
`ops.ExtractVolumePatches` is deprecated from version 2.3 and will be removed in a future version.
|
|
7480
5039
|
|
|
7481
5040
|
Supported Platforms:
|
|
7482
|
-
|
|
7483
|
-
|
|
7484
|
-
Examples:
|
|
7485
|
-
>>> import numpy as np
|
|
7486
|
-
>>> from mindspore import Tensor, ops
|
|
7487
|
-
>>> from mindspore import dtype as mstype
|
|
7488
|
-
>>> kernel_size = (1, 1, 2, 2, 2)
|
|
7489
|
-
>>> strides = (1, 1, 1, 1, 1)
|
|
7490
|
-
>>> padding = "VALID"
|
|
7491
|
-
>>> input_x = ops.Reshape()(Tensor(np.arange(1, 28), mstype.float16), (1, 1, 3, 3, 3))
|
|
7492
|
-
>>> output_y = ops.ExtractVolumePatches(kernel_size, strides, padding)(input_x)
|
|
7493
|
-
>>> print(output_y.shape)
|
|
7494
|
-
(1, 8, 2, 2, 2)
|
|
5041
|
+
Deprecated
|
|
7495
5042
|
"""
|
|
7496
|
-
|
|
5043
|
+
@deprecated("2.3", "ops.ExtractVolumePatches", False)
|
|
7497
5044
|
@prim_attr_register
|
|
7498
5045
|
def __init__(self, kernel_size, strides, padding):
|
|
7499
5046
|
validator.check_value_type("kernel_size", kernel_size, (int, list, tuple), self.name)
|
|
@@ -7668,7 +5215,7 @@ class LowerBound(Primitive):
|
|
|
7668
5215
|
>>> import mindspore
|
|
7669
5216
|
>>> import numpy as np
|
|
7670
5217
|
>>> from mindspore import Tensor
|
|
7671
|
-
>>>
|
|
5218
|
+
>>> from mindspore import ops
|
|
7672
5219
|
>>> lowerbound = ops.LowerBound(out_type = mindspore.int32)
|
|
7673
5220
|
>>> sorted_x = Tensor(np.arange(12).reshape(3, 4).astype(np.int8))
|
|
7674
5221
|
>>> values = Tensor(np.array([[3], [4], [8]]).astype(np.int8))
|
|
@@ -7721,7 +5268,7 @@ class UpperBound(Primitive):
|
|
|
7721
5268
|
>>> import mindspore
|
|
7722
5269
|
>>> import numpy as np
|
|
7723
5270
|
>>> from mindspore import Tensor
|
|
7724
|
-
>>>
|
|
5271
|
+
>>> from mindspore import ops
|
|
7725
5272
|
>>> upperbound = ops.UpperBound(out_type = mindspore.int32)
|
|
7726
5273
|
>>> sorted_x = Tensor(np.arange(12).reshape(3, 4).astype(np.int8))
|
|
7727
5274
|
>>> values = Tensor(np.array([[3], [6], [9]]).astype(np.int8))
|
|
@@ -7740,100 +5287,6 @@ class UpperBound(Primitive):
|
|
|
7740
5287
|
self.init_prim_io_names(inputs=['sorted_x', 'values'], outputs=['y'])
|
|
7741
5288
|
|
|
7742
5289
|
|
|
7743
|
-
class Cummax(Primitive):
|
|
7744
|
-
"""
|
|
7745
|
-
Returns the cumulative maximum of elements and the index.
|
|
7746
|
-
|
|
7747
|
-
Refer to :func:`mindspore.ops.cummax` for more details.
|
|
7748
|
-
|
|
7749
|
-
Args:
|
|
7750
|
-
axis (int): The axis to accumulate the tensor's value. Must be in the range [-rank(input), rank(input)).
|
|
7751
|
-
|
|
7752
|
-
Inputs:
|
|
7753
|
-
- **input** (Tensor) - The input tensor.
|
|
7754
|
-
|
|
7755
|
-
Outputs:
|
|
7756
|
-
A tuple of 2 Tensors(values, indices), containing the cumulative maximum of elements and the index,
|
|
7757
|
-
The shape of each output tensor is the same as input `input`.
|
|
7758
|
-
|
|
7759
|
-
Supported Platforms:
|
|
7760
|
-
``GPU`` ``CPU``
|
|
7761
|
-
|
|
7762
|
-
Examples:
|
|
7763
|
-
>>> import mindspore
|
|
7764
|
-
>>> import numpy as np
|
|
7765
|
-
>>> from mindspore import Tensor
|
|
7766
|
-
>>> import mindspore.ops as ops
|
|
7767
|
-
>>> cummax = ops.Cummax(axis=0)
|
|
7768
|
-
>>> x = Tensor(np.array([[3, 4, 6, 10], [1, 6, 7, 9], [4, 3, 8, 7], [1, 3, 7, 9]]).astype(np.float32))
|
|
7769
|
-
>>> output = cummax(x)
|
|
7770
|
-
>>> print(output[0])
|
|
7771
|
-
[[ 3. 4. 6. 10.]
|
|
7772
|
-
[ 3. 6. 7. 10.]
|
|
7773
|
-
[ 4. 6. 8. 10.]
|
|
7774
|
-
[ 4. 6. 8. 10.]]
|
|
7775
|
-
>>> print(output[1])
|
|
7776
|
-
[[0 0 0 0]
|
|
7777
|
-
[0 1 1 0]
|
|
7778
|
-
[2 1 2 0]
|
|
7779
|
-
[2 1 2 0]]
|
|
7780
|
-
"""
|
|
7781
|
-
|
|
7782
|
-
@prim_attr_register
|
|
7783
|
-
def __init__(self, axis):
|
|
7784
|
-
"""Initialize Cummax"""
|
|
7785
|
-
validator.check_value_type("axis", axis, [int], self.name)
|
|
7786
|
-
self.init_prim_io_names(inputs=['x'], outputs=['y', 'indices'])
|
|
7787
|
-
self.add_prim_attr("dim", axis)
|
|
7788
|
-
|
|
7789
|
-
|
|
7790
|
-
class RightShift(Primitive):
|
|
7791
|
-
r"""
|
|
7792
|
-
Shift the value of each position of Tensor `input_x` to the right by corresponding bits in Tensor `input_y`.
|
|
7793
|
-
The inputs are two tensors, dtypes of them must be consistent, and the
|
|
7794
|
-
shapes of them could be broadcast.
|
|
7795
|
-
|
|
7796
|
-
.. math::
|
|
7797
|
-
|
|
7798
|
-
\begin{aligned}
|
|
7799
|
-
&out_{i} =x_{i} >> y_{i}
|
|
7800
|
-
\end{aligned}
|
|
7801
|
-
|
|
7802
|
-
.. warning::
|
|
7803
|
-
This is an experimental API that is subject to change or deletion.
|
|
7804
|
-
|
|
7805
|
-
Inputs:
|
|
7806
|
-
- **input_x** (Tensor) - The target tensor, will be shifted to the right
|
|
7807
|
-
by `input_y` bits element-wise. Support all int and uint types.
|
|
7808
|
-
- **input_y** (Tensor) - Number of bits shifted, the tensor must have the same type as `input_x`.
|
|
7809
|
-
|
|
7810
|
-
Outputs:
|
|
7811
|
-
- **output** (Tensor) - The output tensor, has the same type as `input_x`.
|
|
7812
|
-
|
|
7813
|
-
Raises:
|
|
7814
|
-
TypeError: If `input_x` or `input_y` is not tensor.
|
|
7815
|
-
TypeError: If `input_x` and `input_y` could not be broadcast.
|
|
7816
|
-
|
|
7817
|
-
Supported Platforms:
|
|
7818
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
7819
|
-
|
|
7820
|
-
Examples:
|
|
7821
|
-
>>> import numpy as np
|
|
7822
|
-
>>> from mindspore import Tensor, ops
|
|
7823
|
-
>>> rightshift = ops.RightShift()
|
|
7824
|
-
>>> input_x = Tensor(np.array([1, 2, 3]).astype(np.uint8))
|
|
7825
|
-
>>> input_y = Tensor(np.array([1, 1, 1]).astype(np.uint8))
|
|
7826
|
-
>>> output = rightshift(input_x, input_y)
|
|
7827
|
-
>>> print(output)
|
|
7828
|
-
[0 1 1]
|
|
7829
|
-
"""
|
|
7830
|
-
|
|
7831
|
-
@prim_attr_register
|
|
7832
|
-
def __init__(self):
|
|
7833
|
-
"""Initialize RightShift."""
|
|
7834
|
-
self.init_prim_io_names(inputs=['input_x', 'input_y'], outputs=['output'])
|
|
7835
|
-
|
|
7836
|
-
|
|
7837
5290
|
class LogSpace(Primitive):
|
|
7838
5291
|
r"""
|
|
7839
5292
|
Generates a 1-D Tensor with a length of steps. The tensor's
|
|
@@ -7901,46 +5354,6 @@ class LogSpace(Primitive):
|
|
|
7901
5354
|
self.init_prim_io_names(inputs=['start', 'end'], outputs=['y'])
|
|
7902
5355
|
|
|
7903
5356
|
|
|
7904
|
-
class NonZero(Primitive):
|
|
7905
|
-
"""
|
|
7906
|
-
Return a tensor of the positions of all non-zero values.
|
|
7907
|
-
|
|
7908
|
-
Refer to :func:`mindspore.ops.nonzero` for more details.
|
|
7909
|
-
|
|
7910
|
-
Inputs:
|
|
7911
|
-
- **x** (Tensor) - The input Tensor, its rank should be greater than or eaqual to 1.
|
|
7912
|
-
|
|
7913
|
-
Outputs:
|
|
7914
|
-
- **y** (Tensor), 2-D Tensor of data type int64.
|
|
7915
|
-
|
|
7916
|
-
Supported Platforms:
|
|
7917
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
7918
|
-
|
|
7919
|
-
Examples:
|
|
7920
|
-
>>> import mindspore
|
|
7921
|
-
>>> import numpy as np
|
|
7922
|
-
>>> from mindspore import Tensor
|
|
7923
|
-
>>> from mindspore.ops import NonZero
|
|
7924
|
-
>>> x = Tensor(np.array([[[1, 0], [-5, 0]]]), mindspore.int32)
|
|
7925
|
-
>>> nonzero = NonZero()
|
|
7926
|
-
>>> output = nonzero(x)
|
|
7927
|
-
>>> print(output)
|
|
7928
|
-
[[0 0 0]
|
|
7929
|
-
[0 1 0]]
|
|
7930
|
-
>>> x = Tensor(np.array([1, 0, 2, 0, 3]), mindspore.int32)
|
|
7931
|
-
>>> nonzero = NonZero()
|
|
7932
|
-
>>> output = nonzero(x)
|
|
7933
|
-
>>> print(output)
|
|
7934
|
-
[[0]
|
|
7935
|
-
[2]
|
|
7936
|
-
[4]]
|
|
7937
|
-
"""
|
|
7938
|
-
|
|
7939
|
-
@prim_attr_register
|
|
7940
|
-
def __init__(self):
|
|
7941
|
-
self.init_prim_io_names(inputs=['x'], outputs=['y'])
|
|
7942
|
-
|
|
7943
|
-
|
|
7944
5357
|
class Tril(Primitive):
|
|
7945
5358
|
"""
|
|
7946
5359
|
Returns the lower triangular portion of the 2-D matrix or the set of matrices
|
|
@@ -7953,7 +5366,7 @@ class Tril(Primitive):
|
|
|
7953
5366
|
|
|
7954
5367
|
Args:
|
|
7955
5368
|
diagonal (int, optional): An optional attribute indicates the diagonal to consider, default: ``0`` ,
|
|
7956
|
-
indicating the main
|
|
5369
|
+
indicating the main diagonal.
|
|
7957
5370
|
|
|
7958
5371
|
Inputs:
|
|
7959
5372
|
- **x** (Tensor) - The input tensor with shape :math:`(M, N, *)`
|
|
@@ -8703,7 +6116,7 @@ class TopK(Primitive):
|
|
|
8703
6116
|
|
|
8704
6117
|
.. math::
|
|
8705
6118
|
|
|
8706
|
-
values.shape = indices.shape = input.shape[:-1] + [k]
|
|
6119
|
+
values.shape = indices.shape = input.shape[:-1] + [k]
|
|
8707
6120
|
|
|
8708
6121
|
If the two compared elements are the same, the one with the smaller index value is returned first.
|
|
8709
6122
|
|
|
@@ -8719,7 +6132,8 @@ class TopK(Primitive):
|
|
|
8719
6132
|
- GPU: float16, float32.
|
|
8720
6133
|
- CPU: all numeric types.
|
|
8721
6134
|
|
|
8722
|
-
- **k** (int) - The number of top elements to be computed along the last dimension
|
|
6135
|
+
- **k** (Union(Tensor, int)) - The number of top elements to be computed along the last dimension.
|
|
6136
|
+
If `k` is a Tensor, the supported dtype is int32 and it should be 0-D or 1-D with shape :math:`(1, )` .
|
|
8723
6137
|
|
|
8724
6138
|
Outputs:
|
|
8725
6139
|
A tuple consisting of `values` and `indexes`.
|