mindspore 2.2.11__cp39-cp39-win_amd64.whl → 2.3.0__cp39-cp39-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (1151) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/__init__.py +7 -5
  3. mindspore/_c_dataengine.cp39-win_amd64.pyd +0 -0
  4. mindspore/_c_expression.cp39-win_amd64.pyd +0 -0
  5. mindspore/_c_mindrecord.cp39-win_amd64.pyd +0 -0
  6. mindspore/_checkparam.py +76 -18
  7. mindspore/_extends/builtin_operations.py +2 -1
  8. mindspore/_extends/graph_kernel/model/graph_parallel.py +16 -6
  9. mindspore/_extends/parallel_compile/akg_compiler/akg_process.py +3 -16
  10. mindspore/_extends/parallel_compile/akg_compiler/build_tbe_kernel.py +16 -4
  11. mindspore/_extends/parallel_compile/akg_compiler/compiler.py +1 -0
  12. mindspore/_extends/parallel_compile/akg_compiler/gen_custom_op_files.py +96 -0
  13. mindspore/_extends/parallel_compile/akg_compiler/tbe_topi.py +2 -1
  14. mindspore/_extends/parallel_compile/akg_compiler/util.py +5 -2
  15. mindspore/_extends/parse/__init__.py +18 -14
  16. mindspore/_extends/parse/compile_config.py +258 -0
  17. mindspore/_extends/parse/namespace.py +2 -2
  18. mindspore/_extends/parse/parser.py +174 -62
  19. mindspore/_extends/parse/resources.py +45 -14
  20. mindspore/_extends/parse/standard_method.py +142 -240
  21. mindspore/{ops/_op_impl/tbe/atomic_addr_clean.py → _extends/pijit/__init__.py} +6 -16
  22. mindspore/_extends/pijit/pijit_func_white_list.py +343 -0
  23. mindspore/_extends/remote/kernel_build_server.py +2 -0
  24. mindspore/_profiler.py +30 -0
  25. mindspore/amp.py +51 -24
  26. mindspore/avcodec-59.dll +0 -0
  27. mindspore/avdevice-59.dll +0 -0
  28. mindspore/avfilter-8.dll +0 -0
  29. mindspore/avformat-59.dll +0 -0
  30. mindspore/avutil-57.dll +0 -0
  31. mindspore/boost/adasum.py +1 -1
  32. mindspore/boost/base.py +1 -1
  33. mindspore/boost/boost_cell_wrapper.py +2 -2
  34. mindspore/boost/grad_freeze.py +2 -2
  35. mindspore/boost/group_loss_scale_manager.py +1 -1
  36. mindspore/boost/less_batch_normalization.py +9 -6
  37. mindspore/common/__init__.py +15 -4
  38. mindspore/common/_jit_fallback_utils.py +2 -3
  39. mindspore/common/_register_for_adapter.py +7 -0
  40. mindspore/common/_register_for_recompute.py +48 -0
  41. mindspore/common/_register_for_tensor.py +8 -9
  42. mindspore/common/_stub_tensor.py +7 -1
  43. mindspore/common/_utils.py +5 -17
  44. mindspore/common/api.py +411 -106
  45. mindspore/common/auto_dynamic_shape.py +27 -14
  46. mindspore/common/dtype.py +17 -10
  47. mindspore/common/dump.py +6 -8
  48. mindspore/common/file_system.py +48 -0
  49. mindspore/common/generator.py +260 -0
  50. mindspore/common/hook_handle.py +51 -4
  51. mindspore/common/initializer.py +1 -1
  52. mindspore/common/jit_config.py +34 -14
  53. mindspore/common/lazy_inline.py +72 -19
  54. mindspore/common/mindir_util.py +12 -2
  55. mindspore/common/mutable.py +79 -14
  56. mindspore/common/no_inline.py +54 -0
  57. mindspore/common/np_dtype.py +25 -0
  58. mindspore/common/parameter.py +30 -11
  59. mindspore/common/recompute.py +262 -0
  60. mindspore/common/seed.py +9 -9
  61. mindspore/common/sparse_tensor.py +272 -24
  62. mindspore/common/symbol.py +122 -0
  63. mindspore/common/tensor.py +468 -496
  64. mindspore/communication/__init__.py +6 -11
  65. mindspore/communication/_comm_helper.py +5 -0
  66. mindspore/communication/comm_func.py +1140 -0
  67. mindspore/communication/management.py +118 -102
  68. mindspore/config/op_info.config +22 -54
  69. mindspore/context.py +378 -65
  70. mindspore/dataset/__init__.py +5 -5
  71. mindspore/dataset/audio/__init__.py +6 -6
  72. mindspore/dataset/audio/transforms.py +711 -158
  73. mindspore/dataset/callback/ds_callback.py +2 -2
  74. mindspore/dataset/engine/cache_client.py +2 -2
  75. mindspore/dataset/engine/datasets.py +163 -83
  76. mindspore/dataset/engine/datasets_audio.py +14 -14
  77. mindspore/dataset/engine/datasets_standard_format.py +33 -3
  78. mindspore/dataset/engine/datasets_text.py +38 -38
  79. mindspore/dataset/engine/datasets_user_defined.py +78 -59
  80. mindspore/dataset/engine/datasets_vision.py +77 -73
  81. mindspore/dataset/engine/offload.py +5 -7
  82. mindspore/dataset/engine/queue.py +56 -38
  83. mindspore/dataset/engine/validators.py +11 -5
  84. mindspore/dataset/text/__init__.py +3 -3
  85. mindspore/dataset/text/transforms.py +408 -121
  86. mindspore/dataset/text/utils.py +9 -9
  87. mindspore/dataset/transforms/__init__.py +1 -1
  88. mindspore/dataset/transforms/transforms.py +261 -76
  89. mindspore/dataset/utils/browse_dataset.py +9 -9
  90. mindspore/dataset/vision/__init__.py +8 -8
  91. mindspore/dataset/vision/c_transforms.py +10 -10
  92. mindspore/dataset/vision/py_transforms_util.py +3 -3
  93. mindspore/dataset/vision/transforms.py +2844 -549
  94. mindspore/dataset/vision/utils.py +161 -10
  95. mindspore/dataset/vision/validators.py +14 -2
  96. mindspore/dnnl.dll +0 -0
  97. mindspore/experimental/optim/__init__.py +12 -2
  98. mindspore/experimental/optim/adadelta.py +161 -0
  99. mindspore/experimental/optim/adagrad.py +168 -0
  100. mindspore/experimental/optim/adam.py +35 -34
  101. mindspore/experimental/optim/adamax.py +170 -0
  102. mindspore/experimental/optim/adamw.py +40 -16
  103. mindspore/experimental/optim/asgd.py +153 -0
  104. mindspore/experimental/optim/lr_scheduler.py +71 -127
  105. mindspore/experimental/optim/nadam.py +157 -0
  106. mindspore/experimental/optim/optimizer.py +15 -8
  107. mindspore/experimental/optim/radam.py +194 -0
  108. mindspore/experimental/optim/rmsprop.py +154 -0
  109. mindspore/experimental/optim/rprop.py +164 -0
  110. mindspore/experimental/optim/sgd.py +28 -19
  111. mindspore/hal/__init__.py +40 -0
  112. mindspore/hal/_ascend.py +57 -0
  113. mindspore/hal/_base.py +57 -0
  114. mindspore/hal/_cpu.py +56 -0
  115. mindspore/hal/_gpu.py +57 -0
  116. mindspore/hal/device.py +356 -0
  117. mindspore/hal/event.py +179 -0
  118. mindspore/hal/memory.py +326 -0
  119. mindspore/hal/stream.py +339 -0
  120. mindspore/include/api/data_type.h +2 -2
  121. mindspore/include/api/dual_abi_helper.h +16 -3
  122. mindspore/include/api/model.h +4 -3
  123. mindspore/include/api/status.h +14 -0
  124. mindspore/include/c_api/model_c.h +173 -0
  125. mindspore/include/c_api/ms/base/types.h +1 -0
  126. mindspore/include/c_api/types_c.h +19 -0
  127. mindspore/include/dataset/execute.h +1 -3
  128. mindspore/include/dataset/vision.h +54 -2
  129. mindspore/jpeg62.dll +0 -0
  130. mindspore/log.py +2 -2
  131. mindspore/mindrecord/__init__.py +5 -1
  132. mindspore/mindrecord/config.py +809 -0
  133. mindspore/mindrecord/filereader.py +25 -0
  134. mindspore/mindrecord/filewriter.py +76 -58
  135. mindspore/mindrecord/mindpage.py +40 -6
  136. mindspore/mindrecord/shardutils.py +3 -2
  137. mindspore/mindrecord/shardwriter.py +7 -0
  138. mindspore/mindrecord/tools/cifar100_to_mr.py +53 -66
  139. mindspore/mindrecord/tools/cifar10_to_mr.py +48 -63
  140. mindspore/mindrecord/tools/csv_to_mr.py +7 -17
  141. mindspore/mindrecord/tools/imagenet_to_mr.py +3 -8
  142. mindspore/mindrecord/tools/mnist_to_mr.py +11 -21
  143. mindspore/mindrecord/tools/tfrecord_to_mr.py +2 -10
  144. mindspore/mindspore_backend.dll +0 -0
  145. mindspore/mindspore_common.dll +0 -0
  146. mindspore/mindspore_core.dll +0 -0
  147. mindspore/mindspore_glog.dll +0 -0
  148. mindspore/mindspore_np_dtype.dll +0 -0
  149. mindspore/mindspore_shared_lib.dll +0 -0
  150. mindspore/mint/__init__.py +1137 -0
  151. mindspore/{rewrite/ast_transformers → mint/linalg}/__init__.py +9 -4
  152. mindspore/mint/nn/__init__.py +512 -0
  153. mindspore/mint/nn/functional.py +573 -0
  154. mindspore/mint/optim/__init__.py +24 -0
  155. mindspore/mint/optim/adamw.py +185 -0
  156. mindspore/multiprocessing/__init__.py +72 -0
  157. mindspore/nn/__init__.py +1 -0
  158. mindspore/nn/cell.py +213 -257
  159. mindspore/nn/dynamic_lr.py +2 -2
  160. mindspore/nn/extend/__init__.py +29 -0
  161. mindspore/nn/extend/basic.py +140 -0
  162. mindspore/nn/extend/embedding.py +143 -0
  163. mindspore/{rewrite/ast_creator_register.py → nn/extend/layer/__init__.py} +9 -19
  164. mindspore/nn/extend/layer/normalization.py +109 -0
  165. mindspore/nn/extend/pooling.py +117 -0
  166. mindspore/nn/layer/activation.py +84 -94
  167. mindspore/nn/layer/basic.py +177 -82
  168. mindspore/nn/layer/channel_shuffle.py +3 -16
  169. mindspore/nn/layer/container.py +3 -3
  170. mindspore/nn/layer/conv.py +75 -66
  171. mindspore/nn/layer/embedding.py +103 -45
  172. mindspore/nn/layer/embedding_service.py +531 -0
  173. mindspore/nn/layer/embedding_service_layer.py +393 -0
  174. mindspore/nn/layer/image.py +4 -7
  175. mindspore/nn/layer/math.py +1 -1
  176. mindspore/nn/layer/normalization.py +52 -66
  177. mindspore/nn/layer/padding.py +30 -39
  178. mindspore/nn/layer/pooling.py +18 -9
  179. mindspore/nn/layer/rnn_cells.py +6 -16
  180. mindspore/nn/layer/rnns.py +6 -5
  181. mindspore/nn/layer/thor_layer.py +1 -2
  182. mindspore/nn/layer/timedistributed.py +1 -1
  183. mindspore/nn/layer/transformer.py +52 -50
  184. mindspore/nn/learning_rate_schedule.py +6 -5
  185. mindspore/nn/loss/loss.py +63 -84
  186. mindspore/nn/optim/ada_grad.py +6 -4
  187. mindspore/nn/optim/adadelta.py +3 -1
  188. mindspore/nn/optim/adafactor.py +1 -1
  189. mindspore/nn/optim/adam.py +102 -181
  190. mindspore/nn/optim/adamax.py +4 -2
  191. mindspore/nn/optim/adasum.py +3 -3
  192. mindspore/nn/optim/asgd.py +4 -2
  193. mindspore/nn/optim/ftrl.py +31 -61
  194. mindspore/nn/optim/lamb.py +5 -3
  195. mindspore/nn/optim/lars.py +2 -2
  196. mindspore/nn/optim/lazyadam.py +6 -4
  197. mindspore/nn/optim/momentum.py +13 -25
  198. mindspore/nn/optim/optimizer.py +6 -3
  199. mindspore/nn/optim/proximal_ada_grad.py +4 -2
  200. mindspore/nn/optim/rmsprop.py +9 -3
  201. mindspore/nn/optim/rprop.py +4 -2
  202. mindspore/nn/optim/sgd.py +7 -4
  203. mindspore/nn/optim/thor.py +2 -2
  204. mindspore/nn/probability/distribution/_utils/custom_ops.py +2 -2
  205. mindspore/nn/probability/distribution/beta.py +2 -2
  206. mindspore/nn/probability/distribution/categorical.py +4 -6
  207. mindspore/nn/probability/distribution/cauchy.py +2 -2
  208. mindspore/nn/probability/distribution/exponential.py +2 -2
  209. mindspore/nn/probability/distribution/geometric.py +1 -1
  210. mindspore/nn/probability/distribution/gumbel.py +2 -2
  211. mindspore/nn/probability/distribution/logistic.py +1 -1
  212. mindspore/nn/probability/distribution/poisson.py +2 -2
  213. mindspore/nn/probability/distribution/uniform.py +2 -2
  214. mindspore/nn/reinforcement/_tensors_queue.py +13 -1
  215. mindspore/nn/wrap/__init__.py +2 -1
  216. mindspore/nn/wrap/cell_wrapper.py +58 -13
  217. mindspore/nn/wrap/grad_reducer.py +148 -8
  218. mindspore/nn/wrap/loss_scale.py +32 -9
  219. mindspore/numpy/__init__.py +2 -0
  220. mindspore/numpy/array_creations.py +2 -0
  221. mindspore/numpy/array_ops.py +6 -6
  222. mindspore/numpy/dtypes.py +3 -3
  223. mindspore/numpy/fft.py +431 -0
  224. mindspore/numpy/math_ops.py +61 -67
  225. mindspore/numpy/utils.py +3 -0
  226. mindspore/opencv_core452.dll +0 -0
  227. mindspore/opencv_imgcodecs452.dll +0 -0
  228. mindspore/opencv_imgproc452.dll +0 -0
  229. mindspore/ops/__init__.py +8 -4
  230. mindspore/ops/_grad_experimental/grad_array_ops.py +4 -160
  231. mindspore/ops/_grad_experimental/grad_comm_ops.py +93 -36
  232. mindspore/ops/_grad_experimental/grad_inner_ops.py +8 -0
  233. mindspore/ops/_grad_experimental/grad_math_ops.py +92 -287
  234. mindspore/ops/_grad_experimental/grad_nn_ops.py +0 -53
  235. mindspore/ops/_grad_experimental/grad_quant_ops.py +3 -3
  236. mindspore/ops/_grad_experimental/grad_sparse.py +1 -1
  237. mindspore/ops/_grad_experimental/grad_sparse_ops.py +3 -3
  238. mindspore/ops/_op_impl/__init__.py +0 -1
  239. mindspore/ops/_op_impl/aicpu/__init__.py +1 -0
  240. mindspore/ops/_op_impl/aicpu/gamma.py +2 -0
  241. mindspore/ops/_op_impl/{cpu/concat.py → aicpu/generate_eod_mask.py} +16 -17
  242. mindspore/ops/_op_impl/aicpu/log_uniform_candidate_sampler.py +1 -3
  243. mindspore/ops/_op_impl/aicpu/poisson.py +2 -0
  244. mindspore/ops/_op_impl/cpu/__init__.py +1 -3
  245. mindspore/ops/_op_impl/cpu/adam.py +2 -2
  246. mindspore/ops/_op_impl/cpu/adam_weight_decay.py +3 -2
  247. mindspore/ops/_op_impl/cpu/maximum_grad.py +16 -14
  248. mindspore/ops/_op_impl/cpu/minimum_grad.py +8 -0
  249. mindspore/ops/_vmap/vmap_array_ops.py +164 -101
  250. mindspore/ops/_vmap/vmap_base.py +8 -1
  251. mindspore/ops/_vmap/vmap_grad_math_ops.py +95 -9
  252. mindspore/ops/_vmap/vmap_grad_nn_ops.py +143 -58
  253. mindspore/ops/_vmap/vmap_image_ops.py +70 -13
  254. mindspore/ops/_vmap/vmap_math_ops.py +130 -58
  255. mindspore/ops/_vmap/vmap_nn_ops.py +249 -115
  256. mindspore/ops/_vmap/vmap_other_ops.py +1 -1
  257. mindspore/ops/auto_generate/__init__.py +31 -0
  258. mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +231 -0
  259. mindspore/ops/auto_generate/gen_arg_dtype_cast.py +250 -0
  260. mindspore/ops/auto_generate/gen_arg_handler.py +197 -0
  261. mindspore/ops/auto_generate/gen_extend_func.py +980 -0
  262. mindspore/ops/auto_generate/gen_ops_def.py +6443 -0
  263. mindspore/ops/auto_generate/gen_ops_prim.py +13167 -0
  264. mindspore/ops/auto_generate/pyboost_inner_prim.py +429 -0
  265. mindspore/ops/composite/__init__.py +5 -2
  266. mindspore/ops/composite/base.py +121 -23
  267. mindspore/ops/composite/math_ops.py +10 -49
  268. mindspore/ops/composite/multitype_ops/_compile_utils.py +191 -618
  269. mindspore/ops/composite/multitype_ops/_constexpr_utils.py +25 -134
  270. mindspore/ops/composite/multitype_ops/add_impl.py +6 -0
  271. mindspore/ops/composite/multitype_ops/bitwise_and_impl.py +6 -0
  272. mindspore/ops/composite/multitype_ops/bitwise_or_impl.py +6 -0
  273. mindspore/ops/composite/multitype_ops/bitwise_xor_impl.py +6 -0
  274. mindspore/ops/composite/multitype_ops/div_impl.py +8 -0
  275. mindspore/ops/composite/multitype_ops/equal_impl.py +6 -0
  276. mindspore/ops/composite/multitype_ops/floordiv_impl.py +8 -0
  277. mindspore/ops/composite/multitype_ops/getitem_impl.py +6 -0
  278. mindspore/ops/composite/multitype_ops/greater_equal_impl.py +6 -0
  279. mindspore/ops/composite/multitype_ops/greater_impl.py +6 -0
  280. mindspore/ops/composite/multitype_ops/in_impl.py +8 -2
  281. mindspore/ops/composite/multitype_ops/left_shift_impl.py +6 -0
  282. mindspore/ops/composite/multitype_ops/less_equal_impl.py +6 -0
  283. mindspore/ops/composite/multitype_ops/less_impl.py +6 -0
  284. mindspore/ops/composite/multitype_ops/logic_not_impl.py +6 -0
  285. mindspore/ops/composite/multitype_ops/logical_and_impl.py +6 -0
  286. mindspore/ops/composite/multitype_ops/logical_or_impl.py +6 -0
  287. mindspore/ops/composite/multitype_ops/mod_impl.py +6 -0
  288. mindspore/ops/composite/multitype_ops/mul_impl.py +6 -0
  289. mindspore/ops/composite/multitype_ops/negative_impl.py +9 -3
  290. mindspore/ops/composite/multitype_ops/not_equal_impl.py +6 -0
  291. mindspore/ops/composite/multitype_ops/not_in_impl.py +6 -1
  292. mindspore/ops/composite/multitype_ops/ones_like_impl.py +2 -2
  293. mindspore/ops/composite/multitype_ops/pow_impl.py +6 -0
  294. mindspore/ops/composite/multitype_ops/right_shift_impl.py +6 -0
  295. mindspore/ops/composite/multitype_ops/setitem_impl.py +32 -21
  296. mindspore/ops/composite/multitype_ops/sub_impl.py +6 -0
  297. mindspore/ops/composite/multitype_ops/zeros_like_impl.py +6 -3
  298. mindspore/ops/deprecated.py +14 -3
  299. mindspore/ops/extend/__init__.py +53 -0
  300. mindspore/ops/extend/array_func.py +218 -0
  301. mindspore/ops/extend/math_func.py +76 -0
  302. mindspore/ops/extend/nn_func.py +308 -0
  303. mindspore/ops/function/__init__.py +31 -11
  304. mindspore/ops/function/array_func.py +848 -1736
  305. mindspore/ops/function/clip_func.py +19 -31
  306. mindspore/ops/function/debug_func.py +2 -5
  307. mindspore/ops/function/fft_func.py +31 -0
  308. mindspore/ops/function/grad/grad_func.py +27 -20
  309. mindspore/ops/function/image_func.py +27 -21
  310. mindspore/ops/function/linalg_func.py +30 -53
  311. mindspore/ops/function/math_func.py +916 -2791
  312. mindspore/ops/function/nn_func.py +1445 -889
  313. mindspore/ops/function/other_func.py +6 -7
  314. mindspore/ops/function/parameter_func.py +6 -92
  315. mindspore/ops/function/random_func.py +254 -108
  316. mindspore/ops/function/reshard_func.py +102 -0
  317. mindspore/ops/function/sparse_func.py +4 -4
  318. mindspore/ops/function/sparse_unary_func.py +11 -18
  319. mindspore/ops/function/spectral_func.py +1 -1
  320. mindspore/ops/function/vmap_func.py +15 -14
  321. mindspore/ops/functional.py +342 -343
  322. mindspore/ops/op_info_register.py +16 -43
  323. mindspore/ops/operations/__init__.py +32 -23
  324. mindspore/ops/operations/_embedding_cache_ops.py +1 -1
  325. mindspore/ops/operations/_grad_ops.py +21 -853
  326. mindspore/ops/operations/_infer_ops.py +19 -0
  327. mindspore/ops/operations/_inner_ops.py +155 -511
  328. mindspore/ops/operations/_quant_ops.py +4 -4
  329. mindspore/ops/operations/_rl_inner_ops.py +3 -3
  330. mindspore/ops/operations/_scalar_ops.py +5 -480
  331. mindspore/ops/operations/_sequence_ops.py +6 -36
  332. mindspore/ops/operations/_tensor_array.py +8 -8
  333. mindspore/ops/operations/array_ops.py +112 -2698
  334. mindspore/ops/operations/comm_ops.py +801 -118
  335. mindspore/ops/operations/custom_ops.py +62 -121
  336. mindspore/ops/operations/debug_ops.py +105 -36
  337. mindspore/ops/operations/image_ops.py +3 -219
  338. mindspore/ops/operations/inner_ops.py +54 -40
  339. mindspore/ops/operations/linalg_ops.py +1 -49
  340. mindspore/ops/operations/manually_defined/__init__.py +24 -0
  341. mindspore/ops/operations/manually_defined/_inner.py +61 -0
  342. mindspore/ops/operations/manually_defined/ops_def.py +2016 -0
  343. mindspore/ops/operations/math_ops.py +621 -4654
  344. mindspore/ops/operations/nn_ops.py +316 -2226
  345. mindspore/ops/operations/other_ops.py +53 -45
  346. mindspore/ops/operations/random_ops.py +4 -51
  347. mindspore/ops/operations/reshard_ops.py +53 -0
  348. mindspore/ops/operations/sparse_ops.py +8 -8
  349. mindspore/ops/primitive.py +204 -103
  350. mindspore/ops/silent_check.py +162 -0
  351. mindspore/ops_generate/__init__.py +27 -0
  352. mindspore/ops_generate/arg_dtype_cast.py +250 -0
  353. mindspore/ops_generate/arg_handler.py +197 -0
  354. mindspore/ops_generate/gen_aclnn_implement.py +263 -0
  355. mindspore/ops_generate/gen_ops.py +1084 -0
  356. mindspore/ops_generate/gen_ops_inner_prim.py +131 -0
  357. mindspore/ops_generate/gen_pyboost_func.py +968 -0
  358. mindspore/ops_generate/gen_utils.py +209 -0
  359. mindspore/ops_generate/op_proto.py +138 -0
  360. mindspore/ops_generate/pyboost_utils.py +354 -0
  361. mindspore/ops_generate/template.py +239 -0
  362. mindspore/parallel/__init__.py +7 -4
  363. mindspore/parallel/_auto_parallel_context.py +155 -6
  364. mindspore/parallel/_cell_wrapper.py +16 -9
  365. mindspore/parallel/_cost_model_context.py +1 -1
  366. mindspore/parallel/_dp_allreduce_fusion.py +159 -159
  367. mindspore/parallel/_parallel_serialization.py +62 -14
  368. mindspore/parallel/_ps_context.py +1 -1
  369. mindspore/parallel/_recovery_context.py +1 -1
  370. mindspore/parallel/_tensor.py +18 -9
  371. mindspore/parallel/_transformer/__init__.py +1 -1
  372. mindspore/parallel/_transformer/layers.py +1 -1
  373. mindspore/parallel/_transformer/loss.py +1 -1
  374. mindspore/parallel/_transformer/moe.py +1 -1
  375. mindspore/parallel/_transformer/op_parallel_config.py +1 -1
  376. mindspore/parallel/_transformer/transformer.py +10 -10
  377. mindspore/parallel/_utils.py +161 -6
  378. mindspore/parallel/algo_parameter_config.py +6 -8
  379. mindspore/parallel/checkpoint_transform.py +369 -64
  380. mindspore/parallel/cluster/__init__.py +15 -0
  381. mindspore/parallel/cluster/process_entity/__init__.py +18 -0
  382. mindspore/parallel/cluster/process_entity/_api.py +344 -0
  383. mindspore/parallel/cluster/process_entity/_utils.py +126 -0
  384. mindspore/parallel/cluster/run.py +136 -0
  385. mindspore/parallel/mpi/__init__.py +1 -1
  386. mindspore/parallel/mpi/_mpi_config.py +1 -1
  387. mindspore/parallel/parameter_broadcast.py +152 -0
  388. mindspore/parallel/shard.py +128 -17
  389. mindspore/profiler/__init__.py +3 -2
  390. mindspore/profiler/common/process_pool.py +41 -0
  391. mindspore/profiler/common/singleton.py +28 -0
  392. mindspore/profiler/common/util.py +125 -0
  393. mindspore/profiler/envprofiling.py +2 -2
  394. mindspore/{_extends/parallel_compile/tbe_compiler → profiler/parser/ascend_analysis}/__init__.py +1 -1
  395. mindspore/profiler/parser/ascend_analysis/constant.py +53 -0
  396. mindspore/profiler/parser/ascend_analysis/file_manager.py +159 -0
  397. mindspore/profiler/parser/ascend_analysis/function_event.py +161 -0
  398. mindspore/profiler/parser/ascend_analysis/fwk_cann_parser.py +131 -0
  399. mindspore/profiler/parser/ascend_analysis/fwk_file_parser.py +85 -0
  400. mindspore/profiler/parser/ascend_analysis/msprof_timeline_parser.py +57 -0
  401. mindspore/profiler/parser/ascend_analysis/profiler_info_parser.py +116 -0
  402. mindspore/profiler/parser/ascend_analysis/tlv_decoder.py +86 -0
  403. mindspore/profiler/parser/ascend_analysis/trace_event_manager.py +68 -0
  404. mindspore/profiler/parser/ascend_cluster_generator.py +116 -0
  405. mindspore/profiler/parser/ascend_communicate_generator.py +314 -0
  406. mindspore/profiler/parser/ascend_flops_generator.py +27 -5
  407. mindspore/profiler/parser/ascend_fpbp_generator.py +8 -2
  408. mindspore/profiler/parser/ascend_hccl_generator.py +31 -280
  409. mindspore/profiler/parser/ascend_integrate_generator.py +42 -0
  410. mindspore/profiler/parser/ascend_memory_generator.py +185 -0
  411. mindspore/profiler/parser/ascend_msprof_exporter.py +151 -126
  412. mindspore/profiler/parser/ascend_msprof_generator.py +75 -274
  413. mindspore/profiler/parser/ascend_op_generator.py +94 -36
  414. mindspore/profiler/parser/ascend_timeline_generator.py +297 -131
  415. mindspore/profiler/parser/base_timeline_generator.py +17 -3
  416. mindspore/profiler/parser/cpu_gpu_timeline_generator.py +2 -1
  417. mindspore/profiler/parser/framework_parser.py +11 -4
  418. mindspore/profiler/parser/integrator.py +3 -1
  419. mindspore/profiler/parser/memory_usage_parser.py +8 -2
  420. mindspore/profiler/parser/minddata_analyzer.py +8 -2
  421. mindspore/profiler/parser/minddata_parser.py +73 -4
  422. mindspore/profiler/parser/msadvisor_analyzer.py +5 -3
  423. mindspore/profiler/parser/msadvisor_parser.py +10 -4
  424. mindspore/profiler/parser/profiler_info.py +16 -1
  425. mindspore/profiler/profiling.py +522 -195
  426. mindspore/rewrite/__init__.py +2 -13
  427. mindspore/rewrite/api/node.py +123 -37
  428. mindspore/rewrite/api/pattern_engine.py +2 -3
  429. mindspore/rewrite/api/scoped_value.py +16 -15
  430. mindspore/rewrite/api/symbol_tree.py +46 -30
  431. mindspore/rewrite/ast_helpers/__init__.py +3 -6
  432. mindspore/rewrite/ast_helpers/ast_converter.py +143 -0
  433. mindspore/rewrite/ast_helpers/ast_finder.py +48 -0
  434. mindspore/rewrite/ast_helpers/ast_flattener.py +268 -0
  435. mindspore/rewrite/ast_helpers/ast_modifier.py +160 -92
  436. mindspore/rewrite/common/__init__.py +1 -2
  437. mindspore/rewrite/common/config.py +24 -0
  438. mindspore/rewrite/common/{rewrite_elog.py → error_log.py} +39 -39
  439. mindspore/rewrite/{namer.py → common/namer.py} +63 -18
  440. mindspore/rewrite/common/namespace.py +118 -0
  441. mindspore/rewrite/node/__init__.py +5 -5
  442. mindspore/rewrite/node/call_function.py +23 -7
  443. mindspore/rewrite/node/cell_container.py +7 -3
  444. mindspore/rewrite/node/control_flow.py +53 -28
  445. mindspore/rewrite/node/node.py +212 -196
  446. mindspore/rewrite/node/node_manager.py +51 -22
  447. mindspore/rewrite/node/node_topological_manager.py +3 -23
  448. mindspore/rewrite/parsers/__init__.py +12 -0
  449. mindspore/rewrite/parsers/arguments_parser.py +8 -9
  450. mindspore/rewrite/parsers/assign_parser.py +637 -413
  451. mindspore/rewrite/parsers/attribute_parser.py +3 -4
  452. mindspore/rewrite/parsers/class_def_parser.py +115 -148
  453. mindspore/rewrite/parsers/constant_parser.py +5 -5
  454. mindspore/rewrite/parsers/container_parser.py +4 -6
  455. mindspore/rewrite/parsers/expr_parser.py +55 -0
  456. mindspore/rewrite/parsers/for_parser.py +31 -98
  457. mindspore/rewrite/parsers/function_def_parser.py +13 -5
  458. mindspore/rewrite/parsers/if_parser.py +28 -10
  459. mindspore/rewrite/parsers/module_parser.py +8 -182
  460. mindspore/rewrite/parsers/parser.py +1 -5
  461. mindspore/rewrite/parsers/parser_register.py +1 -1
  462. mindspore/rewrite/parsers/return_parser.py +5 -10
  463. mindspore/rewrite/parsers/while_parser.py +59 -0
  464. mindspore/rewrite/sparsify/utils.py +1 -1
  465. mindspore/rewrite/symbol_tree/__init__.py +20 -0
  466. mindspore/rewrite/{symbol_tree.py → symbol_tree/symbol_tree.py} +704 -185
  467. mindspore/rewrite/{symbol_tree_builder.py → symbol_tree/symbol_tree_builder.py} +8 -8
  468. mindspore/rewrite/{symbol_tree_dumper.py → symbol_tree/symbol_tree_dumper.py} +4 -4
  469. mindspore/run_check/_check_version.py +6 -14
  470. mindspore/run_check/run_check.py +1 -1
  471. mindspore/safeguard/rewrite_obfuscation.py +9 -19
  472. mindspore/swresample-4.dll +0 -0
  473. mindspore/swscale-6.dll +0 -0
  474. mindspore/tinyxml2.dll +0 -0
  475. mindspore/train/__init__.py +6 -5
  476. mindspore/train/_utils.py +178 -4
  477. mindspore/train/amp.py +167 -245
  478. mindspore/train/anf_ir_pb2.py +14 -2
  479. mindspore/train/callback/__init__.py +5 -2
  480. mindspore/train/callback/_backup_and_restore.py +5 -5
  481. mindspore/train/callback/_callback.py +4 -4
  482. mindspore/train/callback/_checkpoint.py +151 -37
  483. mindspore/train/callback/_cluster_monitor.py +201 -0
  484. mindspore/train/callback/_early_stop.py +2 -2
  485. mindspore/train/callback/_flops_collector.py +238 -0
  486. mindspore/train/callback/_landscape.py +16 -11
  487. mindspore/train/callback/_loss_monitor.py +2 -2
  488. mindspore/train/callback/_mindio_ttp.py +443 -0
  489. mindspore/train/callback/_on_request_exit.py +2 -2
  490. mindspore/train/callback/_reduce_lr_on_plateau.py +2 -2
  491. mindspore/train/callback/_summary_collector.py +13 -14
  492. mindspore/train/callback/_time_monitor.py +3 -3
  493. mindspore/train/data_sink.py +6 -5
  494. mindspore/train/dataset_helper.py +66 -21
  495. mindspore/train/loss_scale_manager.py +2 -2
  496. mindspore/train/metrics/accuracy.py +7 -7
  497. mindspore/train/metrics/confusion_matrix.py +8 -6
  498. mindspore/train/metrics/cosine_similarity.py +6 -4
  499. mindspore/train/metrics/error.py +2 -2
  500. mindspore/train/metrics/metric.py +3 -3
  501. mindspore/train/metrics/perplexity.py +2 -1
  502. mindspore/train/metrics/topk.py +2 -2
  503. mindspore/train/mind_ir_pb2.py +89 -15
  504. mindspore/train/model.py +298 -56
  505. mindspore/train/serialization.py +501 -221
  506. mindspore/train/summary/_summary_adapter.py +1 -1
  507. mindspore/train/summary/_writer_pool.py +1 -1
  508. mindspore/train/summary/summary_record.py +56 -34
  509. mindspore/train/train_thor/convert_utils.py +3 -3
  510. mindspore/turbojpeg.dll +0 -0
  511. mindspore/version.py +1 -1
  512. {mindspore-2.2.11.dist-info → mindspore-2.3.0.dist-info}/METADATA +3 -3
  513. mindspore-2.3.0.dist-info/RECORD +1400 -0
  514. {mindspore-2.2.11.dist-info → mindspore-2.3.0.dist-info}/entry_points.txt +1 -0
  515. mindspore/_extends/parallel_compile/tbe_compiler/tbe_adapter.py +0 -662
  516. mindspore/_extends/parallel_compile/tbe_compiler/tbe_helper.py +0 -377
  517. mindspore/_extends/parallel_compile/tbe_compiler/tbe_job.py +0 -201
  518. mindspore/_extends/parallel_compile/tbe_compiler/tbe_job_manager.py +0 -515
  519. mindspore/gen_ops.py +0 -273
  520. mindspore/nn/layer/flash_attention.py +0 -189
  521. mindspore/ops/_op_impl/cpu/tensor_shape.py +0 -42
  522. mindspore/ops/_op_impl/tbe/__init__.py +0 -47
  523. mindspore/ops/_op_impl/tbe/abs.py +0 -38
  524. mindspore/ops/_op_impl/tbe/abs_ds.py +0 -39
  525. mindspore/ops/_op_impl/tbe/abs_grad.py +0 -43
  526. mindspore/ops/_op_impl/tbe/abs_grad_ds.py +0 -44
  527. mindspore/ops/_op_impl/tbe/accumulate_n_v2.py +0 -41
  528. mindspore/ops/_op_impl/tbe/accumulate_n_v2_ds.py +0 -42
  529. mindspore/ops/_op_impl/tbe/acos.py +0 -37
  530. mindspore/ops/_op_impl/tbe/acos_ds.py +0 -38
  531. mindspore/ops/_op_impl/tbe/acos_grad.py +0 -43
  532. mindspore/ops/_op_impl/tbe/acos_grad_ds.py +0 -44
  533. mindspore/ops/_op_impl/tbe/acosh.py +0 -37
  534. mindspore/ops/_op_impl/tbe/acosh_ds.py +0 -38
  535. mindspore/ops/_op_impl/tbe/acosh_grad.py +0 -43
  536. mindspore/ops/_op_impl/tbe/acosh_grad_ds.py +0 -44
  537. mindspore/ops/_op_impl/tbe/act_ulq_clamp_max_grad.py +0 -38
  538. mindspore/ops/_op_impl/tbe/act_ulq_clamp_min_grad.py +0 -38
  539. mindspore/ops/_op_impl/tbe/acts_ulq.py +0 -45
  540. mindspore/ops/_op_impl/tbe/acts_ulq_input_grad.py +0 -38
  541. mindspore/ops/_op_impl/tbe/adam_apply_one.py +0 -50
  542. mindspore/ops/_op_impl/tbe/adam_apply_one_assign.py +0 -53
  543. mindspore/ops/_op_impl/tbe/adam_apply_one_ds.py +0 -51
  544. mindspore/ops/_op_impl/tbe/adam_apply_one_with_decay.py +0 -54
  545. mindspore/ops/_op_impl/tbe/adam_apply_one_with_decay_assign.py +0 -54
  546. mindspore/ops/_op_impl/tbe/adam_apply_one_with_decay_ds.py +0 -55
  547. mindspore/ops/_op_impl/tbe/adaptive_max_pool2d.py +0 -37
  548. mindspore/ops/_op_impl/tbe/add.py +0 -42
  549. mindspore/ops/_op_impl/tbe/add_ds.py +0 -43
  550. mindspore/ops/_op_impl/tbe/add_n.py +0 -39
  551. mindspore/ops/_op_impl/tbe/add_n_ds.py +0 -40
  552. mindspore/ops/_op_impl/tbe/addcdiv.py +0 -41
  553. mindspore/ops/_op_impl/tbe/addcdiv_ds.py +0 -42
  554. mindspore/ops/_op_impl/tbe/addcmul.py +0 -43
  555. mindspore/ops/_op_impl/tbe/addcmul_ds.py +0 -44
  556. mindspore/ops/_op_impl/tbe/apply_ada_max.py +0 -68
  557. mindspore/ops/_op_impl/tbe/apply_ada_max_ds.py +0 -69
  558. mindspore/ops/_op_impl/tbe/apply_adadelta.py +0 -66
  559. mindspore/ops/_op_impl/tbe/apply_adadelta_ds.py +0 -67
  560. mindspore/ops/_op_impl/tbe/apply_adagrad.py +0 -55
  561. mindspore/ops/_op_impl/tbe/apply_adagrad_d_a.py +0 -67
  562. mindspore/ops/_op_impl/tbe/apply_adagrad_ds.py +0 -56
  563. mindspore/ops/_op_impl/tbe/apply_adagrad_v2.py +0 -48
  564. mindspore/ops/_op_impl/tbe/apply_adagrad_v2_ds.py +0 -49
  565. mindspore/ops/_op_impl/tbe/apply_adam.py +0 -79
  566. mindspore/ops/_op_impl/tbe/apply_adam_ds.py +0 -80
  567. mindspore/ops/_op_impl/tbe/apply_adam_with_amsgrad.py +0 -60
  568. mindspore/ops/_op_impl/tbe/apply_adam_with_amsgrad_ds.py +0 -61
  569. mindspore/ops/_op_impl/tbe/apply_add_sign.py +0 -65
  570. mindspore/ops/_op_impl/tbe/apply_add_sign_ds.py +0 -66
  571. mindspore/ops/_op_impl/tbe/apply_centered_rms_prop.py +0 -77
  572. mindspore/ops/_op_impl/tbe/apply_centered_rms_prop_ds.py +0 -78
  573. mindspore/ops/_op_impl/tbe/apply_ftrl.py +0 -67
  574. mindspore/ops/_op_impl/tbe/apply_ftrl_ds.py +0 -68
  575. mindspore/ops/_op_impl/tbe/apply_gradient_descent.py +0 -44
  576. mindspore/ops/_op_impl/tbe/apply_gradient_descent_ds.py +0 -45
  577. mindspore/ops/_op_impl/tbe/apply_keras_momentum.py +0 -49
  578. mindspore/ops/_op_impl/tbe/apply_momentum.py +0 -64
  579. mindspore/ops/_op_impl/tbe/apply_momentum_ds.py +0 -65
  580. mindspore/ops/_op_impl/tbe/apply_power_sign.py +0 -65
  581. mindspore/ops/_op_impl/tbe/apply_power_sign_ds.py +0 -66
  582. mindspore/ops/_op_impl/tbe/apply_proximal_adagrad.py +0 -57
  583. mindspore/ops/_op_impl/tbe/apply_proximal_adagrad_ds.py +0 -58
  584. mindspore/ops/_op_impl/tbe/apply_proximal_gradient_descent.py +0 -54
  585. mindspore/ops/_op_impl/tbe/apply_proximal_gradient_descent_ds.py +0 -55
  586. mindspore/ops/_op_impl/tbe/apply_rms_prop.py +0 -52
  587. mindspore/ops/_op_impl/tbe/approximate_equal.py +0 -39
  588. mindspore/ops/_op_impl/tbe/approximate_equal_ds.py +0 -40
  589. mindspore/ops/_op_impl/tbe/arg_max.py +0 -38
  590. mindspore/ops/_op_impl/tbe/arg_max_with_value.py +0 -38
  591. mindspore/ops/_op_impl/tbe/arg_max_with_value_ds.py +0 -39
  592. mindspore/ops/_op_impl/tbe/arg_min.py +0 -38
  593. mindspore/ops/_op_impl/tbe/arg_min_v2_ds.py +0 -40
  594. mindspore/ops/_op_impl/tbe/arg_min_with_value.py +0 -38
  595. mindspore/ops/_op_impl/tbe/arg_min_with_value_ds.py +0 -39
  596. mindspore/ops/_op_impl/tbe/asin.py +0 -37
  597. mindspore/ops/_op_impl/tbe/asin_ds.py +0 -38
  598. mindspore/ops/_op_impl/tbe/asin_grad.py +0 -43
  599. mindspore/ops/_op_impl/tbe/asin_grad_ds.py +0 -44
  600. mindspore/ops/_op_impl/tbe/asinh.py +0 -37
  601. mindspore/ops/_op_impl/tbe/asinh_ds.py +0 -38
  602. mindspore/ops/_op_impl/tbe/asinh_grad.py +0 -43
  603. mindspore/ops/_op_impl/tbe/asinh_grad_ds.py +0 -44
  604. mindspore/ops/_op_impl/tbe/assign.py +0 -79
  605. mindspore/ops/_op_impl/tbe/assign_add.py +0 -59
  606. mindspore/ops/_op_impl/tbe/assign_add_ds.py +0 -60
  607. mindspore/ops/_op_impl/tbe/assign_ds.py +0 -80
  608. mindspore/ops/_op_impl/tbe/assign_sub.py +0 -55
  609. mindspore/ops/_op_impl/tbe/assign_sub_ds.py +0 -56
  610. mindspore/ops/_op_impl/tbe/atan.py +0 -37
  611. mindspore/ops/_op_impl/tbe/atan2.py +0 -38
  612. mindspore/ops/_op_impl/tbe/atan2_ds.py +0 -39
  613. mindspore/ops/_op_impl/tbe/atan_ds.py +0 -38
  614. mindspore/ops/_op_impl/tbe/atan_grad.py +0 -43
  615. mindspore/ops/_op_impl/tbe/atan_grad_ds.py +0 -44
  616. mindspore/ops/_op_impl/tbe/atanh.py +0 -37
  617. mindspore/ops/_op_impl/tbe/atanh_ds.py +0 -38
  618. mindspore/ops/_op_impl/tbe/avg_pool.py +0 -43
  619. mindspore/ops/_op_impl/tbe/avg_pool_3d.py +0 -44
  620. mindspore/ops/_op_impl/tbe/avg_pool_3d_grad.py +0 -45
  621. mindspore/ops/_op_impl/tbe/avg_pool_ds.py +0 -44
  622. mindspore/ops/_op_impl/tbe/avg_pool_grad.py +0 -42
  623. mindspore/ops/_op_impl/tbe/avg_pool_grad_vm.py +0 -42
  624. mindspore/ops/_op_impl/tbe/basic_lstm_cell.py +0 -57
  625. mindspore/ops/_op_impl/tbe/basic_lstm_cell_c_state_grad.py +0 -50
  626. mindspore/ops/_op_impl/tbe/basic_lstm_cell_c_state_grad_v2.py +0 -51
  627. mindspore/ops/_op_impl/tbe/basic_lstm_cell_input_grad.py +0 -42
  628. mindspore/ops/_op_impl/tbe/basic_lstm_cell_weight_grad.py +0 -41
  629. mindspore/ops/_op_impl/tbe/batch_matmul.py +0 -42
  630. mindspore/ops/_op_impl/tbe/batch_matmul_ds.py +0 -41
  631. mindspore/ops/_op_impl/tbe/batch_matmul_v2.py +0 -47
  632. mindspore/ops/_op_impl/tbe/batch_to_space.py +0 -38
  633. mindspore/ops/_op_impl/tbe/batch_to_space_nd.py +0 -38
  634. mindspore/ops/_op_impl/tbe/batch_to_space_nd_ds.py +0 -39
  635. mindspore/ops/_op_impl/tbe/batch_to_space_nd_v2.py +0 -41
  636. mindspore/ops/_op_impl/tbe/batchnorm.py +0 -58
  637. mindspore/ops/_op_impl/tbe/batchnorm_grad.py +0 -58
  638. mindspore/ops/_op_impl/tbe/bce_with_logits_loss.py +0 -42
  639. mindspore/ops/_op_impl/tbe/bessel_i0e.py +0 -37
  640. mindspore/ops/_op_impl/tbe/bessel_i0e_ds.py +0 -38
  641. mindspore/ops/_op_impl/tbe/bessel_i1e.py +0 -37
  642. mindspore/ops/_op_impl/tbe/bessel_i1e_ds.py +0 -38
  643. mindspore/ops/_op_impl/tbe/bias_add.py +0 -38
  644. mindspore/ops/_op_impl/tbe/bias_add_ds.py +0 -39
  645. mindspore/ops/_op_impl/tbe/bias_add_grad.py +0 -53
  646. mindspore/ops/_op_impl/tbe/binary_cross_entropy.py +0 -39
  647. mindspore/ops/_op_impl/tbe/binary_cross_entropy_ds.py +0 -40
  648. mindspore/ops/_op_impl/tbe/binary_cross_entropy_grad.py +0 -44
  649. mindspore/ops/_op_impl/tbe/binary_cross_entropy_grad_ds.py +0 -45
  650. mindspore/ops/_op_impl/tbe/bitwise_and.py +0 -39
  651. mindspore/ops/_op_impl/tbe/bitwise_and_ds.py +0 -40
  652. mindspore/ops/_op_impl/tbe/bitwise_or.py +0 -39
  653. mindspore/ops/_op_impl/tbe/bitwise_or_ds.py +0 -40
  654. mindspore/ops/_op_impl/tbe/bitwise_xor.py +0 -39
  655. mindspore/ops/_op_impl/tbe/bitwise_xor_ds.py +0 -40
  656. mindspore/ops/_op_impl/tbe/bn_infer.py +0 -43
  657. mindspore/ops/_op_impl/tbe/bn_infer_ds.py +0 -45
  658. mindspore/ops/_op_impl/tbe/bn_infer_grad.py +0 -41
  659. mindspore/ops/_op_impl/tbe/bn_infer_grad_ds.py +0 -40
  660. mindspore/ops/_op_impl/tbe/bn_inference.py +0 -50
  661. mindspore/ops/_op_impl/tbe/bn_training_reduce.py +0 -38
  662. mindspore/ops/_op_impl/tbe/bn_training_reduce_ds.py +0 -39
  663. mindspore/ops/_op_impl/tbe/bn_training_reduce_grad.py +0 -46
  664. mindspore/ops/_op_impl/tbe/bn_training_reduce_grad_ds.py +0 -47
  665. mindspore/ops/_op_impl/tbe/bn_training_update.py +0 -52
  666. mindspore/ops/_op_impl/tbe/bn_training_update_ds.py +0 -53
  667. mindspore/ops/_op_impl/tbe/bn_training_update_grad.py +0 -44
  668. mindspore/ops/_op_impl/tbe/bn_training_update_grad_ds.py +0 -45
  669. mindspore/ops/_op_impl/tbe/bn_training_update_v2.py +0 -48
  670. mindspore/ops/_op_impl/tbe/bn_training_update_v3.py +0 -51
  671. mindspore/ops/_op_impl/tbe/bounding_box_decode.py +0 -41
  672. mindspore/ops/_op_impl/tbe/bounding_box_decode_ds.py +0 -42
  673. mindspore/ops/_op_impl/tbe/bounding_box_encode.py +0 -38
  674. mindspore/ops/_op_impl/tbe/broadcast_to.py +0 -40
  675. mindspore/ops/_op_impl/tbe/broadcast_to_ds.py +0 -44
  676. mindspore/ops/_op_impl/tbe/cast.py +0 -55
  677. mindspore/ops/_op_impl/tbe/cast_ds.py +0 -58
  678. mindspore/ops/_op_impl/tbe/cdist.py +0 -38
  679. mindspore/ops/_op_impl/tbe/cdist_grad.py +0 -42
  680. mindspore/ops/_op_impl/tbe/ceil.py +0 -37
  681. mindspore/ops/_op_impl/tbe/ceil_ds.py +0 -38
  682. mindspore/ops/_op_impl/tbe/celu.py +0 -39
  683. mindspore/ops/_op_impl/tbe/centralization.py +0 -39
  684. mindspore/ops/_op_impl/tbe/check_valid.py +0 -38
  685. mindspore/ops/_op_impl/tbe/check_valid_ds.py +0 -39
  686. mindspore/ops/_op_impl/tbe/clip_by_norm_no_div_sum.py +0 -41
  687. mindspore/ops/_op_impl/tbe/clip_by_norm_no_div_sum_ds.py +0 -42
  688. mindspore/ops/_op_impl/tbe/clip_by_value.py +0 -41
  689. mindspore/ops/_op_impl/tbe/clip_by_value_ds.py +0 -42
  690. mindspore/ops/_op_impl/tbe/concat.py +0 -40
  691. mindspore/ops/_op_impl/tbe/concat_ds.py +0 -38
  692. mindspore/ops/_op_impl/tbe/confusion_matrix.py +0 -63
  693. mindspore/ops/_op_impl/tbe/confusion_mul_grad.py +0 -40
  694. mindspore/ops/_op_impl/tbe/confusion_softmax_grad.py +0 -41
  695. mindspore/ops/_op_impl/tbe/confusion_transpose_d.py +0 -39
  696. mindspore/ops/_op_impl/tbe/conv2d.py +0 -47
  697. mindspore/ops/_op_impl/tbe/conv2d_backprop_filter.py +0 -42
  698. mindspore/ops/_op_impl/tbe/conv2d_backprop_filter_ds.py +0 -43
  699. mindspore/ops/_op_impl/tbe/conv2d_backprop_input.py +0 -42
  700. mindspore/ops/_op_impl/tbe/conv2d_backprop_input_ds.py +0 -44
  701. mindspore/ops/_op_impl/tbe/conv2d_ds.py +0 -47
  702. mindspore/ops/_op_impl/tbe/conv2d_transpose.py +0 -48
  703. mindspore/ops/_op_impl/tbe/conv3d.py +0 -45
  704. mindspore/ops/_op_impl/tbe/conv3d_backprop_filter.py +0 -42
  705. mindspore/ops/_op_impl/tbe/conv3d_backprop_input.py +0 -42
  706. mindspore/ops/_op_impl/tbe/conv3d_transpose.py +0 -47
  707. mindspore/ops/_op_impl/tbe/conv3d_transpose_ds.py +0 -48
  708. mindspore/ops/_op_impl/tbe/cos.py +0 -37
  709. mindspore/ops/_op_impl/tbe/cos_ds.py +0 -38
  710. mindspore/ops/_op_impl/tbe/cosh.py +0 -37
  711. mindspore/ops/_op_impl/tbe/cosh_ds.py +0 -38
  712. mindspore/ops/_op_impl/tbe/ctc_loss_v2.py +0 -42
  713. mindspore/ops/_op_impl/tbe/ctc_loss_v2_grad.py +0 -44
  714. mindspore/ops/_op_impl/tbe/cum_sum.py +0 -42
  715. mindspore/ops/_op_impl/tbe/cum_sum_ds.py +0 -44
  716. mindspore/ops/_op_impl/tbe/cummin.py +0 -41
  717. mindspore/ops/_op_impl/tbe/cumprod.py +0 -42
  718. mindspore/ops/_op_impl/tbe/data_format_dim_map.py +0 -38
  719. mindspore/ops/_op_impl/tbe/data_format_dim_map_ds.py +0 -40
  720. mindspore/ops/_op_impl/tbe/deformable_offsets.py +0 -45
  721. mindspore/ops/_op_impl/tbe/deformable_offsets_grad.py +0 -48
  722. mindspore/ops/_op_impl/tbe/depth_to_space_ds.py +0 -49
  723. mindspore/ops/_op_impl/tbe/depthwise_conv2d.py +0 -44
  724. mindspore/ops/_op_impl/tbe/depthwise_conv2d_backprop_filter.py +0 -41
  725. mindspore/ops/_op_impl/tbe/depthwise_conv2d_backprop_input.py +0 -41
  726. mindspore/ops/_op_impl/tbe/diag.py +0 -38
  727. mindspore/ops/_op_impl/tbe/diag_part.py +0 -38
  728. mindspore/ops/_op_impl/tbe/dilation.py +0 -40
  729. mindspore/ops/_op_impl/tbe/div.py +0 -41
  730. mindspore/ops/_op_impl/tbe/div_ds.py +0 -42
  731. mindspore/ops/_op_impl/tbe/div_no_nan.py +0 -41
  732. mindspore/ops/_op_impl/tbe/div_no_nan_ds.py +0 -42
  733. mindspore/ops/_op_impl/tbe/dropout_do_mask.py +0 -38
  734. mindspore/ops/_op_impl/tbe/dropout_do_mask_ds.py +0 -39
  735. mindspore/ops/_op_impl/tbe/dropout_do_mask_v3.py +0 -39
  736. mindspore/ops/_op_impl/tbe/dynamic_atomic_addr_clean.py +0 -34
  737. mindspore/ops/_op_impl/tbe/dynamic_gru_v2.py +0 -95
  738. mindspore/ops/_op_impl/tbe/dynamic_rnn.py +0 -82
  739. mindspore/ops/_op_impl/tbe/elu.py +0 -38
  740. mindspore/ops/_op_impl/tbe/elu_ds.py +0 -39
  741. mindspore/ops/_op_impl/tbe/elu_grad.py +0 -43
  742. mindspore/ops/_op_impl/tbe/elu_grad_ds.py +0 -44
  743. mindspore/ops/_op_impl/tbe/equal.py +0 -42
  744. mindspore/ops/_op_impl/tbe/equal_ds.py +0 -42
  745. mindspore/ops/_op_impl/tbe/erf.py +0 -37
  746. mindspore/ops/_op_impl/tbe/erf_ds.py +0 -38
  747. mindspore/ops/_op_impl/tbe/erfc.py +0 -37
  748. mindspore/ops/_op_impl/tbe/erfc_ds.py +0 -38
  749. mindspore/ops/_op_impl/tbe/erfinv.py +0 -36
  750. mindspore/ops/_op_impl/tbe/exp.py +0 -40
  751. mindspore/ops/_op_impl/tbe/exp_ds.py +0 -41
  752. mindspore/ops/_op_impl/tbe/expand_dims.py +0 -38
  753. mindspore/ops/_op_impl/tbe/expm1.py +0 -37
  754. mindspore/ops/_op_impl/tbe/expm1_ds.py +0 -38
  755. mindspore/ops/_op_impl/tbe/extract_image_patches.py +0 -41
  756. mindspore/ops/_op_impl/tbe/extract_volume_patches.py +0 -39
  757. mindspore/ops/_op_impl/tbe/fake_quant_with_min_max_vars.py +0 -39
  758. mindspore/ops/_op_impl/tbe/fake_quant_with_min_max_vars_gradient.py +0 -43
  759. mindspore/ops/_op_impl/tbe/fake_quant_with_min_max_vars_per_channel.py +0 -39
  760. mindspore/ops/_op_impl/tbe/fake_quant_with_min_max_vars_per_channel_gradient.py +0 -43
  761. mindspore/ops/_op_impl/tbe/fast_gelu.py +0 -37
  762. mindspore/ops/_op_impl/tbe/fast_gelu_ds.py +0 -38
  763. mindspore/ops/_op_impl/tbe/fast_gelu_grad.py +0 -41
  764. mindspore/ops/_op_impl/tbe/fast_gelu_grad_ds.py +0 -42
  765. mindspore/ops/_op_impl/tbe/fill.py +0 -56
  766. mindspore/ops/_op_impl/tbe/fill_ds.py +0 -42
  767. mindspore/ops/_op_impl/tbe/flatten.py +0 -48
  768. mindspore/ops/_op_impl/tbe/floor.py +0 -37
  769. mindspore/ops/_op_impl/tbe/floor_div.py +0 -41
  770. mindspore/ops/_op_impl/tbe/floor_div_ds.py +0 -42
  771. mindspore/ops/_op_impl/tbe/floor_ds.py +0 -38
  772. mindspore/ops/_op_impl/tbe/floor_mod.py +0 -39
  773. mindspore/ops/_op_impl/tbe/floor_mod_ds.py +0 -40
  774. mindspore/ops/_op_impl/tbe/fused_dbn_dw.py +0 -52
  775. mindspore/ops/_op_impl/tbe/fused_mul_add.py +0 -38
  776. mindspore/ops/_op_impl/tbe/fused_mul_add_n.py +0 -48
  777. mindspore/ops/_op_impl/tbe/fused_mul_add_n_l2loss.py +0 -53
  778. mindspore/ops/_op_impl/tbe/fused_mul_apply_momentum.py +0 -57
  779. mindspore/ops/_op_impl/tbe/fused_mul_apply_momentum_extern.py +0 -67
  780. mindspore/ops/_op_impl/tbe/gather_nd.py +0 -52
  781. mindspore/ops/_op_impl/tbe/gather_nd_ds.py +0 -48
  782. mindspore/ops/_op_impl/tbe/gather_v2.py +0 -56
  783. mindspore/ops/_op_impl/tbe/gather_v2_ds.py +0 -68
  784. mindspore/ops/_op_impl/tbe/gelu.py +0 -37
  785. mindspore/ops/_op_impl/tbe/gelu_ds.py +0 -38
  786. mindspore/ops/_op_impl/tbe/gelu_grad.py +0 -42
  787. mindspore/ops/_op_impl/tbe/gelu_grad_ds.py +0 -43
  788. mindspore/ops/_op_impl/tbe/ger.py +0 -43
  789. mindspore/ops/_op_impl/tbe/ger_ds.py +0 -44
  790. mindspore/ops/_op_impl/tbe/greater.py +0 -43
  791. mindspore/ops/_op_impl/tbe/greater_equal.py +0 -41
  792. mindspore/ops/_op_impl/tbe/greater_equal_ds.py +0 -42
  793. mindspore/ops/_op_impl/tbe/gru_v2_hidden_grad.py +0 -51
  794. mindspore/ops/_op_impl/tbe/gru_v2_hidden_grad_cell.py +0 -52
  795. mindspore/ops/_op_impl/tbe/hard_swish.py +0 -37
  796. mindspore/ops/_op_impl/tbe/hard_swish_ds.py +0 -38
  797. mindspore/ops/_op_impl/tbe/hard_swish_grad.py +0 -41
  798. mindspore/ops/_op_impl/tbe/hard_swish_grad_ds.py +0 -42
  799. mindspore/ops/_op_impl/tbe/histogram_fixed_width.py +0 -40
  800. mindspore/ops/_op_impl/tbe/hshrink.py +0 -33
  801. mindspore/ops/_op_impl/tbe/hshrink_grad.py +0 -37
  802. mindspore/ops/_op_impl/tbe/hsigmoid.py +0 -45
  803. mindspore/ops/_op_impl/tbe/hsigmoid_grad.py +0 -39
  804. mindspore/ops/_op_impl/tbe/ifmr.py +0 -47
  805. mindspore/ops/_op_impl/tbe/ifmr_ds.py +0 -48
  806. mindspore/ops/_op_impl/tbe/im2col.py +0 -42
  807. mindspore/ops/_op_impl/tbe/in_top_k.py +0 -37
  808. mindspore/ops/_op_impl/tbe/inplace_add.py +0 -39
  809. mindspore/ops/_op_impl/tbe/inplace_index_add.py +0 -46
  810. mindspore/ops/_op_impl/tbe/inplace_sub.py +0 -39
  811. mindspore/ops/_op_impl/tbe/inplace_update.py +0 -39
  812. mindspore/ops/_op_impl/tbe/inplace_update_ds.py +0 -40
  813. mindspore/ops/_op_impl/tbe/inv.py +0 -38
  814. mindspore/ops/_op_impl/tbe/inv_ds.py +0 -39
  815. mindspore/ops/_op_impl/tbe/inv_grad.py +0 -40
  816. mindspore/ops/_op_impl/tbe/inv_grad_ds.py +0 -41
  817. mindspore/ops/_op_impl/tbe/invert.py +0 -37
  818. mindspore/ops/_op_impl/tbe/invert_ds.py +0 -38
  819. mindspore/ops/_op_impl/tbe/iou.py +0 -38
  820. mindspore/ops/_op_impl/tbe/iou_ds.py +0 -39
  821. mindspore/ops/_op_impl/tbe/is_close.py +0 -40
  822. mindspore/ops/_op_impl/tbe/kl_div_loss.py +0 -38
  823. mindspore/ops/_op_impl/tbe/kl_div_loss_ds.py +0 -39
  824. mindspore/ops/_op_impl/tbe/kl_div_loss_grad.py +0 -40
  825. mindspore/ops/_op_impl/tbe/l2_loss.py +0 -36
  826. mindspore/ops/_op_impl/tbe/l2_loss_ds.py +0 -37
  827. mindspore/ops/_op_impl/tbe/l2_normalize.py +0 -38
  828. mindspore/ops/_op_impl/tbe/l2_normalize_grad.py +0 -40
  829. mindspore/ops/_op_impl/tbe/lamb_apply_optimizer_assign.py +0 -55
  830. mindspore/ops/_op_impl/tbe/lamb_apply_weight_assign.py +0 -42
  831. mindspore/ops/_op_impl/tbe/lamb_next_mv.py +0 -59
  832. mindspore/ops/_op_impl/tbe/lamb_next_mv_with_decay.py +0 -59
  833. mindspore/ops/_op_impl/tbe/lamb_next_right.py +0 -44
  834. mindspore/ops/_op_impl/tbe/lamb_update_with_lr.py +0 -48
  835. mindspore/ops/_op_impl/tbe/lamb_update_with_lr_v2.py +0 -44
  836. mindspore/ops/_op_impl/tbe/lars_update.py +0 -50
  837. mindspore/ops/_op_impl/tbe/lars_update_ds.py +0 -51
  838. mindspore/ops/_op_impl/tbe/layer_norm.py +0 -46
  839. mindspore/ops/_op_impl/tbe/layer_norm_beta_gamma_backprop.py +0 -44
  840. mindspore/ops/_op_impl/tbe/layer_norm_beta_gamma_backprop_ds.py +0 -45
  841. mindspore/ops/_op_impl/tbe/layer_norm_beta_gamma_backprop_v2.py +0 -40
  842. mindspore/ops/_op_impl/tbe/layer_norm_beta_gamma_backprop_v2_ds.py +0 -41
  843. mindspore/ops/_op_impl/tbe/layer_norm_ds.py +0 -47
  844. mindspore/ops/_op_impl/tbe/layer_norm_grad.py +0 -48
  845. mindspore/ops/_op_impl/tbe/layer_norm_x_backprop.py +0 -43
  846. mindspore/ops/_op_impl/tbe/layer_norm_x_backprop_ds.py +0 -44
  847. mindspore/ops/_op_impl/tbe/layer_norm_x_backprop_v2.py +0 -45
  848. mindspore/ops/_op_impl/tbe/layer_norm_x_backprop_v2_ds.py +0 -45
  849. mindspore/ops/_op_impl/tbe/lerp.py +0 -38
  850. mindspore/ops/_op_impl/tbe/less.py +0 -41
  851. mindspore/ops/_op_impl/tbe/less_ds.py +0 -42
  852. mindspore/ops/_op_impl/tbe/less_equal.py +0 -41
  853. mindspore/ops/_op_impl/tbe/less_equal_ds.py +0 -42
  854. mindspore/ops/_op_impl/tbe/log.py +0 -40
  855. mindspore/ops/_op_impl/tbe/log1p.py +0 -37
  856. mindspore/ops/_op_impl/tbe/log1p_ds.py +0 -38
  857. mindspore/ops/_op_impl/tbe/log_ds.py +0 -41
  858. mindspore/ops/_op_impl/tbe/logical_and.py +0 -37
  859. mindspore/ops/_op_impl/tbe/logical_and_ds.py +0 -38
  860. mindspore/ops/_op_impl/tbe/logical_not.py +0 -36
  861. mindspore/ops/_op_impl/tbe/logical_not_ds.py +0 -37
  862. mindspore/ops/_op_impl/tbe/logical_or.py +0 -37
  863. mindspore/ops/_op_impl/tbe/logical_or_ds.py +0 -38
  864. mindspore/ops/_op_impl/tbe/logsoftmax.py +0 -37
  865. mindspore/ops/_op_impl/tbe/logsoftmax_ds.py +0 -38
  866. mindspore/ops/_op_impl/tbe/logsoftmax_grad.py +0 -38
  867. mindspore/ops/_op_impl/tbe/logsoftmax_grad_ds.py +0 -39
  868. mindspore/ops/_op_impl/tbe/lp_norm.py +0 -40
  869. mindspore/ops/_op_impl/tbe/lp_norm_ds.py +0 -41
  870. mindspore/ops/_op_impl/tbe/lrn.py +0 -41
  871. mindspore/ops/_op_impl/tbe/lrn_grad.py +0 -42
  872. mindspore/ops/_op_impl/tbe/lstm_input_grad.py +0 -51
  873. mindspore/ops/_op_impl/tbe/masked_fill.py +0 -40
  874. mindspore/ops/_op_impl/tbe/masked_fill_ds.py +0 -41
  875. mindspore/ops/_op_impl/tbe/matmul.py +0 -53
  876. mindspore/ops/_op_impl/tbe/matmul_ds.py +0 -47
  877. mindspore/ops/_op_impl/tbe/matmul_v2.py +0 -50
  878. mindspore/ops/_op_impl/tbe/matrix_diag.py +0 -45
  879. mindspore/ops/_op_impl/tbe/matrix_diag_part.py +0 -45
  880. mindspore/ops/_op_impl/tbe/matrix_set_diag.py +0 -46
  881. mindspore/ops/_op_impl/tbe/max_pool.py +0 -39
  882. mindspore/ops/_op_impl/tbe/max_pool3d.py +0 -44
  883. mindspore/ops/_op_impl/tbe/max_pool3d_grad.py +0 -43
  884. mindspore/ops/_op_impl/tbe/max_pool3d_grad_grad.py +0 -44
  885. mindspore/ops/_op_impl/tbe/max_pool_ds.py +0 -40
  886. mindspore/ops/_op_impl/tbe/max_pool_grad.py +0 -43
  887. mindspore/ops/_op_impl/tbe/max_pool_grad_grad.py +0 -41
  888. mindspore/ops/_op_impl/tbe/max_pool_grad_grad_with_argmax.py +0 -41
  889. mindspore/ops/_op_impl/tbe/max_pool_grad_with_argmax.py +0 -42
  890. mindspore/ops/_op_impl/tbe/max_pool_with_argmax.py +0 -40
  891. mindspore/ops/_op_impl/tbe/maximum.py +0 -39
  892. mindspore/ops/_op_impl/tbe/maximum_ds.py +0 -40
  893. mindspore/ops/_op_impl/tbe/maximum_grad.py +0 -46
  894. mindspore/ops/_op_impl/tbe/maximum_grad_ds.py +0 -47
  895. mindspore/ops/_op_impl/tbe/mem_set.py +0 -38
  896. mindspore/ops/_op_impl/tbe/minimum.py +0 -40
  897. mindspore/ops/_op_impl/tbe/minimum_ds.py +0 -41
  898. mindspore/ops/_op_impl/tbe/minimum_grad.py +0 -46
  899. mindspore/ops/_op_impl/tbe/minimum_grad_ds.py +0 -47
  900. mindspore/ops/_op_impl/tbe/mish.py +0 -37
  901. mindspore/ops/_op_impl/tbe/mod.py +0 -41
  902. mindspore/ops/_op_impl/tbe/mod_ds.py +0 -42
  903. mindspore/ops/_op_impl/tbe/mul.py +0 -37
  904. mindspore/ops/_op_impl/tbe/mul_ds.py +0 -38
  905. mindspore/ops/_op_impl/tbe/mul_no_nan.py +0 -39
  906. mindspore/ops/_op_impl/tbe/mul_no_nan_ds.py +0 -40
  907. mindspore/ops/_op_impl/tbe/multilabel_margin_loss.py +0 -39
  908. mindspore/ops/_op_impl/tbe/neg.py +0 -39
  909. mindspore/ops/_op_impl/tbe/neg_ds.py +0 -40
  910. mindspore/ops/_op_impl/tbe/new_im2col.py +0 -40
  911. mindspore/ops/_op_impl/tbe/nll_loss.py +0 -41
  912. mindspore/ops/_op_impl/tbe/nll_loss_grad.py +0 -44
  913. mindspore/ops/_op_impl/tbe/nms_with_mask.py +0 -39
  914. mindspore/ops/_op_impl/tbe/not_equal.py +0 -41
  915. mindspore/ops/_op_impl/tbe/not_equal_ds.py +0 -42
  916. mindspore/ops/_op_impl/tbe/npu_alloc_float_status.py +0 -34
  917. mindspore/ops/_op_impl/tbe/npu_clear_float_status.py +0 -35
  918. mindspore/ops/_op_impl/tbe/npu_clear_float_status_v2.py +0 -35
  919. mindspore/ops/_op_impl/tbe/npu_get_float_status.py +0 -35
  920. mindspore/ops/_op_impl/tbe/npu_get_float_status_v2.py +0 -35
  921. mindspore/ops/_op_impl/tbe/one_hot.py +0 -48
  922. mindspore/ops/_op_impl/tbe/one_hot_ds.py +0 -45
  923. mindspore/ops/_op_impl/tbe/ones_like.py +0 -40
  924. mindspore/ops/_op_impl/tbe/ones_like_ds.py +0 -41
  925. mindspore/ops/_op_impl/tbe/p_s_r_o_i_pooling.py +0 -40
  926. mindspore/ops/_op_impl/tbe/p_s_r_o_i_pooling_grad.py +0 -40
  927. mindspore/ops/_op_impl/tbe/pack.py +0 -58
  928. mindspore/ops/_op_impl/tbe/pack_ds.py +0 -59
  929. mindspore/ops/_op_impl/tbe/pad_d.py +0 -40
  930. mindspore/ops/_op_impl/tbe/pad_d_ds.py +0 -41
  931. mindspore/ops/_op_impl/tbe/parallel_concat.py +0 -70
  932. mindspore/ops/_op_impl/tbe/parallel_resize_bilinear.py +0 -45
  933. mindspore/ops/_op_impl/tbe/parallel_resize_bilinear_grad.py +0 -44
  934. mindspore/ops/_op_impl/tbe/pdist.py +0 -36
  935. mindspore/ops/_op_impl/tbe/pooling.py +0 -46
  936. mindspore/ops/_op_impl/tbe/population_count.py +0 -38
  937. mindspore/ops/_op_impl/tbe/pow.py +0 -41
  938. mindspore/ops/_op_impl/tbe/pow_ds.py +0 -42
  939. mindspore/ops/_op_impl/tbe/prelu.py +0 -37
  940. mindspore/ops/_op_impl/tbe/prelu_ds.py +0 -38
  941. mindspore/ops/_op_impl/tbe/prelu_grad.py +0 -40
  942. mindspore/ops/_op_impl/tbe/range.py +0 -39
  943. mindspore/ops/_op_impl/tbe/real_div.py +0 -38
  944. mindspore/ops/_op_impl/tbe/real_div_ds.py +0 -39
  945. mindspore/ops/_op_impl/tbe/reciprocal.py +0 -36
  946. mindspore/ops/_op_impl/tbe/reciprocal_ds.py +0 -37
  947. mindspore/ops/_op_impl/tbe/reciprocal_grad.py +0 -38
  948. mindspore/ops/_op_impl/tbe/reciprocal_grad_ds.py +0 -39
  949. mindspore/ops/_op_impl/tbe/reduce_all.py +0 -38
  950. mindspore/ops/_op_impl/tbe/reduce_all_ds.py +0 -39
  951. mindspore/ops/_op_impl/tbe/reduce_any.py +0 -38
  952. mindspore/ops/_op_impl/tbe/reduce_any_ds.py +0 -39
  953. mindspore/ops/_op_impl/tbe/reduce_max.py +0 -43
  954. mindspore/ops/_op_impl/tbe/reduce_max_ds.py +0 -41
  955. mindspore/ops/_op_impl/tbe/reduce_mean.py +0 -40
  956. mindspore/ops/_op_impl/tbe/reduce_mean_ds.py +0 -42
  957. mindspore/ops/_op_impl/tbe/reduce_min.py +0 -41
  958. mindspore/ops/_op_impl/tbe/reduce_min_ds.py +0 -41
  959. mindspore/ops/_op_impl/tbe/reduce_prod.py +0 -42
  960. mindspore/ops/_op_impl/tbe/reduce_prod_ds.py +0 -41
  961. mindspore/ops/_op_impl/tbe/reduce_std.py +0 -44
  962. mindspore/ops/_op_impl/tbe/reduce_sum.py +0 -39
  963. mindspore/ops/_op_impl/tbe/reduce_sum_ds.py +0 -41
  964. mindspore/ops/_op_impl/tbe/relu.py +0 -39
  965. mindspore/ops/_op_impl/tbe/relu6.py +0 -38
  966. mindspore/ops/_op_impl/tbe/relu6_ds.py +0 -39
  967. mindspore/ops/_op_impl/tbe/relu6_grad.py +0 -43
  968. mindspore/ops/_op_impl/tbe/relu6_grad_ds.py +0 -44
  969. mindspore/ops/_op_impl/tbe/relu_ds.py +0 -40
  970. mindspore/ops/_op_impl/tbe/relu_grad.py +0 -41
  971. mindspore/ops/_op_impl/tbe/relu_grad_ds.py +0 -42
  972. mindspore/ops/_op_impl/tbe/relu_grad_v2.py +0 -40
  973. mindspore/ops/_op_impl/tbe/relu_grad_v2_ds.py +0 -41
  974. mindspore/ops/_op_impl/tbe/relu_v2.py +0 -40
  975. mindspore/ops/_op_impl/tbe/relu_v2_ds.py +0 -41
  976. mindspore/ops/_op_impl/tbe/renorm.py +0 -39
  977. mindspore/ops/_op_impl/tbe/resize_bilinear.py +0 -40
  978. mindspore/ops/_op_impl/tbe/resize_bilinear_grad.py +0 -41
  979. mindspore/ops/_op_impl/tbe/resize_bilinear_v2.py +0 -43
  980. mindspore/ops/_op_impl/tbe/resize_nearest_neighbor.py +0 -40
  981. mindspore/ops/_op_impl/tbe/resize_nearest_neighbor_ds.py +0 -40
  982. mindspore/ops/_op_impl/tbe/resize_nearest_neighbor_grad.py +0 -39
  983. mindspore/ops/_op_impl/tbe/resize_nearest_neighbor_grad_ds.py +0 -42
  984. mindspore/ops/_op_impl/tbe/reverse_v2_d.py +0 -37
  985. mindspore/ops/_op_impl/tbe/rint.py +0 -37
  986. mindspore/ops/_op_impl/tbe/rint_ds.py +0 -38
  987. mindspore/ops/_op_impl/tbe/roi_align.py +0 -43
  988. mindspore/ops/_op_impl/tbe/roi_align_ds.py +0 -44
  989. mindspore/ops/_op_impl/tbe/roi_align_grad.py +0 -43
  990. mindspore/ops/_op_impl/tbe/roi_align_grad_ds.py +0 -44
  991. mindspore/ops/_op_impl/tbe/roll.py +0 -42
  992. mindspore/ops/_op_impl/tbe/round.py +0 -38
  993. mindspore/ops/_op_impl/tbe/round_ds.py +0 -39
  994. mindspore/ops/_op_impl/tbe/rsqrt.py +0 -37
  995. mindspore/ops/_op_impl/tbe/rsqrt_ds.py +0 -38
  996. mindspore/ops/_op_impl/tbe/rsqrt_grad.py +0 -40
  997. mindspore/ops/_op_impl/tbe/rsqrt_grad_ds.py +0 -41
  998. mindspore/ops/_op_impl/tbe/scatter_add.py +0 -44
  999. mindspore/ops/_op_impl/tbe/scatter_div.py +0 -46
  1000. mindspore/ops/_op_impl/tbe/scatter_max.py +0 -45
  1001. mindspore/ops/_op_impl/tbe/scatter_min.py +0 -45
  1002. mindspore/ops/_op_impl/tbe/scatter_mul.py +0 -44
  1003. mindspore/ops/_op_impl/tbe/scatter_nd.py +0 -41
  1004. mindspore/ops/_op_impl/tbe/scatter_nd_add.py +0 -45
  1005. mindspore/ops/_op_impl/tbe/scatter_nd_d.py +0 -41
  1006. mindspore/ops/_op_impl/tbe/scatter_nd_ds.py +0 -49
  1007. mindspore/ops/_op_impl/tbe/scatter_nd_sub.py +0 -47
  1008. mindspore/ops/_op_impl/tbe/scatter_nd_sub_ds.py +0 -48
  1009. mindspore/ops/_op_impl/tbe/scatter_nd_update.py +0 -47
  1010. mindspore/ops/_op_impl/tbe/scatter_nd_update_ds.py +0 -48
  1011. mindspore/ops/_op_impl/tbe/scatter_non_aliasing_add.py +0 -39
  1012. mindspore/ops/_op_impl/tbe/scatter_non_aliasing_add_ds.py +0 -40
  1013. mindspore/ops/_op_impl/tbe/scatter_sub.py +0 -47
  1014. mindspore/ops/_op_impl/tbe/scatter_sub_ds.py +0 -48
  1015. mindspore/ops/_op_impl/tbe/scatter_update.py +0 -43
  1016. mindspore/ops/_op_impl/tbe/select.py +0 -38
  1017. mindspore/ops/_op_impl/tbe/select_ds.py +0 -39
  1018. mindspore/ops/_op_impl/tbe/selu.py +0 -39
  1019. mindspore/ops/_op_impl/tbe/selu_ds.py +0 -40
  1020. mindspore/ops/_op_impl/tbe/sgd.py +0 -62
  1021. mindspore/ops/_op_impl/tbe/sigmoid.py +0 -37
  1022. mindspore/ops/_op_impl/tbe/sigmoid_cross_entropy_with_logits.py +0 -41
  1023. mindspore/ops/_op_impl/tbe/sigmoid_cross_entropy_with_logits_ds.py +0 -42
  1024. mindspore/ops/_op_impl/tbe/sigmoid_cross_entropy_with_logits_grad.py +0 -42
  1025. mindspore/ops/_op_impl/tbe/sigmoid_cross_entropy_with_logits_grad_ds.py +0 -43
  1026. mindspore/ops/_op_impl/tbe/sigmoid_ds.py +0 -38
  1027. mindspore/ops/_op_impl/tbe/sigmoid_grad.py +0 -39
  1028. mindspore/ops/_op_impl/tbe/sigmoid_grad_ds.py +0 -40
  1029. mindspore/ops/_op_impl/tbe/sign.py +0 -38
  1030. mindspore/ops/_op_impl/tbe/sign_ds.py +0 -39
  1031. mindspore/ops/_op_impl/tbe/sin.py +0 -37
  1032. mindspore/ops/_op_impl/tbe/sin_ds.py +0 -38
  1033. mindspore/ops/_op_impl/tbe/sinh.py +0 -37
  1034. mindspore/ops/_op_impl/tbe/sinh_ds.py +0 -38
  1035. mindspore/ops/_op_impl/tbe/slice.py +0 -58
  1036. mindspore/ops/_op_impl/tbe/smooth_l1_loss.py +0 -45
  1037. mindspore/ops/_op_impl/tbe/smooth_l1_loss_ds.py +0 -46
  1038. mindspore/ops/_op_impl/tbe/smooth_l1_loss_grad.py +0 -46
  1039. mindspore/ops/_op_impl/tbe/smooth_l1_loss_grad_ds.py +0 -47
  1040. mindspore/ops/_op_impl/tbe/soft_margin_loss.py +0 -38
  1041. mindspore/ops/_op_impl/tbe/soft_margin_loss_grad.py +0 -39
  1042. mindspore/ops/_op_impl/tbe/soft_shrink.py +0 -36
  1043. mindspore/ops/_op_impl/tbe/soft_shrink_grad.py +0 -38
  1044. mindspore/ops/_op_impl/tbe/softmax.py +0 -37
  1045. mindspore/ops/_op_impl/tbe/softmax_cross_entropy_with_logits.py +0 -38
  1046. mindspore/ops/_op_impl/tbe/softmax_cross_entropy_with_logits_ds.py +0 -39
  1047. mindspore/ops/_op_impl/tbe/softmax_ds.py +0 -38
  1048. mindspore/ops/_op_impl/tbe/softmax_grad_ext.py +0 -42
  1049. mindspore/ops/_op_impl/tbe/softmax_v2_with_dropout_do_mask_v3.py +0 -39
  1050. mindspore/ops/_op_impl/tbe/softplus.py +0 -37
  1051. mindspore/ops/_op_impl/tbe/softplus_ds.py +0 -38
  1052. mindspore/ops/_op_impl/tbe/softplus_grad.py +0 -38
  1053. mindspore/ops/_op_impl/tbe/softplus_grad_ds.py +0 -38
  1054. mindspore/ops/_op_impl/tbe/softsign.py +0 -37
  1055. mindspore/ops/_op_impl/tbe/softsign_ds.py +0 -38
  1056. mindspore/ops/_op_impl/tbe/sort.py +0 -38
  1057. mindspore/ops/_op_impl/tbe/sort_ds.py +0 -39
  1058. mindspore/ops/_op_impl/tbe/space_to_batch.py +0 -38
  1059. mindspore/ops/_op_impl/tbe/space_to_batch_nd.py +0 -38
  1060. mindspore/ops/_op_impl/tbe/space_to_depth.py +0 -47
  1061. mindspore/ops/_op_impl/tbe/sparse_apply_adadelta.py +0 -56
  1062. mindspore/ops/_op_impl/tbe/sparse_apply_adagrad.py +0 -45
  1063. mindspore/ops/_op_impl/tbe/sparse_apply_adagrad_ds.py +0 -46
  1064. mindspore/ops/_op_impl/tbe/sparse_apply_adagrad_v2.py +0 -46
  1065. mindspore/ops/_op_impl/tbe/sparse_apply_adagrad_v2_ds.py +0 -47
  1066. mindspore/ops/_op_impl/tbe/sparse_apply_ftrl_d.py +0 -53
  1067. mindspore/ops/_op_impl/tbe/sparse_apply_ftrl_d_ds.py +0 -50
  1068. mindspore/ops/_op_impl/tbe/sparse_apply_ftrl_v2.py +0 -50
  1069. mindspore/ops/_op_impl/tbe/sparse_apply_proximal_adagrad.py +0 -66
  1070. mindspore/ops/_op_impl/tbe/sparse_apply_proximal_adagrad_ds.py +0 -67
  1071. mindspore/ops/_op_impl/tbe/sparse_apply_r_m_s_prop.py +0 -57
  1072. mindspore/ops/_op_impl/tbe/sparse_apply_r_m_s_prop_ds.py +0 -58
  1073. mindspore/ops/_op_impl/tbe/sparse_gather_v2.py +0 -56
  1074. mindspore/ops/_op_impl/tbe/sparse_gather_v2_ds.py +0 -58
  1075. mindspore/ops/_op_impl/tbe/split_d.py +0 -38
  1076. mindspore/ops/_op_impl/tbe/split_d_ds.py +0 -39
  1077. mindspore/ops/_op_impl/tbe/split_v.py +0 -39
  1078. mindspore/ops/_op_impl/tbe/splitv.py +0 -39
  1079. mindspore/ops/_op_impl/tbe/sqrt.py +0 -37
  1080. mindspore/ops/_op_impl/tbe/sqrt_ds.py +0 -38
  1081. mindspore/ops/_op_impl/tbe/sqrt_grad.py +0 -43
  1082. mindspore/ops/_op_impl/tbe/sqrt_grad_ds.py +0 -44
  1083. mindspore/ops/_op_impl/tbe/square.py +0 -38
  1084. mindspore/ops/_op_impl/tbe/square_ds.py +0 -39
  1085. mindspore/ops/_op_impl/tbe/square_sum_all.py +0 -40
  1086. mindspore/ops/_op_impl/tbe/square_sum_all_ds.py +0 -41
  1087. mindspore/ops/_op_impl/tbe/square_sum_v1.py +0 -38
  1088. mindspore/ops/_op_impl/tbe/square_sum_v1_ds.py +0 -39
  1089. mindspore/ops/_op_impl/tbe/square_sum_v2.py +0 -39
  1090. mindspore/ops/_op_impl/tbe/squared_difference.py +0 -39
  1091. mindspore/ops/_op_impl/tbe/squared_difference_ds.py +0 -41
  1092. mindspore/ops/_op_impl/tbe/squeeze.py +0 -37
  1093. mindspore/ops/_op_impl/tbe/strided_read.py +0 -38
  1094. mindspore/ops/_op_impl/tbe/strided_slice_d.py +0 -44
  1095. mindspore/ops/_op_impl/tbe/strided_slice_ds.py +0 -71
  1096. mindspore/ops/_op_impl/tbe/strided_slice_grad_d.py +0 -51
  1097. mindspore/ops/_op_impl/tbe/strided_slice_grad_ds.py +0 -57
  1098. mindspore/ops/_op_impl/tbe/strided_write.py +0 -38
  1099. mindspore/ops/_op_impl/tbe/sub.py +0 -39
  1100. mindspore/ops/_op_impl/tbe/sub_ds.py +0 -40
  1101. mindspore/ops/_op_impl/tbe/tan.py +0 -38
  1102. mindspore/ops/_op_impl/tbe/tan_ds.py +0 -39
  1103. mindspore/ops/_op_impl/tbe/tanh.py +0 -37
  1104. mindspore/ops/_op_impl/tbe/tanh_ds.py +0 -38
  1105. mindspore/ops/_op_impl/tbe/tanh_grad.py +0 -39
  1106. mindspore/ops/_op_impl/tbe/tanh_grad_ds.py +0 -40
  1107. mindspore/ops/_op_impl/tbe/tensor_move.py +0 -49
  1108. mindspore/ops/_op_impl/tbe/tensor_move_ds.py +0 -50
  1109. mindspore/ops/_op_impl/tbe/tensor_scatter_update.py +0 -41
  1110. mindspore/ops/_op_impl/tbe/tile.py +0 -37
  1111. mindspore/ops/_op_impl/tbe/tile_ds.py +0 -42
  1112. mindspore/ops/_op_impl/tbe/top_k.py +0 -42
  1113. mindspore/ops/_op_impl/tbe/top_k_ds.py +0 -43
  1114. mindspore/ops/_op_impl/tbe/trans_data.py +0 -167
  1115. mindspore/ops/_op_impl/tbe/trans_data_ds.py +0 -180
  1116. mindspore/ops/_op_impl/tbe/trans_data_rnn.py +0 -44
  1117. mindspore/ops/_op_impl/tbe/transpose.py +0 -60
  1118. mindspore/ops/_op_impl/tbe/transpose_d.py +0 -47
  1119. mindspore/ops/_op_impl/tbe/transpose_nod.py +0 -60
  1120. mindspore/ops/_op_impl/tbe/trunc.py +0 -39
  1121. mindspore/ops/_op_impl/tbe/truncate_div.py +0 -41
  1122. mindspore/ops/_op_impl/tbe/truncate_div_ds.py +0 -42
  1123. mindspore/ops/_op_impl/tbe/truncate_mod.py +0 -41
  1124. mindspore/ops/_op_impl/tbe/truncate_mod_ds.py +0 -42
  1125. mindspore/ops/_op_impl/tbe/unpack.py +0 -38
  1126. mindspore/ops/_op_impl/tbe/unpack_ds.py +0 -39
  1127. mindspore/ops/_op_impl/tbe/unsorted_segment_max.py +0 -49
  1128. mindspore/ops/_op_impl/tbe/unsorted_segment_max_ds.py +0 -40
  1129. mindspore/ops/_op_impl/tbe/unsorted_segment_min.py +0 -49
  1130. mindspore/ops/_op_impl/tbe/unsorted_segment_min_ds.py +0 -40
  1131. mindspore/ops/_op_impl/tbe/unsorted_segment_prod.py +0 -49
  1132. mindspore/ops/_op_impl/tbe/unsorted_segment_prod_ds.py +0 -38
  1133. mindspore/ops/_op_impl/tbe/unsorted_segment_sum.py +0 -38
  1134. mindspore/ops/_op_impl/tbe/unsorted_segment_sum_ds.py +0 -41
  1135. mindspore/ops/_op_impl/tbe/wts_arq.py +0 -40
  1136. mindspore/ops/_op_impl/tbe/xdivy.py +0 -38
  1137. mindspore/ops/_op_impl/tbe/xdivy_ds.py +0 -39
  1138. mindspore/ops/_op_impl/tbe/xlogy.py +0 -38
  1139. mindspore/ops/_op_impl/tbe/xlogy_ds.py +0 -39
  1140. mindspore/ops/_op_impl/tbe/zeros_like.py +0 -41
  1141. mindspore/ops/_op_impl/tbe/zeros_like_ds.py +0 -42
  1142. mindspore/ops/_tracefunc.py +0 -241
  1143. mindspore/ops/arg_dtype_cast.py +0 -54
  1144. mindspore/rewrite/api/tree_node_helper.py +0 -60
  1145. mindspore/rewrite/ast_helpers/ast_creator.py +0 -115
  1146. mindspore/rewrite/ast_transformers/flatten_recursive_stmt.py +0 -267
  1147. mindspore/rewrite/ast_transformers/remove_return_out_of_if.py +0 -228
  1148. mindspore/rewrite/namespace.py +0 -53
  1149. mindspore-2.2.11.dist-info/RECORD +0 -1920
  1150. {mindspore-2.2.11.dist-info → mindspore-2.3.0.dist-info}/WHEEL +0 -0
  1151. {mindspore-2.2.11.dist-info → mindspore-2.3.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,980 @@
1
+ # Copyright 2023 Huawei Technologies Co., Ltd
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ============================================================================
15
+
16
+ from mindspore.common import dtype as mstype
17
+ from mindspore.ops.auto_generate.pyboost_inner_prim import *
18
+
19
+
20
+ def add(input, other, alpha=1):
21
+ r"""
22
+ Adds scaled other value to input Tensor.
23
+
24
+ .. math::
25
+
26
+ out_{i} = input_{i} + alpha \times other_{i}
27
+
28
+ Note:
29
+ - When the two inputs have different shapes,
30
+ they must be able to broadcast to a common shape.
31
+ - The two inputs and alpha comply with the implicit type conversion rules to make the data types
32
+ consistent.
33
+
34
+ Args:
35
+ input (Union[Tensor, number.Number, bool]): The first input is a number.Number or
36
+ a bool or a tensor whose data type is
37
+ `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore.html#mindspore.dtype>`_ or
38
+ `bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore.html#mindspore.dtype>`_.
39
+ other (Union[Tensor, number.Number, bool]): The second input, is a number.Number or
40
+ a bool or a tensor whose data type is
41
+ `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore.html#mindspore.dtype>`_ or
42
+ `bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore.html#mindspore.dtype>`_.
43
+ alpha (number.Number): A scaling factor applied to `other`, default 1.
44
+
45
+ Returns:
46
+ Tensor with a shape that is the same as the broadcasted shape of the input `input` and `other`,
47
+ and the data type is the one with higher precision or higher digits among the two inputs and alpha.
48
+
49
+ Raises:
50
+ TypeError: If the type of `input`, `other`, or `alpha` is not one of the following: Tensor, number.Number, bool.
51
+ TypeError: If `alpha` is of type float but `input` and `other` are not of type float.
52
+ TypeError: If `alpha` is of type bool but `input` and `other` are not of type bool.
53
+
54
+ Supported Platforms:
55
+ ``Ascend`` ``GPU`` ``CPU``
56
+
57
+ Examples:
58
+ >>> import numpy as np
59
+ >>> import mindspore
60
+ >>> from mindspore import Tensor
61
+ >>> from mindspore import ops
62
+ >>> x = Tensor(1, mindspore.int32)
63
+ >>> y = Tensor(np.array([4, 5, 6]).astype(np.float32))
64
+ >>> alpha = 0.5
65
+ >>> output = ops.auto_generate.add_ext(x, y, alpha)
66
+ >>> print(output)
67
+ [3. 3.5 4.]
68
+ >>> # the data type of x is int32, the data type of y is float32,
69
+ >>> # alpha is a float, and the output is the data format of higher precision float32.
70
+ >>> print(output.dtype)
71
+ Float32
72
+ """
73
+ return add_impl(input, other, alpha)
74
+
75
+
76
+ def argmax(input, dim=None, keepdim=False):
77
+ r"""
78
+ Return the indices of the maximum values of a tensor across a dimension.
79
+
80
+ Args:
81
+ input (Tensor): Input tensor.
82
+ dim (Union[int, None], optional): The dimension to reduce. If `dim` is ``None`` , the indices of the maximum
83
+ value within the flattened input will be returned. Default: ``None`` .
84
+ keepdim (bool, optional): Whether the output tensor retains the specified
85
+ dimension. Ignored if `dim` is None. Default: ``False`` .
86
+
87
+ Returns:
88
+ Tensor, indices of the maximum values across a dimension.
89
+
90
+ Raises:
91
+ TypeError: If `keepdim` is not bool.
92
+ ValueError: If `dim` is out of range.
93
+
94
+ Supported Platforms:
95
+ ``Ascend``
96
+
97
+ Examples:
98
+ >>> import numpy as np
99
+ >>> from mindspore import Tensor
100
+ >>> from mindspore import ops
101
+ >>> x = Tensor(np.array([[1, 20, 5], [67, 8, 9], [130, 24, 15]]).astype(np.float32))
102
+ >>> output = ops.auto_generate.argmax_ext(x, dim=-1)
103
+ >>> print(output)
104
+ [1 0 0]
105
+ """
106
+ return argmax_impl(input, dim, keepdim)
107
+
108
+
109
+ def atan2(input, other):
110
+ r"""
111
+ Returns arctangent of input/other element-wise.
112
+
113
+ It returns :math:`\theta\ \in\ [-\pi, \pi]`
114
+ such that :math:`input = r*\sin(\theta), other = r*\cos(\theta)`, where :math:`r = \sqrt{input^2 + other^2}`.
115
+
116
+ Note:
117
+ - Arg `input` and `other` comply with the implicit type conversion rules to make the data types consistent.
118
+ If they have different data types, the lower precision data type will be converted to relatively the
119
+ highest precision data type.
120
+
121
+ Args:
122
+ input (Tensor, Number.number): The input tensor or scalar.
123
+ other (Tensor, Number.number): The input tensor or scalar. It has the same shape with `input` or
124
+ its shape is able to broadcast with `input`.
125
+
126
+ Returns:
127
+ Tensor, the shape is the same as the one after broadcasting, and the data type is same as `input`.
128
+
129
+ Raises:
130
+ TypeError: If `input` or `other` is not a Tensor or scalar.
131
+ RuntimeError: If the data type of `input` and `other` conversion of Parameter is required
132
+ when data type conversion of Parameter is not supported.
133
+
134
+ Supported Platforms:
135
+ ``Ascend``
136
+
137
+ Examples:
138
+ >>> import mindspore
139
+ >>> import numpy as np
140
+ >>> from mindspore import Tensor, ops
141
+ >>> input = Tensor(np.array([0, 1]), mindspore.float32)
142
+ >>> other = Tensor(np.array([1, 1]), mindspore.float32)
143
+ >>> output = mint.atan2(input, other)
144
+ >>> print(output)
145
+ [0. 0.7853982]
146
+ """
147
+ return atan2_impl(input, other)
148
+
149
+
150
+ def bmm(input, mat2):
151
+ r"""
152
+ Performs batch matrix-matrix multiplication of two three-dimensional tensors.
153
+
154
+ .. math::
155
+ \text{output}= \text{input} @ \text{mat2}
156
+
157
+ Args:
158
+ input (Tensor): The first batch of matrices to be multiplied. Must be a three-dimensional tensor of shape `(b, n, m)`.
159
+ mat2 (Tensor): The second batch of matrices to be multiplied. Must be a three-dimensional tensor of shape `(b, m, p)`.
160
+
161
+ Returns:
162
+ Tensor, the output tensor of shape `(b, n, p)`, where each matrix is the product of the corresponding matrices in the input batches.
163
+
164
+ Raises:
165
+ ValueError: If `input` or `mat2` is not three-dimensional tensors.
166
+ ValueError: If the length of the third dimension of `input` is not equal to the length of the second dimension of `mat2`.
167
+ ValueError: If the batch size of the inputs is not equal to the batch size of the mat2.
168
+
169
+ Supported Platforms:
170
+ ``Ascend`` ``GPU`` ``CPU``
171
+
172
+ Examples:
173
+ >>> import mindspore
174
+ >>> import numpy as np
175
+ >>> from mindspore import Tensor
176
+ >>> from mindspore import ops
177
+ >>> a = Tensor(np.ones(shape=[2, 3, 4]), mindspore.float32)
178
+ >>> b = Tensor(np.ones(shape=[2, 4, 5]), mindspore.float32)
179
+ >>> output = ops.auto_generate.bmm_ext(a, b)
180
+ >>> print(output)
181
+ [[[4. 4. 4. 4. 4.]
182
+ [4. 4. 4. 4. 4.]
183
+ [4. 4. 4. 4. 4.]]
184
+ [[4. 4. 4. 4. 4.]
185
+ [4. 4. 4. 4. 4.]
186
+ [4. 4. 4. 4. 4.]]]
187
+ """
188
+ return bmm_impl(input, mat2)
189
+
190
+
191
+ def fold(input, output_size, kernel_size, dilation=1, padding=0, stride=1):
192
+ r"""
193
+ Combines an array of sliding local blocks into a large containing tensor.
194
+
195
+ Consider a batched input tensor of shape :math:`(N, C \times \prod(\text{kernel_size}), L)` ,
196
+ where :math:`N` is the batch dimension, :math:`C \times \prod(\text{kernel_size})` is the
197
+ total number of values within each block (a block has :math:`\prod(\text{kernel_size})` spatial
198
+ locations each containing a `C`-channeled vector), and :math:`L` is the total number of such blocks:
199
+
200
+ .. math::
201
+ L = \prod_d \left\lfloor\frac{\text{output_size}[d] + 2 \times \text{padding}[d] %
202
+ - \text{dilation}[d] \times (\text{kernel_size}[d] - 1) - 1}{\text{stride}[d]} + 1\right\rfloor,
203
+
204
+ where :math:`d` is over all spatial dimensions.
205
+
206
+ Therefore, `output_size` is the spatial shape of the large containing tensor of the sliding local blocks.
207
+
208
+ The `dilation`, `padding` and `stride` arguments specify how the sliding blocks are retrieved.
209
+
210
+ .. warning::
211
+ Currently, only unbatched(3D) or batched(4D) image-like output tensors are supported.
212
+
213
+ Args:
214
+ input (Tensor): 2-D or 3-D Tensor.
215
+ output_size (Union[int, tuple[int], list[int]]): The shape of the spatial dimensions of
216
+ the output(i.e., output.shape[2:]).
217
+ kernel_size (Union[int, tuple[int], list[int]]): The size of the kernel, should be two int
218
+ for height and width. If type is int, it means that height equal with width. Must be specified.
219
+ dilation (Union[int, tuple[int], list[int]], optional): The size of the dilation, should be two int
220
+ for height and width. If type is int, it means that height equal with width. Default: ``1`` .
221
+ padding (Union[int, tuple[int], list[int]], optional): The size of the padding, should be two int
222
+ for height and width. If type is int, it means that height equal with width. Default: ``0`` .
223
+ stride (Union[int, tuple[int], list[int]], optional): The size of the stride, should be two int
224
+ for height and width. If type is int, it means that height equal with width. Default: ``1`` .
225
+
226
+ Returns:
227
+ A Tensor, with same type as `input` .
228
+
229
+ Shape:
230
+ - Input: :math:`(N, C \times \prod(\text{kernel_size}), L)` or
231
+ :math:`(C \times \prod(\text{kernel_size}), L)`
232
+ - Output: :math:`(N, C, output\_size[0], output\_size[1], ...)` or
233
+ :math:`(C, output\_size[0], output\_size[1], ...)`
234
+
235
+ Raises:
236
+ TypeError: If `output_size`, `kernel_size`, `stride`, `dilation`, `padding` data type is not int, tuple or list.
237
+ ValueError: If `output_size`, `kernel_size`, `dilation`, `stride` value is not
238
+ greater than zero or elements number invalid.
239
+ ValueError: If `padding` value is less than zero or elements number invalid.
240
+ ValueError: If input.shape[-2] can't be divisible by the product of kernel_size.
241
+ ValueError: If `input.shape[-1]` is not equal to the calculated number of sliding blocks `L`.
242
+
243
+ Supported Platforms:
244
+ ``Ascend``
245
+
246
+ Examples:
247
+ >>> import numpy as np
248
+ >>> from mindspore import Tensor, ops
249
+ >>> x = Tensor(np.random.rand(16, 64, 25).astype(np.float32))
250
+ >>> output = ops.auto_generate.fold_ext(x, (8, 8), [2, 2], [2, 2], [2, 2], [2, 2])
251
+ >>> print(output.shape)
252
+ (16, 16, 8, 8)
253
+ """
254
+ return fold_impl(input, converted_output_size, converted_kernel_size, converted_dilation, converted_padding, converted_stride)
255
+
256
+
257
+ def cumsum(input, dim, dtype=None):
258
+ r"""
259
+ Computes the cumulative sum of input Tensor along `dim`.
260
+
261
+ .. math::
262
+
263
+ y_i = x_1 + x_2 + x_3 + ... + x_i
264
+
265
+ Args:
266
+ input (Tensor): The input Tensor.
267
+ dim (int): Dim along which the cumulative sum is computed.
268
+ dtype (:class:`mindspore.dtype`, optional): The desired dtype of returned Tensor. If specified,
269
+ the input Tensor will be cast to `dtype` before the computation. This is useful for preventing overflows.
270
+ If not specified, stay the same as original Tensor. Default: ``None`` .
271
+
272
+ Returns:
273
+ Tensor, the shape of the output Tensor is consistent with the input Tensor's.
274
+
275
+ Raises:
276
+ TypeError: If `input` is not a Tensor.
277
+ ValueError: If the `dim` is out of range.
278
+
279
+ Supported Platforms:
280
+ ``Ascend``
281
+
282
+ Examples:
283
+ >>> import numpy as np
284
+ >>> from mindspore import Tensor
285
+ >>> import mindspore.ops as ops
286
+ >>> x = Tensor(np.array([[3, 4, 6, 10], [1, 6, 7, 9], [4, 3, 8, 7], [1, 3, 7, 9]]).astype(np.float32))
287
+ >>> # case 1: along the dim 0
288
+ >>> y = ops.auto_generate.cumsum_ext(x, 0)
289
+ >>> print(y)
290
+ [[ 3. 4. 6. 10.]
291
+ [ 4. 10. 13. 19.]
292
+ [ 8. 13. 21. 26.]
293
+ [ 9. 16. 28. 35.]]
294
+ >>> # case 2: along the dim 1
295
+ >>> y = ops.auto_generate.cumsum_ext(x, 1)
296
+ >>> print(y)
297
+ [[ 3. 7. 13. 23.]
298
+ [ 1. 7. 14. 23.]
299
+ [ 4. 7. 15. 22.]
300
+ [ 1. 4. 11. 20.]]
301
+ """
302
+ return cumsum_impl(input, dim, dtype)
303
+
304
+
305
+ def elu(input, alpha=1.0):
306
+ r"""
307
+ Exponential Linear Unit activation function.
308
+
309
+ Applies the exponential linear unit function element-wise.
310
+ The activation function is defined as:
311
+
312
+ .. math::
313
+
314
+ \text{ELU}(x)= \left\{
315
+ \begin{array}{align}
316
+ \alpha(e^{x} - 1) & \text{if } x \le 0\\
317
+ x & \text{if } x \gt 0\\
318
+ \end{array}\right.
319
+
320
+ Where :math:`x` is the element of input Tensor `input`, :math:`\alpha` is param `alpha`,
321
+ it determines the smoothness of ELU.
322
+
323
+ ELU function graph:
324
+
325
+ .. image:: ../images/ELU.png
326
+ :align: center
327
+
328
+ Args:
329
+ input (Tensor): The input of ELU is a Tensor of any dimension.
330
+ alpha (float, optional): The alpha value of ELU, the data type is float.
331
+ Default: ``1.0`` .
332
+
333
+ Returns:
334
+ Tensor, has the same shape and data type as `input`.
335
+
336
+ Raises:
337
+ TypeError: If `alpha` is not a float.
338
+
339
+ Supported Platforms:
340
+ ``Ascend``
341
+
342
+ Examples:
343
+ >>> import mindspore
344
+ >>> import numpy as np
345
+ >>> from mindspore import Tensor, ops
346
+ >>> x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
347
+ >>> output = ops.auto_generate.elu_ext(x)
348
+ >>> print(output)
349
+ [[-0.63212055 4. -0.99966455]
350
+ [ 2. -0.99326205 9. ]]
351
+ """
352
+ return elu_impl(input, alpha)
353
+
354
+
355
+ def ffn(x, weight1, weight2, expertTokens=None, bias1=None, bias2=None, scale=None, offset=None, deqScale1=None, deqScale2=None, antiquant_scale1=None, antiquant_scale2=None, antiquant_offset1=None, antiquant_offset2=None, activation='fastgelu', inner_precise=0):
356
+ r"""
357
+ None
358
+ """
359
+ return ffn_impl(x, weight1, weight2, expertTokens, bias1, bias2, scale, offset, deqScale1, deqScale2, antiquant_scale1, antiquant_scale2, antiquant_offset1, antiquant_offset2, converted_activation, inner_precise)
360
+
361
+
362
+ def flatten(input, start_dim=0, end_dim=-1):
363
+ r"""
364
+ Flatten a tensor along dimensions from `start_dim` to `end_dim`.
365
+
366
+ Args:
367
+ input (Tensor): The input Tensor.
368
+
369
+ Keyword Args:
370
+ start_dim (int, optional): The first dimension to flatten. Default: ``0`` .
371
+ end_dim (int, optional): The last dimension to flatten. Default: ``-1`` .
372
+
373
+ Returns:
374
+ Tensor. If no dimensions are flattened, returns the original `input`, otherwise return the flattened Tensor.
375
+ If `input` is a 0-dimensional Tensor, a 1-dimensional Tensor will be returned.
376
+
377
+ Raises:
378
+ TypeError: If `input` is not a Tensor.
379
+ TypeError: If `start_dim` or `end_dim` is not int.
380
+ ValueError: If `start_dim` is greater than `end_dim` after canonicalized.
381
+ ValueError: If `start_dim` or `end_dim` is not in range of [-input.dim, input.dim-1].
382
+
383
+ Supported Platforms:
384
+ ``Ascend`` ``GPU`` ``CPU``
385
+
386
+ Examples:
387
+ >>> import mindspore
388
+ >>> import numpy as np
389
+ >>> from mindspore import Tensor, mint
390
+ >>> input_x = Tensor(np.ones(shape=[1, 2, 3, 4]), mindspore.float32)
391
+ >>> output = mint.flatten(input_x)
392
+ >>> print(output.shape)
393
+ (24,)
394
+ """
395
+ return flatten_impl(input, start_dim, end_dim)
396
+
397
+
398
+ def unfold(input, kernel_size, dilation=1, padding=0, stride=1):
399
+ r"""
400
+ Extracts sliding local blocks from a batched input tensor.
401
+
402
+ Consider a batched input tensor of shape :math:`(N, C, *)`,
403
+ where :math:`N` is the batch dimension, :math:`C` is the channel dimension,
404
+ and :math:`*` represent arbitrary spatial dimensions. This operation flattens
405
+ each sliding `Kernel_size`- sized block within the spatial dimensions
406
+ of `input` into a column (i.e., last dimension) of a 3-D output
407
+ tensor of shape :math:`(N, C \times \prod(\text{kernel_size}), L)`, where
408
+ :math:`C \times \prod(\text{kernel_size})` is the total number of values
409
+ within each block (a block has :math:`\prod(\text{kernel_size})` spatial
410
+ locations each containing a `C`-channeled vector), and :math:`L` is
411
+ the total number of such blocks:
412
+
413
+ .. math::
414
+ L = \prod_d \left\lfloor\frac{\text{spatial_size}[d] + 2 \times \text{padding}[d] %
415
+ - \text{dilation}[d] \times (\text{kernel_size}[d] - 1) - 1}{\text{stride}[d]} + 1\right\rfloor,
416
+
417
+ where :math:`\text{spatial_size}` is formed by the spatial dimensions
418
+ of `input` (:math:`*` above), and :math:`d` is over all spatial
419
+ dimensions.
420
+
421
+ Therefore, indexing `output` at the last dimension (column dimension)
422
+ gives all values within a certain block.
423
+
424
+ The `dilation`, `padding` and `stride` arguments specify
425
+ how the sliding blocks are retrieved.
426
+
427
+ .. warning::
428
+ - Currently, batched(4D) image-like tensors are supported.
429
+ - For Ascend, it is only supported on platforms above Atlas A2.
430
+
431
+ Args:
432
+ input (Tensor): 4-D Tensor.
433
+ kernel_size (Union[int, tuple[int], list[int]]): The size of the kernel, should be two int
434
+ for height and width. If type is int, it means that height equal with width. Must be specified.
435
+ dilation (Union[int, tuple[int], list[int]], optional): The dilation of the window, should be two int
436
+ for height and width. If type is int, it means that height equal with width. Default: ``1`` .
437
+ padding (Union[int, tuple[int], list[int]], optional): The pad of the window, should be two int
438
+ for height and width. If type is int, it means that height equal with width. Default: ``0`` .
439
+ stride (Union[int, tuple[int], list[int]], optional): The stride of the window, should be two int
440
+ for height and width. If type is int, it means that height equal with width. Default: ``1`` .
441
+
442
+ Returns:
443
+ A Tensor, with same type as `input` .
444
+
445
+ Shape:
446
+ - Input: :math:`(N, C, *)`
447
+ - Output: :math:`(N, C \times \prod(\text{kernel_size}), L)`
448
+
449
+ Raises:
450
+ TypeError: If any data type of `kernel_size`, `stride`, `dilation`, `padding` is not int, tuple or list.
451
+ ValueError: If `kernel_size`, `dilation`, `stride` value is not
452
+ greater than zero or elements number more than `2`.
453
+ ValueError: If `padding` value is less than zero.
454
+
455
+ Supported Platforms:
456
+ ``Ascend``
457
+
458
+ Examples:
459
+ >>> import mindspore
460
+ >>> import numpy as np
461
+ >>> from mindspore import Tensor, ops
462
+ >>> x = Tensor(np.random.rand(4, 4, 32, 32), mindspore.float32)
463
+ >>> output = ops.auto_generate.unfold_ext(x, kernel_size=3, dilation=1, stride=1)
464
+ >>> print(output.shape)
465
+ (4, 36, 900)
466
+ """
467
+ return unfold_impl(input, converted_kernel_size, converted_dilation, converted_padding, converted_stride)
468
+
469
+
470
+ def index_select(input, dim, index):
471
+ r"""
472
+ Generates a new Tensor that accesses the values of `input` along the specified `dim` dimension
473
+ using the indices specified in `index`. The new Tensor has the same number of dimensions as `input`,
474
+ with the size of the `dim` dimension being equal to the length of `index`, and the size of all other
475
+ dimensions will be unchanged from the original `input` Tensor.
476
+
477
+ .. note::
478
+ The value of index must be in the range of `[0, input.shape[dim])`, the result is undefined out of range.
479
+
480
+ Args:
481
+ input (Tensor): The input Tensor.
482
+ dim (int): The dimension to be indexed.
483
+ index (Tensor): A 1-D Tensor with the indices.
484
+
485
+ Returns:
486
+ Tensor, has the same dtype as input Tensor.
487
+
488
+ Raises:
489
+ TypeError: If `input` or `index` is not a Tensor.
490
+ TypeError: If `dim` is not int number.
491
+ ValueError: If the value of `dim` is out the range of `[-input.ndim, input.ndim - 1]`.
492
+ ValueError: If the dimension of `index` is not equal to 1.
493
+
494
+ Supported Platforms:
495
+ ``Ascend``
496
+
497
+ Examples:
498
+ >>> import mindspore
499
+ >>> from mindspore import Tensor, ops
500
+ >>> import numpy as np
501
+ >>> input = Tensor(np.arange(16).astype(np.float32).reshape(2, 2, 4))
502
+ >>> print(input)
503
+ [[[ 0. 1. 2. 3.]
504
+ [ 4. 5. 6. 7.]]
505
+ [[ 8. 9. 10. 11.]
506
+ [12. 13. 14. 15.]]]
507
+ >>> index = Tensor([0,], mindspore.int32)
508
+ >>> y = ops.auto_generate.index_select_ext(input, 1, index)
509
+ >>> print(y)
510
+ [[[ 0. 1. 2. 3.]]
511
+ [[ 8. 9. 10. 11.]]]
512
+ """
513
+ return index_select_impl(input, dim, index)
514
+
515
+
516
+ def leaky_relu(input, negative_slope=0.01):
517
+ r"""
518
+ leaky_relu activation function. The element of `input` less than 0 times `negative_slope` .
519
+
520
+ The activation function is defined as:
521
+
522
+ .. math::
523
+ \text{leaky_relu}(input) = \begin{cases}input, &\text{if } input \geq 0; \cr
524
+ \text{negative_slope} * input, &\text{otherwise.}\end{cases}
525
+
526
+ where :math:`negative\_slope` represents the `negative_slope` parameter.
527
+
528
+ For more details, see `Rectifier Nonlinearities Improve Neural Network Acoustic Models
529
+ <https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf>`_.
530
+
531
+ LeakyReLU Activation Function Graph:
532
+
533
+ .. image:: ../images/LeakyReLU.png
534
+ :align: center
535
+
536
+ Args:
537
+ input (Tensor): The input of leaky_relu is a Tensor of any dimension.
538
+ negative_slope (Union[int, float]): Slope of the activation function when the element of `input` is less than 0.
539
+ Default: ``0.01`` .
540
+
541
+ Returns:
542
+ Tensor, has the same type and shape as the `input`.
543
+
544
+ Raises:
545
+ TypeError: If `input` is not a Tensor.
546
+ TypeError: If `negative_slope` is not a float or an int.
547
+
548
+ Supported Platforms:
549
+ ``Ascend``
550
+
551
+ Examples:
552
+ >>> import mindspore
553
+ >>> import numpy as np
554
+ >>> from mindspore import Tensor, ops
555
+ >>> input = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
556
+ >>> print(ops.extend.leaky_relu_ext(input, negative_slope=0.2))
557
+ [[-0.2 4. -1.6]
558
+ [ 2. -1. 9. ]]
559
+ """
560
+ return leaky_relu_impl(input, negative_slope)
561
+
562
+
563
+ def matmul(input, mat2):
564
+ r"""
565
+ None
566
+ """
567
+ return matmul_impl(input, mat2)
568
+
569
+
570
+ def matrix_inverse(input):
571
+ r"""
572
+ Compute the inverse of the input matrix.
573
+
574
+ Args:
575
+ input (Tensor): A matrix to be calculated. Input `input` must be at least two dimensions, and the size of
576
+ the last two dimensions must be the same size.
577
+
578
+ Returns:
579
+ Tensor, has the same type and shape as input`.
580
+
581
+ Raises:
582
+ TypeError: If `input` is not a Tensor.
583
+ ValueError: If the size of the last two dimensions of `input` is not the same.
584
+ ValueError: If the dimension of `input` is 1.
585
+
586
+ Supported Platforms:
587
+ ``Ascend``
588
+
589
+ Examples:
590
+ >>> from mindspore import Tensor, ops
591
+ >>> from mindspore import dtype as mstype
592
+ >>> x = Tensor([[1., 2.], [3., 4.]], mstype.float32)
593
+ >>> print(ops.matrix_inverse_ext(x))
594
+ [[-2. 1. ]
595
+ [ 1.5 -0.5]]
596
+ """
597
+ return matrix_inverse_impl(input)
598
+
599
+
600
+ def mean(input, axis=None, keep_dims=False, dtype=None):
601
+ r"""
602
+ Reduces all dimension of a tensor by averaging all elements in the dimension, by default.
603
+ And reduce a dimension of `input` along the specified `axis`. `keep_dims`
604
+ determines whether the dimensions of the output and input are the same.
605
+
606
+ Note:
607
+ The `axis` with tensor type is only used for compatibility with older versions and is not recommended.
608
+
609
+ Args:
610
+ input (Tensor[Number]): The input tensor. The dtype of the tensor to be reduced is number.
611
+ :math:`(N, *)` where :math:`*` means, any number of additional dimensions.
612
+ axis (Union[int, tuple(int), list(int), Tensor]): The dimensions to reduce. Default: ``None`` ,
613
+ reduce all dimensions. Only constant value is allowed. Assume the rank of `input` is r,
614
+ and the value range is [-r,r).
615
+ keep_dims (bool): If ``True`` , keep these reduced dimensions and the length is 1.
616
+ If ``False`` , don't keep these dimensions. Default: ``False`` .
617
+ dtype (:class:`mindspore.dtype`): The desired data type of returned Tensor. Default: ``None`` .
618
+
619
+ Returns:
620
+ Tensor, has the same data type as input tensor.
621
+
622
+ - If `axis` is ``None`` , and `keep_dims` is ``False`` ,
623
+ the output is a 0-D tensor representing the product of all elements in the input tensor.
624
+ - If `axis` is int, set as 1, and `keep_dims` is ``False`` ,
625
+ the shape of output is :math:`(x_0, x_2, ..., x_R)`.
626
+ - If `axis` is tuple(int), set as (1, 2), and `keep_dims` is ``False`` ,
627
+ the shape of output is :math:`(x_0, x_3, ..., x_R)`.
628
+ - If `axis` is 1-D Tensor, set as [1, 2], and `keep_dims` is ``False`` ,
629
+ the shape of output is :math:`(x_0, x_3, ..., x_R)`.
630
+
631
+ Raises:
632
+ TypeError: If `x` is not a Tensor.
633
+ TypeError: If `axis` is not one of the following: int, tuple, list or Tensor.
634
+ TypeError: If `keep_dims` is not a bool.
635
+ ValueError: If `axis` is out of range.
636
+
637
+ Supported Platforms:
638
+ ``Ascend`` ``GPU`` ``CPU``
639
+
640
+ Examples:
641
+ >>> import mindspore
642
+ >>> import numpy as np
643
+ >>> from mindspore import Tensor, ops
644
+ >>> x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
645
+ >>> output = ops.mean(x, 1, keep_dims=True)
646
+ >>> result = output.shape
647
+ >>> print(result)
648
+ (3, 1, 5, 6)
649
+ >>> # case 1: Reduces a dimension by averaging all elements in the dimension.
650
+ >>> x = Tensor(np.array([[[2, 2, 2, 2, 2, 2], [2, 2, 2, 2, 2, 2], [2, 2, 2, 2, 2, 2]],
651
+ ... [[4, 4, 4, 4, 4, 4], [5, 5, 5, 5, 5, 5], [6, 6, 6, 6, 6, 6]],
652
+ ... [[6, 6, 6, 6, 6, 6], [8, 8, 8, 8, 8, 8], [10, 10, 10, 10, 10, 10]]]),
653
+ ... mindspore.float32)
654
+ >>> output = ops.mean(x)
655
+ >>> print(output)
656
+ 5.0
657
+ >>> print(output.shape)
658
+ ()
659
+ >>> # case 2: Reduces a dimension along the axis 0
660
+ >>> output = ops.mean(x, 0, True)
661
+ >>> print(output)
662
+ [[[4. 4. 4. 4. 4. 4.]
663
+ [5. 5. 5. 5. 5. 5.]
664
+ [6. 6. 6. 6. 6. 6.]]]
665
+ >>> # case 3: Reduces a dimension along the axis 1
666
+ >>> output = ops.mean(x, 1, True)
667
+ >>> print(output)
668
+ [[[2. 2. 2. 2. 2. 2.]]
669
+ [[5. 5. 5. 5. 5. 5.]]
670
+ [[8. 8. 8. 8. 8. 8.]]]
671
+ >>> # case 4: Reduces a dimension along the axis 2
672
+ >>> output = ops.mean(x, 2, True)
673
+ >>> print(output)
674
+ [[[ 2.]
675
+ [ 2.]
676
+ [ 2.]]
677
+ [[ 4.]
678
+ [ 5.]
679
+ [ 6.]]
680
+ [[ 6.]
681
+ [ 8.]
682
+ [10.]]]
683
+ """
684
+ return mean_impl(input, axis, keep_dims, dtype)
685
+
686
+
687
+ def prod(input, axis=None, keep_dims=False, dtype=None):
688
+ r"""
689
+ Reduces a dimension of a tensor by multiplying all elements in the dimension, by default. And also can
690
+ reduce a dimension of `input` along the `axis`. Determine whether the dimensions of the output and input are the
691
+ same by controlling `keep_dims`.
692
+
693
+ Args:
694
+ input (Tensor[Number]): The input tensor. The dtype of the tensor to be reduced is number.
695
+ :math:`(N, *)` where :math:`*` means, any number of additional dimensions.
696
+ axis (int): The dimensions to reduce. Default: ``None`` , reduce all dimensions.
697
+ Only constant value is allowed. Assume the rank of `input` is r, and the value range is [-r,r).
698
+ keep_dims (bool): If ``True`` , keep these reduced dimensions and the length is 1.
699
+ If ``False`` , don't keep these dimensions. Default: ``False`` .
700
+ dtype (:class:`mindspore.dtype`): The desired data type of returned Tensor. Default: ``None`` .
701
+
702
+ Returns:
703
+ Tensor, has the same data type as input tensor.
704
+
705
+ - If `axis` is ``None`` , and `keep_dims` is ``False`` ,
706
+ the output is a 0-D tensor representing the product of all elements in the input tensor.
707
+ - If `axis` is int, set as 1, and `keep_dims` is ``False`` ,
708
+ the shape of output is :math:`(input_0, input_2, ..., input_R)`.
709
+
710
+ Raises:
711
+ TypeError: If `input` is not a Tensor.
712
+ TypeError: If `axis` is not one of the following: int or None.
713
+ TypeError: If `keep_dims` is not a bool.
714
+ ValueError: If `axis` is out of range.
715
+
716
+ Supported Platforms:
717
+ ``Ascend`` ``GPU`` ``CPU``
718
+
719
+ Examples:
720
+ >>> import mindspore
721
+ >>> import numpy as np
722
+ >>> from mindspore import Tensor, ops
723
+ >>> x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
724
+ >>> output = ops.ProdExt()(x, 1, keep_dims=True)
725
+ >>> result = output.shape
726
+ >>> print(result)
727
+ (3, 1, 5, 6)
728
+ >>> # case 1: Reduces a dimension by multiplying all elements in the dimension.
729
+ >>> x = Tensor(np.array([[[1, 1, 1, 1, 1, 1], [2, 2, 2, 2, 2, 2], [3, 3, 3, 3, 3, 3]],
730
+ ... [[4, 4, 4, 4, 4, 4], [5, 5, 5, 5, 5, 5], [6, 6, 6, 6, 6, 6]],
731
+ ... [[7, 7, 7, 7, 7, 7], [8, 8, 8, 8, 8, 8], [9, 9, 9, 9, 9, 9]]]), mindspore.float32)
732
+ >>> output = ops.ProdExt()(x)
733
+ >>> print(output)
734
+ 2.2833798e+33
735
+ >>> print(output.shape)
736
+ ()
737
+ >>> # case 2: Reduces a dimension along axis 0.
738
+ >>> output = ops.ProdExt()(x, 0, True)
739
+ >>> print(output)
740
+ [[[ 28. 28. 28. 28. 28. 28.]
741
+ [ 80. 80. 80. 80. 80. 80.]
742
+ [162. 162. 162. 162. 162. 162.]]]
743
+ >>> # case 3: Reduces a dimension along axis 1.
744
+ >>> output = ops.ProdExt()(x, 1, True)
745
+ >>> print(output)
746
+ [[[ 6. 6. 6. 6. 6. 6.]]
747
+ [[120. 120. 120. 120. 120. 120.]]
748
+ [[504. 504. 504. 504. 504. 504.]]]
749
+ >>> # case 4: Reduces a dimension along axis 2.
750
+ >>> output = ops.ProdExt()(x, 2, True)
751
+ >>> print(output)
752
+ [[[1.00000e+00]
753
+ [6.40000e+01]
754
+ [7.29000e+02]]
755
+ [[4.09600e+03]
756
+ [1.56250e+04]
757
+ [4.66560e+04]]
758
+ [[1.17649e+05]
759
+ [2.62144e+05]
760
+ [5.31441e+05]]]
761
+ """
762
+ return prod_impl(input, axis, keep_dims, dtype)
763
+
764
+
765
+ def softplus(input, beta=1, threshold=20):
766
+ r"""
767
+ Applies softplus function to `input` element-wise.
768
+
769
+ The softplus function is shown as follows, x is the element of `input` :
770
+
771
+ .. math::
772
+
773
+ \text{output} = \frac{1}{beta}\log(1 + \exp(\text{beta * x}))
774
+
775
+ where :math:`input * beta > threshold`, the implementation converts to the linear function to ensure numerical stability.
776
+
777
+ Args:
778
+ input (Tensor): Tensor of any dimension. Supported dtypes:
779
+
780
+ - Ascend: float16, float32, bfloat16.
781
+ beta (number.Number, optional): Scaling parameters in the softplus function. Default: ``1`` .
782
+ threshold (number.Number, optional): For numerical stability, the softplus function is converted
783
+ to a threshold parameter of a linear function. Default: ``20`` .
784
+
785
+ Returns:
786
+ Tensor, with the same type and shape as the input.
787
+
788
+ Raises:
789
+ TypeError: If `input` is not a Tensor.
790
+ TypeError: If dtype of `input` is not float16, float32, bfloat16.
791
+
792
+ Supported Platforms:
793
+ ``Ascend``
794
+
795
+ Examples:
796
+ >>> import mindspore
797
+ >>> import numpy as np
798
+ >>> from mindspore import Tensor, ops
799
+ >>> input = Tensor(np.array([0.1, 0.2, 30, 25]), mindspore.float32)
800
+ >>> output = ops.auto_generate.softplus_ext(input)
801
+ >>> print(output)
802
+ [0.74439657 0.7981388 30. 25.]
803
+ """
804
+ return softplus_impl(input, beta, threshold)
805
+
806
+
807
+ def sort(input, dim=-1, descending=False, stable=False):
808
+ r"""
809
+ None
810
+ """
811
+ return sort_impl(input, dim, descending, stable)
812
+
813
+
814
+ def stack(tensors, dim=0):
815
+ r"""
816
+ Stacks a list of tensors in specified dim.
817
+
818
+ Stacks the list of input tensors with the same rank `R`, output is a tensor of rank `(R+1)`.
819
+
820
+ Given input tensors of shape :math:`(x_1, x_2, ..., x_R)`. Set the number of input tensors as `N`.
821
+ If :math:`dim \ge 0`, the shape of the output tensor is
822
+ :math:`(x_1, x_2, ..., x_{dim}, N, x_{dim+1}, ..., x_R)`.
823
+
824
+ Args:
825
+ tensors (Union[tuple, list]): A Tuple or list of Tensor objects with the same shape and type.
826
+ dim (int): Dimension to stack. The range is [-(R+1), R+1). Default: ``0`` .
827
+
828
+ Returns:
829
+ Tensor. A stacked Tensor with the same type as `tensors`.
830
+
831
+ Raises:
832
+ TypeError: If the data types of elements in `tensors` are not the same.
833
+ ValueError: If `dim` is out of the range [-(R+1), R+1);
834
+ or if the shapes of elements in tensors are not the same.
835
+
836
+ Supported Platforms:
837
+ ``Ascend``
838
+
839
+ Examples:
840
+ >>> import mindspore
841
+ >>> from mindspore import Tensor, ops
842
+ >>> import numpy as np
843
+ >>> data1 = Tensor(np.array([0, 1]).astype(np.float32))
844
+ >>> data2 = Tensor(np.array([2, 3]).astype(np.float32))
845
+ >>> output = ops.auto_generate.stack_ext([data1, data2], 0)
846
+ >>> print(output)
847
+ [[0. 1.]
848
+ [2. 3.]]
849
+ """
850
+ return stack_impl(tensors, dim)
851
+
852
+
853
+ def sub(input, other, alpha=1):
854
+ r"""
855
+ Subtracts scaled other value from input Tensor.
856
+
857
+ .. math::
858
+
859
+ out_{i} = input_{i} - alpha \times other_{i}
860
+
861
+ Note:
862
+ - When the two inputs have different shapes,
863
+ they must be able to broadcast to a common shape.
864
+ - The two inputs and alpha comply with the implicit type conversion rules to make the data types
865
+ consistent.
866
+
867
+ Args:
868
+ input (Union[Tensor, number.Number, bool]): The first input is a number.Number or
869
+ a bool or a tensor whose data type is
870
+ `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore.html#mindspore.dtype>`_ or
871
+ `bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore.html#mindspore.dtype>`_.
872
+ other (Union[Tensor, number.Number, bool]): The second input, is a number.Number or
873
+ a bool or a tensor whose data type is
874
+ `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore.html#mindspore.dtype>`_ or
875
+ `bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore.html#mindspore.dtype>`_.
876
+ alpha (number.Number): A scaling factor applied to `other`, default 1.
877
+
878
+ Returns:
879
+ Tensor with a shape that is the same as the broadcasted shape of the input `input` and `other`,
880
+ and the data type is the one with higher precision or higher digits among the two inputs and alpha.
881
+
882
+ Raises:
883
+ TypeError: If the type of `input`, `other`, or `alpha` is not one of the following: Tensor, number.Number, bool.
884
+ TypeError: If `alpha` is of type float but `input` and `other` are not of type float.
885
+ TypeError: If `alpha` is of type bool but `input` and `other` are not of type bool.
886
+
887
+ Supported Platforms:
888
+ ``Ascend`` ``GPU`` ``CPU``
889
+
890
+ Examples:
891
+ >>> import numpy as np
892
+ >>> import mindspore
893
+ >>> from mindspore import Tensor
894
+ >>> from mindspore import ops
895
+ >>> x = Tensor(np.array([4, 5, 6]).astype(np.float32))
896
+ >>> y = Tensor(1, mindspore.int32)
897
+ >>> alpha = 0.5
898
+ >>> output = ops.auto_generate.sub_ext(x, y, alpha)
899
+ >>> print(output)
900
+ [3.5 4.5 5.5]
901
+ >>> # the data type of x is float32, the data type of y is int32,
902
+ >>> # alpha is a float, and the output is the data format of higher precision float32.
903
+ >>> print(output.dtype)
904
+ Float32
905
+ """
906
+ return sub_impl(input, other, alpha)
907
+
908
+
909
+ def topk(input, k, dim=-1, largest=True, sorted=True):
910
+ r"""
911
+ Finds values and indices of the `k` largest or smallest entries along a given dimension.
912
+
913
+ .. warning::
914
+ - If sorted is set to False, due to different memory layout and traversal methods on different platforms,
915
+ the display order of calculation results may be inconsistent when `sorted` is False.
916
+
917
+ If the `input` is a one-dimensional Tensor, finds the `k` largest or smallest entries in the Tensor,
918
+ and outputs its value and index as a Tensor. values[`k`] is the `k` largest item in `input`,
919
+ and its index is indices [`k`].
920
+
921
+ For a multi-dimensional matrix,
922
+ calculates the first or last `k` entries in a given dimension, therefore:
923
+
924
+ .. math::
925
+
926
+ values.shape = indices.shape
927
+
928
+ If the two compared elements are the same, the one with the smaller index value is returned first.
929
+
930
+ Args:
931
+ input (Tensor): Input to be computed.
932
+ k (int): The number of top or bottom elements to be computed along the last dimension.
933
+ dim (int, optional): The dimension to sort along. Default: ``-1`` .
934
+ largest (bool, optional): If largest is ``False`` then the k smallest elements are returned.
935
+ Default: ``True`` .
936
+ sorted (bool, optional): If ``True`` , the obtained elements will be sorted by the values in descending
937
+ order or ascending order according to `largest`. If ``False`` , the obtained elements will not be
938
+ sorted. Default: ``True`` .
939
+
940
+ Returns:
941
+ A tuple consisting of `values` and `indices`.
942
+
943
+ - values (Tensor) - The `k` largest or smallest elements in each slice of the given dimension.
944
+ - indices (Tensor) - The indices of values within the last dimension of input.
945
+
946
+ Raises:
947
+ TypeError: If `sorted` is not a bool.
948
+ TypeError: If `input` is not a Tensor.
949
+ TypeError: If `k` is not an int.
950
+
951
+ Supported Platforms:
952
+ ``Ascend``
953
+
954
+ Examples:
955
+ >>> import mindspore as ms
956
+ >>> from mindspore import ops
957
+ >>> x = ms.Tensor([[0.5368, 0.2447, 0.4302, 0.9673],
958
+ ... [0.4388, 0.6525, 0.4685, 0.1868],
959
+ ... [0.3563, 0.5152, 0.9675, 0.8230]], dtype=ms.float32)
960
+ >>> output = ops.topk_ext(x, 2, dim=1)
961
+ >>> print(output)
962
+ (Tensor(shape=[3, 2], dtype=Float32, value=
963
+ [[ 9.67299998e-01, 5.36800027e-01],
964
+ [ 6.52499974e-01, 4.68499988e-01],
965
+ [ 9.67499971e-01, 8.23000014e-01]]), Tensor(shape=[3, 2], dtype=Int32, value=
966
+ [[3, 0],
967
+ [1, 2],
968
+ [2, 3]]))
969
+ >>> output2 = ops.topk_ext(x, 2, dim=1, largest=False)
970
+ >>> print(output2)
971
+ (Tensor(shape=[3, 2], dtype=Float32, value=
972
+ [[ 2.44700000e-01, 4.30200011e-01],
973
+ [ 1.86800003e-01, 4.38800007e-01],
974
+ [ 3.56299996e-01, 5.15200019e-01]]), Tensor(shape=[3, 2], dtype=Int32, value=
975
+ [[1, 2],
976
+ [3, 0],
977
+ [0, 1]]))
978
+ """
979
+ return topk_impl(input, k, dim, largest, sorted)
980
+