mindspore 2.0.0rc1__cp38-none-any.whl → 2.2.0__cp38-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mindspore might be problematic. Click here for more details.
- mindspore/.commit_id +1 -1
- mindspore/Third_Party_Open_Source_Software_Notice +2 -2
- mindspore/__init__.py +5 -2
- mindspore/_akg/akg/build_module.py +5 -6
- mindspore/_akg/akg/composite/build_module.py +49 -16
- mindspore/_akg/akg/composite/split_stitch.py +10 -11
- mindspore/_akg/akg/config/repository.json +195 -0
- mindspore/_akg/akg/global_configs.py +5 -1
- mindspore/_akg/akg/ms/info_version_adapt.py +67 -1
- mindspore/_akg/akg/tvm/api.py +4 -3
- mindspore/_akg/akg/tvm/autotvm/__init__.py +1 -2
- mindspore/_akg/akg/tvm/autotvm/graph_tuner/base_graph_tuner.py +1 -5
- mindspore/_akg/akg/tvm/autotvm/measure/__init__.py +1 -1
- mindspore/_akg/akg/tvm/autotvm/measure/measure.py +1 -10
- mindspore/_akg/akg/tvm/autotvm/measure/measure_methods.py +1 -372
- mindspore/_akg/akg/tvm/build_module.py +16 -1
- mindspore/_akg/akg/tvm/contrib/graph_runtime.py +0 -53
- mindspore/_akg/akg/tvm/hybrid/parser.py +7 -6
- mindspore/_akg/akg/tvm/ir_builder.py +1 -1
- mindspore/_akg/akg/tvm/module.py +1 -2
- mindspore/_akg/akg/tvm/stmt.py +2 -2
- mindspore/_akg/akg/utils/composite_op_helper.py +9 -10
- mindspore/_akg/akg/utils/kernel_exec.py +58 -260
- mindspore/_akg/akg/utils/op_dsl.py +17 -1
- mindspore/_akg/akg/utils/result_analysis.py +4 -24
- mindspore/_akg/akg/utils/tbe_codegen_utils.py +198 -0
- mindspore/_c_dataengine.cpython-38-aarch64-linux-gnu.so +0 -0
- mindspore/_c_expression.cpython-38-aarch64-linux-gnu.so +0 -0
- mindspore/_c_mindrecord.cpython-38-aarch64-linux-gnu.so +0 -0
- mindspore/_check_jit_forbidden_api.py +5 -1
- mindspore/_checkparam.py +79 -62
- mindspore/_extends/graph_kernel/__init__.py +0 -1
- mindspore/_extends/graph_kernel/model/graph_split.py +2 -0
- mindspore/_extends/graph_kernel/model/model_builder.py +9 -50
- mindspore/_extends/graph_kernel/splitter.py +1 -9
- mindspore/_extends/parallel_compile/akg_compiler/akg_process.py +128 -21
- mindspore/_extends/parallel_compile/akg_compiler/build_tbe_kernel.py +2 -2
- mindspore/_extends/parallel_compile/akg_compiler/tbe_topi.py +4 -2
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_adapter.py +18 -13
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_helper.py +13 -9
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_job.py +1 -1
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_job_manager.py +1 -1
- mindspore/_extends/parse/__init__.py +19 -17
- mindspore/_extends/parse/namespace.py +7 -36
- mindspore/_extends/parse/parser.py +375 -189
- mindspore/_extends/parse/resources.py +36 -41
- mindspore/_extends/parse/standard_method.py +350 -245
- mindspore/_extends/parse/trope.py +2 -12
- mindspore/_extends/remote/kernel_build_server.py +24 -7
- mindspore/_extends/remote/kernel_build_server_akg_v2.py +55 -0
- mindspore/_install_custom.py +43 -0
- mindspore/_mindspore_offline_debug.cpython-38-aarch64-linux-gnu.so +0 -0
- mindspore/amp.py +85 -19
- mindspore/bin/cache_admin +0 -0
- mindspore/bin/cache_server +0 -0
- mindspore/boost/base.py +2 -2
- mindspore/boost/boost.py +27 -32
- mindspore/boost/boost_cell_wrapper.py +37 -13
- mindspore/boost/grad_accumulation.py +1 -1
- mindspore/boost/grad_freeze.py +34 -6
- mindspore/boost/group_loss_scale_manager.py +15 -14
- mindspore/boost/less_batch_normalization.py +28 -3
- mindspore/common/__init__.py +15 -11
- mindspore/common/_auto_dynamic.py +68 -0
- mindspore/common/_jit_fallback_utils.py +111 -0
- mindspore/common/_register_for_adapter.py +17 -5
- mindspore/common/_register_for_tensor.py +2 -2
- mindspore/common/_stub_tensor.py +18 -15
- mindspore/common/_utils.py +31 -7
- mindspore/common/api.py +269 -101
- mindspore/common/auto_dynamic_shape.py +498 -0
- mindspore/common/dtype.py +61 -21
- mindspore/common/dump.py +9 -7
- mindspore/common/initializer.py +106 -76
- mindspore/common/jit_config.py +35 -14
- mindspore/common/lazy_inline.py +187 -0
- mindspore/common/mindir_util.py +101 -0
- mindspore/common/mutable.py +10 -13
- mindspore/common/parameter.py +246 -55
- mindspore/common/seed.py +13 -7
- mindspore/common/sparse_tensor.py +29 -33
- mindspore/common/tensor.py +907 -251
- mindspore/communication/__init__.py +7 -4
- mindspore/communication/_comm_helper.py +84 -4
- mindspore/communication/management.py +160 -88
- mindspore/config/op_info.config +99 -75
- mindspore/config/super_bar_config.json +36 -4
- mindspore/context.py +526 -219
- mindspore/dataset/__init__.py +9 -46
- mindspore/dataset/audio/__init__.py +4 -19
- mindspore/dataset/audio/transforms.py +545 -233
- mindspore/dataset/audio/utils.py +21 -18
- mindspore/dataset/callback/ds_callback.py +42 -13
- mindspore/dataset/core/config.py +158 -100
- mindspore/dataset/core/validator_helpers.py +1 -63
- mindspore/dataset/debug/debug_hook.py +45 -13
- mindspore/dataset/debug/pre_defined_hook.py +5 -5
- mindspore/dataset/engine/__init__.py +0 -5
- mindspore/dataset/engine/cache_client.py +38 -15
- mindspore/dataset/engine/datasets.py +615 -278
- mindspore/dataset/engine/datasets_audio.py +154 -283
- mindspore/dataset/engine/datasets_standard_format.py +104 -116
- mindspore/dataset/engine/datasets_text.py +443 -326
- mindspore/dataset/engine/datasets_user_defined.py +251 -164
- mindspore/dataset/engine/datasets_vision.py +839 -1443
- mindspore/dataset/engine/iterators.py +11 -4
- mindspore/dataset/engine/obs/obs_mindrecord_dataset.py +7 -3
- mindspore/dataset/engine/obs/util.py +3 -0
- mindspore/dataset/engine/offload.py +6 -6
- mindspore/dataset/engine/queue.py +15 -14
- mindspore/dataset/engine/samplers.py +39 -23
- mindspore/dataset/engine/serializer_deserializer.py +22 -6
- mindspore/dataset/engine/validators.py +21 -331
- mindspore/dataset/text/__init__.py +5 -33
- mindspore/dataset/text/transforms.py +334 -165
- mindspore/dataset/text/utils.py +215 -145
- mindspore/dataset/transforms/__init__.py +1 -1
- mindspore/dataset/transforms/c_transforms.py +3 -2
- mindspore/dataset/transforms/py_transforms_util.py +40 -12
- mindspore/dataset/transforms/transforms.py +174 -71
- mindspore/dataset/utils/browse_dataset.py +25 -17
- mindspore/dataset/utils/line_reader.py +24 -21
- mindspore/dataset/vision/__init__.py +5 -26
- mindspore/dataset/vision/c_transforms.py +177 -165
- mindspore/dataset/vision/py_transforms.py +114 -119
- mindspore/dataset/vision/py_transforms_util.py +54 -51
- mindspore/dataset/vision/transforms.py +1127 -381
- mindspore/dataset/vision/utils.py +54 -38
- mindspore/dataset/vision/validators.py +12 -2
- mindspore/experimental/map_parameter.py +38 -4
- mindspore/{dataset/datapreprocess → experimental/optim}/__init__.py +14 -4
- mindspore/experimental/optim/adam.py +192 -0
- mindspore/experimental/optim/adamw.py +181 -0
- mindspore/experimental/optim/lr_scheduler.py +1427 -0
- mindspore/experimental/optim/optimizer.py +252 -0
- mindspore/experimental/optim/sgd.py +147 -0
- mindspore/gen_ops.py +273 -0
- mindspore/include/OWNERS +1 -2
- mindspore/include/api/context.h +21 -1
- mindspore/include/api/data_type.h +2 -1
- mindspore/include/api/graph.h +0 -15
- mindspore/include/api/kernel.h +2 -0
- mindspore/include/api/kernel_api.h +37 -12
- mindspore/include/api/model.h +29 -42
- mindspore/include/api/model_group.h +14 -3
- mindspore/include/api/model_parallel_runner.h +18 -2
- mindspore/include/api/serialization.h +26 -0
- mindspore/include/api/status.h +1 -0
- mindspore/include/api/types.h +38 -4
- mindspore/include/c_api/ms/abstract.h +67 -0
- mindspore/include/c_api/ms/attribute.h +197 -0
- mindspore/include/c_api/ms/base/handle_types.h +43 -0
- mindspore/include/c_api/ms/base/macros.h +32 -0
- mindspore/include/c_api/ms/base/status.h +33 -0
- mindspore/include/c_api/ms/base/types.h +282 -0
- mindspore/include/c_api/ms/context.h +102 -0
- mindspore/include/c_api/ms/graph.h +160 -0
- mindspore/include/c_api/ms/node.h +606 -0
- mindspore/include/c_api/ms/tensor.h +161 -0
- mindspore/include/c_api/ms/value.h +84 -0
- mindspore/include/c_api/status_c.h +3 -0
- mindspore/include/dataset/constants.h +6 -12
- mindspore/include/dataset/execute.h +23 -13
- mindspore/include/dataset/text.h +26 -26
- mindspore/include/dataset/transforms.h +25 -31
- mindspore/include/dataset/vision.h +60 -60
- mindspore/include/dataset/vision_ascend.h +5 -6
- mindspore/include/dataset/vision_lite.h +17 -17
- mindspore/include/mindapi/base/format.h +0 -1
- mindspore/include/mindapi/base/type_id.h +2 -1
- mindspore/include/mindapi/base/types.h +5 -1
- mindspore/lib/libdnnl.so.2 +0 -0
- mindspore/lib/libjemalloc.so.2 +0 -0
- mindspore/lib/libmindspore.so +0 -0
- mindspore/lib/libmindspore_backend.so +0 -0
- mindspore/lib/libmindspore_common.so +0 -0
- mindspore/lib/libmindspore_core.so +0 -0
- mindspore/lib/libmindspore_glog.so.0 +0 -0
- mindspore/lib/libmindspore_gpr.so.15 +0 -0
- mindspore/lib/libmindspore_grpc++.so.1 +0 -0
- mindspore/lib/libmindspore_grpc.so.15 +0 -0
- mindspore/lib/libmindspore_shared_lib.so +0 -0
- mindspore/lib/libmpi_adapter.so +0 -0
- mindspore/lib/libnnacl.so +0 -0
- mindspore/lib/libopencv_core.so.4.5 +0 -0
- mindspore/lib/libopencv_imgcodecs.so.4.5 +0 -0
- mindspore/lib/libopencv_imgproc.so.4.5 +0 -0
- mindspore/lib/libps_cache.so +0 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_aicpu_kernels.so +0 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_cpu_kernels.so +0 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/config/cust_aicpu_kernel.json +9000 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_proto/libcust_op_proto.so +0 -0
- mindspore/lib/plugin/ascend/libakg.so +0 -0
- mindspore/lib/plugin/ascend/libascend_collective.so +0 -0
- mindspore/lib/plugin/ascend/libdvpp_utils.so +0 -0
- mindspore/lib/plugin/ascend/libhccl_plugin.so +0 -0
- mindspore/lib/plugin/ascend/libmindspore_aicpu_kernels.so +0 -0
- mindspore/lib/plugin/ascend/libmindspore_cpu_kernels.so +0 -0
- mindspore/lib/plugin/cpu/libakg.so +0 -0
- mindspore/lib/plugin/libmindspore_ascend.so.1 +0 -0
- mindspore/lib/plugin/libmindspore_ascend.so.2 +0 -0
- mindspore/log.py +9 -6
- mindspore/mindrecord/filereader.py +33 -4
- mindspore/mindrecord/filewriter.py +70 -35
- mindspore/mindrecord/mindpage.py +40 -34
- mindspore/mindrecord/shardreader.py +1 -1
- mindspore/mindrecord/shardsegment.py +1 -1
- mindspore/mindrecord/tools/cifar100_to_mr.py +25 -18
- mindspore/mindrecord/tools/cifar10_to_mr.py +25 -18
- mindspore/mindrecord/tools/csv_to_mr.py +29 -13
- mindspore/mindrecord/tools/imagenet_to_mr.py +24 -10
- mindspore/mindrecord/tools/mnist_to_mr.py +24 -11
- mindspore/mindrecord/tools/tfrecord_to_mr.py +31 -26
- mindspore/nn/cell.py +463 -169
- mindspore/nn/dynamic_lr.py +47 -43
- mindspore/nn/layer/activation.py +225 -82
- mindspore/nn/layer/basic.py +121 -79
- mindspore/nn/layer/channel_shuffle.py +21 -21
- mindspore/nn/layer/combined.py +33 -26
- mindspore/nn/layer/container.py +277 -22
- mindspore/nn/layer/conv.py +441 -304
- mindspore/nn/layer/dense.py +19 -13
- mindspore/nn/layer/embedding.py +62 -49
- mindspore/nn/layer/flash_attention.py +264 -0
- mindspore/nn/layer/image.py +50 -39
- mindspore/nn/layer/math.py +62 -51
- mindspore/nn/layer/normalization.py +219 -167
- mindspore/nn/layer/padding.py +58 -70
- mindspore/nn/layer/pooling.py +334 -287
- mindspore/nn/layer/rnn_cells.py +53 -38
- mindspore/nn/layer/rnns.py +59 -56
- mindspore/nn/layer/thor_layer.py +52 -44
- mindspore/nn/layer/timedistributed.py +6 -4
- mindspore/nn/layer/transformer.py +284 -164
- mindspore/nn/learning_rate_schedule.py +34 -25
- mindspore/nn/loss/__init__.py +3 -2
- mindspore/nn/loss/loss.py +554 -311
- mindspore/nn/optim/ada_grad.py +12 -9
- mindspore/nn/optim/adadelta.py +14 -11
- mindspore/nn/optim/adafactor.py +19 -16
- mindspore/nn/optim/adam.py +62 -47
- mindspore/nn/optim/adamax.py +13 -10
- mindspore/nn/optim/adasum.py +12 -8
- mindspore/nn/optim/asgd.py +10 -9
- mindspore/nn/optim/ftrl.py +20 -17
- mindspore/nn/optim/lamb.py +16 -12
- mindspore/nn/optim/lars.py +8 -6
- mindspore/nn/optim/lazyadam.py +25 -20
- mindspore/nn/optim/momentum.py +10 -7
- mindspore/nn/optim/optimizer.py +61 -9
- mindspore/nn/optim/proximal_ada_grad.py +14 -13
- mindspore/nn/optim/rmsprop.py +17 -13
- mindspore/nn/optim/rprop.py +30 -17
- mindspore/nn/optim/sgd.py +40 -23
- mindspore/nn/optim/thor.py +24 -26
- mindspore/nn/probability/bijector/bijector.py +11 -11
- mindspore/nn/probability/bijector/exp.py +1 -1
- mindspore/nn/probability/bijector/gumbel_cdf.py +3 -3
- mindspore/nn/probability/bijector/invert.py +1 -1
- mindspore/nn/probability/bijector/power_transform.py +29 -29
- mindspore/nn/probability/bijector/scalar_affine.py +3 -3
- mindspore/nn/probability/bijector/softplus.py +5 -5
- mindspore/nn/probability/bnn_layers/bnn_cell_wrapper.py +4 -2
- mindspore/nn/probability/bnn_layers/conv_variational.py +13 -13
- mindspore/nn/probability/bnn_layers/dense_variational.py +12 -12
- mindspore/nn/probability/bnn_layers/layer_distribution.py +9 -8
- mindspore/nn/probability/distribution/_utils/custom_ops.py +19 -3
- mindspore/nn/probability/distribution/_utils/utils.py +1 -1
- mindspore/nn/probability/distribution/bernoulli.py +9 -9
- mindspore/nn/probability/distribution/beta.py +8 -8
- mindspore/nn/probability/distribution/categorical.py +23 -15
- mindspore/nn/probability/distribution/cauchy.py +5 -6
- mindspore/nn/probability/distribution/distribution.py +3 -3
- mindspore/nn/probability/distribution/exponential.py +4 -4
- mindspore/nn/probability/distribution/gamma.py +10 -10
- mindspore/nn/probability/distribution/geometric.py +8 -8
- mindspore/nn/probability/distribution/gumbel.py +8 -9
- mindspore/nn/probability/distribution/half_normal.py +5 -5
- mindspore/nn/probability/distribution/laplace.py +5 -5
- mindspore/nn/probability/distribution/log_normal.py +12 -11
- mindspore/nn/probability/distribution/logistic.py +8 -8
- mindspore/nn/probability/distribution/normal.py +6 -5
- mindspore/nn/probability/distribution/poisson.py +10 -11
- mindspore/nn/probability/distribution/student_t.py +8 -9
- mindspore/nn/probability/distribution/transformed_distribution.py +5 -5
- mindspore/nn/probability/distribution/uniform.py +11 -11
- mindspore/nn/reinforcement/tensor_array.py +2 -2
- mindspore/nn/sparse/sparse.py +9 -9
- mindspore/nn/wrap/cell_wrapper.py +188 -63
- mindspore/nn/wrap/grad_reducer.py +21 -12
- mindspore/nn/wrap/loss_scale.py +136 -49
- mindspore/numpy/__init__.py +4 -4
- mindspore/numpy/array_creations.py +55 -56
- mindspore/numpy/array_ops.py +134 -35
- mindspore/numpy/logic_ops.py +66 -20
- mindspore/numpy/math_ops.py +142 -139
- mindspore/numpy/utils_const.py +2 -2
- mindspore/offline_debug/convert_async.py +2 -2
- mindspore/ops/_grad_experimental/__init__.py +7 -5
- mindspore/ops/_grad_experimental/grad_array_ops.py +231 -348
- mindspore/ops/{_grad → _grad_experimental}/grad_base.py +1 -33
- mindspore/ops/{_grad → _grad_experimental}/grad_comm_ops.py +25 -13
- mindspore/ops/{_grad/__init__.py → _grad_experimental/grad_debug_ops.py} +15 -7
- mindspore/ops/{_grad → _grad_experimental}/grad_implementations.py +17 -11
- mindspore/ops/_grad_experimental/grad_inner_ops.py +33 -52
- mindspore/ops/_grad_experimental/grad_math_ops.py +151 -1224
- mindspore/ops/_grad_experimental/grad_nn_ops.py +141 -414
- mindspore/ops/{_grad → _grad_experimental}/grad_quant_ops.py +10 -6
- mindspore/ops/_grad_experimental/grad_sparse.py +317 -2
- mindspore/ops/_grad_experimental/grad_sparse_ops.py +3 -13
- mindspore/ops/{_grad → _grad_experimental}/taylor_rule.py +1 -1
- mindspore/ops/_op_impl/_custom_op/dsd_back_impl.py +1 -1
- mindspore/ops/_op_impl/_custom_op/flash_attention/__init__.py +0 -0
- mindspore/ops/_op_impl/_custom_op/flash_attention/attention.py +406 -0
- mindspore/{_extends/graph_kernel/expanders/complex/__init__.py → ops/_op_impl/_custom_op/flash_attention/constants.py} +27 -8
- mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_bwd.py +467 -0
- mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_fwd.py +563 -0
- mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_impl.py +193 -0
- mindspore/ops/_op_impl/_custom_op/flash_attention/tik_ops_utils.py +435 -0
- mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/__init__.py +0 -0
- mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/sparse_tiling.py +45 -0
- mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/strategy.py +67 -0
- mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/wukong_tiling.py +62 -0
- mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_left_impl.py +2 -2
- mindspore/ops/_op_impl/aicpu/__init__.py +41 -1
- mindspore/ops/_op_impl/aicpu/adaptive_max_pool_2d.py +37 -0
- mindspore/ops/_op_impl/aicpu/bias_add_grad.py +0 -1
- mindspore/ops/_op_impl/aicpu/cast.py +52 -0
- mindspore/ops/_op_impl/aicpu/coalesce.py +2 -0
- mindspore/ops/_op_impl/aicpu/col2im.py +3 -1
- mindspore/ops/_op_impl/aicpu/count_nonzero.py +43 -0
- mindspore/ops/_op_impl/aicpu/dropout_genmask.py +6 -0
- mindspore/ops/_op_impl/aicpu/eps.py +32 -0
- mindspore/ops/_op_impl/aicpu/eye.py +4 -4
- mindspore/ops/_op_impl/aicpu/fft_with_size.py +6 -0
- mindspore/ops/_op_impl/aicpu/fill_diagonal.py +5 -0
- mindspore/ops/_op_impl/aicpu/gamma.py +2 -2
- mindspore/ops/_op_impl/aicpu/im2col.py +3 -5
- mindspore/ops/_op_impl/aicpu/lgamma.py +1 -0
- mindspore/ops/_op_impl/aicpu/log_uniform_candidate_sampler.py +6 -3
- mindspore/ops/_op_impl/aicpu/lu.py +39 -0
- mindspore/ops/_op_impl/aicpu/lu_unpack_grad.py +0 -1
- mindspore/ops/_op_impl/aicpu/masked_scatter.py +1 -0
- mindspore/ops/_op_impl/aicpu/masked_select_grad.py +3 -0
- mindspore/ops/_op_impl/aicpu/matrix_band_part.py +59 -0
- mindspore/ops/_op_impl/aicpu/matrix_power.py +6 -1
- mindspore/ops/_op_impl/aicpu/median.py +1 -0
- mindspore/ops/_op_impl/aicpu/multinomial.py +9 -9
- mindspore/ops/_op_impl/aicpu/not_equal.py +0 -5
- mindspore/ops/_op_impl/aicpu/pad_v3.py +3 -1
- mindspore/ops/_op_impl/aicpu/pad_v3_grad.py +2 -0
- mindspore/ops/_op_impl/aicpu/parameterized_truncated_normal.py +15 -7
- mindspore/ops/_op_impl/aicpu/random_categorical.py +39 -19
- mindspore/ops/_op_impl/aicpu/random_choice_with_mask.py +5 -2
- mindspore/ops/_op_impl/aicpu/random_poisson.py +103 -52
- mindspore/ops/_op_impl/aicpu/random_shuffle.py +17 -15
- mindspore/ops/_op_impl/aicpu/resize_bilinear_grad.py +0 -1
- mindspore/ops/_op_impl/aicpu/resize_nearest_neighbor_v2.py +0 -6
- mindspore/ops/_op_impl/aicpu/resize_nearest_neighbor_v2_grad.py +0 -7
- mindspore/ops/_op_impl/aicpu/scatter_nd.py +2 -0
- mindspore/ops/_op_impl/aicpu/sequence_concat.py +40 -0
- mindspore/ops/_op_impl/aicpu/sequence_stack.py +40 -0
- mindspore/ops/_op_impl/aicpu/{sparseaddmm.py → sparse_addmm.py} +2 -2
- mindspore/ops/_op_impl/aicpu/{sparsesparsemaximum.py → sparse_sparse_maximum.py} +4 -4
- mindspore/ops/_op_impl/aicpu/standard_laplace.py +5 -4
- mindspore/ops/_op_impl/aicpu/standard_normal.py +5 -4
- mindspore/ops/_op_impl/aicpu/truncated_normal.py +9 -7
- mindspore/ops/_op_impl/aicpu/uniform.py +5 -3
- mindspore/ops/_op_impl/aicpu/uniform_candidate_sampler.py +8 -4
- mindspore/ops/_op_impl/aicpu/uniform_int.py +5 -5
- mindspore/ops/_op_impl/aicpu/uniform_real.py +4 -4
- mindspore/ops/_op_impl/aicpu/upsample_nearest_3d.py +14 -6
- mindspore/ops/_op_impl/aicpu/upsample_nearest_3d_grad.py +22 -8
- mindspore/ops/_op_impl/aicpu/upsample_trilinear_3d.py +11 -6
- mindspore/ops/_op_impl/aicpu/upsample_trilinear_3d_grad.py +21 -10
- mindspore/ops/_op_impl/tbe/__init__.py +6 -4
- mindspore/ops/_op_impl/tbe/atomic_addr_clean.py +1 -1
- mindspore/ops/_op_impl/tbe/avg_pool.py +2 -2
- mindspore/ops/_op_impl/tbe/avg_pool_3d.py +3 -3
- mindspore/ops/_op_impl/tbe/avg_pool_3d_grad.py +4 -4
- mindspore/ops/_op_impl/tbe/avg_pool_ds.py +2 -2
- mindspore/ops/_op_impl/tbe/avg_pool_grad.py +3 -3
- mindspore/ops/_op_impl/tbe/avg_pool_grad_vm.py +3 -3
- mindspore/ops/_op_impl/tbe/batch_to_space.py +1 -1
- mindspore/ops/_op_impl/tbe/batch_to_space_nd.py +2 -2
- mindspore/ops/_op_impl/tbe/bn_infer.py +2 -2
- mindspore/ops/_op_impl/tbe/bn_infer_ds.py +3 -2
- mindspore/ops/_op_impl/tbe/broadcast_to.py +1 -1
- mindspore/ops/_op_impl/tbe/depthwise_conv2d.py +3 -3
- mindspore/ops/_op_impl/tbe/expand_dims.py +1 -1
- mindspore/ops/_op_impl/tbe/gather_v2.py +56 -0
- mindspore/ops/_op_impl/tbe/im2col.py +4 -4
- mindspore/ops/_op_impl/tbe/inplace_index_add.py +7 -3
- mindspore/ops/_op_impl/tbe/mem_set.py +38 -0
- mindspore/ops/_op_impl/tbe/scatter_nd_add.py +3 -0
- mindspore/ops/_op_impl/tbe/scatter_nd_d.py +1 -1
- mindspore/ops/_op_impl/tbe/space_to_batch.py +1 -1
- mindspore/ops/_op_impl/tbe/space_to_batch_nd.py +2 -2
- mindspore/ops/_op_impl/tbe/trans_data_ds.py +2 -0
- mindspore/ops/_primitive_cache.py +1 -1
- mindspore/ops/_tracefunc.py +241 -0
- mindspore/ops/_utils/utils.py +10 -2
- mindspore/ops/_vmap/vmap_array_ops.py +5 -3
- mindspore/ops/_vmap/vmap_base.py +5 -4
- mindspore/ops/_vmap/vmap_convolution_ops.py +1 -1
- mindspore/ops/_vmap/vmap_grad_math_ops.py +6 -4
- mindspore/ops/_vmap/vmap_grad_nn_ops.py +11 -6
- mindspore/ops/_vmap/vmap_math_ops.py +5 -2
- mindspore/ops/_vmap/vmap_nn_ops.py +135 -11
- mindspore/ops/arg_dtype_cast.py +54 -0
- mindspore/ops/composite/__init__.py +7 -5
- mindspore/ops/composite/base.py +78 -34
- mindspore/ops/composite/math_ops.py +5 -695
- mindspore/ops/composite/multitype_ops/_compile_utils.py +403 -97
- mindspore/ops/composite/multitype_ops/_constexpr_utils.py +28 -22
- mindspore/ops/composite/multitype_ops/add_impl.py +69 -7
- mindspore/ops/composite/multitype_ops/bitwise_and_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/bitwise_or_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/bitwise_xor_impl.py +2 -0
- mindspore/ops/composite/multitype_ops/div_impl.py +1 -0
- mindspore/ops/composite/multitype_ops/floordiv_impl.py +1 -0
- mindspore/ops/composite/multitype_ops/getitem_impl.py +48 -10
- mindspore/ops/composite/multitype_ops/greater_equal_impl.py +2 -0
- mindspore/ops/composite/multitype_ops/greater_impl.py +2 -0
- mindspore/ops/composite/multitype_ops/left_shift_impl.py +2 -0
- mindspore/ops/composite/multitype_ops/less_equal_impl.py +2 -0
- mindspore/ops/composite/multitype_ops/less_impl.py +2 -0
- mindspore/ops/composite/multitype_ops/logic_not_impl.py +2 -2
- mindspore/ops/composite/multitype_ops/mod_impl.py +1 -0
- mindspore/ops/composite/multitype_ops/mul_impl.py +1 -0
- mindspore/ops/composite/multitype_ops/negative_impl.py +1 -0
- mindspore/ops/composite/multitype_ops/not_in_impl.py +1 -0
- mindspore/ops/composite/multitype_ops/ones_like_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/pow_impl.py +1 -0
- mindspore/ops/composite/multitype_ops/right_shift_impl.py +2 -0
- mindspore/ops/composite/multitype_ops/setitem_impl.py +10 -7
- mindspore/ops/composite/multitype_ops/sub_impl.py +1 -0
- mindspore/ops/composite/multitype_ops/uadd_impl.py +2 -0
- mindspore/ops/composite/multitype_ops/zeros_like_impl.py +9 -0
- mindspore/ops/deprecated.py +304 -0
- mindspore/ops/function/__init__.py +41 -4
- mindspore/ops/function/array_func.py +1108 -467
- mindspore/ops/function/clip_func.py +94 -27
- mindspore/ops/function/debug_func.py +3 -1
- mindspore/ops/function/grad/grad_func.py +82 -73
- mindspore/ops/function/image_func.py +28 -12
- mindspore/ops/function/linalg_func.py +135 -39
- mindspore/ops/function/math_func.py +3779 -894
- mindspore/ops/function/nn_func.py +1584 -657
- mindspore/ops/function/parameter_func.py +13 -3
- mindspore/ops/function/random_func.py +247 -153
- mindspore/ops/function/sparse_func.py +14 -11
- mindspore/ops/function/sparse_unary_func.py +173 -47
- mindspore/ops/function/spectral_func.py +8 -4
- mindspore/ops/function/vmap_func.py +8 -7
- mindspore/ops/functional.py +47 -16
- mindspore/ops/op_info_register.py +346 -86
- mindspore/ops/operations/__init__.py +38 -22
- mindspore/ops/operations/_grad_ops.py +145 -149
- mindspore/ops/operations/_inner_ops.py +298 -56
- mindspore/ops/operations/_ms_kernel.py +3 -3
- mindspore/ops/operations/_quant_ops.py +24 -28
- mindspore/ops/operations/_rl_inner_ops.py +9 -7
- mindspore/ops/operations/_scalar_ops.py +115 -0
- mindspore/ops/operations/_sequence_ops.py +148 -10
- mindspore/ops/operations/_tensor_array.py +1 -1
- mindspore/ops/operations/_thor_ops.py +2 -2
- mindspore/ops/operations/array_ops.py +1239 -561
- mindspore/ops/operations/comm_ops.py +166 -90
- mindspore/ops/operations/control_ops.py +3 -3
- mindspore/ops/operations/custom_ops.py +124 -102
- mindspore/ops/operations/debug_ops.py +24 -11
- mindspore/ops/operations/image_ops.py +86 -71
- mindspore/ops/operations/inner_ops.py +18 -13
- mindspore/ops/operations/linalg_ops.py +30 -11
- mindspore/ops/operations/math_ops.py +1730 -435
- mindspore/ops/operations/nn_ops.py +1953 -943
- mindspore/ops/operations/other_ops.py +65 -43
- mindspore/ops/operations/random_ops.py +258 -98
- mindspore/ops/operations/rl_ops.py +4 -36
- mindspore/ops/operations/sparse_ops.py +38 -33
- mindspore/ops/operations/spectral_ops.py +8 -4
- mindspore/ops/primitive.py +66 -44
- mindspore/ops/signature.py +5 -5
- mindspore/parallel/_auto_parallel_context.py +80 -19
- mindspore/parallel/_cost_model_context.py +42 -0
- mindspore/parallel/_offload_context.py +162 -72
- mindspore/parallel/_parallel_serialization.py +2 -2
- mindspore/parallel/_ps_context.py +16 -4
- mindspore/parallel/_recovery_context.py +2 -1
- mindspore/parallel/_tensor.py +15 -13
- mindspore/parallel/_transformer/layers.py +8 -6
- mindspore/parallel/_transformer/loss.py +1 -0
- mindspore/parallel/_transformer/moe.py +7 -7
- mindspore/parallel/_transformer/op_parallel_config.py +12 -1
- mindspore/parallel/_transformer/transformer.py +34 -14
- mindspore/parallel/_utils.py +36 -14
- mindspore/parallel/algo_parameter_config.py +114 -20
- mindspore/parallel/checkpoint_transform.py +16 -18
- mindspore/parallel/shard.py +16 -13
- mindspore/profiler/__init__.py +1 -1
- mindspore/profiler/common/struct_type.py +3 -3
- mindspore/profiler/common/util.py +3 -2
- mindspore/profiler/envprofiling.py +11 -4
- mindspore/profiler/parser/aicpu_data_parser.py +5 -3
- mindspore/profiler/parser/ascend_flops_generator.py +94 -0
- mindspore/profiler/parser/ascend_fpbp_generator.py +76 -0
- mindspore/profiler/parser/ascend_hccl_generator.py +288 -0
- mindspore/profiler/parser/ascend_msprof_exporter.py +213 -0
- mindspore/profiler/parser/ascend_msprof_generator.py +199 -0
- mindspore/profiler/parser/ascend_op_generator.py +276 -0
- mindspore/profiler/parser/ascend_steptrace_generator.py +94 -0
- mindspore/profiler/parser/ascend_timeline_generator.py +110 -54
- mindspore/profiler/parser/base_timeline_generator.py +11 -7
- mindspore/profiler/parser/cpu_gpu_timeline_generator.py +45 -46
- mindspore/profiler/parser/flops_parser.py +15 -11
- mindspore/profiler/parser/framework_parser.py +92 -73
- mindspore/profiler/parser/hccl_parser.py +16 -12
- mindspore/profiler/parser/integrator.py +22 -11
- mindspore/profiler/parser/memory_usage_parser.py +36 -11
- mindspore/profiler/parser/minddata_analyzer.py +12 -14
- mindspore/profiler/parser/minddata_pipeline_parser.py +1 -1
- mindspore/profiler/parser/msadvisor_parser.py +8 -4
- mindspore/profiler/parser/op_intermediate_parser.py +5 -2
- mindspore/profiler/parser/optime_parser.py +1 -1
- mindspore/profiler/parser/profiler_info.py +4 -5
- mindspore/profiler/parser/step_trace_parser.py +11 -14
- mindspore/profiler/profiling.py +678 -377
- mindspore/rewrite/api/node.py +211 -54
- mindspore/rewrite/api/node_type.py +5 -0
- mindspore/rewrite/api/pattern_engine.py +22 -23
- mindspore/rewrite/api/scoped_value.py +20 -17
- mindspore/rewrite/api/symbol_tree.py +252 -106
- mindspore/rewrite/api/tree_node_helper.py +3 -0
- mindspore/rewrite/ast_helpers/__init__.py +2 -1
- mindspore/rewrite/ast_helpers/ast_finder.py +129 -0
- mindspore/rewrite/ast_helpers/ast_modifier.py +116 -104
- mindspore/rewrite/ast_transformers/flatten_recursive_stmt.py +97 -46
- mindspore/rewrite/common/rewrite_elog.py +5 -1
- mindspore/rewrite/namer.py +51 -51
- mindspore/rewrite/namespace.py +14 -5
- mindspore/{ops/bprop_mindir → rewrite/node}/__init__.py +9 -4
- mindspore/rewrite/node/call_function.py +79 -0
- mindspore/rewrite/node/cell_container.py +135 -0
- mindspore/rewrite/node/control_flow.py +88 -0
- mindspore/rewrite/{node.py → node/node.py} +313 -247
- mindspore/rewrite/node/node_manager.py +254 -0
- mindspore/rewrite/node/node_topological_manager.py +243 -0
- mindspore/rewrite/parsers/arguments_parser.py +22 -21
- mindspore/rewrite/parsers/assign_parser.py +225 -239
- mindspore/rewrite/parsers/attribute_parser.py +9 -7
- mindspore/rewrite/parsers/class_def_parser.py +179 -218
- mindspore/rewrite/parsers/constant_parser.py +9 -6
- mindspore/rewrite/parsers/container_parser.py +9 -7
- mindspore/rewrite/parsers/for_parser.py +36 -15
- mindspore/rewrite/parsers/function_def_parser.py +23 -20
- mindspore/rewrite/parsers/if_parser.py +28 -24
- mindspore/rewrite/parsers/module_parser.py +202 -25
- mindspore/rewrite/{parser.py → parsers/parser.py} +4 -2
- mindspore/rewrite/{parser_register.py → parsers/parser_register.py} +1 -1
- mindspore/rewrite/parsers/return_parser.py +6 -6
- mindspore/rewrite/sparsify/sparse_transformer.py +12 -3
- mindspore/rewrite/sparsify/sparsify.py +4 -1
- mindspore/rewrite/sparsify/utils.py +11 -5
- mindspore/rewrite/symbol_tree.py +577 -732
- mindspore/rewrite/symbol_tree_builder.py +9 -175
- mindspore/rewrite/symbol_tree_dumper.py +2 -2
- mindspore/run_check/_check_version.py +46 -39
- mindspore/run_check/run_check.py +3 -2
- mindspore/{scipy/sparse → safeguard}/__init__.py +4 -5
- mindspore/safeguard/rewrite_obfuscation.py +517 -0
- mindspore/scipy/__init__.py +1 -1
- mindspore/scipy/linalg.py +67 -61
- mindspore/scipy/ops.py +5 -41
- mindspore/scipy/ops_grad.py +3 -2
- mindspore/scipy/ops_wrapper.py +5 -5
- mindspore/scipy/optimize/line_search.py +8 -8
- mindspore/scipy/optimize/linear_sum_assignment.py +4 -4
- mindspore/scipy/optimize/minimize.py +16 -12
- mindspore/scipy/utils.py +1 -52
- mindspore/scipy/utils_const.py +4 -4
- mindspore/train/__init__.py +4 -4
- mindspore/train/_utils.py +13 -5
- mindspore/train/amp.py +410 -148
- mindspore/train/anf_ir_pb2.py +16 -4
- mindspore/train/callback/_backup_and_restore.py +8 -11
- mindspore/train/callback/_callback.py +80 -3
- mindspore/train/callback/_checkpoint.py +82 -51
- mindspore/train/callback/_early_stop.py +12 -15
- mindspore/train/callback/_history.py +1 -1
- mindspore/train/callback/_lambda_callback.py +13 -13
- mindspore/train/callback/_landscape.py +21 -17
- mindspore/train/callback/_loss_monitor.py +9 -10
- mindspore/train/callback/_on_request_exit.py +16 -33
- mindspore/train/callback/_reduce_lr_on_plateau.py +21 -24
- mindspore/train/callback/_summary_collector.py +44 -30
- mindspore/train/callback/_time_monitor.py +62 -12
- mindspore/train/data_sink.py +10 -16
- mindspore/train/dataset_helper.py +154 -86
- mindspore/train/loss_scale_manager.py +14 -9
- mindspore/train/metrics/__init__.py +10 -2
- mindspore/train/metrics/accuracy.py +1 -1
- mindspore/train/metrics/auc.py +1 -1
- mindspore/train/metrics/bleu_score.py +2 -2
- mindspore/train/metrics/confusion_matrix.py +14 -14
- mindspore/train/metrics/cosine_similarity.py +3 -3
- mindspore/train/metrics/dice.py +1 -1
- mindspore/train/metrics/fbeta.py +1 -1
- mindspore/train/metrics/hausdorff_distance.py +8 -6
- mindspore/train/metrics/mean_surface_distance.py +5 -4
- mindspore/train/metrics/metric.py +49 -17
- mindspore/train/metrics/occlusion_sensitivity.py +4 -4
- mindspore/train/metrics/perplexity.py +1 -1
- mindspore/train/metrics/precision.py +2 -2
- mindspore/train/metrics/recall.py +2 -3
- mindspore/train/metrics/roc.py +7 -7
- mindspore/train/metrics/root_mean_square_surface_distance.py +5 -4
- mindspore/train/metrics/topk.py +7 -4
- mindspore/train/mind_ir_pb2.py +193 -48
- mindspore/train/model.py +377 -133
- mindspore/train/serialization.py +697 -245
- mindspore/train/summary/_summary_adapter.py +5 -2
- mindspore/train/summary/_writer_pool.py +4 -3
- mindspore/train/summary/summary_record.py +25 -23
- mindspore/train/train_thor/convert_utils.py +39 -23
- mindspore/train/train_thor/dataset_helper.py +4 -3
- mindspore/train/train_thor/model_thor.py +8 -8
- mindspore/version.py +1 -1
- {mindspore-2.0.0rc1.dist-info → mindspore-2.2.0.dist-info}/METADATA +7 -8
- {mindspore-2.0.0rc1.dist-info → mindspore-2.2.0.dist-info}/RECORD +633 -804
- {mindspore-2.0.0rc1.dist-info → mindspore-2.2.0.dist-info}/entry_points.txt +0 -1
- mindspore/_akg/akg/tvm/contrib/debugger/__init__.py +0 -16
- mindspore/_akg/akg/tvm/contrib/debugger/debug_result.py +0 -274
- mindspore/_akg/akg/tvm/contrib/debugger/debug_runtime.py +0 -259
- mindspore/_akg/akg/tvm/contrib/peak.py +0 -341
- mindspore/_akg/akg/tvm/contrib/rpc.py +0 -25
- mindspore/_akg/akg/tvm/contrib/xcode.py +0 -257
- mindspore/_akg/akg/tvm/exec/__init__.py +0 -17
- mindspore/_akg/akg/tvm/exec/autotvm_log_editor.py +0 -60
- mindspore/_akg/akg/tvm/exec/measure_peak.py +0 -48
- mindspore/_akg/akg/tvm/exec/query_rpc_tracker.py +0 -48
- mindspore/_akg/akg/tvm/exec/rpc_proxy.py +0 -98
- mindspore/_akg/akg/tvm/exec/rpc_server.py +0 -88
- mindspore/_akg/akg/tvm/exec/rpc_tracker.py +0 -62
- mindspore/_akg/akg/tvm/rpc/__init__.py +0 -29
- mindspore/_akg/akg/tvm/rpc/base.py +0 -182
- mindspore/_akg/akg/tvm/rpc/client.py +0 -436
- mindspore/_akg/akg/tvm/rpc/proxy.py +0 -595
- mindspore/_akg/akg/tvm/rpc/server.py +0 -413
- mindspore/_akg/akg/tvm/rpc/tornado_util.py +0 -121
- mindspore/_akg/akg/tvm/rpc/tracker.py +0 -431
- mindspore/_extends/graph_kernel/expander.py +0 -80
- mindspore/_extends/graph_kernel/expanders/__init__.py +0 -57
- mindspore/_extends/graph_kernel/expanders/_utils.py +0 -269
- mindspore/_extends/graph_kernel/expanders/addn.py +0 -33
- mindspore/_extends/graph_kernel/expanders/batchnorm.py +0 -152
- mindspore/_extends/graph_kernel/expanders/batchnorm_grad.py +0 -105
- mindspore/_extends/graph_kernel/expanders/bias_add_grad.py +0 -49
- mindspore/_extends/graph_kernel/expanders/clip_by_norm_no_div_sum.py +0 -33
- mindspore/_extends/graph_kernel/expanders/complex/abs.py +0 -30
- mindspore/_extends/graph_kernel/expanders/complex/add.py +0 -44
- mindspore/_extends/graph_kernel/expanders/complex/div.py +0 -62
- mindspore/_extends/graph_kernel/expanders/complex/mul.py +0 -52
- mindspore/_extends/graph_kernel/expanders/complex/real_div.py +0 -62
- mindspore/_extends/graph_kernel/expanders/complex/sub.py +0 -45
- mindspore/_extends/graph_kernel/expanders/conv2d.py +0 -200
- mindspore/_extends/graph_kernel/expanders/dropout_grad.py +0 -30
- mindspore/_extends/graph_kernel/expanders/equal_count.py +0 -50
- mindspore/_extends/graph_kernel/expanders/erfc.py +0 -35
- mindspore/_extends/graph_kernel/expanders/expand_dims.py +0 -50
- mindspore/_extends/graph_kernel/expanders/fused_adam.py +0 -44
- mindspore/_extends/graph_kernel/expanders/fused_adam_weight_decay.py +0 -47
- mindspore/_extends/graph_kernel/expanders/fused_mul_add.py +0 -28
- mindspore/_extends/graph_kernel/expanders/gather.py +0 -43
- mindspore/_extends/graph_kernel/expanders/gelu_grad.py +0 -70
- mindspore/_extends/graph_kernel/expanders/gkdropout.py +0 -40
- mindspore/_extends/graph_kernel/expanders/identity.py +0 -25
- mindspore/_extends/graph_kernel/expanders/layernorm.py +0 -93
- mindspore/_extends/graph_kernel/expanders/layernorm_grad.py +0 -113
- mindspore/_extends/graph_kernel/expanders/logsoftmax.py +0 -46
- mindspore/_extends/graph_kernel/expanders/logsoftmax_grad.py +0 -36
- mindspore/_extends/graph_kernel/expanders/matmul.py +0 -80
- mindspore/_extends/graph_kernel/expanders/maximum_grad.py +0 -59
- mindspore/_extends/graph_kernel/expanders/minimum_grad.py +0 -80
- mindspore/_extends/graph_kernel/expanders/oneslike.py +0 -26
- mindspore/_extends/graph_kernel/expanders/reduce_mean.py +0 -43
- mindspore/_extends/graph_kernel/expanders/relu_grad.py +0 -32
- mindspore/_extends/graph_kernel/expanders/sigmoid_cross_entropy_with_logits.py +0 -41
- mindspore/_extends/graph_kernel/expanders/sigmoid_cross_entropy_with_logits_grad.py +0 -35
- mindspore/_extends/graph_kernel/expanders/sigmoid_grad.py +0 -31
- mindspore/_extends/graph_kernel/expanders/slice.py +0 -35
- mindspore/_extends/graph_kernel/expanders/softmax_cross_entropy_with_logits.py +0 -42
- mindspore/_extends/graph_kernel/expanders/softmax_grad_ext.py +0 -41
- mindspore/_extends/graph_kernel/expanders/softsign.py +0 -28
- mindspore/_extends/graph_kernel/expanders/sqrt_grad.py +0 -29
- mindspore/_extends/graph_kernel/expanders/square_sum_all.py +0 -44
- mindspore/_extends/graph_kernel/expanders/square_sum_v1.py +0 -37
- mindspore/_extends/graph_kernel/expanders/squared_difference.py +0 -43
- mindspore/_extends/graph_kernel/expanders/tanh_grad.py +0 -31
- mindspore/_extends/graph_kernel/expanders/tile.py +0 -54
- mindspore/_extends/graph_kernel/model/op_infer.py +0 -506
- mindspore/_extends/parse/jit_fallback_modules.py +0 -51
- mindspore/dataset/datapreprocess/preprocess_imagenet_validate_dataset.py +0 -54
- mindspore/dataset/engine/graphdata.py +0 -1586
- mindspore/include/api/net.h +0 -142
- mindspore/ops/_grad/grad_array_ops.py +0 -1347
- mindspore/ops/_grad/grad_clip_ops.py +0 -84
- mindspore/ops/_grad/grad_debug_ops.py +0 -68
- mindspore/ops/_grad/grad_inner_ops.py +0 -235
- mindspore/ops/_grad/grad_math_ops.py +0 -1684
- mindspore/ops/_grad/grad_nn_ops.py +0 -1529
- mindspore/ops/_grad/grad_other_ops.py +0 -89
- mindspore/ops/_grad/grad_sequence_ops.py +0 -296
- mindspore/ops/_grad/grad_sparse.py +0 -323
- mindspore/ops/_grad_experimental/grad_image_ops.py +0 -249
- mindspore/ops/_grad_experimental/grad_linalg_ops.py +0 -195
- mindspore/ops/_grad_experimental/grad_scalar_ops.py +0 -112
- mindspore/ops/bprop_mindir/AdaptiveAvgPool2D_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/AdaptiveMaxPool2D_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/ApproximateEqual_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/Argmax_bprop.mindir +0 -15
- mindspore/ops/bprop_mindir/Argmin_bprop.mindir +0 -15
- mindspore/ops/bprop_mindir/AssignSub_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/Assign_bprop.mindir +0 -17
- mindspore/ops/bprop_mindir/AvgPool3D_bprop.mindir +0 -150
- mindspore/ops/bprop_mindir/AvgPool_bprop.mindir +0 -66
- mindspore/ops/bprop_mindir/BCEWithLogitsLoss_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/BNTrainingReduce_bprop.mindir +0 -15
- mindspore/ops/bprop_mindir/BatchNormGrad_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/BatchToSpaceND_bprop.mindir +0 -28
- mindspore/ops/bprop_mindir/BiasAddGrad_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/BinaryCrossEntropy_bprop.mindir +0 -33
- mindspore/ops/bprop_mindir/BroadcastTo_bprop.mindir +0 -306
- mindspore/ops/bprop_mindir/Broadcast_bprop.mindir +0 -13
- mindspore/ops/bprop_mindir/CTCLoss_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Concat_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Conv2DBackpropFilter_bprop.mindir +0 -240
- mindspore/ops/bprop_mindir/Conv2DBackpropInput_bprop.mindir +0 -247
- mindspore/ops/bprop_mindir/Conv2DTranspose_bprop.mindir +0 -247
- mindspore/ops/bprop_mindir/Conv3DTranspose_bprop.mindir +0 -315
- mindspore/ops/bprop_mindir/Conv3D_bprop.mindir +0 -278
- mindspore/ops/bprop_mindir/DType_bprop.mindir +0 -14
- mindspore/ops/bprop_mindir/DeformableOffsets_bprop.mindir +0 -58
- mindspore/ops/bprop_mindir/Depend_bprop.mindir +0 -13
- mindspore/ops/bprop_mindir/DepthToSpace_bprop.mindir +0 -23
- mindspore/ops/bprop_mindir/DepthwiseConv2dNative_bprop.mindir +0 -138
- mindspore/ops/bprop_mindir/DiagPart_bprop.mindir +0 -15
- mindspore/ops/bprop_mindir/Dropout2D_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Dropout3D_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/DropoutDoMask_bprop.mindir +0 -25
- mindspore/ops/bprop_mindir/DropoutGenMask_bprop.mindir +0 -18
- mindspore/ops/bprop_mindir/DropoutGrad_bprop.mindir +0 -27
- mindspore/ops/bprop_mindir/Dropout_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/DynamicGRUV2_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/DynamicRNN_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/DynamicShape_bprop.mindir +0 -14
- mindspore/ops/bprop_mindir/Elu_bprop.mindir +0 -16
- mindspore/ops/bprop_mindir/EmbeddingLookup_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Equal_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/ExpandDims_bprop.mindir +0 -58
- mindspore/ops/bprop_mindir/FastGeLU_bprop.mindir +0 -16
- mindspore/ops/bprop_mindir/Flatten_bprop.mindir +0 -54
- mindspore/ops/bprop_mindir/FloorDiv_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/GatherD_bprop.mindir +0 -26
- mindspore/ops/bprop_mindir/GatherNd_bprop.mindir +0 -57
- mindspore/ops/bprop_mindir/Gather_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/GreaterEqual_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/Greater_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/HSigmoid_bprop.mindir +0 -16
- mindspore/ops/bprop_mindir/HSwish_bprop.mindir +0 -16
- mindspore/ops/bprop_mindir/IOU_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/InstanceNorm_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/IsFinite_bprop.mindir +0 -15
- mindspore/ops/bprop_mindir/IsInf_bprop.mindir +0 -15
- mindspore/ops/bprop_mindir/IsNan_bprop.mindir +0 -15
- mindspore/ops/bprop_mindir/KLDivLoss_bprop.mindir +0 -126
- mindspore/ops/bprop_mindir/L2Loss_bprop.mindir +0 -15
- mindspore/ops/bprop_mindir/L2Normalize_bprop.mindir +0 -30
- mindspore/ops/bprop_mindir/LRN_bprop.mindir +0 -43
- mindspore/ops/bprop_mindir/LayerNormGrad_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/LessEqual_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/Less_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/LinSpace_bprop.mindir +0 -23
- mindspore/ops/bprop_mindir/Load_bprop.mindir +0 -13
- mindspore/ops/bprop_mindir/LogSoftmax_bprop.mindir +0 -23
- mindspore/ops/bprop_mindir/LogicalAnd_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/LogicalNot_bprop.mindir +0 -15
- mindspore/ops/bprop_mindir/MaskedSelect_bprop.mindir +0 -21
- mindspore/ops/bprop_mindir/MaxPool3DGradGrad_bprop.mindir +0 -74
- mindspore/ops/bprop_mindir/MaxPool3DGrad_bprop.mindir +0 -74
- mindspore/ops/bprop_mindir/MaxPool3D_bprop.mindir +0 -75
- mindspore/ops/bprop_mindir/MaxPoolGradGrad_bprop.mindir +0 -65
- mindspore/ops/bprop_mindir/MaxPoolWithArgmax_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Maximum_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Minimum_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/MirrorPad_bprop.mindir +0 -27
- mindspore/ops/bprop_mindir/Mish_bprop.mindir +0 -35
- mindspore/ops/bprop_mindir/MulNoNan_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/NLLLoss_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/NonZero_bprop.mindir +0 -14
- mindspore/ops/bprop_mindir/NotEqual_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/OneHot_bprop.mindir +0 -26
- mindspore/ops/bprop_mindir/OnesLike_bprop.mindir +0 -14
- mindspore/ops/bprop_mindir/PReLU_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Pad_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Padding_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/RNNTLoss_bprop.mindir +0 -29
- mindspore/ops/bprop_mindir/ROIAlign_bprop.mindir +0 -82
- mindspore/ops/bprop_mindir/Range_bprop.mindir +0 -22
- mindspore/ops/bprop_mindir/Rank_bprop.mindir +0 -14
- mindspore/ops/bprop_mindir/ReLU6_bprop.mindir +0 -16
- mindspore/ops/bprop_mindir/ReLUV2_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/ReduceAll_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/ReduceAny_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/ReluGrad_bprop.mindir +0 -20
- mindspore/ops/bprop_mindir/Reshape_bprop.mindir +0 -60
- mindspore/ops/bprop_mindir/ResizeBilinear_bprop.mindir +0 -29
- mindspore/ops/bprop_mindir/ResizeNearestNeighbor_bprop.mindir +0 -89
- mindspore/ops/bprop_mindir/ReverseSequence_bprop.mindir +0 -52
- mindspore/ops/bprop_mindir/ReverseV2_bprop.mindir +0 -22
- mindspore/ops/bprop_mindir/Round_bprop.mindir +0 -15
- mindspore/ops/bprop_mindir/ScatterMax_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/ScatterMin_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/ScatterNdUpdate_bprop.mindir +0 -22
- mindspore/ops/bprop_mindir/ScatterNd_bprop.mindir +0 -24
- mindspore/ops/bprop_mindir/ScatterNonAliasingAdd_bprop.mindir +0 -22
- mindspore/ops/bprop_mindir/ScatterUpdate_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/SeLU_bprop.mindir +0 -21
- mindspore/ops/bprop_mindir/Select_bprop.mindir +0 -31
- mindspore/ops/bprop_mindir/Shape_bprop.mindir +0 -14
- mindspore/ops/bprop_mindir/SigmoidCrossEntropyWithLogits_bprop.mindir +0 -21
- mindspore/ops/bprop_mindir/SigmoidGrad_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Sigmoid_bprop.mindir +0 -16
- mindspore/ops/bprop_mindir/Sign_bprop.mindir +0 -15
- mindspore/ops/bprop_mindir/Slice_bprop.mindir +0 -26
- mindspore/ops/bprop_mindir/SmoothL1Loss_bprop.mindir +0 -36
- mindspore/ops/bprop_mindir/SoftmaxCrossEntropyWithLogits_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Softplus_bprop.mindir +0 -16
- mindspore/ops/bprop_mindir/Softsign_bprop.mindir +0 -33
- mindspore/ops/bprop_mindir/Sort_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/SpaceToBatchND_bprop.mindir +0 -28
- mindspore/ops/bprop_mindir/SpaceToDepth_bprop.mindir +0 -23
- mindspore/ops/bprop_mindir/SparseGatherV2_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/SparseSoftmaxCrossEntropyWithLogits_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Split_bprop.mindir +0 -22
- mindspore/ops/bprop_mindir/Squeeze_bprop.mindir +0 -54
- mindspore/ops/bprop_mindir/StridedSliceGrad_bprop.mindir +0 -95
- mindspore/ops/bprop_mindir/StridedSlice_bprop.mindir +0 -98
- mindspore/ops/bprop_mindir/Switch_bprop.mindir +0 -29
- mindspore/ops/bprop_mindir/TanhGrad_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Tanh_bprop.mindir +0 -66
- mindspore/ops/bprop_mindir/TensorScatterAdd_bprop.mindir +0 -22
- mindspore/ops/bprop_mindir/TensorScatterUpdate_bprop.mindir +0 -29
- mindspore/ops/bprop_mindir/TensorShape_bprop.mindir +0 -14
- mindspore/ops/bprop_mindir/Tile_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/TopK_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/TransShape_bprop.mindir +0 -23
- mindspore/ops/bprop_mindir/TruncateDiv_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/TupleGetItem_bprop.mindir +0 -20
- mindspore/ops/bprop_mindir/Unique_bprop.mindir +0 -16
- mindspore/ops/bprop_mindir/Unstack_bprop.mindir +0 -22
- mindspore/ops/bprop_mindir/UpsampleNearest3D_bprop.mindir +0 -32
- mindspore/ops/bprop_mindir/UpsampleTrilinear3D_bprop.mindir +0 -38
- mindspore/ops/bprop_mindir/ZerosLike_bprop.mindir +0 -15
- mindspore/ops/bprop_mindir/generate_mindir.py +0 -114
- mindspore/rewrite/node_visitor.py +0 -44
- mindspore/rewrite/topological_manager.py +0 -203
- mindspore/scipy/sparse/linalg.py +0 -192
- {mindspore-2.0.0rc1.dist-info → mindspore-2.2.0.dist-info}/WHEEL +0 -0
- {mindspore-2.0.0rc1.dist-info → mindspore-2.2.0.dist-info}/top_level.txt +0 -0
mindspore/nn/layer/activation.py
CHANGED
|
@@ -72,10 +72,13 @@ class CELU(Cell):
|
|
|
72
72
|
|
|
73
73
|
\text{CELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x/\alpha) - 1))
|
|
74
74
|
|
|
75
|
-
|
|
75
|
+
CELU Activation Function Graph:
|
|
76
|
+
|
|
77
|
+
.. image:: images/CELU.png
|
|
78
|
+
:align: center
|
|
76
79
|
|
|
77
80
|
Args:
|
|
78
|
-
alpha (float): The :math:`\alpha` value for the Celu formulation. Default: 1.0
|
|
81
|
+
alpha (float): The :math:`\alpha` value for the Celu formulation. Default: ``1.0`` .
|
|
79
82
|
|
|
80
83
|
Inputs:
|
|
81
84
|
- **x** (Tensor) - The input of CELU. The required dtype is float16 or float32.
|
|
@@ -94,6 +97,9 @@ class CELU(Cell):
|
|
|
94
97
|
``Ascend`` ``GPU`` ``CPU``
|
|
95
98
|
|
|
96
99
|
Examples:
|
|
100
|
+
>>> import mindspore
|
|
101
|
+
>>> from mindspore import Tensor, nn
|
|
102
|
+
>>> import numpy as np
|
|
97
103
|
>>> x = Tensor(np.array([-2.0, -1.0, 1.0, 2.0]), mindspore.float32)
|
|
98
104
|
>>> celu = nn.CELU()
|
|
99
105
|
>>> output = celu(x)
|
|
@@ -127,7 +133,7 @@ class Softmin(Cell):
|
|
|
127
133
|
|
|
128
134
|
Args:
|
|
129
135
|
axis (Union[int, tuple[int]]): The axis to apply Softmin operation, if the dimension of input `x` is x.ndim,
|
|
130
|
-
the range of axis is `[-x.ndim, x.ndim)`. -1 means the last dimension. Default:
|
|
136
|
+
the range of axis is `[-x.ndim, x.ndim)`. -1 means the last dimension. Default: ``-1`` .
|
|
131
137
|
|
|
132
138
|
Inputs:
|
|
133
139
|
- **x** (Tensor) - Tensor for computing Softmin functions with data type of float16 or float32.
|
|
@@ -145,13 +151,15 @@ class Softmin(Cell):
|
|
|
145
151
|
``Ascend`` ``GPU`` ``CPU``
|
|
146
152
|
|
|
147
153
|
Examples:
|
|
154
|
+
>>> import mindspore
|
|
155
|
+
>>> from mindspore import Tensor, nn
|
|
156
|
+
>>> import numpy as np
|
|
148
157
|
>>> # axis = -1(default), and the sum of return value is 1.0.
|
|
149
158
|
>>> x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16)
|
|
150
159
|
>>> softmin = nn.Softmin()
|
|
151
160
|
>>> output = softmin(x)
|
|
152
161
|
>>> print(output)
|
|
153
162
|
[0.2341 0.636 0.0862 0.01165 0.03168 ]
|
|
154
|
-
>>> assert(1.0 == output.sum())
|
|
155
163
|
"""
|
|
156
164
|
|
|
157
165
|
def __init__(self, axis=-1):
|
|
@@ -171,6 +179,7 @@ class Softmax2d(Cell):
|
|
|
171
179
|
|
|
172
180
|
Inputs:
|
|
173
181
|
- **x** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})` or :math:`(C_{in}, H_{in}, W_{in})`.
|
|
182
|
+
The input of Softmax with data type of float16 or float32.
|
|
174
183
|
|
|
175
184
|
Outputs:
|
|
176
185
|
Tensor, which has the same type and shape as `x` with values in the range[0,1].
|
|
@@ -183,11 +192,16 @@ class Softmax2d(Cell):
|
|
|
183
192
|
``Ascend`` ``GPU`` ``CPU``
|
|
184
193
|
|
|
185
194
|
Examples:
|
|
195
|
+
>>> import mindspore
|
|
196
|
+
>>> from mindspore import Tensor, nn
|
|
197
|
+
>>> import numpy as np
|
|
186
198
|
>>> x = Tensor(np.array([[[[0.1, 0.2]], [[0.3, 0.4]], [[0.6, 0.5]]]]), mindspore.float32)
|
|
187
199
|
>>> softmax2d = nn.Softmax2d()
|
|
188
200
|
>>> output = softmax2d(x)
|
|
189
201
|
>>> print(output)
|
|
190
|
-
[[[[0.
|
|
202
|
+
[[[[0.25838965 0.28001308]]
|
|
203
|
+
[[0.31559783 0.34200877]]
|
|
204
|
+
[[0.42601252 0.37797815]]]]
|
|
191
205
|
"""
|
|
192
206
|
|
|
193
207
|
def __init__(self):
|
|
@@ -226,7 +240,7 @@ class Softmax(Cell):
|
|
|
226
240
|
|
|
227
241
|
Args:
|
|
228
242
|
axis (Union[int, tuple[int]]): The axis to apply Softmax operation, if the dimension of input `x` is x.ndim,
|
|
229
|
-
the range of axis is `[-x.ndim, x.ndim)`, -1 means the last dimension. Default:
|
|
243
|
+
the range of axis is `[-x.ndim, x.ndim)`, -1 means the last dimension. Default: ``-1`` .
|
|
230
244
|
|
|
231
245
|
Inputs:
|
|
232
246
|
- **x** (Tensor) - The input of Softmax with data type of float16 or float32.
|
|
@@ -244,13 +258,15 @@ class Softmax(Cell):
|
|
|
244
258
|
``Ascend`` ``GPU`` ``CPU``
|
|
245
259
|
|
|
246
260
|
Examples:
|
|
261
|
+
>>> import mindspore
|
|
262
|
+
>>> from mindspore import Tensor, nn
|
|
263
|
+
>>> import numpy as np
|
|
247
264
|
>>> # axis = -1(default), and the sum of return value is 1.0.
|
|
248
265
|
>>> x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16)
|
|
249
266
|
>>> softmax = nn.Softmax()
|
|
250
267
|
>>> output = softmax(x)
|
|
251
268
|
>>> print(output)
|
|
252
269
|
[0.03168 0.01166 0.0861 0.636 0.2341 ]
|
|
253
|
-
>>> assert(1.0 == output.sum())
|
|
254
270
|
"""
|
|
255
271
|
|
|
256
272
|
def __init__(self, axis=-1):
|
|
@@ -272,10 +288,10 @@ class LogSoftmax(Cell):
|
|
|
272
288
|
|
|
273
289
|
.. math::
|
|
274
290
|
|
|
275
|
-
\text{logsoftmax}(x_i) = \log \left(\frac{\exp(x_i)}{\sum_{j=0}^{n-1} \exp(x_j)}\right)
|
|
291
|
+
\text{logsoftmax}(x_i) = \log \left(\frac{\exp(x_i)}{\sum_{j=0}^{n-1} \exp(x_j)}\right)
|
|
276
292
|
|
|
277
293
|
Args:
|
|
278
|
-
axis (int): The axis to apply LogSoftmax operation, -1 means the last dimension. Default:
|
|
294
|
+
axis (int): The axis to apply LogSoftmax operation, -1 means the last dimension. Default: ``-1`` .
|
|
279
295
|
|
|
280
296
|
Inputs:
|
|
281
297
|
- **x** (Tensor) - The input of LogSoftmax, with float16 or float32 data type.
|
|
@@ -292,6 +308,9 @@ class LogSoftmax(Cell):
|
|
|
292
308
|
``Ascend`` ``GPU`` ``CPU``
|
|
293
309
|
|
|
294
310
|
Examples:
|
|
311
|
+
>>> import mindspore
|
|
312
|
+
>>> from mindspore import Tensor, nn
|
|
313
|
+
>>> import numpy as np
|
|
295
314
|
>>> x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
|
|
296
315
|
>>> log_softmax = nn.LogSoftmax()
|
|
297
316
|
>>> output = log_softmax(x)
|
|
@@ -325,11 +344,13 @@ class ELU(Cell):
|
|
|
325
344
|
|
|
326
345
|
where :math:`x_i` represents the element of the input and :math:`\alpha` represents the `alpha` parameter.
|
|
327
346
|
|
|
328
|
-
|
|
329
|
-
|
|
347
|
+
ELU Activation Function Graph:
|
|
348
|
+
|
|
349
|
+
.. image:: images/ELU.png
|
|
350
|
+
:align: center
|
|
330
351
|
|
|
331
352
|
Args:
|
|
332
|
-
alpha (float): The alpha value of ELU, the data type is float. Default: 1.0.
|
|
353
|
+
alpha (float): The alpha value of ELU, the data type is float. Default: ``1.0`` .
|
|
333
354
|
|
|
334
355
|
Inputs:
|
|
335
356
|
- **x** (Tensor) - The input of ELU is a Tensor of any dimension with data type of float16 or float32.
|
|
@@ -346,6 +367,9 @@ class ELU(Cell):
|
|
|
346
367
|
``Ascend`` ``GPU`` ``CPU``
|
|
347
368
|
|
|
348
369
|
Examples:
|
|
370
|
+
>>> import mindspore
|
|
371
|
+
>>> from mindspore import Tensor, nn
|
|
372
|
+
>>> import numpy as np
|
|
349
373
|
>>> x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float32)
|
|
350
374
|
>>> elu = nn.ELU()
|
|
351
375
|
>>> result = elu(x)
|
|
@@ -370,15 +394,20 @@ class ReLU(Cell):
|
|
|
370
394
|
|
|
371
395
|
\text{ReLU}(x) = (x)^+ = \max(0, x),
|
|
372
396
|
|
|
373
|
-
It returns element-wise :math:`\max(0, x)`.
|
|
374
|
-
|
|
397
|
+
It returns element-wise :math:`\max(0, x)`.
|
|
398
|
+
|
|
399
|
+
.. note::
|
|
400
|
+
The neurons with the negative output
|
|
401
|
+
will be suppressed and the active neurons will stay the same.
|
|
402
|
+
|
|
403
|
+
ReLU Activation Function Graph:
|
|
375
404
|
|
|
376
|
-
|
|
377
|
-
|
|
405
|
+
.. image:: images/ReLU.png
|
|
406
|
+
:align: center
|
|
378
407
|
|
|
379
408
|
Inputs:
|
|
380
409
|
- **x** (Tensor) - The input of ReLU is a Tensor of any dimension. The data type is `number <https://www.mind
|
|
381
|
-
spore.cn/docs/en/r2.
|
|
410
|
+
spore.cn/docs/en/r2.2/api_python/mindspore.html#mindspore.dtype>`_ .
|
|
382
411
|
|
|
383
412
|
Outputs:
|
|
384
413
|
Tensor, with the same type and shape as the `x`.
|
|
@@ -390,6 +419,9 @@ class ReLU(Cell):
|
|
|
390
419
|
``Ascend`` ``GPU`` ``CPU``
|
|
391
420
|
|
|
392
421
|
Examples:
|
|
422
|
+
>>> import mindspore
|
|
423
|
+
>>> from mindspore import Tensor, nn
|
|
424
|
+
>>> import numpy as np
|
|
393
425
|
>>> x = Tensor(np.array([-1, 2, -3, 2, -1]), mindspore.float16)
|
|
394
426
|
>>> relu = nn.ReLU()
|
|
395
427
|
>>> output = relu(x)
|
|
@@ -416,12 +448,16 @@ class ReLU6(Cell):
|
|
|
416
448
|
|
|
417
449
|
.. math::
|
|
418
450
|
|
|
419
|
-
Y = \min(\max(0, x), 6)
|
|
451
|
+
Y = \min(\max(0, x), 6)
|
|
452
|
+
|
|
453
|
+
ReLU6 Activation Function Graph:
|
|
420
454
|
|
|
421
|
-
|
|
455
|
+
.. image:: images/ReLU6.png
|
|
456
|
+
:align: center
|
|
422
457
|
|
|
423
458
|
Inputs:
|
|
424
|
-
- **x** (Tensor) - The input of ReLU6 with data type of float16 or float32
|
|
459
|
+
- **x** (Tensor) - The input of ReLU6 with data type of float16 or float32 and that
|
|
460
|
+
is a Tensor of any valid shape.
|
|
425
461
|
|
|
426
462
|
Outputs:
|
|
427
463
|
Tensor, which has the same type as `x`.
|
|
@@ -433,6 +469,9 @@ class ReLU6(Cell):
|
|
|
433
469
|
``Ascend`` ``GPU`` ``CPU``
|
|
434
470
|
|
|
435
471
|
Examples:
|
|
472
|
+
>>> import mindspore
|
|
473
|
+
>>> from mindspore import Tensor, nn
|
|
474
|
+
>>> import numpy as np
|
|
436
475
|
>>> x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16)
|
|
437
476
|
>>> relu6 = nn.ReLU6()
|
|
438
477
|
>>> output = relu6(x)
|
|
@@ -464,8 +503,13 @@ class LeakyReLU(Cell):
|
|
|
464
503
|
For more details, see `Rectifier Nonlinearities Improve Neural Network Acoustic Models
|
|
465
504
|
<https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf>`_.
|
|
466
505
|
|
|
506
|
+
LeakyReLU Activation Function Graph:
|
|
507
|
+
|
|
508
|
+
.. image:: images/LeakyReLU.png
|
|
509
|
+
:align: center
|
|
510
|
+
|
|
467
511
|
Args:
|
|
468
|
-
alpha (Union[int, float]): Slope of the activation function at x < 0. Default: 0.2.
|
|
512
|
+
alpha (Union[int, float]): Slope of the activation function at x < 0. Default: ``0.2`` .
|
|
469
513
|
|
|
470
514
|
Inputs:
|
|
471
515
|
- **x** (Tensor) - The input of LeakyReLU is a Tensor of any dimension.
|
|
@@ -480,6 +524,9 @@ class LeakyReLU(Cell):
|
|
|
480
524
|
``Ascend`` ``GPU`` ``CPU``
|
|
481
525
|
|
|
482
526
|
Examples:
|
|
527
|
+
>>> import mindspore
|
|
528
|
+
>>> from mindspore import Tensor, nn
|
|
529
|
+
>>> import numpy as np
|
|
483
530
|
>>> x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
|
|
484
531
|
>>> leaky_relu = nn.LeakyReLU()
|
|
485
532
|
>>> output = leaky_relu(x)
|
|
@@ -491,17 +538,10 @@ class LeakyReLU(Cell):
|
|
|
491
538
|
def __init__(self, alpha=0.2):
|
|
492
539
|
"""Initialize LeakyReLU."""
|
|
493
540
|
super(LeakyReLU, self).__init__()
|
|
494
|
-
validator.check_value_type('alpha', alpha, [float, int], self.cls_name)
|
|
495
|
-
self.greater_equal = P.GreaterEqual()
|
|
496
|
-
self.mul = P.Mul()
|
|
497
541
|
self.alpha = alpha
|
|
498
|
-
self.select_op = P.Maximum()
|
|
499
|
-
if self.alpha > 1:
|
|
500
|
-
self.select_op = P.Minimum()
|
|
501
542
|
|
|
502
543
|
def construct(self, x):
|
|
503
|
-
|
|
504
|
-
out = self.select_op(alpha_array * x, x)
|
|
544
|
+
out = ops.leaky_relu(x, self.alpha)
|
|
505
545
|
return out
|
|
506
546
|
|
|
507
547
|
|
|
@@ -522,8 +562,8 @@ class RReLU(Cell):
|
|
|
522
562
|
`Empirical Evaluation of Rectified Activations in Convolution Network <https://arxiv.org/pdf/1505.00853.pdf>`_ .
|
|
523
563
|
|
|
524
564
|
Args:
|
|
525
|
-
lower (Union[int, float]): Slope of the activation function at x < 0. Default: 1/8.
|
|
526
|
-
upper (Union[int, float]): Slope of the activation function at x < 0. Default: 1/3.
|
|
565
|
+
lower (Union[int, float]): Slope of the activation function at x < 0. Default: ``1 / 8`` .
|
|
566
|
+
upper (Union[int, float]): Slope of the activation function at x < 0. Default: ``1 / 3`` .
|
|
527
567
|
|
|
528
568
|
Inputs:
|
|
529
569
|
- **x** (Tensor) - The input of RReLU is a Tensor of any dimension.
|
|
@@ -543,8 +583,7 @@ class RReLU(Cell):
|
|
|
543
583
|
|
|
544
584
|
Examples:
|
|
545
585
|
>>> import mindspore
|
|
546
|
-
>>>
|
|
547
|
-
>>> from mindspore import Tensor
|
|
586
|
+
>>> from mindspore import Tensor, nn
|
|
548
587
|
>>> import numpy as np
|
|
549
588
|
>>> x = Tensor(np.array([[-1.0, 4.0], [2.0, 0]]), mindspore.float32)
|
|
550
589
|
>>> r_relu = nn.RReLU()
|
|
@@ -559,13 +598,15 @@ class RReLU(Cell):
|
|
|
559
598
|
validator.check_value_type('upper', upper, [float, int], self.cls_name)
|
|
560
599
|
validator.check_value_type('lower', lower, [float, int], self.cls_name)
|
|
561
600
|
if lower > upper:
|
|
562
|
-
raise ValueError(f"For {self.cls_name}, the value of 'upper' must be greater than 'lower', "
|
|
601
|
+
raise ValueError(f"For {self.cls_name}, the value of 'upper' must be greater than or equal to 'lower', "
|
|
563
602
|
f"but got upper: {upper}, lower: {lower}. ")
|
|
564
603
|
self.lower = Tensor(lower, dtype=mstype.float32)
|
|
565
604
|
self.upper = Tensor(upper, dtype=mstype.float32)
|
|
566
605
|
self.sign = P.Sign()
|
|
567
606
|
|
|
568
607
|
def construct(self, x):
|
|
608
|
+
if not isinstance(x, Tensor):
|
|
609
|
+
raise TypeError(f"For 'rrelu', the input must be a Tensor, but got {type(x)}.")
|
|
569
610
|
_size = x.shape
|
|
570
611
|
_dtype = x.dtype
|
|
571
612
|
sign_matrix = self.sign(x)
|
|
@@ -582,12 +623,20 @@ class SeLU(Cell):
|
|
|
582
623
|
r"""
|
|
583
624
|
Activation function SeLU (Scaled exponential Linear Unit).
|
|
584
625
|
|
|
626
|
+
SeLU Activation Function Graph:
|
|
627
|
+
|
|
628
|
+
.. image:: images/SeLU.png
|
|
629
|
+
:align: center
|
|
630
|
+
|
|
585
631
|
Refer to :func:`mindspore.ops.selu` for more details.
|
|
586
632
|
|
|
587
633
|
Supported Platforms:
|
|
588
634
|
``Ascend`` ``GPU`` ``CPU``
|
|
589
635
|
|
|
590
636
|
Examples:
|
|
637
|
+
>>> import mindspore
|
|
638
|
+
>>> from mindspore import Tensor, nn
|
|
639
|
+
>>> import numpy as np
|
|
591
640
|
>>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
|
|
592
641
|
>>> selu = nn.SeLU()
|
|
593
642
|
>>> output = selu(input_x)
|
|
@@ -609,7 +658,7 @@ class SiLU(Cell):
|
|
|
609
658
|
r"""
|
|
610
659
|
Sigmoid Linear Unit activation function.
|
|
611
660
|
|
|
612
|
-
Applies the
|
|
661
|
+
Applies the silu linear unit function element-wise.
|
|
613
662
|
|
|
614
663
|
.. math::
|
|
615
664
|
|
|
@@ -621,8 +670,10 @@ class SiLU(Cell):
|
|
|
621
670
|
|
|
622
671
|
\text{sigmoid}(x_i) = \frac{1}{1 + \exp(-x_i)},
|
|
623
672
|
|
|
624
|
-
|
|
625
|
-
|
|
673
|
+
SiLU Activation Function Graph:
|
|
674
|
+
|
|
675
|
+
.. image:: images/SiLU.png
|
|
676
|
+
:align: center
|
|
626
677
|
|
|
627
678
|
Inputs:
|
|
628
679
|
- **x** (Tensor) - Input with the data type float16 or float32.
|
|
@@ -637,6 +688,9 @@ class SiLU(Cell):
|
|
|
637
688
|
``Ascend`` ``GPU`` ``CPU``
|
|
638
689
|
|
|
639
690
|
Examples:
|
|
691
|
+
>>> import mindspore
|
|
692
|
+
>>> from mindspore import Tensor, nn
|
|
693
|
+
>>> import numpy as np
|
|
640
694
|
>>> x = Tensor(np.array([-1, 2, -3, 2, -1]), mindspore.float16)
|
|
641
695
|
>>> silu = nn.SiLU()
|
|
642
696
|
>>> output = silu(x)
|
|
@@ -664,6 +718,11 @@ class Tanh(Cell):
|
|
|
664
718
|
|
|
665
719
|
where :math:`x_i` is an element of the input Tensor.
|
|
666
720
|
|
|
721
|
+
Tanh Activation Function Graph:
|
|
722
|
+
|
|
723
|
+
.. image:: images/Tanh.png
|
|
724
|
+
:align: center
|
|
725
|
+
|
|
667
726
|
Inputs:
|
|
668
727
|
- **x** (Tensor) - Tensor of any dimension, input with data type of float16 or float32.
|
|
669
728
|
|
|
@@ -677,6 +736,9 @@ class Tanh(Cell):
|
|
|
677
736
|
``Ascend`` ``GPU`` ``CPU``
|
|
678
737
|
|
|
679
738
|
Examples:
|
|
739
|
+
>>> import mindspore
|
|
740
|
+
>>> from mindspore import Tensor, nn
|
|
741
|
+
>>> import numpy as np
|
|
680
742
|
>>> x = Tensor(np.array([1, 2, 3, 2, 1]), mindspore.float16)
|
|
681
743
|
>>> tanh = nn.Tanh()
|
|
682
744
|
>>> output = tanh(x)
|
|
@@ -711,7 +773,7 @@ class Tanhshrink(Cell):
|
|
|
711
773
|
- **x** (Tensor) - Tensor of any dimension.
|
|
712
774
|
|
|
713
775
|
Outputs:
|
|
714
|
-
Tensor, with the same
|
|
776
|
+
Tensor, with the same shape as the `x`.
|
|
715
777
|
|
|
716
778
|
Raises:
|
|
717
779
|
TypeError: If `x` is not a Tensor.
|
|
@@ -720,9 +782,8 @@ class Tanhshrink(Cell):
|
|
|
720
782
|
``Ascend`` ``GPU`` ``CPU``
|
|
721
783
|
|
|
722
784
|
Examples:
|
|
723
|
-
>>> import mindspore
|
|
724
|
-
>>>
|
|
725
|
-
>>> from mindspore import Tensor
|
|
785
|
+
>>> import mindspore
|
|
786
|
+
>>> from mindspore import Tensor, nn
|
|
726
787
|
>>> import numpy as np
|
|
727
788
|
>>> x = Tensor(np.array([1, 2, 3, 2, 1]), ms.float16)
|
|
728
789
|
>>> tanhshrink = nn.Tanhshrink()
|
|
@@ -752,12 +813,17 @@ class Hardtanh(Cell):
|
|
|
752
813
|
|
|
753
814
|
Linear region range :math:`[-1, 1]` can be adjusted using `min_val` and `max_val`.
|
|
754
815
|
|
|
816
|
+
Hardtanh Activation Function Graph:
|
|
817
|
+
|
|
818
|
+
.. image:: images/Hardtanh.png
|
|
819
|
+
:align: center
|
|
820
|
+
|
|
755
821
|
Note:
|
|
756
822
|
On Ascend, data type of float16 might lead to accidental accuracy problem.
|
|
757
823
|
|
|
758
824
|
Args:
|
|
759
|
-
min_val (Union[int, float]): Minimum value of the linear region range. Default:
|
|
760
|
-
max_val (Union[int, float]): Maximum value of the linear region range. Default: 1.0.
|
|
825
|
+
min_val (Union[int, float]): Minimum value of the linear region range. Default: ``-1.0`` .
|
|
826
|
+
max_val (Union[int, float]): Maximum value of the linear region range. Default: ``1.0`` .
|
|
761
827
|
|
|
762
828
|
Inputs:
|
|
763
829
|
- **x** (Tensor) - Input Tensor with data type of float16 or float32.
|
|
@@ -815,13 +881,15 @@ class GELU(Cell):
|
|
|
815
881
|
where :math:`P` is the cumulative distribution function
|
|
816
882
|
of standard Gaussian distribution and :math:`x_i` is the element of the input.
|
|
817
883
|
|
|
818
|
-
|
|
819
|
-
|
|
884
|
+
GELU Activation Function Graph:
|
|
885
|
+
|
|
886
|
+
.. image:: images/GELU.png
|
|
887
|
+
:align: center
|
|
820
888
|
|
|
821
889
|
Args:
|
|
822
|
-
approximate (bool): Whether to enable approximation. Default: True.
|
|
890
|
+
approximate (bool): Whether to enable approximation. Default: ``True`` .
|
|
823
891
|
|
|
824
|
-
If approximate is True
|
|
892
|
+
If `approximate` is ``True``, The gaussian error linear activation is:
|
|
825
893
|
|
|
826
894
|
:math:`0.5 * x * (1 + tanh(\sqrt(2 / \pi) * (x + 0.044715 * x^3)))`
|
|
827
895
|
|
|
@@ -843,6 +911,9 @@ class GELU(Cell):
|
|
|
843
911
|
``Ascend`` ``GPU`` ``CPU``
|
|
844
912
|
|
|
845
913
|
Examples:
|
|
914
|
+
>>> import mindspore
|
|
915
|
+
>>> from mindspore import Tensor, nn
|
|
916
|
+
>>> import numpy as np
|
|
846
917
|
>>> x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
|
|
847
918
|
>>> gelu = nn.GELU()
|
|
848
919
|
>>> output = gelu(x)
|
|
@@ -862,20 +933,13 @@ class GELU(Cell):
|
|
|
862
933
|
super(GELU, self).__init__()
|
|
863
934
|
validator.check_bool(approximate, 'approximate', self.cls_name)
|
|
864
935
|
self.approximate = approximate
|
|
865
|
-
if
|
|
866
|
-
self.
|
|
936
|
+
if approximate:
|
|
937
|
+
self.approximate = 'tanh'
|
|
867
938
|
else:
|
|
868
|
-
self.
|
|
869
|
-
self.sqrt = P.Sqrt()
|
|
870
|
-
self.const0 = Tensor(0.5, mstype.float32)
|
|
871
|
-
self.const1 = Tensor(1.0, mstype.float32)
|
|
872
|
-
self.const2 = Tensor(2.0, mstype.float32)
|
|
939
|
+
self.approximate = 'none'
|
|
873
940
|
|
|
874
941
|
def construct(self, x):
|
|
875
|
-
|
|
876
|
-
return self.gelu(x)
|
|
877
|
-
return x * F.cast(self.const0, x.dtype) * (F.cast(self.const1, x.dtype) + \
|
|
878
|
-
self.erf(x / self.sqrt(F.cast(self.const2, x.dtype))))
|
|
942
|
+
return ops.gelu(x, approximate=self.approximate)
|
|
879
943
|
|
|
880
944
|
|
|
881
945
|
class FastGelu(Cell):
|
|
@@ -892,6 +956,11 @@ class FastGelu(Cell):
|
|
|
892
956
|
|
|
893
957
|
where :math:`x_i` is the element of the input.
|
|
894
958
|
|
|
959
|
+
FastGelu Activation Function Graph:
|
|
960
|
+
|
|
961
|
+
.. image:: images/FastGelu.png
|
|
962
|
+
:align: center
|
|
963
|
+
|
|
895
964
|
Inputs:
|
|
896
965
|
- **x** (Tensor) - The input of FastGelu with data type of float16 or float32.
|
|
897
966
|
The shape is :math:`(N,*)` where :math:`*` means, any number of additional dimensions.
|
|
@@ -940,22 +1009,29 @@ class Sigmoid(Cell):
|
|
|
940
1009
|
|
|
941
1010
|
where :math:`x_i` is the element of the input.
|
|
942
1011
|
|
|
943
|
-
|
|
944
|
-
|
|
1012
|
+
Sigmoid Activation Function Graph:
|
|
1013
|
+
|
|
1014
|
+
.. image:: images/Sigmoid.png
|
|
1015
|
+
:align: center
|
|
945
1016
|
|
|
946
1017
|
Inputs:
|
|
947
|
-
- **input_x** (Tensor) -
|
|
1018
|
+
- **input_x** (Tensor) - Tensor of any dimension, the data type is
|
|
1019
|
+
float16, float32, float64, complex64 or complex128.
|
|
948
1020
|
|
|
949
1021
|
Outputs:
|
|
950
1022
|
Tensor, with the same type and shape as the `input_x`.
|
|
951
1023
|
|
|
952
1024
|
Raises:
|
|
953
|
-
TypeError: If dtype of `input_x` is
|
|
1025
|
+
TypeError: If dtype of `input_x` is not float16, float32, float64, complex64 or complex128.
|
|
1026
|
+
TypeError: If `input_x` is not a Tensor.
|
|
954
1027
|
|
|
955
1028
|
Supported Platforms:
|
|
956
1029
|
``Ascend`` ``GPU`` ``CPU``
|
|
957
1030
|
|
|
958
1031
|
Examples:
|
|
1032
|
+
>>> import mindspore
|
|
1033
|
+
>>> from mindspore import Tensor, nn
|
|
1034
|
+
>>> import numpy as np
|
|
959
1035
|
>>> x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16)
|
|
960
1036
|
>>> sigmoid = nn.Sigmoid()
|
|
961
1037
|
>>> output = sigmoid(x)
|
|
@@ -976,12 +1052,20 @@ class Softsign(Cell):
|
|
|
976
1052
|
r"""
|
|
977
1053
|
Softsign activation function.
|
|
978
1054
|
|
|
1055
|
+
Softsign Activation Function Graph:
|
|
1056
|
+
|
|
1057
|
+
.. image:: images/Softsign.png
|
|
1058
|
+
:align: center
|
|
1059
|
+
|
|
979
1060
|
Refer to :func:`mindspore.ops.softsign` for more details.
|
|
980
1061
|
|
|
981
1062
|
Supported Platforms:
|
|
982
1063
|
``Ascend`` ``GPU`` ``CPU``
|
|
983
1064
|
|
|
984
1065
|
Examples:
|
|
1066
|
+
>>> import mindspore
|
|
1067
|
+
>>> from mindspore import Tensor, nn
|
|
1068
|
+
>>> import numpy as np
|
|
985
1069
|
>>> x = Tensor(np.array([0, -1, 2, 30, -30]), mindspore.float32)
|
|
986
1070
|
>>> softsign = nn.Softsign()
|
|
987
1071
|
>>> output = softsign(x)
|
|
@@ -1016,14 +1100,16 @@ class PReLU(Cell):
|
|
|
1016
1100
|
Parameter :math:`w` has dimensionality of the argument channel. If called without argument
|
|
1017
1101
|
channel, a single parameter :math:`w` will be shared across all channels.
|
|
1018
1102
|
|
|
1019
|
-
|
|
1020
|
-
|
|
1103
|
+
PReLU Activation Function Graph:
|
|
1104
|
+
|
|
1105
|
+
.. image:: images/PReLU.png
|
|
1106
|
+
:align: center
|
|
1021
1107
|
|
|
1022
1108
|
Args:
|
|
1023
|
-
channel (int): The elements number of parameter
|
|
1024
|
-
It could be an int, and the value is 1 or the channels number of input tensor `x`. Default: 1.
|
|
1109
|
+
channel (int): The elements number of parameter :math:`w`.
|
|
1110
|
+
It could be an int, and the value is 1 or the channels number of input tensor `x`. Default: ``1`` .
|
|
1025
1111
|
w (Union[float, list, Tensor]): The initial value of parameter. It could be a float, a float list or
|
|
1026
|
-
a tensor has the same dtype as the input tensor `x`. Default: 0.25.
|
|
1112
|
+
a tensor has the same dtype as the input tensor `x`. Default: ``0.25`` .
|
|
1027
1113
|
|
|
1028
1114
|
Inputs:
|
|
1029
1115
|
- **x** (Tensor) - The input of PReLU with data type of float16 or float32.
|
|
@@ -1043,6 +1129,9 @@ class PReLU(Cell):
|
|
|
1043
1129
|
``Ascend`` ``GPU`` ``CPU``
|
|
1044
1130
|
|
|
1045
1131
|
Examples:
|
|
1132
|
+
>>> import mindspore
|
|
1133
|
+
>>> from mindspore import Tensor, nn
|
|
1134
|
+
>>> import numpy as np
|
|
1046
1135
|
>>> x = Tensor(np.array([[[[0.1, 0.6], [0.9, 0.9]]]]), mindspore.float32)
|
|
1047
1136
|
>>> prelu = nn.PReLU()
|
|
1048
1137
|
>>> output = prelu(x)
|
|
@@ -1098,6 +1187,11 @@ class HSwish(Cell):
|
|
|
1098
1187
|
.. math::
|
|
1099
1188
|
\text{hswish}(x_{i}) = x_{i} * \frac{ReLU6(x_{i} + 3)}{6},
|
|
1100
1189
|
|
|
1190
|
+
HSwish Activation Function Graph:
|
|
1191
|
+
|
|
1192
|
+
.. image:: images/HSwish.png
|
|
1193
|
+
:align: center
|
|
1194
|
+
|
|
1101
1195
|
Inputs:
|
|
1102
1196
|
- **x** (Tensor) - The input of HSwish, data type must be float16 or float32.
|
|
1103
1197
|
The shape is :math:`(N,*)` where :math:`*` means, any number of additional dimensions.
|
|
@@ -1112,6 +1206,9 @@ class HSwish(Cell):
|
|
|
1112
1206
|
``Ascend`` ``GPU`` ``CPU``
|
|
1113
1207
|
|
|
1114
1208
|
Examples:
|
|
1209
|
+
>>> import mindspore
|
|
1210
|
+
>>> from mindspore import Tensor, nn
|
|
1211
|
+
>>> import numpy as np
|
|
1115
1212
|
>>> x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16)
|
|
1116
1213
|
>>> hswish = nn.HSwish()
|
|
1117
1214
|
>>> result = hswish(x)
|
|
@@ -1135,7 +1232,12 @@ class HSigmoid(Cell):
|
|
|
1135
1232
|
Hard sigmoid is defined as:
|
|
1136
1233
|
|
|
1137
1234
|
.. math::
|
|
1138
|
-
\text{hsigmoid}(x_{i}) = max(0, min(1, \frac{x_{i} + 3}{6})),
|
|
1235
|
+
\text{hsigmoid}(x_{i}) = \max(0, \min(1, \frac{x_{i} + 3}{6})),
|
|
1236
|
+
|
|
1237
|
+
HSigmoid Activation Function Graph:
|
|
1238
|
+
|
|
1239
|
+
.. image:: images/HSigmoid.png
|
|
1240
|
+
:align: center
|
|
1139
1241
|
|
|
1140
1242
|
Inputs:
|
|
1141
1243
|
- **input_x** (Tensor) - The input of HSigmoid. Tensor of any dimension.
|
|
@@ -1150,6 +1252,9 @@ class HSigmoid(Cell):
|
|
|
1150
1252
|
``Ascend`` ``GPU`` ``CPU``
|
|
1151
1253
|
|
|
1152
1254
|
Examples:
|
|
1255
|
+
>>> import mindspore
|
|
1256
|
+
>>> from mindspore import Tensor, nn
|
|
1257
|
+
>>> import numpy as np
|
|
1153
1258
|
>>> x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16)
|
|
1154
1259
|
>>> hsigmoid = nn.HSigmoid()
|
|
1155
1260
|
>>> result = hsigmoid(x)
|
|
@@ -1173,10 +1278,15 @@ class LogSigmoid(Cell):
|
|
|
1173
1278
|
Logsigmoid is defined as:
|
|
1174
1279
|
|
|
1175
1280
|
.. math::
|
|
1176
|
-
\text{logsigmoid}(x_{i}) = log(\frac{1}{1 + \exp(-x_i)}),
|
|
1281
|
+
\text{logsigmoid}(x_{i}) = \log(\frac{1}{1 + \exp(-x_i)}),
|
|
1177
1282
|
|
|
1178
1283
|
where :math:`x_{i}` is the element of the input.
|
|
1179
1284
|
|
|
1285
|
+
LogSigmoid Activation Function Graph:
|
|
1286
|
+
|
|
1287
|
+
.. image:: images/LogSigmoid.png
|
|
1288
|
+
:align: center
|
|
1289
|
+
|
|
1180
1290
|
Inputs:
|
|
1181
1291
|
- **x** (Tensor) - The input of LogSigmoid with data type of float16 or float32.
|
|
1182
1292
|
The shape is :math:`(N,*)` where :math:`*` means, any number of additional dimensions.
|
|
@@ -1188,9 +1298,12 @@ class LogSigmoid(Cell):
|
|
|
1188
1298
|
TypeError: If dtype of `x` is neither float16 nor float32.
|
|
1189
1299
|
|
|
1190
1300
|
Supported Platforms:
|
|
1191
|
-
``Ascend`` ``GPU``
|
|
1301
|
+
``Ascend`` ``GPU`` ``CPU``
|
|
1192
1302
|
|
|
1193
1303
|
Examples:
|
|
1304
|
+
>>> import mindspore
|
|
1305
|
+
>>> from mindspore import Tensor, nn
|
|
1306
|
+
>>> import numpy as np
|
|
1194
1307
|
>>> net = nn.LogSigmoid()
|
|
1195
1308
|
>>> x = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32)
|
|
1196
1309
|
>>> output = net(x)
|
|
@@ -1220,12 +1333,19 @@ class LRN(Cell):
|
|
|
1220
1333
|
r"""
|
|
1221
1334
|
Local Response Normalization.
|
|
1222
1335
|
|
|
1336
|
+
.. warning::
|
|
1337
|
+
LRN is deprecated on Ascend due to potential accuracy problem. It's recommended to use other
|
|
1338
|
+
normalization methods, e.g. :class:`mindspore.nn.BatchNorm`.
|
|
1339
|
+
|
|
1223
1340
|
Refer to :func:`mindspore.ops.lrn` for more details.
|
|
1224
1341
|
|
|
1225
1342
|
Supported Platforms:
|
|
1226
|
-
``
|
|
1343
|
+
``GPU`` ``CPU``
|
|
1227
1344
|
|
|
1228
1345
|
Examples:
|
|
1346
|
+
>>> import mindspore
|
|
1347
|
+
>>> from mindspore import Tensor, nn
|
|
1348
|
+
>>> import numpy as np
|
|
1229
1349
|
>>> input_x = Tensor(np.array([[[[0.1], [0.2]],
|
|
1230
1350
|
... [[0.3], [0.4]]]]), mindspore.float32)
|
|
1231
1351
|
>>> output = nn.LRN()(input_x)
|
|
@@ -1257,9 +1377,14 @@ class SoftShrink(Cell):
|
|
|
1257
1377
|
0, & \text{ otherwise }
|
|
1258
1378
|
\end{cases}
|
|
1259
1379
|
|
|
1380
|
+
SoftShrink Activation Function Graph:
|
|
1381
|
+
|
|
1382
|
+
.. image:: images/Softshrink.png
|
|
1383
|
+
:align: center
|
|
1384
|
+
|
|
1260
1385
|
Args:
|
|
1261
1386
|
lambd (float): the :math:`\lambda` must be no less than zero for the SoftShrink formulation.
|
|
1262
|
-
Default: 0.5.
|
|
1387
|
+
Default: ``0.5`` .
|
|
1263
1388
|
|
|
1264
1389
|
Inputs:
|
|
1265
1390
|
- **input_x** (Tensor) - The input of SoftShrink with data type of float16 or float32.
|
|
@@ -1278,7 +1403,10 @@ class SoftShrink(Cell):
|
|
|
1278
1403
|
``Ascend`` ``GPU`` ``CPU``
|
|
1279
1404
|
|
|
1280
1405
|
Examples:
|
|
1281
|
-
>>>
|
|
1406
|
+
>>> import mindspore
|
|
1407
|
+
>>> from mindspore import Tensor, nn
|
|
1408
|
+
>>> import numpy as np
|
|
1409
|
+
>>> input_x = Tensor(np.array([[ 0.5297, 0.7871, 1.1754], [ 0.7836, 0.6218, -1.1542]]), mindspore.float16)
|
|
1282
1410
|
>>> softshrink = nn.SoftShrink()
|
|
1283
1411
|
>>> output = softshrink(input_x)
|
|
1284
1412
|
>>> print(output)
|
|
@@ -1309,8 +1437,13 @@ class HShrink(Cell):
|
|
|
1309
1437
|
0, & \text{ otherwise }
|
|
1310
1438
|
\end{cases}
|
|
1311
1439
|
|
|
1440
|
+
HShrink Activation Function Graph:
|
|
1441
|
+
|
|
1442
|
+
.. image:: images/HShrink.png
|
|
1443
|
+
:align: center
|
|
1444
|
+
|
|
1312
1445
|
Args:
|
|
1313
|
-
lambd (float): The threshold :math:`\lambda` defined by the Hard Shrink formula. Default: 0.5.
|
|
1446
|
+
lambd (float): The threshold :math:`\lambda` defined by the Hard Shrink formula. Default: ``0.5`` .
|
|
1314
1447
|
|
|
1315
1448
|
Inputs:
|
|
1316
1449
|
- **input_x** (Tensor) - The input of Hard Shrink with data type of float16 or float32.
|
|
@@ -1376,9 +1509,9 @@ class Threshold(Cell):
|
|
|
1376
1509
|
|
|
1377
1510
|
Examples:
|
|
1378
1511
|
>>> import mindspore
|
|
1379
|
-
>>>
|
|
1512
|
+
>>> from mindspore import Tensor, nn
|
|
1380
1513
|
>>> m = nn.Threshold(0.1, 20)
|
|
1381
|
-
>>> inputs =
|
|
1514
|
+
>>> inputs = Tensor([0.1, 0.2, 0.3], mindspore.float32)
|
|
1382
1515
|
>>> outputs = m(inputs)
|
|
1383
1516
|
>>> print(outputs)
|
|
1384
1517
|
[ 20.0 0.2 0.3]
|
|
@@ -1400,16 +1533,24 @@ class Mish(Cell):
|
|
|
1400
1533
|
|
|
1401
1534
|
Refer to :func:`mindspore.ops.mish` for more details.
|
|
1402
1535
|
|
|
1536
|
+
Mish Activation Function Graph:
|
|
1537
|
+
|
|
1538
|
+
.. image:: images/Mish.png
|
|
1539
|
+
:align: center
|
|
1540
|
+
|
|
1403
1541
|
Supported Platforms:
|
|
1404
1542
|
``Ascend`` ``GPU`` ``CPU``
|
|
1405
1543
|
|
|
1406
1544
|
Examples:
|
|
1545
|
+
>>> import mindspore
|
|
1546
|
+
>>> from mindspore import Tensor, nn
|
|
1547
|
+
>>> import numpy as np
|
|
1407
1548
|
>>> x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
|
|
1408
1549
|
>>> mish = nn.Mish()
|
|
1409
1550
|
>>> output = mish(x)
|
|
1410
1551
|
>>> print(output)
|
|
1411
|
-
[[-
|
|
1412
|
-
[ 1.
|
|
1552
|
+
[[-3.03401530e-01 3.99741292e+00 -2.68321624e-03]
|
|
1553
|
+
[ 1.94395900e+00 -3.35762873e-02 9.00000000e+00]]
|
|
1413
1554
|
"""
|
|
1414
1555
|
|
|
1415
1556
|
def __init__(self):
|
|
@@ -1433,7 +1574,7 @@ class GLU(Cell):
|
|
|
1433
1574
|
Here :math:`\sigma` is the sigmoid function, and :math:`\otimes` is the Hadamard product.
|
|
1434
1575
|
|
|
1435
1576
|
Args:
|
|
1436
|
-
axis (int): the axis to split the input. Default:
|
|
1577
|
+
axis (int): the axis to split the input. Default: ``-1`` , the last axis in `x`.
|
|
1437
1578
|
|
|
1438
1579
|
Inputs:
|
|
1439
1580
|
- **x** (Tensor) - :math:`(\ast_1, N, \ast_2)` where `*` means, any number of additional dimensions.
|
|
@@ -1445,8 +1586,9 @@ class GLU(Cell):
|
|
|
1445
1586
|
``Ascend`` ``GPU`` ``CPU``
|
|
1446
1587
|
|
|
1447
1588
|
Examples:
|
|
1448
|
-
>>>
|
|
1449
|
-
>>>
|
|
1589
|
+
>>> import mindspore as ms
|
|
1590
|
+
>>> m = ms.nn.GLU()
|
|
1591
|
+
>>> input = ms.Tensor([[0.1,0.2,0.3,0.4],[0.5,0.6,0.7,0.8]])
|
|
1450
1592
|
>>> output = m(input)
|
|
1451
1593
|
>>> print(output)
|
|
1452
1594
|
[[0.05744425 0.11973753]
|
|
@@ -1501,7 +1643,7 @@ def get_activation(name, prim_name=None):
|
|
|
1501
1643
|
|
|
1502
1644
|
Args:
|
|
1503
1645
|
name (str): The name of the activation function.
|
|
1504
|
-
prim_name (Union[str, None]): The name of primitive. Default: None.
|
|
1646
|
+
prim_name (Union[str, None]): The name of primitive. Default: ``None`` .
|
|
1505
1647
|
|
|
1506
1648
|
Returns:
|
|
1507
1649
|
Function, the activation function.
|
|
@@ -1510,6 +1652,7 @@ def get_activation(name, prim_name=None):
|
|
|
1510
1652
|
``Ascend`` ``GPU`` ``CPU``
|
|
1511
1653
|
|
|
1512
1654
|
Examples:
|
|
1655
|
+
>>> import mindspore.nn as nn
|
|
1513
1656
|
>>> sigmoid = nn.get_activation('sigmoid')
|
|
1514
1657
|
>>> print(sigmoid)
|
|
1515
1658
|
Sigmoid<>
|