mindspore 2.0.0rc1__cp38-none-any.whl → 2.2.0__cp38-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mindspore might be problematic. Click here for more details.
- mindspore/.commit_id +1 -1
- mindspore/Third_Party_Open_Source_Software_Notice +2 -2
- mindspore/__init__.py +5 -2
- mindspore/_akg/akg/build_module.py +5 -6
- mindspore/_akg/akg/composite/build_module.py +49 -16
- mindspore/_akg/akg/composite/split_stitch.py +10 -11
- mindspore/_akg/akg/config/repository.json +195 -0
- mindspore/_akg/akg/global_configs.py +5 -1
- mindspore/_akg/akg/ms/info_version_adapt.py +67 -1
- mindspore/_akg/akg/tvm/api.py +4 -3
- mindspore/_akg/akg/tvm/autotvm/__init__.py +1 -2
- mindspore/_akg/akg/tvm/autotvm/graph_tuner/base_graph_tuner.py +1 -5
- mindspore/_akg/akg/tvm/autotvm/measure/__init__.py +1 -1
- mindspore/_akg/akg/tvm/autotvm/measure/measure.py +1 -10
- mindspore/_akg/akg/tvm/autotvm/measure/measure_methods.py +1 -372
- mindspore/_akg/akg/tvm/build_module.py +16 -1
- mindspore/_akg/akg/tvm/contrib/graph_runtime.py +0 -53
- mindspore/_akg/akg/tvm/hybrid/parser.py +7 -6
- mindspore/_akg/akg/tvm/ir_builder.py +1 -1
- mindspore/_akg/akg/tvm/module.py +1 -2
- mindspore/_akg/akg/tvm/stmt.py +2 -2
- mindspore/_akg/akg/utils/composite_op_helper.py +9 -10
- mindspore/_akg/akg/utils/kernel_exec.py +58 -260
- mindspore/_akg/akg/utils/op_dsl.py +17 -1
- mindspore/_akg/akg/utils/result_analysis.py +4 -24
- mindspore/_akg/akg/utils/tbe_codegen_utils.py +198 -0
- mindspore/_c_dataengine.cpython-38-aarch64-linux-gnu.so +0 -0
- mindspore/_c_expression.cpython-38-aarch64-linux-gnu.so +0 -0
- mindspore/_c_mindrecord.cpython-38-aarch64-linux-gnu.so +0 -0
- mindspore/_check_jit_forbidden_api.py +5 -1
- mindspore/_checkparam.py +79 -62
- mindspore/_extends/graph_kernel/__init__.py +0 -1
- mindspore/_extends/graph_kernel/model/graph_split.py +2 -0
- mindspore/_extends/graph_kernel/model/model_builder.py +9 -50
- mindspore/_extends/graph_kernel/splitter.py +1 -9
- mindspore/_extends/parallel_compile/akg_compiler/akg_process.py +128 -21
- mindspore/_extends/parallel_compile/akg_compiler/build_tbe_kernel.py +2 -2
- mindspore/_extends/parallel_compile/akg_compiler/tbe_topi.py +4 -2
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_adapter.py +18 -13
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_helper.py +13 -9
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_job.py +1 -1
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_job_manager.py +1 -1
- mindspore/_extends/parse/__init__.py +19 -17
- mindspore/_extends/parse/namespace.py +7 -36
- mindspore/_extends/parse/parser.py +375 -189
- mindspore/_extends/parse/resources.py +36 -41
- mindspore/_extends/parse/standard_method.py +350 -245
- mindspore/_extends/parse/trope.py +2 -12
- mindspore/_extends/remote/kernel_build_server.py +24 -7
- mindspore/_extends/remote/kernel_build_server_akg_v2.py +55 -0
- mindspore/_install_custom.py +43 -0
- mindspore/_mindspore_offline_debug.cpython-38-aarch64-linux-gnu.so +0 -0
- mindspore/amp.py +85 -19
- mindspore/bin/cache_admin +0 -0
- mindspore/bin/cache_server +0 -0
- mindspore/boost/base.py +2 -2
- mindspore/boost/boost.py +27 -32
- mindspore/boost/boost_cell_wrapper.py +37 -13
- mindspore/boost/grad_accumulation.py +1 -1
- mindspore/boost/grad_freeze.py +34 -6
- mindspore/boost/group_loss_scale_manager.py +15 -14
- mindspore/boost/less_batch_normalization.py +28 -3
- mindspore/common/__init__.py +15 -11
- mindspore/common/_auto_dynamic.py +68 -0
- mindspore/common/_jit_fallback_utils.py +111 -0
- mindspore/common/_register_for_adapter.py +17 -5
- mindspore/common/_register_for_tensor.py +2 -2
- mindspore/common/_stub_tensor.py +18 -15
- mindspore/common/_utils.py +31 -7
- mindspore/common/api.py +269 -101
- mindspore/common/auto_dynamic_shape.py +498 -0
- mindspore/common/dtype.py +61 -21
- mindspore/common/dump.py +9 -7
- mindspore/common/initializer.py +106 -76
- mindspore/common/jit_config.py +35 -14
- mindspore/common/lazy_inline.py +187 -0
- mindspore/common/mindir_util.py +101 -0
- mindspore/common/mutable.py +10 -13
- mindspore/common/parameter.py +246 -55
- mindspore/common/seed.py +13 -7
- mindspore/common/sparse_tensor.py +29 -33
- mindspore/common/tensor.py +907 -251
- mindspore/communication/__init__.py +7 -4
- mindspore/communication/_comm_helper.py +84 -4
- mindspore/communication/management.py +160 -88
- mindspore/config/op_info.config +99 -75
- mindspore/config/super_bar_config.json +36 -4
- mindspore/context.py +526 -219
- mindspore/dataset/__init__.py +9 -46
- mindspore/dataset/audio/__init__.py +4 -19
- mindspore/dataset/audio/transforms.py +545 -233
- mindspore/dataset/audio/utils.py +21 -18
- mindspore/dataset/callback/ds_callback.py +42 -13
- mindspore/dataset/core/config.py +158 -100
- mindspore/dataset/core/validator_helpers.py +1 -63
- mindspore/dataset/debug/debug_hook.py +45 -13
- mindspore/dataset/debug/pre_defined_hook.py +5 -5
- mindspore/dataset/engine/__init__.py +0 -5
- mindspore/dataset/engine/cache_client.py +38 -15
- mindspore/dataset/engine/datasets.py +615 -278
- mindspore/dataset/engine/datasets_audio.py +154 -283
- mindspore/dataset/engine/datasets_standard_format.py +104 -116
- mindspore/dataset/engine/datasets_text.py +443 -326
- mindspore/dataset/engine/datasets_user_defined.py +251 -164
- mindspore/dataset/engine/datasets_vision.py +839 -1443
- mindspore/dataset/engine/iterators.py +11 -4
- mindspore/dataset/engine/obs/obs_mindrecord_dataset.py +7 -3
- mindspore/dataset/engine/obs/util.py +3 -0
- mindspore/dataset/engine/offload.py +6 -6
- mindspore/dataset/engine/queue.py +15 -14
- mindspore/dataset/engine/samplers.py +39 -23
- mindspore/dataset/engine/serializer_deserializer.py +22 -6
- mindspore/dataset/engine/validators.py +21 -331
- mindspore/dataset/text/__init__.py +5 -33
- mindspore/dataset/text/transforms.py +334 -165
- mindspore/dataset/text/utils.py +215 -145
- mindspore/dataset/transforms/__init__.py +1 -1
- mindspore/dataset/transforms/c_transforms.py +3 -2
- mindspore/dataset/transforms/py_transforms_util.py +40 -12
- mindspore/dataset/transforms/transforms.py +174 -71
- mindspore/dataset/utils/browse_dataset.py +25 -17
- mindspore/dataset/utils/line_reader.py +24 -21
- mindspore/dataset/vision/__init__.py +5 -26
- mindspore/dataset/vision/c_transforms.py +177 -165
- mindspore/dataset/vision/py_transforms.py +114 -119
- mindspore/dataset/vision/py_transforms_util.py +54 -51
- mindspore/dataset/vision/transforms.py +1127 -381
- mindspore/dataset/vision/utils.py +54 -38
- mindspore/dataset/vision/validators.py +12 -2
- mindspore/experimental/map_parameter.py +38 -4
- mindspore/{dataset/datapreprocess → experimental/optim}/__init__.py +14 -4
- mindspore/experimental/optim/adam.py +192 -0
- mindspore/experimental/optim/adamw.py +181 -0
- mindspore/experimental/optim/lr_scheduler.py +1427 -0
- mindspore/experimental/optim/optimizer.py +252 -0
- mindspore/experimental/optim/sgd.py +147 -0
- mindspore/gen_ops.py +273 -0
- mindspore/include/OWNERS +1 -2
- mindspore/include/api/context.h +21 -1
- mindspore/include/api/data_type.h +2 -1
- mindspore/include/api/graph.h +0 -15
- mindspore/include/api/kernel.h +2 -0
- mindspore/include/api/kernel_api.h +37 -12
- mindspore/include/api/model.h +29 -42
- mindspore/include/api/model_group.h +14 -3
- mindspore/include/api/model_parallel_runner.h +18 -2
- mindspore/include/api/serialization.h +26 -0
- mindspore/include/api/status.h +1 -0
- mindspore/include/api/types.h +38 -4
- mindspore/include/c_api/ms/abstract.h +67 -0
- mindspore/include/c_api/ms/attribute.h +197 -0
- mindspore/include/c_api/ms/base/handle_types.h +43 -0
- mindspore/include/c_api/ms/base/macros.h +32 -0
- mindspore/include/c_api/ms/base/status.h +33 -0
- mindspore/include/c_api/ms/base/types.h +282 -0
- mindspore/include/c_api/ms/context.h +102 -0
- mindspore/include/c_api/ms/graph.h +160 -0
- mindspore/include/c_api/ms/node.h +606 -0
- mindspore/include/c_api/ms/tensor.h +161 -0
- mindspore/include/c_api/ms/value.h +84 -0
- mindspore/include/c_api/status_c.h +3 -0
- mindspore/include/dataset/constants.h +6 -12
- mindspore/include/dataset/execute.h +23 -13
- mindspore/include/dataset/text.h +26 -26
- mindspore/include/dataset/transforms.h +25 -31
- mindspore/include/dataset/vision.h +60 -60
- mindspore/include/dataset/vision_ascend.h +5 -6
- mindspore/include/dataset/vision_lite.h +17 -17
- mindspore/include/mindapi/base/format.h +0 -1
- mindspore/include/mindapi/base/type_id.h +2 -1
- mindspore/include/mindapi/base/types.h +5 -1
- mindspore/lib/libdnnl.so.2 +0 -0
- mindspore/lib/libjemalloc.so.2 +0 -0
- mindspore/lib/libmindspore.so +0 -0
- mindspore/lib/libmindspore_backend.so +0 -0
- mindspore/lib/libmindspore_common.so +0 -0
- mindspore/lib/libmindspore_core.so +0 -0
- mindspore/lib/libmindspore_glog.so.0 +0 -0
- mindspore/lib/libmindspore_gpr.so.15 +0 -0
- mindspore/lib/libmindspore_grpc++.so.1 +0 -0
- mindspore/lib/libmindspore_grpc.so.15 +0 -0
- mindspore/lib/libmindspore_shared_lib.so +0 -0
- mindspore/lib/libmpi_adapter.so +0 -0
- mindspore/lib/libnnacl.so +0 -0
- mindspore/lib/libopencv_core.so.4.5 +0 -0
- mindspore/lib/libopencv_imgcodecs.so.4.5 +0 -0
- mindspore/lib/libopencv_imgproc.so.4.5 +0 -0
- mindspore/lib/libps_cache.so +0 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_aicpu_kernels.so +0 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_cpu_kernels.so +0 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/config/cust_aicpu_kernel.json +9000 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_proto/libcust_op_proto.so +0 -0
- mindspore/lib/plugin/ascend/libakg.so +0 -0
- mindspore/lib/plugin/ascend/libascend_collective.so +0 -0
- mindspore/lib/plugin/ascend/libdvpp_utils.so +0 -0
- mindspore/lib/plugin/ascend/libhccl_plugin.so +0 -0
- mindspore/lib/plugin/ascend/libmindspore_aicpu_kernels.so +0 -0
- mindspore/lib/plugin/ascend/libmindspore_cpu_kernels.so +0 -0
- mindspore/lib/plugin/cpu/libakg.so +0 -0
- mindspore/lib/plugin/libmindspore_ascend.so.1 +0 -0
- mindspore/lib/plugin/libmindspore_ascend.so.2 +0 -0
- mindspore/log.py +9 -6
- mindspore/mindrecord/filereader.py +33 -4
- mindspore/mindrecord/filewriter.py +70 -35
- mindspore/mindrecord/mindpage.py +40 -34
- mindspore/mindrecord/shardreader.py +1 -1
- mindspore/mindrecord/shardsegment.py +1 -1
- mindspore/mindrecord/tools/cifar100_to_mr.py +25 -18
- mindspore/mindrecord/tools/cifar10_to_mr.py +25 -18
- mindspore/mindrecord/tools/csv_to_mr.py +29 -13
- mindspore/mindrecord/tools/imagenet_to_mr.py +24 -10
- mindspore/mindrecord/tools/mnist_to_mr.py +24 -11
- mindspore/mindrecord/tools/tfrecord_to_mr.py +31 -26
- mindspore/nn/cell.py +463 -169
- mindspore/nn/dynamic_lr.py +47 -43
- mindspore/nn/layer/activation.py +225 -82
- mindspore/nn/layer/basic.py +121 -79
- mindspore/nn/layer/channel_shuffle.py +21 -21
- mindspore/nn/layer/combined.py +33 -26
- mindspore/nn/layer/container.py +277 -22
- mindspore/nn/layer/conv.py +441 -304
- mindspore/nn/layer/dense.py +19 -13
- mindspore/nn/layer/embedding.py +62 -49
- mindspore/nn/layer/flash_attention.py +264 -0
- mindspore/nn/layer/image.py +50 -39
- mindspore/nn/layer/math.py +62 -51
- mindspore/nn/layer/normalization.py +219 -167
- mindspore/nn/layer/padding.py +58 -70
- mindspore/nn/layer/pooling.py +334 -287
- mindspore/nn/layer/rnn_cells.py +53 -38
- mindspore/nn/layer/rnns.py +59 -56
- mindspore/nn/layer/thor_layer.py +52 -44
- mindspore/nn/layer/timedistributed.py +6 -4
- mindspore/nn/layer/transformer.py +284 -164
- mindspore/nn/learning_rate_schedule.py +34 -25
- mindspore/nn/loss/__init__.py +3 -2
- mindspore/nn/loss/loss.py +554 -311
- mindspore/nn/optim/ada_grad.py +12 -9
- mindspore/nn/optim/adadelta.py +14 -11
- mindspore/nn/optim/adafactor.py +19 -16
- mindspore/nn/optim/adam.py +62 -47
- mindspore/nn/optim/adamax.py +13 -10
- mindspore/nn/optim/adasum.py +12 -8
- mindspore/nn/optim/asgd.py +10 -9
- mindspore/nn/optim/ftrl.py +20 -17
- mindspore/nn/optim/lamb.py +16 -12
- mindspore/nn/optim/lars.py +8 -6
- mindspore/nn/optim/lazyadam.py +25 -20
- mindspore/nn/optim/momentum.py +10 -7
- mindspore/nn/optim/optimizer.py +61 -9
- mindspore/nn/optim/proximal_ada_grad.py +14 -13
- mindspore/nn/optim/rmsprop.py +17 -13
- mindspore/nn/optim/rprop.py +30 -17
- mindspore/nn/optim/sgd.py +40 -23
- mindspore/nn/optim/thor.py +24 -26
- mindspore/nn/probability/bijector/bijector.py +11 -11
- mindspore/nn/probability/bijector/exp.py +1 -1
- mindspore/nn/probability/bijector/gumbel_cdf.py +3 -3
- mindspore/nn/probability/bijector/invert.py +1 -1
- mindspore/nn/probability/bijector/power_transform.py +29 -29
- mindspore/nn/probability/bijector/scalar_affine.py +3 -3
- mindspore/nn/probability/bijector/softplus.py +5 -5
- mindspore/nn/probability/bnn_layers/bnn_cell_wrapper.py +4 -2
- mindspore/nn/probability/bnn_layers/conv_variational.py +13 -13
- mindspore/nn/probability/bnn_layers/dense_variational.py +12 -12
- mindspore/nn/probability/bnn_layers/layer_distribution.py +9 -8
- mindspore/nn/probability/distribution/_utils/custom_ops.py +19 -3
- mindspore/nn/probability/distribution/_utils/utils.py +1 -1
- mindspore/nn/probability/distribution/bernoulli.py +9 -9
- mindspore/nn/probability/distribution/beta.py +8 -8
- mindspore/nn/probability/distribution/categorical.py +23 -15
- mindspore/nn/probability/distribution/cauchy.py +5 -6
- mindspore/nn/probability/distribution/distribution.py +3 -3
- mindspore/nn/probability/distribution/exponential.py +4 -4
- mindspore/nn/probability/distribution/gamma.py +10 -10
- mindspore/nn/probability/distribution/geometric.py +8 -8
- mindspore/nn/probability/distribution/gumbel.py +8 -9
- mindspore/nn/probability/distribution/half_normal.py +5 -5
- mindspore/nn/probability/distribution/laplace.py +5 -5
- mindspore/nn/probability/distribution/log_normal.py +12 -11
- mindspore/nn/probability/distribution/logistic.py +8 -8
- mindspore/nn/probability/distribution/normal.py +6 -5
- mindspore/nn/probability/distribution/poisson.py +10 -11
- mindspore/nn/probability/distribution/student_t.py +8 -9
- mindspore/nn/probability/distribution/transformed_distribution.py +5 -5
- mindspore/nn/probability/distribution/uniform.py +11 -11
- mindspore/nn/reinforcement/tensor_array.py +2 -2
- mindspore/nn/sparse/sparse.py +9 -9
- mindspore/nn/wrap/cell_wrapper.py +188 -63
- mindspore/nn/wrap/grad_reducer.py +21 -12
- mindspore/nn/wrap/loss_scale.py +136 -49
- mindspore/numpy/__init__.py +4 -4
- mindspore/numpy/array_creations.py +55 -56
- mindspore/numpy/array_ops.py +134 -35
- mindspore/numpy/logic_ops.py +66 -20
- mindspore/numpy/math_ops.py +142 -139
- mindspore/numpy/utils_const.py +2 -2
- mindspore/offline_debug/convert_async.py +2 -2
- mindspore/ops/_grad_experimental/__init__.py +7 -5
- mindspore/ops/_grad_experimental/grad_array_ops.py +231 -348
- mindspore/ops/{_grad → _grad_experimental}/grad_base.py +1 -33
- mindspore/ops/{_grad → _grad_experimental}/grad_comm_ops.py +25 -13
- mindspore/ops/{_grad/__init__.py → _grad_experimental/grad_debug_ops.py} +15 -7
- mindspore/ops/{_grad → _grad_experimental}/grad_implementations.py +17 -11
- mindspore/ops/_grad_experimental/grad_inner_ops.py +33 -52
- mindspore/ops/_grad_experimental/grad_math_ops.py +151 -1224
- mindspore/ops/_grad_experimental/grad_nn_ops.py +141 -414
- mindspore/ops/{_grad → _grad_experimental}/grad_quant_ops.py +10 -6
- mindspore/ops/_grad_experimental/grad_sparse.py +317 -2
- mindspore/ops/_grad_experimental/grad_sparse_ops.py +3 -13
- mindspore/ops/{_grad → _grad_experimental}/taylor_rule.py +1 -1
- mindspore/ops/_op_impl/_custom_op/dsd_back_impl.py +1 -1
- mindspore/ops/_op_impl/_custom_op/flash_attention/__init__.py +0 -0
- mindspore/ops/_op_impl/_custom_op/flash_attention/attention.py +406 -0
- mindspore/{_extends/graph_kernel/expanders/complex/__init__.py → ops/_op_impl/_custom_op/flash_attention/constants.py} +27 -8
- mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_bwd.py +467 -0
- mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_fwd.py +563 -0
- mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_impl.py +193 -0
- mindspore/ops/_op_impl/_custom_op/flash_attention/tik_ops_utils.py +435 -0
- mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/__init__.py +0 -0
- mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/sparse_tiling.py +45 -0
- mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/strategy.py +67 -0
- mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/wukong_tiling.py +62 -0
- mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_left_impl.py +2 -2
- mindspore/ops/_op_impl/aicpu/__init__.py +41 -1
- mindspore/ops/_op_impl/aicpu/adaptive_max_pool_2d.py +37 -0
- mindspore/ops/_op_impl/aicpu/bias_add_grad.py +0 -1
- mindspore/ops/_op_impl/aicpu/cast.py +52 -0
- mindspore/ops/_op_impl/aicpu/coalesce.py +2 -0
- mindspore/ops/_op_impl/aicpu/col2im.py +3 -1
- mindspore/ops/_op_impl/aicpu/count_nonzero.py +43 -0
- mindspore/ops/_op_impl/aicpu/dropout_genmask.py +6 -0
- mindspore/ops/_op_impl/aicpu/eps.py +32 -0
- mindspore/ops/_op_impl/aicpu/eye.py +4 -4
- mindspore/ops/_op_impl/aicpu/fft_with_size.py +6 -0
- mindspore/ops/_op_impl/aicpu/fill_diagonal.py +5 -0
- mindspore/ops/_op_impl/aicpu/gamma.py +2 -2
- mindspore/ops/_op_impl/aicpu/im2col.py +3 -5
- mindspore/ops/_op_impl/aicpu/lgamma.py +1 -0
- mindspore/ops/_op_impl/aicpu/log_uniform_candidate_sampler.py +6 -3
- mindspore/ops/_op_impl/aicpu/lu.py +39 -0
- mindspore/ops/_op_impl/aicpu/lu_unpack_grad.py +0 -1
- mindspore/ops/_op_impl/aicpu/masked_scatter.py +1 -0
- mindspore/ops/_op_impl/aicpu/masked_select_grad.py +3 -0
- mindspore/ops/_op_impl/aicpu/matrix_band_part.py +59 -0
- mindspore/ops/_op_impl/aicpu/matrix_power.py +6 -1
- mindspore/ops/_op_impl/aicpu/median.py +1 -0
- mindspore/ops/_op_impl/aicpu/multinomial.py +9 -9
- mindspore/ops/_op_impl/aicpu/not_equal.py +0 -5
- mindspore/ops/_op_impl/aicpu/pad_v3.py +3 -1
- mindspore/ops/_op_impl/aicpu/pad_v3_grad.py +2 -0
- mindspore/ops/_op_impl/aicpu/parameterized_truncated_normal.py +15 -7
- mindspore/ops/_op_impl/aicpu/random_categorical.py +39 -19
- mindspore/ops/_op_impl/aicpu/random_choice_with_mask.py +5 -2
- mindspore/ops/_op_impl/aicpu/random_poisson.py +103 -52
- mindspore/ops/_op_impl/aicpu/random_shuffle.py +17 -15
- mindspore/ops/_op_impl/aicpu/resize_bilinear_grad.py +0 -1
- mindspore/ops/_op_impl/aicpu/resize_nearest_neighbor_v2.py +0 -6
- mindspore/ops/_op_impl/aicpu/resize_nearest_neighbor_v2_grad.py +0 -7
- mindspore/ops/_op_impl/aicpu/scatter_nd.py +2 -0
- mindspore/ops/_op_impl/aicpu/sequence_concat.py +40 -0
- mindspore/ops/_op_impl/aicpu/sequence_stack.py +40 -0
- mindspore/ops/_op_impl/aicpu/{sparseaddmm.py → sparse_addmm.py} +2 -2
- mindspore/ops/_op_impl/aicpu/{sparsesparsemaximum.py → sparse_sparse_maximum.py} +4 -4
- mindspore/ops/_op_impl/aicpu/standard_laplace.py +5 -4
- mindspore/ops/_op_impl/aicpu/standard_normal.py +5 -4
- mindspore/ops/_op_impl/aicpu/truncated_normal.py +9 -7
- mindspore/ops/_op_impl/aicpu/uniform.py +5 -3
- mindspore/ops/_op_impl/aicpu/uniform_candidate_sampler.py +8 -4
- mindspore/ops/_op_impl/aicpu/uniform_int.py +5 -5
- mindspore/ops/_op_impl/aicpu/uniform_real.py +4 -4
- mindspore/ops/_op_impl/aicpu/upsample_nearest_3d.py +14 -6
- mindspore/ops/_op_impl/aicpu/upsample_nearest_3d_grad.py +22 -8
- mindspore/ops/_op_impl/aicpu/upsample_trilinear_3d.py +11 -6
- mindspore/ops/_op_impl/aicpu/upsample_trilinear_3d_grad.py +21 -10
- mindspore/ops/_op_impl/tbe/__init__.py +6 -4
- mindspore/ops/_op_impl/tbe/atomic_addr_clean.py +1 -1
- mindspore/ops/_op_impl/tbe/avg_pool.py +2 -2
- mindspore/ops/_op_impl/tbe/avg_pool_3d.py +3 -3
- mindspore/ops/_op_impl/tbe/avg_pool_3d_grad.py +4 -4
- mindspore/ops/_op_impl/tbe/avg_pool_ds.py +2 -2
- mindspore/ops/_op_impl/tbe/avg_pool_grad.py +3 -3
- mindspore/ops/_op_impl/tbe/avg_pool_grad_vm.py +3 -3
- mindspore/ops/_op_impl/tbe/batch_to_space.py +1 -1
- mindspore/ops/_op_impl/tbe/batch_to_space_nd.py +2 -2
- mindspore/ops/_op_impl/tbe/bn_infer.py +2 -2
- mindspore/ops/_op_impl/tbe/bn_infer_ds.py +3 -2
- mindspore/ops/_op_impl/tbe/broadcast_to.py +1 -1
- mindspore/ops/_op_impl/tbe/depthwise_conv2d.py +3 -3
- mindspore/ops/_op_impl/tbe/expand_dims.py +1 -1
- mindspore/ops/_op_impl/tbe/gather_v2.py +56 -0
- mindspore/ops/_op_impl/tbe/im2col.py +4 -4
- mindspore/ops/_op_impl/tbe/inplace_index_add.py +7 -3
- mindspore/ops/_op_impl/tbe/mem_set.py +38 -0
- mindspore/ops/_op_impl/tbe/scatter_nd_add.py +3 -0
- mindspore/ops/_op_impl/tbe/scatter_nd_d.py +1 -1
- mindspore/ops/_op_impl/tbe/space_to_batch.py +1 -1
- mindspore/ops/_op_impl/tbe/space_to_batch_nd.py +2 -2
- mindspore/ops/_op_impl/tbe/trans_data_ds.py +2 -0
- mindspore/ops/_primitive_cache.py +1 -1
- mindspore/ops/_tracefunc.py +241 -0
- mindspore/ops/_utils/utils.py +10 -2
- mindspore/ops/_vmap/vmap_array_ops.py +5 -3
- mindspore/ops/_vmap/vmap_base.py +5 -4
- mindspore/ops/_vmap/vmap_convolution_ops.py +1 -1
- mindspore/ops/_vmap/vmap_grad_math_ops.py +6 -4
- mindspore/ops/_vmap/vmap_grad_nn_ops.py +11 -6
- mindspore/ops/_vmap/vmap_math_ops.py +5 -2
- mindspore/ops/_vmap/vmap_nn_ops.py +135 -11
- mindspore/ops/arg_dtype_cast.py +54 -0
- mindspore/ops/composite/__init__.py +7 -5
- mindspore/ops/composite/base.py +78 -34
- mindspore/ops/composite/math_ops.py +5 -695
- mindspore/ops/composite/multitype_ops/_compile_utils.py +403 -97
- mindspore/ops/composite/multitype_ops/_constexpr_utils.py +28 -22
- mindspore/ops/composite/multitype_ops/add_impl.py +69 -7
- mindspore/ops/composite/multitype_ops/bitwise_and_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/bitwise_or_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/bitwise_xor_impl.py +2 -0
- mindspore/ops/composite/multitype_ops/div_impl.py +1 -0
- mindspore/ops/composite/multitype_ops/floordiv_impl.py +1 -0
- mindspore/ops/composite/multitype_ops/getitem_impl.py +48 -10
- mindspore/ops/composite/multitype_ops/greater_equal_impl.py +2 -0
- mindspore/ops/composite/multitype_ops/greater_impl.py +2 -0
- mindspore/ops/composite/multitype_ops/left_shift_impl.py +2 -0
- mindspore/ops/composite/multitype_ops/less_equal_impl.py +2 -0
- mindspore/ops/composite/multitype_ops/less_impl.py +2 -0
- mindspore/ops/composite/multitype_ops/logic_not_impl.py +2 -2
- mindspore/ops/composite/multitype_ops/mod_impl.py +1 -0
- mindspore/ops/composite/multitype_ops/mul_impl.py +1 -0
- mindspore/ops/composite/multitype_ops/negative_impl.py +1 -0
- mindspore/ops/composite/multitype_ops/not_in_impl.py +1 -0
- mindspore/ops/composite/multitype_ops/ones_like_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/pow_impl.py +1 -0
- mindspore/ops/composite/multitype_ops/right_shift_impl.py +2 -0
- mindspore/ops/composite/multitype_ops/setitem_impl.py +10 -7
- mindspore/ops/composite/multitype_ops/sub_impl.py +1 -0
- mindspore/ops/composite/multitype_ops/uadd_impl.py +2 -0
- mindspore/ops/composite/multitype_ops/zeros_like_impl.py +9 -0
- mindspore/ops/deprecated.py +304 -0
- mindspore/ops/function/__init__.py +41 -4
- mindspore/ops/function/array_func.py +1108 -467
- mindspore/ops/function/clip_func.py +94 -27
- mindspore/ops/function/debug_func.py +3 -1
- mindspore/ops/function/grad/grad_func.py +82 -73
- mindspore/ops/function/image_func.py +28 -12
- mindspore/ops/function/linalg_func.py +135 -39
- mindspore/ops/function/math_func.py +3779 -894
- mindspore/ops/function/nn_func.py +1584 -657
- mindspore/ops/function/parameter_func.py +13 -3
- mindspore/ops/function/random_func.py +247 -153
- mindspore/ops/function/sparse_func.py +14 -11
- mindspore/ops/function/sparse_unary_func.py +173 -47
- mindspore/ops/function/spectral_func.py +8 -4
- mindspore/ops/function/vmap_func.py +8 -7
- mindspore/ops/functional.py +47 -16
- mindspore/ops/op_info_register.py +346 -86
- mindspore/ops/operations/__init__.py +38 -22
- mindspore/ops/operations/_grad_ops.py +145 -149
- mindspore/ops/operations/_inner_ops.py +298 -56
- mindspore/ops/operations/_ms_kernel.py +3 -3
- mindspore/ops/operations/_quant_ops.py +24 -28
- mindspore/ops/operations/_rl_inner_ops.py +9 -7
- mindspore/ops/operations/_scalar_ops.py +115 -0
- mindspore/ops/operations/_sequence_ops.py +148 -10
- mindspore/ops/operations/_tensor_array.py +1 -1
- mindspore/ops/operations/_thor_ops.py +2 -2
- mindspore/ops/operations/array_ops.py +1239 -561
- mindspore/ops/operations/comm_ops.py +166 -90
- mindspore/ops/operations/control_ops.py +3 -3
- mindspore/ops/operations/custom_ops.py +124 -102
- mindspore/ops/operations/debug_ops.py +24 -11
- mindspore/ops/operations/image_ops.py +86 -71
- mindspore/ops/operations/inner_ops.py +18 -13
- mindspore/ops/operations/linalg_ops.py +30 -11
- mindspore/ops/operations/math_ops.py +1730 -435
- mindspore/ops/operations/nn_ops.py +1953 -943
- mindspore/ops/operations/other_ops.py +65 -43
- mindspore/ops/operations/random_ops.py +258 -98
- mindspore/ops/operations/rl_ops.py +4 -36
- mindspore/ops/operations/sparse_ops.py +38 -33
- mindspore/ops/operations/spectral_ops.py +8 -4
- mindspore/ops/primitive.py +66 -44
- mindspore/ops/signature.py +5 -5
- mindspore/parallel/_auto_parallel_context.py +80 -19
- mindspore/parallel/_cost_model_context.py +42 -0
- mindspore/parallel/_offload_context.py +162 -72
- mindspore/parallel/_parallel_serialization.py +2 -2
- mindspore/parallel/_ps_context.py +16 -4
- mindspore/parallel/_recovery_context.py +2 -1
- mindspore/parallel/_tensor.py +15 -13
- mindspore/parallel/_transformer/layers.py +8 -6
- mindspore/parallel/_transformer/loss.py +1 -0
- mindspore/parallel/_transformer/moe.py +7 -7
- mindspore/parallel/_transformer/op_parallel_config.py +12 -1
- mindspore/parallel/_transformer/transformer.py +34 -14
- mindspore/parallel/_utils.py +36 -14
- mindspore/parallel/algo_parameter_config.py +114 -20
- mindspore/parallel/checkpoint_transform.py +16 -18
- mindspore/parallel/shard.py +16 -13
- mindspore/profiler/__init__.py +1 -1
- mindspore/profiler/common/struct_type.py +3 -3
- mindspore/profiler/common/util.py +3 -2
- mindspore/profiler/envprofiling.py +11 -4
- mindspore/profiler/parser/aicpu_data_parser.py +5 -3
- mindspore/profiler/parser/ascend_flops_generator.py +94 -0
- mindspore/profiler/parser/ascend_fpbp_generator.py +76 -0
- mindspore/profiler/parser/ascend_hccl_generator.py +288 -0
- mindspore/profiler/parser/ascend_msprof_exporter.py +213 -0
- mindspore/profiler/parser/ascend_msprof_generator.py +199 -0
- mindspore/profiler/parser/ascend_op_generator.py +276 -0
- mindspore/profiler/parser/ascend_steptrace_generator.py +94 -0
- mindspore/profiler/parser/ascend_timeline_generator.py +110 -54
- mindspore/profiler/parser/base_timeline_generator.py +11 -7
- mindspore/profiler/parser/cpu_gpu_timeline_generator.py +45 -46
- mindspore/profiler/parser/flops_parser.py +15 -11
- mindspore/profiler/parser/framework_parser.py +92 -73
- mindspore/profiler/parser/hccl_parser.py +16 -12
- mindspore/profiler/parser/integrator.py +22 -11
- mindspore/profiler/parser/memory_usage_parser.py +36 -11
- mindspore/profiler/parser/minddata_analyzer.py +12 -14
- mindspore/profiler/parser/minddata_pipeline_parser.py +1 -1
- mindspore/profiler/parser/msadvisor_parser.py +8 -4
- mindspore/profiler/parser/op_intermediate_parser.py +5 -2
- mindspore/profiler/parser/optime_parser.py +1 -1
- mindspore/profiler/parser/profiler_info.py +4 -5
- mindspore/profiler/parser/step_trace_parser.py +11 -14
- mindspore/profiler/profiling.py +678 -377
- mindspore/rewrite/api/node.py +211 -54
- mindspore/rewrite/api/node_type.py +5 -0
- mindspore/rewrite/api/pattern_engine.py +22 -23
- mindspore/rewrite/api/scoped_value.py +20 -17
- mindspore/rewrite/api/symbol_tree.py +252 -106
- mindspore/rewrite/api/tree_node_helper.py +3 -0
- mindspore/rewrite/ast_helpers/__init__.py +2 -1
- mindspore/rewrite/ast_helpers/ast_finder.py +129 -0
- mindspore/rewrite/ast_helpers/ast_modifier.py +116 -104
- mindspore/rewrite/ast_transformers/flatten_recursive_stmt.py +97 -46
- mindspore/rewrite/common/rewrite_elog.py +5 -1
- mindspore/rewrite/namer.py +51 -51
- mindspore/rewrite/namespace.py +14 -5
- mindspore/{ops/bprop_mindir → rewrite/node}/__init__.py +9 -4
- mindspore/rewrite/node/call_function.py +79 -0
- mindspore/rewrite/node/cell_container.py +135 -0
- mindspore/rewrite/node/control_flow.py +88 -0
- mindspore/rewrite/{node.py → node/node.py} +313 -247
- mindspore/rewrite/node/node_manager.py +254 -0
- mindspore/rewrite/node/node_topological_manager.py +243 -0
- mindspore/rewrite/parsers/arguments_parser.py +22 -21
- mindspore/rewrite/parsers/assign_parser.py +225 -239
- mindspore/rewrite/parsers/attribute_parser.py +9 -7
- mindspore/rewrite/parsers/class_def_parser.py +179 -218
- mindspore/rewrite/parsers/constant_parser.py +9 -6
- mindspore/rewrite/parsers/container_parser.py +9 -7
- mindspore/rewrite/parsers/for_parser.py +36 -15
- mindspore/rewrite/parsers/function_def_parser.py +23 -20
- mindspore/rewrite/parsers/if_parser.py +28 -24
- mindspore/rewrite/parsers/module_parser.py +202 -25
- mindspore/rewrite/{parser.py → parsers/parser.py} +4 -2
- mindspore/rewrite/{parser_register.py → parsers/parser_register.py} +1 -1
- mindspore/rewrite/parsers/return_parser.py +6 -6
- mindspore/rewrite/sparsify/sparse_transformer.py +12 -3
- mindspore/rewrite/sparsify/sparsify.py +4 -1
- mindspore/rewrite/sparsify/utils.py +11 -5
- mindspore/rewrite/symbol_tree.py +577 -732
- mindspore/rewrite/symbol_tree_builder.py +9 -175
- mindspore/rewrite/symbol_tree_dumper.py +2 -2
- mindspore/run_check/_check_version.py +46 -39
- mindspore/run_check/run_check.py +3 -2
- mindspore/{scipy/sparse → safeguard}/__init__.py +4 -5
- mindspore/safeguard/rewrite_obfuscation.py +517 -0
- mindspore/scipy/__init__.py +1 -1
- mindspore/scipy/linalg.py +67 -61
- mindspore/scipy/ops.py +5 -41
- mindspore/scipy/ops_grad.py +3 -2
- mindspore/scipy/ops_wrapper.py +5 -5
- mindspore/scipy/optimize/line_search.py +8 -8
- mindspore/scipy/optimize/linear_sum_assignment.py +4 -4
- mindspore/scipy/optimize/minimize.py +16 -12
- mindspore/scipy/utils.py +1 -52
- mindspore/scipy/utils_const.py +4 -4
- mindspore/train/__init__.py +4 -4
- mindspore/train/_utils.py +13 -5
- mindspore/train/amp.py +410 -148
- mindspore/train/anf_ir_pb2.py +16 -4
- mindspore/train/callback/_backup_and_restore.py +8 -11
- mindspore/train/callback/_callback.py +80 -3
- mindspore/train/callback/_checkpoint.py +82 -51
- mindspore/train/callback/_early_stop.py +12 -15
- mindspore/train/callback/_history.py +1 -1
- mindspore/train/callback/_lambda_callback.py +13 -13
- mindspore/train/callback/_landscape.py +21 -17
- mindspore/train/callback/_loss_monitor.py +9 -10
- mindspore/train/callback/_on_request_exit.py +16 -33
- mindspore/train/callback/_reduce_lr_on_plateau.py +21 -24
- mindspore/train/callback/_summary_collector.py +44 -30
- mindspore/train/callback/_time_monitor.py +62 -12
- mindspore/train/data_sink.py +10 -16
- mindspore/train/dataset_helper.py +154 -86
- mindspore/train/loss_scale_manager.py +14 -9
- mindspore/train/metrics/__init__.py +10 -2
- mindspore/train/metrics/accuracy.py +1 -1
- mindspore/train/metrics/auc.py +1 -1
- mindspore/train/metrics/bleu_score.py +2 -2
- mindspore/train/metrics/confusion_matrix.py +14 -14
- mindspore/train/metrics/cosine_similarity.py +3 -3
- mindspore/train/metrics/dice.py +1 -1
- mindspore/train/metrics/fbeta.py +1 -1
- mindspore/train/metrics/hausdorff_distance.py +8 -6
- mindspore/train/metrics/mean_surface_distance.py +5 -4
- mindspore/train/metrics/metric.py +49 -17
- mindspore/train/metrics/occlusion_sensitivity.py +4 -4
- mindspore/train/metrics/perplexity.py +1 -1
- mindspore/train/metrics/precision.py +2 -2
- mindspore/train/metrics/recall.py +2 -3
- mindspore/train/metrics/roc.py +7 -7
- mindspore/train/metrics/root_mean_square_surface_distance.py +5 -4
- mindspore/train/metrics/topk.py +7 -4
- mindspore/train/mind_ir_pb2.py +193 -48
- mindspore/train/model.py +377 -133
- mindspore/train/serialization.py +697 -245
- mindspore/train/summary/_summary_adapter.py +5 -2
- mindspore/train/summary/_writer_pool.py +4 -3
- mindspore/train/summary/summary_record.py +25 -23
- mindspore/train/train_thor/convert_utils.py +39 -23
- mindspore/train/train_thor/dataset_helper.py +4 -3
- mindspore/train/train_thor/model_thor.py +8 -8
- mindspore/version.py +1 -1
- {mindspore-2.0.0rc1.dist-info → mindspore-2.2.0.dist-info}/METADATA +7 -8
- {mindspore-2.0.0rc1.dist-info → mindspore-2.2.0.dist-info}/RECORD +633 -804
- {mindspore-2.0.0rc1.dist-info → mindspore-2.2.0.dist-info}/entry_points.txt +0 -1
- mindspore/_akg/akg/tvm/contrib/debugger/__init__.py +0 -16
- mindspore/_akg/akg/tvm/contrib/debugger/debug_result.py +0 -274
- mindspore/_akg/akg/tvm/contrib/debugger/debug_runtime.py +0 -259
- mindspore/_akg/akg/tvm/contrib/peak.py +0 -341
- mindspore/_akg/akg/tvm/contrib/rpc.py +0 -25
- mindspore/_akg/akg/tvm/contrib/xcode.py +0 -257
- mindspore/_akg/akg/tvm/exec/__init__.py +0 -17
- mindspore/_akg/akg/tvm/exec/autotvm_log_editor.py +0 -60
- mindspore/_akg/akg/tvm/exec/measure_peak.py +0 -48
- mindspore/_akg/akg/tvm/exec/query_rpc_tracker.py +0 -48
- mindspore/_akg/akg/tvm/exec/rpc_proxy.py +0 -98
- mindspore/_akg/akg/tvm/exec/rpc_server.py +0 -88
- mindspore/_akg/akg/tvm/exec/rpc_tracker.py +0 -62
- mindspore/_akg/akg/tvm/rpc/__init__.py +0 -29
- mindspore/_akg/akg/tvm/rpc/base.py +0 -182
- mindspore/_akg/akg/tvm/rpc/client.py +0 -436
- mindspore/_akg/akg/tvm/rpc/proxy.py +0 -595
- mindspore/_akg/akg/tvm/rpc/server.py +0 -413
- mindspore/_akg/akg/tvm/rpc/tornado_util.py +0 -121
- mindspore/_akg/akg/tvm/rpc/tracker.py +0 -431
- mindspore/_extends/graph_kernel/expander.py +0 -80
- mindspore/_extends/graph_kernel/expanders/__init__.py +0 -57
- mindspore/_extends/graph_kernel/expanders/_utils.py +0 -269
- mindspore/_extends/graph_kernel/expanders/addn.py +0 -33
- mindspore/_extends/graph_kernel/expanders/batchnorm.py +0 -152
- mindspore/_extends/graph_kernel/expanders/batchnorm_grad.py +0 -105
- mindspore/_extends/graph_kernel/expanders/bias_add_grad.py +0 -49
- mindspore/_extends/graph_kernel/expanders/clip_by_norm_no_div_sum.py +0 -33
- mindspore/_extends/graph_kernel/expanders/complex/abs.py +0 -30
- mindspore/_extends/graph_kernel/expanders/complex/add.py +0 -44
- mindspore/_extends/graph_kernel/expanders/complex/div.py +0 -62
- mindspore/_extends/graph_kernel/expanders/complex/mul.py +0 -52
- mindspore/_extends/graph_kernel/expanders/complex/real_div.py +0 -62
- mindspore/_extends/graph_kernel/expanders/complex/sub.py +0 -45
- mindspore/_extends/graph_kernel/expanders/conv2d.py +0 -200
- mindspore/_extends/graph_kernel/expanders/dropout_grad.py +0 -30
- mindspore/_extends/graph_kernel/expanders/equal_count.py +0 -50
- mindspore/_extends/graph_kernel/expanders/erfc.py +0 -35
- mindspore/_extends/graph_kernel/expanders/expand_dims.py +0 -50
- mindspore/_extends/graph_kernel/expanders/fused_adam.py +0 -44
- mindspore/_extends/graph_kernel/expanders/fused_adam_weight_decay.py +0 -47
- mindspore/_extends/graph_kernel/expanders/fused_mul_add.py +0 -28
- mindspore/_extends/graph_kernel/expanders/gather.py +0 -43
- mindspore/_extends/graph_kernel/expanders/gelu_grad.py +0 -70
- mindspore/_extends/graph_kernel/expanders/gkdropout.py +0 -40
- mindspore/_extends/graph_kernel/expanders/identity.py +0 -25
- mindspore/_extends/graph_kernel/expanders/layernorm.py +0 -93
- mindspore/_extends/graph_kernel/expanders/layernorm_grad.py +0 -113
- mindspore/_extends/graph_kernel/expanders/logsoftmax.py +0 -46
- mindspore/_extends/graph_kernel/expanders/logsoftmax_grad.py +0 -36
- mindspore/_extends/graph_kernel/expanders/matmul.py +0 -80
- mindspore/_extends/graph_kernel/expanders/maximum_grad.py +0 -59
- mindspore/_extends/graph_kernel/expanders/minimum_grad.py +0 -80
- mindspore/_extends/graph_kernel/expanders/oneslike.py +0 -26
- mindspore/_extends/graph_kernel/expanders/reduce_mean.py +0 -43
- mindspore/_extends/graph_kernel/expanders/relu_grad.py +0 -32
- mindspore/_extends/graph_kernel/expanders/sigmoid_cross_entropy_with_logits.py +0 -41
- mindspore/_extends/graph_kernel/expanders/sigmoid_cross_entropy_with_logits_grad.py +0 -35
- mindspore/_extends/graph_kernel/expanders/sigmoid_grad.py +0 -31
- mindspore/_extends/graph_kernel/expanders/slice.py +0 -35
- mindspore/_extends/graph_kernel/expanders/softmax_cross_entropy_with_logits.py +0 -42
- mindspore/_extends/graph_kernel/expanders/softmax_grad_ext.py +0 -41
- mindspore/_extends/graph_kernel/expanders/softsign.py +0 -28
- mindspore/_extends/graph_kernel/expanders/sqrt_grad.py +0 -29
- mindspore/_extends/graph_kernel/expanders/square_sum_all.py +0 -44
- mindspore/_extends/graph_kernel/expanders/square_sum_v1.py +0 -37
- mindspore/_extends/graph_kernel/expanders/squared_difference.py +0 -43
- mindspore/_extends/graph_kernel/expanders/tanh_grad.py +0 -31
- mindspore/_extends/graph_kernel/expanders/tile.py +0 -54
- mindspore/_extends/graph_kernel/model/op_infer.py +0 -506
- mindspore/_extends/parse/jit_fallback_modules.py +0 -51
- mindspore/dataset/datapreprocess/preprocess_imagenet_validate_dataset.py +0 -54
- mindspore/dataset/engine/graphdata.py +0 -1586
- mindspore/include/api/net.h +0 -142
- mindspore/ops/_grad/grad_array_ops.py +0 -1347
- mindspore/ops/_grad/grad_clip_ops.py +0 -84
- mindspore/ops/_grad/grad_debug_ops.py +0 -68
- mindspore/ops/_grad/grad_inner_ops.py +0 -235
- mindspore/ops/_grad/grad_math_ops.py +0 -1684
- mindspore/ops/_grad/grad_nn_ops.py +0 -1529
- mindspore/ops/_grad/grad_other_ops.py +0 -89
- mindspore/ops/_grad/grad_sequence_ops.py +0 -296
- mindspore/ops/_grad/grad_sparse.py +0 -323
- mindspore/ops/_grad_experimental/grad_image_ops.py +0 -249
- mindspore/ops/_grad_experimental/grad_linalg_ops.py +0 -195
- mindspore/ops/_grad_experimental/grad_scalar_ops.py +0 -112
- mindspore/ops/bprop_mindir/AdaptiveAvgPool2D_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/AdaptiveMaxPool2D_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/ApproximateEqual_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/Argmax_bprop.mindir +0 -15
- mindspore/ops/bprop_mindir/Argmin_bprop.mindir +0 -15
- mindspore/ops/bprop_mindir/AssignSub_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/Assign_bprop.mindir +0 -17
- mindspore/ops/bprop_mindir/AvgPool3D_bprop.mindir +0 -150
- mindspore/ops/bprop_mindir/AvgPool_bprop.mindir +0 -66
- mindspore/ops/bprop_mindir/BCEWithLogitsLoss_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/BNTrainingReduce_bprop.mindir +0 -15
- mindspore/ops/bprop_mindir/BatchNormGrad_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/BatchToSpaceND_bprop.mindir +0 -28
- mindspore/ops/bprop_mindir/BiasAddGrad_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/BinaryCrossEntropy_bprop.mindir +0 -33
- mindspore/ops/bprop_mindir/BroadcastTo_bprop.mindir +0 -306
- mindspore/ops/bprop_mindir/Broadcast_bprop.mindir +0 -13
- mindspore/ops/bprop_mindir/CTCLoss_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Concat_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Conv2DBackpropFilter_bprop.mindir +0 -240
- mindspore/ops/bprop_mindir/Conv2DBackpropInput_bprop.mindir +0 -247
- mindspore/ops/bprop_mindir/Conv2DTranspose_bprop.mindir +0 -247
- mindspore/ops/bprop_mindir/Conv3DTranspose_bprop.mindir +0 -315
- mindspore/ops/bprop_mindir/Conv3D_bprop.mindir +0 -278
- mindspore/ops/bprop_mindir/DType_bprop.mindir +0 -14
- mindspore/ops/bprop_mindir/DeformableOffsets_bprop.mindir +0 -58
- mindspore/ops/bprop_mindir/Depend_bprop.mindir +0 -13
- mindspore/ops/bprop_mindir/DepthToSpace_bprop.mindir +0 -23
- mindspore/ops/bprop_mindir/DepthwiseConv2dNative_bprop.mindir +0 -138
- mindspore/ops/bprop_mindir/DiagPart_bprop.mindir +0 -15
- mindspore/ops/bprop_mindir/Dropout2D_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Dropout3D_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/DropoutDoMask_bprop.mindir +0 -25
- mindspore/ops/bprop_mindir/DropoutGenMask_bprop.mindir +0 -18
- mindspore/ops/bprop_mindir/DropoutGrad_bprop.mindir +0 -27
- mindspore/ops/bprop_mindir/Dropout_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/DynamicGRUV2_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/DynamicRNN_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/DynamicShape_bprop.mindir +0 -14
- mindspore/ops/bprop_mindir/Elu_bprop.mindir +0 -16
- mindspore/ops/bprop_mindir/EmbeddingLookup_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Equal_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/ExpandDims_bprop.mindir +0 -58
- mindspore/ops/bprop_mindir/FastGeLU_bprop.mindir +0 -16
- mindspore/ops/bprop_mindir/Flatten_bprop.mindir +0 -54
- mindspore/ops/bprop_mindir/FloorDiv_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/GatherD_bprop.mindir +0 -26
- mindspore/ops/bprop_mindir/GatherNd_bprop.mindir +0 -57
- mindspore/ops/bprop_mindir/Gather_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/GreaterEqual_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/Greater_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/HSigmoid_bprop.mindir +0 -16
- mindspore/ops/bprop_mindir/HSwish_bprop.mindir +0 -16
- mindspore/ops/bprop_mindir/IOU_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/InstanceNorm_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/IsFinite_bprop.mindir +0 -15
- mindspore/ops/bprop_mindir/IsInf_bprop.mindir +0 -15
- mindspore/ops/bprop_mindir/IsNan_bprop.mindir +0 -15
- mindspore/ops/bprop_mindir/KLDivLoss_bprop.mindir +0 -126
- mindspore/ops/bprop_mindir/L2Loss_bprop.mindir +0 -15
- mindspore/ops/bprop_mindir/L2Normalize_bprop.mindir +0 -30
- mindspore/ops/bprop_mindir/LRN_bprop.mindir +0 -43
- mindspore/ops/bprop_mindir/LayerNormGrad_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/LessEqual_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/Less_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/LinSpace_bprop.mindir +0 -23
- mindspore/ops/bprop_mindir/Load_bprop.mindir +0 -13
- mindspore/ops/bprop_mindir/LogSoftmax_bprop.mindir +0 -23
- mindspore/ops/bprop_mindir/LogicalAnd_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/LogicalNot_bprop.mindir +0 -15
- mindspore/ops/bprop_mindir/MaskedSelect_bprop.mindir +0 -21
- mindspore/ops/bprop_mindir/MaxPool3DGradGrad_bprop.mindir +0 -74
- mindspore/ops/bprop_mindir/MaxPool3DGrad_bprop.mindir +0 -74
- mindspore/ops/bprop_mindir/MaxPool3D_bprop.mindir +0 -75
- mindspore/ops/bprop_mindir/MaxPoolGradGrad_bprop.mindir +0 -65
- mindspore/ops/bprop_mindir/MaxPoolWithArgmax_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Maximum_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Minimum_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/MirrorPad_bprop.mindir +0 -27
- mindspore/ops/bprop_mindir/Mish_bprop.mindir +0 -35
- mindspore/ops/bprop_mindir/MulNoNan_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/NLLLoss_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/NonZero_bprop.mindir +0 -14
- mindspore/ops/bprop_mindir/NotEqual_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/OneHot_bprop.mindir +0 -26
- mindspore/ops/bprop_mindir/OnesLike_bprop.mindir +0 -14
- mindspore/ops/bprop_mindir/PReLU_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Pad_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Padding_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/RNNTLoss_bprop.mindir +0 -29
- mindspore/ops/bprop_mindir/ROIAlign_bprop.mindir +0 -82
- mindspore/ops/bprop_mindir/Range_bprop.mindir +0 -22
- mindspore/ops/bprop_mindir/Rank_bprop.mindir +0 -14
- mindspore/ops/bprop_mindir/ReLU6_bprop.mindir +0 -16
- mindspore/ops/bprop_mindir/ReLUV2_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/ReduceAll_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/ReduceAny_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/ReluGrad_bprop.mindir +0 -20
- mindspore/ops/bprop_mindir/Reshape_bprop.mindir +0 -60
- mindspore/ops/bprop_mindir/ResizeBilinear_bprop.mindir +0 -29
- mindspore/ops/bprop_mindir/ResizeNearestNeighbor_bprop.mindir +0 -89
- mindspore/ops/bprop_mindir/ReverseSequence_bprop.mindir +0 -52
- mindspore/ops/bprop_mindir/ReverseV2_bprop.mindir +0 -22
- mindspore/ops/bprop_mindir/Round_bprop.mindir +0 -15
- mindspore/ops/bprop_mindir/ScatterMax_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/ScatterMin_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/ScatterNdUpdate_bprop.mindir +0 -22
- mindspore/ops/bprop_mindir/ScatterNd_bprop.mindir +0 -24
- mindspore/ops/bprop_mindir/ScatterNonAliasingAdd_bprop.mindir +0 -22
- mindspore/ops/bprop_mindir/ScatterUpdate_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/SeLU_bprop.mindir +0 -21
- mindspore/ops/bprop_mindir/Select_bprop.mindir +0 -31
- mindspore/ops/bprop_mindir/Shape_bprop.mindir +0 -14
- mindspore/ops/bprop_mindir/SigmoidCrossEntropyWithLogits_bprop.mindir +0 -21
- mindspore/ops/bprop_mindir/SigmoidGrad_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Sigmoid_bprop.mindir +0 -16
- mindspore/ops/bprop_mindir/Sign_bprop.mindir +0 -15
- mindspore/ops/bprop_mindir/Slice_bprop.mindir +0 -26
- mindspore/ops/bprop_mindir/SmoothL1Loss_bprop.mindir +0 -36
- mindspore/ops/bprop_mindir/SoftmaxCrossEntropyWithLogits_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Softplus_bprop.mindir +0 -16
- mindspore/ops/bprop_mindir/Softsign_bprop.mindir +0 -33
- mindspore/ops/bprop_mindir/Sort_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/SpaceToBatchND_bprop.mindir +0 -28
- mindspore/ops/bprop_mindir/SpaceToDepth_bprop.mindir +0 -23
- mindspore/ops/bprop_mindir/SparseGatherV2_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/SparseSoftmaxCrossEntropyWithLogits_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Split_bprop.mindir +0 -22
- mindspore/ops/bprop_mindir/Squeeze_bprop.mindir +0 -54
- mindspore/ops/bprop_mindir/StridedSliceGrad_bprop.mindir +0 -95
- mindspore/ops/bprop_mindir/StridedSlice_bprop.mindir +0 -98
- mindspore/ops/bprop_mindir/Switch_bprop.mindir +0 -29
- mindspore/ops/bprop_mindir/TanhGrad_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Tanh_bprop.mindir +0 -66
- mindspore/ops/bprop_mindir/TensorScatterAdd_bprop.mindir +0 -22
- mindspore/ops/bprop_mindir/TensorScatterUpdate_bprop.mindir +0 -29
- mindspore/ops/bprop_mindir/TensorShape_bprop.mindir +0 -14
- mindspore/ops/bprop_mindir/Tile_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/TopK_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/TransShape_bprop.mindir +0 -23
- mindspore/ops/bprop_mindir/TruncateDiv_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/TupleGetItem_bprop.mindir +0 -20
- mindspore/ops/bprop_mindir/Unique_bprop.mindir +0 -16
- mindspore/ops/bprop_mindir/Unstack_bprop.mindir +0 -22
- mindspore/ops/bprop_mindir/UpsampleNearest3D_bprop.mindir +0 -32
- mindspore/ops/bprop_mindir/UpsampleTrilinear3D_bprop.mindir +0 -38
- mindspore/ops/bprop_mindir/ZerosLike_bprop.mindir +0 -15
- mindspore/ops/bprop_mindir/generate_mindir.py +0 -114
- mindspore/rewrite/node_visitor.py +0 -44
- mindspore/rewrite/topological_manager.py +0 -203
- mindspore/scipy/sparse/linalg.py +0 -192
- {mindspore-2.0.0rc1.dist-info → mindspore-2.2.0.dist-info}/WHEEL +0 -0
- {mindspore-2.0.0rc1.dist-info → mindspore-2.2.0.dist-info}/top_level.txt +0 -0
|
@@ -1,1529 +0,0 @@
|
|
|
1
|
-
# Copyright 2020-2022 Huawei Technologies Co., Ltd
|
|
2
|
-
#
|
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
-
# you may not use this file except in compliance with the License.
|
|
5
|
-
# You may obtain a copy of the License at
|
|
6
|
-
#
|
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
-
#
|
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
-
# See the License for the specific language governing permissions and
|
|
13
|
-
# limitations under the License.
|
|
14
|
-
# ============================================================================
|
|
15
|
-
|
|
16
|
-
"""Define the grad rules of neural network related operations."""
|
|
17
|
-
from mindspore import context
|
|
18
|
-
from mindspore.common import dtype as mstype
|
|
19
|
-
from mindspore.common.tensor import Tensor
|
|
20
|
-
from mindspore.ops.primitive import _primexpr
|
|
21
|
-
from mindspore.ops.operations import nn_ops as nps
|
|
22
|
-
from mindspore.ops._grad.grad_base import bprop_getters, dyn_size, create_tensor_by_element, dyn_rank
|
|
23
|
-
from mindspore.ops import functional as F
|
|
24
|
-
from mindspore.ops import operations as P
|
|
25
|
-
from mindspore.ops.composite.multitype_ops.zeros_like_impl import zeros_like
|
|
26
|
-
from mindspore.ops.operations import _grad_ops as G
|
|
27
|
-
from mindspore.ops.operations import _inner_ops as inner
|
|
28
|
-
from mindspore.ops.operations import _rl_inner_ops as rl_ops
|
|
29
|
-
from mindspore.ops._utils.utils import range_op, get_1d_shape
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
@_primexpr
|
|
33
|
-
def bias_add_gradgrad_helper(shape, bias_shape, data_format):
|
|
34
|
-
"""Helper function of BiasGradGrad to calculate expanded shape."""
|
|
35
|
-
new_shape = list(shape)
|
|
36
|
-
new_bias_shape = list(bias_shape)
|
|
37
|
-
|
|
38
|
-
ones_1 = []
|
|
39
|
-
ones_2 = []
|
|
40
|
-
for _ in new_shape[2:]:
|
|
41
|
-
ones_1.append(1)
|
|
42
|
-
|
|
43
|
-
for _ in new_shape[:-1]:
|
|
44
|
-
ones_2.append(1)
|
|
45
|
-
|
|
46
|
-
if data_format == "NCHW":
|
|
47
|
-
expanded_shape = [1] + new_bias_shape + ones_1
|
|
48
|
-
tile_mults = [new_shape[0]] + [1] + new_shape[2:]
|
|
49
|
-
else:
|
|
50
|
-
expanded_shape = ones_2 + new_bias_shape
|
|
51
|
-
tile_mults = new_shape[:-1] + [1]
|
|
52
|
-
return tuple(expanded_shape), tuple(tile_mults)
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
def bias_add_gradgrad_helper_dynamic(shape, bias_shape, data_format):
|
|
56
|
-
"""Helper function of BiasGradGrad to calculate expanded shape(dynamic version)."""
|
|
57
|
-
if data_format == "NCHW":
|
|
58
|
-
expanded_shape = P.Concat(0)((P.OnesLike()(shape[:1]), bias_shape, P.OnesLike()(shape[2:])))
|
|
59
|
-
tile_mults = P.Concat(0)((shape[:1], Tensor([1], dtype=mstype.int64), shape[2:]))
|
|
60
|
-
else:
|
|
61
|
-
expanded_shape = P.Concat(0)((P.OnesLike()(shape[:-1]), bias_shape))
|
|
62
|
-
tile_mults = P.Concat(0)((shape[:-1], Tensor([1], dtype=mstype.int64)))
|
|
63
|
-
return expanded_shape, tile_mults
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
@bprop_getters.register(G.BiasAddGrad)
|
|
67
|
-
def get_bprop_bias_add_grad(self):
|
|
68
|
-
"""Grad definition for `BiasAddGrad` operation."""
|
|
69
|
-
|
|
70
|
-
data_format = self.data_format
|
|
71
|
-
|
|
72
|
-
def bprop(dy, out, dout):
|
|
73
|
-
reshape = P.Reshape()
|
|
74
|
-
tile = P.Tile()
|
|
75
|
-
dyn_shape = P.TensorShape()
|
|
76
|
-
dy_shape = dy.shape
|
|
77
|
-
dout_shape = dout.shape
|
|
78
|
-
if F.is_sequence_value_unknown(dy_shape) or F.is_sequence_value_unknown(dout_shape):
|
|
79
|
-
dy_shape = dyn_shape(dy)
|
|
80
|
-
dout_shape = dyn_shape(dout)
|
|
81
|
-
expanded_shape, tile_mults = bias_add_gradgrad_helper_dynamic(dy_shape, dout_shape, data_format)
|
|
82
|
-
expanded_grad = reshape(dout, expanded_shape)
|
|
83
|
-
tiled_grad = tile(expanded_grad, tile_mults)
|
|
84
|
-
else:
|
|
85
|
-
expanded_shape, tile_mults = bias_add_gradgrad_helper(dy_shape, dout_shape, data_format)
|
|
86
|
-
expanded_grad = reshape(dout, expanded_shape)
|
|
87
|
-
tiled_grad = tile(expanded_grad, tile_mults)
|
|
88
|
-
return (tiled_grad,)
|
|
89
|
-
|
|
90
|
-
return bprop
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
@bprop_getters.register(nps.Conv3D)
|
|
94
|
-
def get_bprop_conv3d(self):
|
|
95
|
-
"""Grad definition for `Conv3D` operation."""
|
|
96
|
-
input_grad = nps.Conv3DBackpropInput(
|
|
97
|
-
self.out_channel, self.kernel_size, self.mode, pad_mode=self.pad_mode,
|
|
98
|
-
pad=self.pad, stride=self.stride, dilation=self.dilation, group=self.group, data_format=self.data_format
|
|
99
|
-
)
|
|
100
|
-
filter_grad = G.Conv3DBackpropFilter(
|
|
101
|
-
self.out_channel, self.kernel_size, self.mode, pad_mode=self.pad_mode,
|
|
102
|
-
pad=self.pad, stride=self.stride, dilation=self.dilation, group=self.group, data_format=self.data_format
|
|
103
|
-
)
|
|
104
|
-
get_shape = P.Shape()
|
|
105
|
-
get_dyn_shape = P.TensorShape()
|
|
106
|
-
cast = P.Cast()
|
|
107
|
-
get_dtype = P.DType()
|
|
108
|
-
|
|
109
|
-
def bprop(x, w, out, dout):
|
|
110
|
-
if F.is_sequence_value_unknown(get_shape(x)) or F.is_sequence_value_unknown(get_shape(w)):
|
|
111
|
-
dx = input_grad(w, dout, get_dyn_shape(x))
|
|
112
|
-
dw = cast(filter_grad(x, dout, get_dyn_shape(w)), get_dtype(x))
|
|
113
|
-
return dx, dw
|
|
114
|
-
|
|
115
|
-
dx = input_grad(w, dout, get_shape(x))
|
|
116
|
-
dw = cast(filter_grad(x, dout, get_shape(w)), get_dtype(x))
|
|
117
|
-
return dx, dw
|
|
118
|
-
|
|
119
|
-
return bprop
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
@bprop_getters.register(nps.Conv3DTranspose)
|
|
123
|
-
def get_bprop_conv3d_transpose(self):
|
|
124
|
-
"""Grad definition for `Conv3DTranspose` operation."""
|
|
125
|
-
stride = (self.stride[2], self.stride[3], self.stride[4])
|
|
126
|
-
dilation = (self.dilation[2], self.dilation[3], self.dilation[4])
|
|
127
|
-
pad_list = self.get_attr_dict()['pad_list']
|
|
128
|
-
input_grad = nps.Conv3D(
|
|
129
|
-
out_channel=self.in_channel, kernel_size=self.kernel_size, mode=self.mode, pad_mode="pad",
|
|
130
|
-
pad=pad_list, stride=stride, dilation=dilation, group=self.group, data_format=self.data_format
|
|
131
|
-
)
|
|
132
|
-
filter_grad = G.Conv3DBackpropFilter(
|
|
133
|
-
out_channel=self.in_channel, kernel_size=self.kernel_size, mode=self.mode, pad_mode="pad",
|
|
134
|
-
pad=pad_list, stride=self.stride, dilation=self.dilation, group=self.group, data_format=self.data_format
|
|
135
|
-
)
|
|
136
|
-
get_dyn_shape = P.TensorShape()
|
|
137
|
-
|
|
138
|
-
def bprop(x, w, out, dout):
|
|
139
|
-
if F.is_sequence_value_unknown(F.shape(w)):
|
|
140
|
-
dx = input_grad(dout, w)
|
|
141
|
-
dw = filter_grad(dout, x, get_dyn_shape(w))
|
|
142
|
-
return dx, dw
|
|
143
|
-
|
|
144
|
-
dx = input_grad(dout, w)
|
|
145
|
-
dw = filter_grad(dout, x, F.shape(w))
|
|
146
|
-
return dx, dw
|
|
147
|
-
|
|
148
|
-
return bprop
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
@bprop_getters.register(inner.ExtractImagePatches)
|
|
152
|
-
def get_bprop_extract_image_patches(self):
|
|
153
|
-
"""Grad definition for `ExtractImagePatches` operation."""
|
|
154
|
-
get_shape = P.Shape()
|
|
155
|
-
reshape = P.Reshape()
|
|
156
|
-
extract_image_patches = inner.ExtractImagePatches(ksizes=self.ksizes,
|
|
157
|
-
strides=self.strides,
|
|
158
|
-
rates=self.rates,
|
|
159
|
-
padding=self.padding)
|
|
160
|
-
concat = P.Concat(axis=-1)
|
|
161
|
-
expand_dims = P.ExpandDims()
|
|
162
|
-
scatter_nd = P.ScatterNd()
|
|
163
|
-
dtype = P.DType()
|
|
164
|
-
fill = P.Fill()
|
|
165
|
-
slice_op = P.Slice()
|
|
166
|
-
transpose = P.Transpose()
|
|
167
|
-
cast = P.Cast()
|
|
168
|
-
matmul = P.MatMul()
|
|
169
|
-
range_ = P.Range()
|
|
170
|
-
dyn_shape_op = P.TensorShape()
|
|
171
|
-
ones_like = P.OnesLike()
|
|
172
|
-
|
|
173
|
-
_, _, ksizes_row, ksizes_col = self.ksizes
|
|
174
|
-
|
|
175
|
-
def _dyn_extract_image_patched(x, out, dout):
|
|
176
|
-
x_shape = dyn_shape_op(x)
|
|
177
|
-
out_shape = dyn_shape_op(out)
|
|
178
|
-
x_batch, x_depth, x_row, x_col = x_shape[0], x_shape[1], x_shape[2], x_shape[3]
|
|
179
|
-
x_indices_num = x_row * x_col + 1
|
|
180
|
-
x_idx = range_(cast(1, mstype.float32), cast(x_indices_num, mstype.float32), cast(1, mstype.float32))
|
|
181
|
-
x_idx = reshape(x_idx, create_tensor_by_element((1, 1, x_row, x_col)))
|
|
182
|
-
x_idx_patch = cast(extract_image_patches(x_idx), mstype.int32)
|
|
183
|
-
x_idx_patch = transpose(x_idx_patch, (0, 2, 3, 1))
|
|
184
|
-
|
|
185
|
-
out_row, out_col = out_shape[2], out_shape[3]
|
|
186
|
-
out_indices_num = out_row * out_col * ksizes_row * ksizes_col
|
|
187
|
-
out_idx_ori = range_(cast(0, mstype.int32), cast(out_indices_num, mstype.int32), cast(1, mstype.int32))
|
|
188
|
-
out_idx = reshape(out_idx_ori, create_tensor_by_element((1, out_row, out_col, ksizes_row * ksizes_col)))
|
|
189
|
-
|
|
190
|
-
idx_tensor = concat((expand_dims(x_idx_patch, -1), expand_dims(out_idx, -1)))
|
|
191
|
-
idx_tensor = reshape(idx_tensor, (-1, 2))
|
|
192
|
-
sp_shape = create_tensor_by_element((x_indices_num, out_indices_num))
|
|
193
|
-
update = cast(ones_like(out_idx_ori), dtype(dout))
|
|
194
|
-
sp_tensor = scatter_nd(idx_tensor, update, sp_shape)
|
|
195
|
-
begin = create_tensor_by_element((1, 0))
|
|
196
|
-
size = create_tensor_by_element((x_indices_num - 1, out_indices_num))
|
|
197
|
-
sp_tensor = slice_op(sp_tensor, begin, size)
|
|
198
|
-
|
|
199
|
-
grad = transpose(dout, (0, 2, 3, 1))
|
|
200
|
-
grad = reshape(grad, create_tensor_by_element((x_batch, out_row, out_col, ksizes_row, ksizes_col, x_depth)))
|
|
201
|
-
grad = transpose(grad, (1, 2, 3, 4, 0, 5))
|
|
202
|
-
grad = reshape(grad, create_tensor_by_element((out_row * out_col * ksizes_row * ksizes_col, x_batch * x_depth)))
|
|
203
|
-
|
|
204
|
-
jac = matmul(sp_tensor, grad)
|
|
205
|
-
dx = reshape(jac, create_tensor_by_element((x_row, x_col, x_batch, x_depth)))
|
|
206
|
-
dx = transpose(dx, (2, 3, 0, 1))
|
|
207
|
-
return (dx,)
|
|
208
|
-
|
|
209
|
-
def bprop(x, out, dout):
|
|
210
|
-
x_shape = get_shape(x)
|
|
211
|
-
out_shape = get_shape(out)
|
|
212
|
-
if F.is_sequence_value_unknown(x_shape) or F.is_sequence_value_unknown(out_shape):
|
|
213
|
-
return _dyn_extract_image_patched(x, out, dout)
|
|
214
|
-
x_batch, x_depth, x_row, x_col = x_shape
|
|
215
|
-
x_indices_num = x_row * x_col + 1
|
|
216
|
-
x_idx = cast(F.tuple_to_array(range(1, x_indices_num)), mstype.float32)
|
|
217
|
-
x_idx = reshape(x_idx, (1, 1, x_row, x_col))
|
|
218
|
-
x_idx_patch = cast(extract_image_patches(x_idx), mstype.int32)
|
|
219
|
-
x_idx_patch = transpose(x_idx_patch, (0, 2, 3, 1))
|
|
220
|
-
|
|
221
|
-
_, _, out_row, out_col = out_shape
|
|
222
|
-
out_indices_num = out_row * out_col * ksizes_row * ksizes_col
|
|
223
|
-
out_idx = F.tuple_to_array(range(out_indices_num))
|
|
224
|
-
out_idx = reshape(out_idx, (1, out_row, out_col, ksizes_row * ksizes_col))
|
|
225
|
-
|
|
226
|
-
idx_tensor = concat((expand_dims(x_idx_patch, -1), expand_dims(out_idx, -1)))
|
|
227
|
-
idx_tensor = reshape(idx_tensor, (-1, 2))
|
|
228
|
-
sp_shape = (x_indices_num, out_indices_num)
|
|
229
|
-
sp_tensor = scatter_nd(idx_tensor, fill(dtype(dout), (out_indices_num,), 1), sp_shape)
|
|
230
|
-
sp_tensor = slice_op(sp_tensor, (1, 0), (x_indices_num - 1, out_indices_num))
|
|
231
|
-
|
|
232
|
-
grad = transpose(dout, (0, 2, 3, 1))
|
|
233
|
-
grad = reshape(grad, (x_batch, out_row, out_col, ksizes_row, ksizes_col, x_depth))
|
|
234
|
-
grad = transpose(grad, (1, 2, 3, 4, 0, 5))
|
|
235
|
-
grad = reshape(grad, (-1, x_batch * x_depth))
|
|
236
|
-
|
|
237
|
-
jac = matmul(sp_tensor, grad)
|
|
238
|
-
dx = reshape(jac, (x_row, x_col, x_batch, x_depth))
|
|
239
|
-
dx = transpose(dx, (2, 3, 0, 1))
|
|
240
|
-
return (dx,)
|
|
241
|
-
|
|
242
|
-
return bprop
|
|
243
|
-
|
|
244
|
-
|
|
245
|
-
@bprop_getters.register(P.DepthwiseConv2dNative)
|
|
246
|
-
def get_bprop_depthwise_conv2d_native(self):
|
|
247
|
-
"""Grad definition for `DepthwiseConv2dNative` operation."""
|
|
248
|
-
input_grad = G.DepthwiseConv2dNativeBackpropInput(
|
|
249
|
-
self.channel_multiplier, self.kernel_size, self.pad_mode, self.pad, self.pad_list, self.mode, self.stride,
|
|
250
|
-
self.dilation, self.group
|
|
251
|
-
)
|
|
252
|
-
filter_grad = G.DepthwiseConv2dNativeBackpropFilter(
|
|
253
|
-
self.channel_multiplier, self.kernel_size, self.pad_mode, self.pad, self.pad_list, self.mode, self.stride,
|
|
254
|
-
self.dilation, self.group
|
|
255
|
-
)
|
|
256
|
-
get_shape = P.Shape()
|
|
257
|
-
|
|
258
|
-
def bprop(x, w, out, dout):
|
|
259
|
-
dx = input_grad(get_shape(x), w, dout)
|
|
260
|
-
|
|
261
|
-
dw = filter_grad(x, get_shape(w), dout)
|
|
262
|
-
return dx, dw
|
|
263
|
-
|
|
264
|
-
return bprop
|
|
265
|
-
|
|
266
|
-
|
|
267
|
-
@bprop_getters.register(P.MaxPoolWithArgmax)
|
|
268
|
-
def get_bprop_max_pool_with_argmax(self):
|
|
269
|
-
"""Grad definition for `MaxPoolWithArgmax` operation."""
|
|
270
|
-
maxpool_grad = G.MaxPoolGradWithArgmax(
|
|
271
|
-
kernel_size=self.kernel_size,
|
|
272
|
-
strides=self.strides,
|
|
273
|
-
pad_mode=self.pad_mode)
|
|
274
|
-
|
|
275
|
-
def bprop(x, out, dout):
|
|
276
|
-
dx = maxpool_grad(x, dout[0], out[1])
|
|
277
|
-
return (dx,)
|
|
278
|
-
|
|
279
|
-
return bprop
|
|
280
|
-
|
|
281
|
-
|
|
282
|
-
@bprop_getters.register(G.MaxPoolGrad)
|
|
283
|
-
def get_bprop_max_pool_grad_grad(self):
|
|
284
|
-
"""Grad definition for `MaxPoolGrad` operation."""
|
|
285
|
-
device_target = context.get_context("device_target")
|
|
286
|
-
is_ascend = (device_target == "Ascend")
|
|
287
|
-
if device_target == "Ascend":
|
|
288
|
-
maxpool_grad_grad = G.MaxPoolGradGrad(
|
|
289
|
-
kernel_size=self.kernel_size,
|
|
290
|
-
strides=self.strides,
|
|
291
|
-
pad_mode=self.pad_mode)
|
|
292
|
-
elif device_target == "GPU":
|
|
293
|
-
if self.data_format != "NCHW":
|
|
294
|
-
raise RuntimeError("MaxPoolGradGrad does not support NHWC!")
|
|
295
|
-
kernel_size = self.kernel_size
|
|
296
|
-
if isinstance(kernel_size, tuple) and len(kernel_size) == 4:
|
|
297
|
-
kernel_size = kernel_size[2:]
|
|
298
|
-
strides = self.strides
|
|
299
|
-
if isinstance(strides, tuple) and len(strides) == 4:
|
|
300
|
-
strides = strides[2:]
|
|
301
|
-
maxpool_with_argmax = P.MaxPoolWithArgmax(kernel_size=kernel_size, strides=strides, pad_mode=self.pad_mode)
|
|
302
|
-
gather = P.GatherNd()
|
|
303
|
-
reshape = P.Reshape()
|
|
304
|
-
else:
|
|
305
|
-
raise RuntimeError("MaxPoolGradGrad does not support on CPU!")
|
|
306
|
-
shape_op = P.Shape()
|
|
307
|
-
dyn_shape_op = P.TensorShape()
|
|
308
|
-
op_range = P.Range()
|
|
309
|
-
dyn_broadcast_op = inner.DynamicBroadcastTo()
|
|
310
|
-
|
|
311
|
-
|
|
312
|
-
def bprop(x1, x2, grad, out, dout):
|
|
313
|
-
dx1 = zeros_like(x1)
|
|
314
|
-
dx2 = zeros_like(x2)
|
|
315
|
-
if is_ascend:
|
|
316
|
-
dgrad = maxpool_grad_grad(x1, x2, dout)
|
|
317
|
-
else:
|
|
318
|
-
shape_x2 = shape_op(x2)
|
|
319
|
-
if F.is_sequence_value_unknown(shape_x2):
|
|
320
|
-
shape_x2 = dyn_shape_op(x2)
|
|
321
|
-
b, c, h, w = shape_x2
|
|
322
|
-
_, ind = maxpool_with_argmax(x1)
|
|
323
|
-
batch = op_range(F.cast(0, mstype.int32), F.cast(b, mstype.int32), F.cast(1, mstype.int32))
|
|
324
|
-
batch = dyn_broadcast_op(reshape(batch, (-1, 1)),
|
|
325
|
-
create_tensor_by_element((dyn_size(batch), c * h * w)))
|
|
326
|
-
gather_ind = P.Stack(-1)((batch, reshape(ind, create_tensor_by_element((b, -1)))))
|
|
327
|
-
dgrad = reshape(gather(reshape(dout, create_tensor_by_element((b, -1))), gather_ind),
|
|
328
|
-
create_tensor_by_element((b, c, h, w)))
|
|
329
|
-
else:
|
|
330
|
-
b, c, h, w = shape_x2
|
|
331
|
-
_, ind = maxpool_with_argmax(x1)
|
|
332
|
-
batch = F.cast(F.tuple_to_array(range(b)), mstype.int32)
|
|
333
|
-
batch = P.Tile()(reshape(batch, (-1, 1)), (1, c * h * w))
|
|
334
|
-
gather_ind = P.Stack(-1)((batch, reshape(ind, (b, -1))))
|
|
335
|
-
dgrad = reshape(gather(reshape(dout, (b, -1)), gather_ind), (b, c, h, w))
|
|
336
|
-
return (dx1, dx2, dgrad)
|
|
337
|
-
|
|
338
|
-
return bprop
|
|
339
|
-
|
|
340
|
-
|
|
341
|
-
@bprop_getters.register(G.MaxPoolGradGrad)
|
|
342
|
-
def get_bprop_max_pool_grad_grad_grad(self):
|
|
343
|
-
"""Grad definition for `MaxPoolGradGrad` operation."""
|
|
344
|
-
maxpool_grad = G.MaxPoolGrad(
|
|
345
|
-
kernel_size=self.kernel_size,
|
|
346
|
-
strides=self.strides,
|
|
347
|
-
pad_mode=self.pad_mode)
|
|
348
|
-
|
|
349
|
-
def bprop(x1, x2, grad, out, dout):
|
|
350
|
-
dx1 = zeros_like(x1)
|
|
351
|
-
dx2 = zeros_like(x2)
|
|
352
|
-
dgrad = maxpool_grad(x1, x2, dout)
|
|
353
|
-
return (dx1, dx2, dgrad)
|
|
354
|
-
|
|
355
|
-
return bprop
|
|
356
|
-
|
|
357
|
-
|
|
358
|
-
@bprop_getters.register(P.MaxPool3D)
|
|
359
|
-
def get_bprop_max_pool3d_grad(self):
|
|
360
|
-
"""Grad definition for `MaxPool3D` operation."""
|
|
361
|
-
max_pool3d_grad = G.MaxPool3DGrad(
|
|
362
|
-
kernel_size=self.kernel_size,
|
|
363
|
-
strides=self.strides,
|
|
364
|
-
pad_mode=self.pad_mode,
|
|
365
|
-
pad_list=self.pad_list,
|
|
366
|
-
data_format=self.data_format)
|
|
367
|
-
|
|
368
|
-
def bprop(x, out, dout):
|
|
369
|
-
dx = max_pool3d_grad(x, out, dout)
|
|
370
|
-
return (dx,)
|
|
371
|
-
|
|
372
|
-
return bprop
|
|
373
|
-
|
|
374
|
-
|
|
375
|
-
@bprop_getters.register(G.MaxPool3DGrad)
|
|
376
|
-
def get_bprop_max_pool3d_grad_grad(self):
|
|
377
|
-
"""Grad definition for `MaxPool3Grad` operation."""
|
|
378
|
-
max_pool3d_grad_grad = G.MaxPool3DGradGrad(
|
|
379
|
-
kernel_size=self.kernel_size,
|
|
380
|
-
strides=self.strides,
|
|
381
|
-
pad_mode=self.pad_mode,
|
|
382
|
-
data_format=self.data_format)
|
|
383
|
-
|
|
384
|
-
def bprop(x, y, grad, out, dout):
|
|
385
|
-
dgrad = max_pool3d_grad_grad(x, y, dout)
|
|
386
|
-
return zeros_like(x), zeros_like(y), dgrad
|
|
387
|
-
|
|
388
|
-
return bprop
|
|
389
|
-
|
|
390
|
-
|
|
391
|
-
@bprop_getters.register(G.MaxPool3DGradGrad)
|
|
392
|
-
def get_bprop_max_pool3d_grad_grad_grad(self):
|
|
393
|
-
"""Grad definition for `MaxPool3GradGrad` operation."""
|
|
394
|
-
|
|
395
|
-
max_pool3d_grad = G.MaxPool3DGrad(
|
|
396
|
-
kernel_size=self.kernel_size,
|
|
397
|
-
strides=self.strides,
|
|
398
|
-
pad_mode=self.pad_mode,
|
|
399
|
-
data_format=self.data_format)
|
|
400
|
-
|
|
401
|
-
def bprop(x, y, grad, out, dout):
|
|
402
|
-
dgrad = max_pool3d_grad(x, y, dout)
|
|
403
|
-
return zeros_like(x), zeros_like(y), dgrad
|
|
404
|
-
|
|
405
|
-
return bprop
|
|
406
|
-
|
|
407
|
-
|
|
408
|
-
@bprop_getters.register(nps.AdaptiveMaxPool2D)
|
|
409
|
-
def get_bprop_adaptive_max_pool2d_grad(self):
|
|
410
|
-
"""Grad definition for `AdaptiveMaxPool2D` operation."""
|
|
411
|
-
adaptive_maxpool2d_grad = G.AdaptiveMaxPool2DGrad()
|
|
412
|
-
|
|
413
|
-
def bprop(x, out, dout):
|
|
414
|
-
dy = dout[0]
|
|
415
|
-
index = out[1]
|
|
416
|
-
dx = adaptive_maxpool2d_grad(dy, x, index)
|
|
417
|
-
return (dx,)
|
|
418
|
-
|
|
419
|
-
return bprop
|
|
420
|
-
|
|
421
|
-
|
|
422
|
-
@bprop_getters.register(P.AvgPool)
|
|
423
|
-
def get_bprop_avg_pool_grad(self):
|
|
424
|
-
"""Grad definition for `AvgPool` operation."""
|
|
425
|
-
avgpool_grad = G.AvgPoolGrad(
|
|
426
|
-
kernel_size=self.kernel_size,
|
|
427
|
-
strides=self.strides,
|
|
428
|
-
pad_mode=self.pad_mode,
|
|
429
|
-
data_format=self.format)
|
|
430
|
-
|
|
431
|
-
def bprop(x, out, dout):
|
|
432
|
-
dx = avgpool_grad(x, out, dout)
|
|
433
|
-
return (dx,)
|
|
434
|
-
|
|
435
|
-
return bprop
|
|
436
|
-
|
|
437
|
-
|
|
438
|
-
@bprop_getters.register(P.AdaptiveAvgPool2D)
|
|
439
|
-
def get_bprop_adaptive_avg_pool2d_grad(self):
|
|
440
|
-
"""Grad definition for `AdaptiveAvgPool2D` operation."""
|
|
441
|
-
adaptive_avgpool_grad = G.AdaptiveAvgPool2DGrad()
|
|
442
|
-
shape = P.TensorShape()
|
|
443
|
-
|
|
444
|
-
def bprop(x, out, dout):
|
|
445
|
-
dx = adaptive_avgpool_grad(dout, shape(x))
|
|
446
|
-
return (dx,)
|
|
447
|
-
|
|
448
|
-
return bprop
|
|
449
|
-
|
|
450
|
-
|
|
451
|
-
@bprop_getters.register(P.AvgPool3D)
|
|
452
|
-
def get_bprop_avg_pool_3d_grad(self):
|
|
453
|
-
"""Grad definition for `AvgPool3D` operation."""
|
|
454
|
-
pad_list = self.get_attr_dict()['pad_list']
|
|
455
|
-
count_include_pad = self.get_attr_dict()['count_include_pad']
|
|
456
|
-
avgpool3d_grad = G.AvgPool3DGrad(kernel_size=self.kernel_size,
|
|
457
|
-
strides=self.strides,
|
|
458
|
-
pads=pad_list,
|
|
459
|
-
ceil_mode=self.ceil_mode,
|
|
460
|
-
count_include_pad=count_include_pad,
|
|
461
|
-
divisor_override=self.divisor_override,
|
|
462
|
-
data_format=self.data_format,
|
|
463
|
-
pad_mode=self.pad_mode)
|
|
464
|
-
|
|
465
|
-
def bprop(x, out, dout):
|
|
466
|
-
x_shape = F.shape(x)
|
|
467
|
-
if F.is_sequence_value_unknown(x_shape):
|
|
468
|
-
x_shape = P.TensorShape()(x)
|
|
469
|
-
dx = avgpool3d_grad(x_shape, dout)
|
|
470
|
-
return (dx,)
|
|
471
|
-
|
|
472
|
-
return bprop
|
|
473
|
-
|
|
474
|
-
|
|
475
|
-
@bprop_getters.register(P.DropoutGenMask)
|
|
476
|
-
def get_bprop_dropout_gen_mask(self):
|
|
477
|
-
"""Grad definition for `DropoutGenMask` operation."""
|
|
478
|
-
|
|
479
|
-
def bprop(shape, keep_prob, out, dout):
|
|
480
|
-
return (zeros_like(shape), zeros_like(keep_prob))
|
|
481
|
-
|
|
482
|
-
return bprop
|
|
483
|
-
|
|
484
|
-
|
|
485
|
-
@bprop_getters.register(P.DropoutDoMask)
|
|
486
|
-
def get_bprop_dropout_do_mask(self):
|
|
487
|
-
"""Grad definition for `DropoutDoMask` operation."""
|
|
488
|
-
do_mask = P.DropoutDoMask()
|
|
489
|
-
|
|
490
|
-
def bprop(x, y, keep_prob, out, dout):
|
|
491
|
-
return (do_mask(dout, y, keep_prob), zeros_like(y), zeros_like(keep_prob))
|
|
492
|
-
|
|
493
|
-
return bprop
|
|
494
|
-
|
|
495
|
-
|
|
496
|
-
@bprop_getters.register(P.Mish)
|
|
497
|
-
def get_bprop_mish(self):
|
|
498
|
-
"""Grad definition for `Mish` operation."""
|
|
499
|
-
tanh = P.Tanh()
|
|
500
|
-
tanh_grad = G.TanhGrad()
|
|
501
|
-
softplus = P.Softplus()
|
|
502
|
-
softplus_grad = G.SoftplusGrad()
|
|
503
|
-
|
|
504
|
-
def bprop(x, out, dout):
|
|
505
|
-
dx1 = tanh(softplus(x))
|
|
506
|
-
dx2 = softplus_grad(tanh_grad(dx1, x * dout), x)
|
|
507
|
-
dx = (dx1 * dout + dx2)
|
|
508
|
-
return (dx,)
|
|
509
|
-
|
|
510
|
-
return bprop
|
|
511
|
-
|
|
512
|
-
|
|
513
|
-
@bprop_getters.register(P.SeLU)
|
|
514
|
-
def get_bprop_selu(self):
|
|
515
|
-
"""Grad definition for `SeLU` operation."""
|
|
516
|
-
scale = 1.0507009873554804934193349852946
|
|
517
|
-
elu_grad = G.EluGrad()
|
|
518
|
-
|
|
519
|
-
def bprop(x, out, dout):
|
|
520
|
-
dx = elu_grad(dout, out) * scale
|
|
521
|
-
return (dx,)
|
|
522
|
-
|
|
523
|
-
return bprop
|
|
524
|
-
|
|
525
|
-
|
|
526
|
-
@bprop_getters.register(P.MulNoNan)
|
|
527
|
-
def get_bprop_mul_no_nan(self):
|
|
528
|
-
"""Grad definition for `MulNoNan` operation."""
|
|
529
|
-
mul_no_nan = P.MulNoNan()
|
|
530
|
-
reduce_sum = P.ReduceSum()
|
|
531
|
-
reshape = P.Reshape()
|
|
532
|
-
|
|
533
|
-
def bprop(x, y, out, dout):
|
|
534
|
-
x_shape = F.shape(x)
|
|
535
|
-
y_shape = F.shape(y)
|
|
536
|
-
dx = mul_no_nan(dout, y)
|
|
537
|
-
dy = mul_no_nan(x, dout)
|
|
538
|
-
broadcast_x, broadcast_y = F.broadcast_gradient_args(x_shape, y_shape)
|
|
539
|
-
if broadcast_x != ():
|
|
540
|
-
dx = reshape(reduce_sum(dx, broadcast_x), x_shape)
|
|
541
|
-
if broadcast_y != ():
|
|
542
|
-
dy = reshape(reduce_sum(dy, broadcast_y), y_shape)
|
|
543
|
-
return dx, dy
|
|
544
|
-
|
|
545
|
-
return bprop
|
|
546
|
-
|
|
547
|
-
|
|
548
|
-
@bprop_getters.register(G.ReluGrad)
|
|
549
|
-
def get_bprop_relu_grad(self):
|
|
550
|
-
"""Grad definition for `ReLUGrad` operation."""
|
|
551
|
-
input_grad = G.ReluGrad()
|
|
552
|
-
|
|
553
|
-
def bprop(grad, y, out, dout):
|
|
554
|
-
dgrad = input_grad(dout, y)
|
|
555
|
-
return dgrad, zeros_like(y)
|
|
556
|
-
|
|
557
|
-
return bprop
|
|
558
|
-
|
|
559
|
-
|
|
560
|
-
@bprop_getters.register(P.ReLU6)
|
|
561
|
-
def get_bprop_relu6(self):
|
|
562
|
-
"""Grad definition for `ReLU6` operation."""
|
|
563
|
-
input_grad = G.ReLU6Grad()
|
|
564
|
-
|
|
565
|
-
def bprop(x, out, dout):
|
|
566
|
-
dx = input_grad(dout, x)
|
|
567
|
-
return (dx,)
|
|
568
|
-
|
|
569
|
-
return bprop
|
|
570
|
-
|
|
571
|
-
|
|
572
|
-
@bprop_getters.register(P.ReLUV2)
|
|
573
|
-
def get_bprop_relu_v2(self):
|
|
574
|
-
"""Grad definition for `ReLUV2` operation."""
|
|
575
|
-
input_grad = G.ReluGradV2()
|
|
576
|
-
|
|
577
|
-
def bprop(x, out, dout):
|
|
578
|
-
mask = out[1]
|
|
579
|
-
dx = input_grad(dout[0], mask)
|
|
580
|
-
return (dx,)
|
|
581
|
-
|
|
582
|
-
return bprop
|
|
583
|
-
|
|
584
|
-
|
|
585
|
-
@bprop_getters.register(P.HSwish)
|
|
586
|
-
def get_bprop_hswish(self):
|
|
587
|
-
"""Grad definition for `HSwish` operation."""
|
|
588
|
-
input_grad = G.HSwishGrad()
|
|
589
|
-
|
|
590
|
-
def bprop(x, out, dout):
|
|
591
|
-
dx = input_grad(dout, x)
|
|
592
|
-
return (dx,)
|
|
593
|
-
|
|
594
|
-
return bprop
|
|
595
|
-
|
|
596
|
-
|
|
597
|
-
@bprop_getters.register(P.HSigmoid)
|
|
598
|
-
def get_bprop_hsigmoid(self):
|
|
599
|
-
"""Grad definition for `HSigmoid` operation."""
|
|
600
|
-
input_grad = G.HSigmoidGrad()
|
|
601
|
-
|
|
602
|
-
def bprop(x, out, dout):
|
|
603
|
-
dx = input_grad(dout, x)
|
|
604
|
-
return (dx,)
|
|
605
|
-
|
|
606
|
-
return bprop
|
|
607
|
-
|
|
608
|
-
|
|
609
|
-
@bprop_getters.register(P.Elu)
|
|
610
|
-
def get_bprop_elu(self):
|
|
611
|
-
"""Grad definition for `Elu` operation."""
|
|
612
|
-
input_grad = G.EluGrad()
|
|
613
|
-
|
|
614
|
-
def bprop(x, out, dout):
|
|
615
|
-
dx = input_grad(dout, out)
|
|
616
|
-
return (dx,)
|
|
617
|
-
|
|
618
|
-
return bprop
|
|
619
|
-
|
|
620
|
-
|
|
621
|
-
@bprop_getters.register(P.Sigmoid)
|
|
622
|
-
def get_bprop_sigmoid(self):
|
|
623
|
-
"""Grad definition for `Sigmoid` operation."""
|
|
624
|
-
input_grad = G.SigmoidGrad()
|
|
625
|
-
|
|
626
|
-
def bprop(x, out, dout):
|
|
627
|
-
dx = input_grad(out, dout)
|
|
628
|
-
return (dx,)
|
|
629
|
-
|
|
630
|
-
return bprop
|
|
631
|
-
|
|
632
|
-
|
|
633
|
-
@bprop_getters.register(G.SigmoidGrad)
|
|
634
|
-
def get_bprop_sigmoid_grad(self):
|
|
635
|
-
"""Grad definition for `SigmoidGrad` operation."""
|
|
636
|
-
sigmoid_grad = G.SigmoidGrad()
|
|
637
|
-
|
|
638
|
-
def bprop(y, grad, out, dout):
|
|
639
|
-
dy = dout * grad * (1. - 2 * y)
|
|
640
|
-
dgrad = sigmoid_grad(y, dout)
|
|
641
|
-
return dy, dgrad
|
|
642
|
-
|
|
643
|
-
return bprop
|
|
644
|
-
|
|
645
|
-
|
|
646
|
-
@_primexpr
|
|
647
|
-
def _get_transpose_axis(x_shp, axis):
|
|
648
|
-
rank = len(x_shp)
|
|
649
|
-
if axis < 0:
|
|
650
|
-
axis += rank
|
|
651
|
-
reverse_axis = [i for i in range(rank)]
|
|
652
|
-
reverse_axis[axis] = rank - 1
|
|
653
|
-
reverse_axis[rank - 1] = axis
|
|
654
|
-
return tuple(reverse_axis)
|
|
655
|
-
|
|
656
|
-
|
|
657
|
-
def _get_dyn_transpose_axis(x, axis, is_ascend):
|
|
658
|
-
"""Get transpose axis"""
|
|
659
|
-
if F.is_sequence_shape_unknown(P.Shape()(x)):
|
|
660
|
-
rank = dyn_rank(x)
|
|
661
|
-
start = Tensor(0, dtype=mstype.int64)
|
|
662
|
-
delta = Tensor(1, dtype=mstype.int64)
|
|
663
|
-
else:
|
|
664
|
-
rank = P.Cast()(len(P.Shape()(x)), mstype.int64)
|
|
665
|
-
start = P.Cast()(0, mstype.int64)
|
|
666
|
-
delta = P.Cast()(1, mstype.int64)
|
|
667
|
-
|
|
668
|
-
if axis < 0:
|
|
669
|
-
axis += rank
|
|
670
|
-
range_ops = P.Range()
|
|
671
|
-
|
|
672
|
-
reverse_axis = range_ops(start, rank, delta)
|
|
673
|
-
if is_ascend:
|
|
674
|
-
reverse_axis = P.Cast()(reverse_axis, mstype.int8)
|
|
675
|
-
axis = P.Cast()(axis, mstype.int32)
|
|
676
|
-
reverse_axis[axis] = rank - 1
|
|
677
|
-
rank = P.Cast()(rank, mstype.int32)
|
|
678
|
-
else:
|
|
679
|
-
reverse_axis[axis] = rank - 1
|
|
680
|
-
|
|
681
|
-
reverse_axis[rank - 1] = axis
|
|
682
|
-
return reverse_axis
|
|
683
|
-
|
|
684
|
-
|
|
685
|
-
@bprop_getters.register(P.Softmax)
|
|
686
|
-
def get_bprop_softmax(self):
|
|
687
|
-
"""Grad definition for `Softmax` operation."""
|
|
688
|
-
sum_func = P.ReduceSum(keep_dims=True)
|
|
689
|
-
sub = P.Sub()
|
|
690
|
-
mul = P.Mul()
|
|
691
|
-
get_shape = P.Shape()
|
|
692
|
-
transpose = P.Transpose()
|
|
693
|
-
axis = self.axis
|
|
694
|
-
if not isinstance(axis, int):
|
|
695
|
-
axis = axis[0]
|
|
696
|
-
|
|
697
|
-
device_target = context.get_context("device_target")
|
|
698
|
-
is_ascend = (device_target == "Ascend")
|
|
699
|
-
|
|
700
|
-
def bprop(x, out, dout):
|
|
701
|
-
# dx can be expressed as (dout - sum(dout * out)) * out
|
|
702
|
-
# This formula is correct only when the `axis` is the last dimension.
|
|
703
|
-
# In order to support the scenario where the `axis` is other values,
|
|
704
|
-
# we transpose the data of the `axis` dimension to the last dimension for calculation,
|
|
705
|
-
# and then transpose it back after the calculation.
|
|
706
|
-
shp = get_shape(x)
|
|
707
|
-
if F.is_sequence_value_unknown(shp):
|
|
708
|
-
reverse_axis = _get_dyn_transpose_axis(x, axis, is_ascend)
|
|
709
|
-
if is_ascend:
|
|
710
|
-
reverse_axis = P.Cast()(reverse_axis, mstype.int32)
|
|
711
|
-
else:
|
|
712
|
-
reverse_axis = _get_transpose_axis(get_shape(x), axis)
|
|
713
|
-
out = transpose(out, reverse_axis)
|
|
714
|
-
dout = transpose(dout, reverse_axis)
|
|
715
|
-
dx = mul(out, sub(dout, sum_func(mul(out, dout), -1)))
|
|
716
|
-
dx = transpose(dx, reverse_axis)
|
|
717
|
-
return (dx,)
|
|
718
|
-
|
|
719
|
-
return bprop
|
|
720
|
-
|
|
721
|
-
|
|
722
|
-
@bprop_getters.register(P.LogSoftmax)
|
|
723
|
-
def get_bprop_log_softmax(self):
|
|
724
|
-
"""Grad definition for `LogSoftmax` operation."""
|
|
725
|
-
logsoftmax_grad = G.LogSoftmaxGrad(self.axis)
|
|
726
|
-
|
|
727
|
-
def bprop(x, out, dout):
|
|
728
|
-
dx = logsoftmax_grad(out, dout)
|
|
729
|
-
return (dx,)
|
|
730
|
-
|
|
731
|
-
return bprop
|
|
732
|
-
|
|
733
|
-
|
|
734
|
-
@bprop_getters.register(P.Softplus)
|
|
735
|
-
def get_bprop_softplus(self):
|
|
736
|
-
"""Grad definition for `Softplus` operation."""
|
|
737
|
-
softplus_grad = G.SoftplusGrad()
|
|
738
|
-
|
|
739
|
-
def bprop(x, out, dout):
|
|
740
|
-
dx = softplus_grad(dout, x)
|
|
741
|
-
return (dx,)
|
|
742
|
-
|
|
743
|
-
return bprop
|
|
744
|
-
|
|
745
|
-
|
|
746
|
-
@bprop_getters.register(P.Softsign)
|
|
747
|
-
def get_bprop_softsign(self):
|
|
748
|
-
"""Grad definition for `Softsign` operation."""
|
|
749
|
-
mul = P.Mul()
|
|
750
|
-
absolute = P.Abs()
|
|
751
|
-
div = P.Div()
|
|
752
|
-
square = P.Square()
|
|
753
|
-
|
|
754
|
-
def bprop(x, out, dout):
|
|
755
|
-
dx = mul(dout, div(1, square(1 + absolute(x))))
|
|
756
|
-
return (dx,)
|
|
757
|
-
|
|
758
|
-
return bprop
|
|
759
|
-
|
|
760
|
-
|
|
761
|
-
@bprop_getters.register(P.Tanh)
|
|
762
|
-
def get_bprop_tanh(self):
|
|
763
|
-
"""Grad definition for `Tanh` operation."""
|
|
764
|
-
tanh_grad = G.TanhGrad()
|
|
765
|
-
conj = P.Conj()
|
|
766
|
-
|
|
767
|
-
def bprop(x, out, dout):
|
|
768
|
-
if x.dtype in (mstype.complex64, mstype.complex128):
|
|
769
|
-
dout = conj(dout)
|
|
770
|
-
dx = tanh_grad(out, dout)
|
|
771
|
-
dx = conj(dx)
|
|
772
|
-
else:
|
|
773
|
-
dx = tanh_grad(out, dout)
|
|
774
|
-
return (dx,)
|
|
775
|
-
|
|
776
|
-
return bprop
|
|
777
|
-
|
|
778
|
-
|
|
779
|
-
@bprop_getters.register(G.TanhGrad)
|
|
780
|
-
def get_bprop_tanh_grad(self):
|
|
781
|
-
"""Grad definition for `TanhGrad` operation."""
|
|
782
|
-
tanh_grad = G.TanhGrad()
|
|
783
|
-
|
|
784
|
-
def bprop(y, grad, out, dout):
|
|
785
|
-
dy = dout * -2.0 * grad * y
|
|
786
|
-
dgrad = tanh_grad(y, dout)
|
|
787
|
-
return dy, dgrad
|
|
788
|
-
|
|
789
|
-
return bprop
|
|
790
|
-
|
|
791
|
-
|
|
792
|
-
@bprop_getters.register(P.FastGeLU)
|
|
793
|
-
def get_bprop_fast_gelu(self):
|
|
794
|
-
"""Grad definition for `FastGeLU` operation."""
|
|
795
|
-
input_grad = G.FastGeLUGrad()
|
|
796
|
-
|
|
797
|
-
def bprop(x, out, dout):
|
|
798
|
-
dx = input_grad(dout, x)
|
|
799
|
-
return (dx,)
|
|
800
|
-
|
|
801
|
-
return bprop
|
|
802
|
-
|
|
803
|
-
|
|
804
|
-
@bprop_getters.register(P.FastGelu)
|
|
805
|
-
def get_bprop_fast_gelu_2(self):
|
|
806
|
-
"""Grad definition for `FastGeLU` operation."""
|
|
807
|
-
input_grad = G.FastGeLUGrad()
|
|
808
|
-
|
|
809
|
-
def bprop(x, out, dout):
|
|
810
|
-
dx = input_grad(dout, x)
|
|
811
|
-
return (dx,)
|
|
812
|
-
|
|
813
|
-
return bprop
|
|
814
|
-
|
|
815
|
-
|
|
816
|
-
@bprop_getters.register(P.InstanceNorm)
|
|
817
|
-
def get_bprop_instance_norm(self):
|
|
818
|
-
"""Grad definition for `InstanceNorm` operation."""
|
|
819
|
-
input_grad = G.InstanceNormGrad(self.epsilon, self.momentum)
|
|
820
|
-
|
|
821
|
-
def bprop(x, gamma, beta, mean, variance, out, dout):
|
|
822
|
-
saved_mean = out[1]
|
|
823
|
-
saved_variance = out[2]
|
|
824
|
-
out = input_grad(dout[0], x, gamma, saved_mean, saved_variance)
|
|
825
|
-
dx = out[0]
|
|
826
|
-
dgamma = out[1]
|
|
827
|
-
dbeta = out[2]
|
|
828
|
-
return dx, dgamma, dbeta, zeros_like(mean), zeros_like(variance)
|
|
829
|
-
|
|
830
|
-
return bprop
|
|
831
|
-
|
|
832
|
-
|
|
833
|
-
@bprop_getters.register(G.BatchNormGrad)
|
|
834
|
-
def get_bprop_batch_norm_grad(self):
|
|
835
|
-
"""Grad definition for `BatchNorm` operation."""
|
|
836
|
-
grad_op = G.BatchNormGradGrad(self.is_training, self.epsilon, self.data_format)
|
|
837
|
-
|
|
838
|
-
def bprop(dy, x, scale, mean, variance, reserve, out, dout):
|
|
839
|
-
dx, ddy, dscale = grad_op(x, dy, scale, mean, variance, dout[0], dout[1], dout[2])
|
|
840
|
-
return ddy, dx, dscale, zeros_like(mean), zeros_like(variance), zeros_like(reserve)
|
|
841
|
-
|
|
842
|
-
return bprop
|
|
843
|
-
|
|
844
|
-
|
|
845
|
-
@bprop_getters.register(G.LayerNormGrad)
|
|
846
|
-
def get_bprop_layer_norm_grad(self):
|
|
847
|
-
"""Grad definition for `LayerNormGrad` operation."""
|
|
848
|
-
layer_norm_grad_grad = G.LayerNormGradGrad(self.begin_norm_axis, self.begin_params_axis)
|
|
849
|
-
|
|
850
|
-
def bprop(x, dy, variance, mean, gamma, out, dout):
|
|
851
|
-
d_x, d_dy, d_gamma = layer_norm_grad_grad(
|
|
852
|
-
x, dy, variance, mean, gamma, dout[0], dout[1], dout[2])
|
|
853
|
-
return d_x, d_dy, zeros_like(variance), zeros_like(mean), d_gamma
|
|
854
|
-
|
|
855
|
-
return bprop
|
|
856
|
-
|
|
857
|
-
|
|
858
|
-
@bprop_getters.register(P.L2Normalize)
|
|
859
|
-
def get_bprop_l2normalize(self):
|
|
860
|
-
"""Grad definition for `L2Normalize` operation."""
|
|
861
|
-
input_grad = G.L2NormalizeGrad(self.axis, self.epsilon)
|
|
862
|
-
|
|
863
|
-
def bprop(x, out, dout):
|
|
864
|
-
dx = input_grad(x, out, dout)
|
|
865
|
-
return (dx,)
|
|
866
|
-
|
|
867
|
-
return bprop
|
|
868
|
-
|
|
869
|
-
|
|
870
|
-
@bprop_getters.register(P.SoftmaxCrossEntropyWithLogits)
|
|
871
|
-
def get_bprop_softmax_cross_entropy_with_logits(self):
|
|
872
|
-
"""Grad definition for `SoftmaxCrossEntropyWithLogits` operation."""
|
|
873
|
-
expand = P.ExpandDims()
|
|
874
|
-
|
|
875
|
-
def bprop(logits, labels, out, dout):
|
|
876
|
-
grad = out[1]
|
|
877
|
-
grad = grad * expand(dout[0], -1)
|
|
878
|
-
return grad, zeros_like(labels)
|
|
879
|
-
|
|
880
|
-
return bprop
|
|
881
|
-
|
|
882
|
-
|
|
883
|
-
@bprop_getters.register(P.NLLLoss)
|
|
884
|
-
def get_bprop_nll_loss(self):
|
|
885
|
-
"""Grad definition for `NLLLoss` operation."""
|
|
886
|
-
nll_loss_grad = G.NLLLossGrad(reduction=self.reduction)
|
|
887
|
-
|
|
888
|
-
def bprop(x, target, weight, out, dout):
|
|
889
|
-
total_weight = out[1]
|
|
890
|
-
dout_x = dout[0]
|
|
891
|
-
dx = nll_loss_grad(x, dout_x, target, weight, total_weight)
|
|
892
|
-
return dx, zeros_like(target), zeros_like(weight)
|
|
893
|
-
|
|
894
|
-
return bprop
|
|
895
|
-
|
|
896
|
-
|
|
897
|
-
@bprop_getters.register(P.SparseSoftmaxCrossEntropyWithLogits)
|
|
898
|
-
def get_bprop_sparse_softmax_cross_entropy_with_logits(self):
|
|
899
|
-
"""Grad definition for `SparseSoftmaxCrossEntropyWithLogits` operation."""
|
|
900
|
-
is_grad = self.is_grad
|
|
901
|
-
grad_op = P.SparseSoftmaxCrossEntropyWithLogits(is_grad=True)
|
|
902
|
-
|
|
903
|
-
def bprop(logits, labels, out, dout):
|
|
904
|
-
grad = out[0]
|
|
905
|
-
if not is_grad:
|
|
906
|
-
# if construct use loss
|
|
907
|
-
grad = grad_op(logits, labels)
|
|
908
|
-
grad = F.depend(grad, out)
|
|
909
|
-
grad = grad * dout
|
|
910
|
-
return grad, zeros_like(labels)
|
|
911
|
-
|
|
912
|
-
return bprop
|
|
913
|
-
|
|
914
|
-
|
|
915
|
-
@bprop_getters.register(P.ResizeBilinear)
|
|
916
|
-
def get_bprop_resize_bilinear(self):
|
|
917
|
-
"""Grad definition for `ResizeBilinear` operation."""
|
|
918
|
-
resize_grad = G.ResizeBilinearGrad(self.align_corners, self.half_pixel_centers)
|
|
919
|
-
|
|
920
|
-
def bprop(x, out, dout):
|
|
921
|
-
dx = resize_grad(dout, x)
|
|
922
|
-
return (dx,)
|
|
923
|
-
|
|
924
|
-
return bprop
|
|
925
|
-
|
|
926
|
-
|
|
927
|
-
@bprop_getters.register(P.OneHot)
|
|
928
|
-
def get_bprop_onehot(self):
|
|
929
|
-
"""Grad definition for `OneHot` operation."""
|
|
930
|
-
|
|
931
|
-
def bprop(indices, depth, on_value, off_value, out, dout):
|
|
932
|
-
return zeros_like(indices), zeros_like(depth), zeros_like(on_value), zeros_like(off_value)
|
|
933
|
-
|
|
934
|
-
return bprop
|
|
935
|
-
|
|
936
|
-
|
|
937
|
-
@bprop_getters.register(P.TopK)
|
|
938
|
-
def get_bprop_top_kv2(self):
|
|
939
|
-
"""Grad definition for `TopK` operation."""
|
|
940
|
-
scatter = P.ScatterNd()
|
|
941
|
-
expand_dims = P.ExpandDims()
|
|
942
|
-
shape_op = P.Shape()
|
|
943
|
-
dyn_shape = P.TensorShape()
|
|
944
|
-
reshape_op = P.Reshape()
|
|
945
|
-
dtype = P.DType()
|
|
946
|
-
cast = P.Cast()
|
|
947
|
-
|
|
948
|
-
def _bprop_static(input_x, k, out, dout):
|
|
949
|
-
in_shape = shape_op(input_x)
|
|
950
|
-
in_lastdim = in_shape[-1]
|
|
951
|
-
|
|
952
|
-
indices = out[1]
|
|
953
|
-
ind_shape = shape_op(indices)
|
|
954
|
-
ind_lastdim = ind_shape[-1]
|
|
955
|
-
|
|
956
|
-
ind_2d = reshape_op(indices, (-1, ind_lastdim))
|
|
957
|
-
outerdim = shape_op(ind_2d)[0]
|
|
958
|
-
|
|
959
|
-
# range_flatten_index can be expressed as: [0, outterdim, 2*outerdim, ..., (k-1)*outerdim]
|
|
960
|
-
indices_dtype = dtype(indices)
|
|
961
|
-
range_flatten_index = range_op(0, outerdim * in_lastdim, in_lastdim, indices_dtype)
|
|
962
|
-
|
|
963
|
-
# expand_dims to (k, 1), then broadcast
|
|
964
|
-
ind = reshape_op(ind_2d + expand_dims(range_flatten_index, -1), (-1,))
|
|
965
|
-
in_shape_1d = get_1d_shape(in_shape)
|
|
966
|
-
|
|
967
|
-
out_grad = reshape_op(
|
|
968
|
-
scatter(
|
|
969
|
-
expand_dims(ind, -1),
|
|
970
|
-
reshape_op(dout[0], (-1,)),
|
|
971
|
-
in_shape_1d),
|
|
972
|
-
in_shape)
|
|
973
|
-
return out_grad, zeros_like(k)
|
|
974
|
-
|
|
975
|
-
def _bprop_dynshape(input_x, k, out, dout):
|
|
976
|
-
in_shape = dyn_shape(input_x)
|
|
977
|
-
in_lastdim = in_shape[-1]
|
|
978
|
-
|
|
979
|
-
indices = out[1]
|
|
980
|
-
ind_shape = dyn_shape(indices)
|
|
981
|
-
ind_lastdim = ind_shape[-1]
|
|
982
|
-
|
|
983
|
-
ind_2d = reshape_op(indices, create_tensor_by_element((-1, ind_lastdim)))
|
|
984
|
-
outerdim = dyn_shape(ind_2d)[0]
|
|
985
|
-
|
|
986
|
-
# range_flatten_index can be expressed as: [0, outterdim, 2*outerdim, ..., (k-1)*outerdim]
|
|
987
|
-
range_flatten_index = P.Range()(cast(0, mstype.int64), outerdim * in_lastdim, in_lastdim)
|
|
988
|
-
|
|
989
|
-
# expand_dims to (k, 1), then broadcast
|
|
990
|
-
ind = reshape_op(ind_2d + expand_dims(range_flatten_index, -1), create_tensor_by_element((-1,)))
|
|
991
|
-
in_shape_1d = expand_dims(dyn_size(input_x, mstype.int64), -1)
|
|
992
|
-
|
|
993
|
-
out_grad = reshape_op(
|
|
994
|
-
scatter(
|
|
995
|
-
expand_dims(ind, -1),
|
|
996
|
-
reshape_op(dout[0], create_tensor_by_element((-1,))),
|
|
997
|
-
in_shape_1d),
|
|
998
|
-
in_shape)
|
|
999
|
-
return out_grad, zeros_like(k)
|
|
1000
|
-
|
|
1001
|
-
def bprop(input_x, k, out, dout):
|
|
1002
|
-
if F.is_sequence_value_unknown(shape_op(input_x)):
|
|
1003
|
-
return _bprop_dynshape(input_x, k, out, dout)
|
|
1004
|
-
return _bprop_static(input_x, k, out, dout)
|
|
1005
|
-
|
|
1006
|
-
return bprop
|
|
1007
|
-
|
|
1008
|
-
|
|
1009
|
-
@bprop_getters.register(P.SmoothL1Loss)
|
|
1010
|
-
def get_bprop_smooth_l1_loss(self):
|
|
1011
|
-
"""Grad definition for `SmoothL1Loss` operation."""
|
|
1012
|
-
grad = G.SmoothL1LossGrad(self.beta, self.reduction)
|
|
1013
|
-
|
|
1014
|
-
def bprop(prediction, target, out, dout):
|
|
1015
|
-
dx = grad(prediction, target, dout)
|
|
1016
|
-
dy = grad(target, prediction, dout)
|
|
1017
|
-
return dx, dy
|
|
1018
|
-
|
|
1019
|
-
return bprop
|
|
1020
|
-
|
|
1021
|
-
|
|
1022
|
-
@bprop_getters.register(P.L2Loss)
|
|
1023
|
-
def get_bprop_l2_loss(self):
|
|
1024
|
-
"""Grad definition for `L2Loss` operation."""
|
|
1025
|
-
|
|
1026
|
-
def bprop(x, out, dout):
|
|
1027
|
-
dx = x * dout
|
|
1028
|
-
return (dx,)
|
|
1029
|
-
|
|
1030
|
-
return bprop
|
|
1031
|
-
|
|
1032
|
-
|
|
1033
|
-
@bprop_getters.register(P.RNNTLoss)
|
|
1034
|
-
def get_bprop_rnnt_loss(self):
|
|
1035
|
-
"""Grad definition for `RNNTLoss` operation."""
|
|
1036
|
-
|
|
1037
|
-
def bprop(acts, labels, act_lens, label_lens, out, dout):
|
|
1038
|
-
grad = out[1]
|
|
1039
|
-
return grad, zeros_like(labels), zeros_like(act_lens), zeros_like(label_lens)
|
|
1040
|
-
|
|
1041
|
-
return bprop
|
|
1042
|
-
|
|
1043
|
-
|
|
1044
|
-
@bprop_getters.register(P.PReLU)
|
|
1045
|
-
def get_bprop_prelu(self):
|
|
1046
|
-
"""Grad definition for `PReLU` operation."""
|
|
1047
|
-
grad = G.PReLUGrad()
|
|
1048
|
-
|
|
1049
|
-
def bprop(x, w, out, dout):
|
|
1050
|
-
dx, dw = grad(dout, x, w)
|
|
1051
|
-
return dx, dw
|
|
1052
|
-
|
|
1053
|
-
return bprop
|
|
1054
|
-
|
|
1055
|
-
|
|
1056
|
-
@bprop_getters.register(P.LSTM)
|
|
1057
|
-
def get_bprop_lstm(self):
|
|
1058
|
-
"""Grad definition for `LSTM` operation."""
|
|
1059
|
-
lstm_grad_data = G.LSTMGradData(
|
|
1060
|
-
input_size=self.input_size,
|
|
1061
|
-
hidden_size=self.hidden_size,
|
|
1062
|
-
num_layers=self.num_layers,
|
|
1063
|
-
has_bias=self.has_bias,
|
|
1064
|
-
bidirectional=self.bidirectional,
|
|
1065
|
-
dropout=self.dropout
|
|
1066
|
-
)
|
|
1067
|
-
|
|
1068
|
-
lstm_grad_weight = G.LSTMGradWeight(
|
|
1069
|
-
input_size=self.input_size,
|
|
1070
|
-
hidden_size=self.hidden_size,
|
|
1071
|
-
num_layers=self.num_layers,
|
|
1072
|
-
has_bias=self.has_bias,
|
|
1073
|
-
bidirectional=self.bidirectional,
|
|
1074
|
-
dropout=self.dropout
|
|
1075
|
-
)
|
|
1076
|
-
lstm_grad = G.LSTMGrad(
|
|
1077
|
-
input_size=self.input_size,
|
|
1078
|
-
hidden_size=self.hidden_size,
|
|
1079
|
-
num_layers=self.num_layers,
|
|
1080
|
-
has_bias=self.has_bias,
|
|
1081
|
-
bidirectional=self.bidirectional,
|
|
1082
|
-
dropout=self.dropout
|
|
1083
|
-
)
|
|
1084
|
-
|
|
1085
|
-
def bprop(x, hx, cx, w, out, dout):
|
|
1086
|
-
y, _, _, reserve, state = out
|
|
1087
|
-
dy, dhy, dcy, _, _ = dout
|
|
1088
|
-
dx, dhx, dcx = lstm_grad_data(y, dy, dhy, dcy, w, hx, cx, reserve, state)
|
|
1089
|
-
dw = lstm_grad_weight(F.depend(x, dx), hx, y, reserve, state)
|
|
1090
|
-
return dx, dhx, dcx, dw
|
|
1091
|
-
|
|
1092
|
-
#
|
|
1093
|
-
def bprop_cpu(x, hx, cx, w, out, dout):
|
|
1094
|
-
y, hy, cy, reserve, _ = out
|
|
1095
|
-
dy, dhy, dcy, _, _ = dout
|
|
1096
|
-
dx, dhx, dcx, dw = lstm_grad(x, hx, cx, w, y, hy, cy, dy, dhy, dcy, reserve)
|
|
1097
|
-
return dx, dhx, dcx, dw
|
|
1098
|
-
|
|
1099
|
-
if context.get_context('device_target') == "CPU":
|
|
1100
|
-
self.add_prim_attr("is_training", True)
|
|
1101
|
-
return bprop_cpu
|
|
1102
|
-
|
|
1103
|
-
return bprop
|
|
1104
|
-
|
|
1105
|
-
|
|
1106
|
-
@bprop_getters.register(rl_ops.GRUV2)
|
|
1107
|
-
def get_bppro_gru_v2(self):
|
|
1108
|
-
"""Grad definition for `GRUV2` operation."""
|
|
1109
|
-
gru_grad_v2 = G.GRUV2Grad(
|
|
1110
|
-
self.input_size,
|
|
1111
|
-
self.hidden_size,
|
|
1112
|
-
self.num_layers,
|
|
1113
|
-
self.has_bias,
|
|
1114
|
-
self.bidirectional,
|
|
1115
|
-
self.dropout
|
|
1116
|
-
)
|
|
1117
|
-
|
|
1118
|
-
def bpro(x, hx, w, seq_length, out, dout):
|
|
1119
|
-
y, hy, reverse, _ = out
|
|
1120
|
-
dy, dhy, _, _ = dout
|
|
1121
|
-
dx, dhx, dw = gru_grad_v2(x, hx, w, seq_length, y, hy, dy, dhy, reverse)
|
|
1122
|
-
return dx, dhx, dw, (0)
|
|
1123
|
-
|
|
1124
|
-
return bpro
|
|
1125
|
-
|
|
1126
|
-
|
|
1127
|
-
@bprop_getters.register(rl_ops.CudnnGRU)
|
|
1128
|
-
def get_bprop_gru(self):
|
|
1129
|
-
"""Grad definition for `GRU` operation."""
|
|
1130
|
-
gru_grad_data = G.GruGradData(
|
|
1131
|
-
input_size=self.input_size,
|
|
1132
|
-
hidden_size=self.hidden_size,
|
|
1133
|
-
num_layers=self.num_layers,
|
|
1134
|
-
has_bias=self.has_bias,
|
|
1135
|
-
bidirectional=self.bidirectional,
|
|
1136
|
-
dropout=self.dropout
|
|
1137
|
-
)
|
|
1138
|
-
|
|
1139
|
-
gru_grad_weight = G.GruGradWeight(
|
|
1140
|
-
input_size=self.input_size,
|
|
1141
|
-
hidden_size=self.hidden_size,
|
|
1142
|
-
num_layers=self.num_layers,
|
|
1143
|
-
has_bias=self.has_bias,
|
|
1144
|
-
bidirectional=self.bidirectional,
|
|
1145
|
-
dropout=self.dropout
|
|
1146
|
-
)
|
|
1147
|
-
|
|
1148
|
-
def bprop(x, hx, w, out, dout):
|
|
1149
|
-
y, _, reserve, state = out
|
|
1150
|
-
dy, dhy, _, _ = dout
|
|
1151
|
-
dx, dhx = gru_grad_data(y, dy, dhy, w, hx, reserve, state)
|
|
1152
|
-
dw = gru_grad_weight(F.depend(x, dx), hx, y, reserve, state)
|
|
1153
|
-
return dx, dhx, dw
|
|
1154
|
-
|
|
1155
|
-
return bprop
|
|
1156
|
-
|
|
1157
|
-
|
|
1158
|
-
@bprop_getters.register(P.DynamicRNN)
|
|
1159
|
-
def get_bprop_dynamic_rnn(self):
|
|
1160
|
-
"""Grad definition for `DynamicRNN` operation."""
|
|
1161
|
-
dynamic_rnn_grad = G.DynamicRNNGrad(cell_type=self.cell_type,
|
|
1162
|
-
direction=self.direction,
|
|
1163
|
-
cell_depth=self.cell_depth,
|
|
1164
|
-
use_peephole=self.use_peephole,
|
|
1165
|
-
keep_prob=self.keep_prob,
|
|
1166
|
-
cell_clip=self.cell_clip,
|
|
1167
|
-
num_proj=self.num_proj,
|
|
1168
|
-
time_major=self.time_major,
|
|
1169
|
-
forget_bias=self.forget_bias)
|
|
1170
|
-
expand_dims = P.ExpandDims()
|
|
1171
|
-
|
|
1172
|
-
def bprop(x, w, b, seq_length, init_h, init_c, out, dout):
|
|
1173
|
-
dy, dh, dc, _, _, _, _, _, = dout
|
|
1174
|
-
dh = dh[-1]
|
|
1175
|
-
dc = dc[-1]
|
|
1176
|
-
y, h, c, i, j, f, o, tanhct = out
|
|
1177
|
-
dw, db, dx, dh_prev, dc_prev = dynamic_rnn_grad(x, w, b, y, init_h[0], init_c[0], h,
|
|
1178
|
-
c, dy, dh, dc, i, j, f, o, tanhct)
|
|
1179
|
-
dh_prev = expand_dims(dh_prev, 0)
|
|
1180
|
-
dc_prev = expand_dims(dc_prev, 0)
|
|
1181
|
-
return dx, dw, db, (0), dh_prev, dc_prev
|
|
1182
|
-
|
|
1183
|
-
return bprop
|
|
1184
|
-
|
|
1185
|
-
|
|
1186
|
-
@bprop_getters.register(P.DynamicGRUV2)
|
|
1187
|
-
def get_bprop_dynamic_gru_v2(self):
|
|
1188
|
-
"""Grad definition for `DynamicGRUV2` operation."""
|
|
1189
|
-
dynamic_gru_v2_grad = G.DynamicGRUV2Grad(self.direction, self.cell_depth, self.keep_prob, self.cell_clip,
|
|
1190
|
-
self.num_proj, self.time_major, self.gate_order,
|
|
1191
|
-
self.reset_after)
|
|
1192
|
-
|
|
1193
|
-
def bprop(x, winput, whidden, binput, bhidden, seq, init_h, out, dout):
|
|
1194
|
-
y, out_h, update, reset, new, hidden_new = out
|
|
1195
|
-
dy, dout_h, _, _, _, _ = dout
|
|
1196
|
-
|
|
1197
|
-
dw_input, dw_hidden, db_input, db_hidden, dx, dh_prev = dynamic_gru_v2_grad(x, winput, whidden, y, init_h,
|
|
1198
|
-
out_h, dy, dout_h[-1], update,
|
|
1199
|
-
reset, new, hidden_new, None, None)
|
|
1200
|
-
return dx, dw_input, dw_hidden, db_input, db_hidden, (0), dh_prev
|
|
1201
|
-
|
|
1202
|
-
return bprop
|
|
1203
|
-
|
|
1204
|
-
|
|
1205
|
-
@bprop_getters.register(P.SigmoidCrossEntropyWithLogits)
|
|
1206
|
-
def get_bprop_sigmoid_crossentropy_with_logits(self):
|
|
1207
|
-
"""Grad definition for `SigmoidCrossEntropyWithLogits` operation."""
|
|
1208
|
-
op = G.SigmoidCrossEntropyWithLogitsGrad()
|
|
1209
|
-
|
|
1210
|
-
def bprop(x, y, out, dout):
|
|
1211
|
-
dx = op(x, y, dout)
|
|
1212
|
-
return (dx, zeros_like(y))
|
|
1213
|
-
|
|
1214
|
-
return bprop
|
|
1215
|
-
|
|
1216
|
-
|
|
1217
|
-
@bprop_getters.register(P.Pad)
|
|
1218
|
-
def get_bprop_pad(self):
|
|
1219
|
-
"""Grad definition for `Pad` operation."""
|
|
1220
|
-
shape_op = P.Shape()
|
|
1221
|
-
dyn_shape_op = P.TensorShape()
|
|
1222
|
-
paddings = self.paddings
|
|
1223
|
-
|
|
1224
|
-
def bprop(x, out, dout):
|
|
1225
|
-
begin = ()
|
|
1226
|
-
for item in paddings:
|
|
1227
|
-
begin += (item[0],)
|
|
1228
|
-
shp = shape_op(x)
|
|
1229
|
-
if F.is_sequence_value_unknown(shp):
|
|
1230
|
-
shp = dyn_shape_op(x)
|
|
1231
|
-
dx = P.Slice()(dout, begin, shp)
|
|
1232
|
-
return (dx,)
|
|
1233
|
-
|
|
1234
|
-
return bprop
|
|
1235
|
-
|
|
1236
|
-
|
|
1237
|
-
@bprop_getters.register(P.MirrorPad)
|
|
1238
|
-
def get_bprop_mirror_pad(self):
|
|
1239
|
-
"""Grad definition for `MirrorPad` operation."""
|
|
1240
|
-
mirror_pad_grad = G.MirrorPadGrad(self.mode)
|
|
1241
|
-
|
|
1242
|
-
def bprop(x, paddings, out, dout):
|
|
1243
|
-
dx = mirror_pad_grad(dout, paddings)
|
|
1244
|
-
return (dx, zeros_like(paddings))
|
|
1245
|
-
|
|
1246
|
-
return bprop
|
|
1247
|
-
|
|
1248
|
-
|
|
1249
|
-
@bprop_getters.register(P.ROIAlign)
|
|
1250
|
-
def get_bprop_roi_align(self):
|
|
1251
|
-
"""Grad definition for `ROIAlign` operation."""
|
|
1252
|
-
shape_op = P.Shape()
|
|
1253
|
-
dyn_shape = P.TensorShape()
|
|
1254
|
-
pooled_height = self.pooled_height
|
|
1255
|
-
pooled_width = self.pooled_width
|
|
1256
|
-
spatial_scale = self.spatial_scale
|
|
1257
|
-
sample_num = self.sample_num
|
|
1258
|
-
|
|
1259
|
-
def bprop(inputs, rois, out, dout):
|
|
1260
|
-
inputs_shape = shape_op(inputs)
|
|
1261
|
-
if F.is_sequence_value_unknown(inputs_shape):
|
|
1262
|
-
inputs_shape = dyn_shape(inputs)
|
|
1263
|
-
dx = G.ROIAlignGrad(pooled_height, pooled_width, spatial_scale, sample_num)(dout, rois, inputs_shape)
|
|
1264
|
-
return dx, zeros_like(rois)
|
|
1265
|
-
|
|
1266
|
-
return bprop
|
|
1267
|
-
|
|
1268
|
-
|
|
1269
|
-
@bprop_getters.register(P.Conv2DTranspose)
|
|
1270
|
-
@bprop_getters.register(P.Conv2DBackpropInput)
|
|
1271
|
-
def get_bprop_conv2d_backprop_input(self):
|
|
1272
|
-
"""Grad definition for `Conv2DBackpropInput` operation."""
|
|
1273
|
-
pad_list = self.get_attr_dict()['pad_list']
|
|
1274
|
-
out_channel = self.get_attr_dict()['out_channel']
|
|
1275
|
-
filter_grad = G.Conv2DBackpropFilter(
|
|
1276
|
-
out_channel, self.kernel_size, self.pad_mode, self.pad, pad_list, mode=self.mode,
|
|
1277
|
-
dilation=self.dilation, stride=self.stride, group=self.group, data_format=self.format
|
|
1278
|
-
)
|
|
1279
|
-
input_grad = P.Conv2D(
|
|
1280
|
-
out_channel, self.kernel_size, pad_mode=self.pad_mode.lower(), pad=self.pad,
|
|
1281
|
-
dilation=self.dilation, stride=self.stride, group=self.group, data_format=self.format
|
|
1282
|
-
)
|
|
1283
|
-
get_shape = P.Shape()
|
|
1284
|
-
get_dyn_shape = P.TensorShape()
|
|
1285
|
-
|
|
1286
|
-
def bprop(x, w, f_sizes, out, dout):
|
|
1287
|
-
w_shape = get_shape(w)
|
|
1288
|
-
if F.is_sequence_value_unknown(w_shape):
|
|
1289
|
-
w_shape = get_dyn_shape(w)
|
|
1290
|
-
dx = input_grad(dout, w)
|
|
1291
|
-
dw = filter_grad(x, dout, w_shape)
|
|
1292
|
-
return dx, dw, zeros_like(f_sizes)
|
|
1293
|
-
|
|
1294
|
-
return bprop
|
|
1295
|
-
|
|
1296
|
-
|
|
1297
|
-
@bprop_getters.register(P.BinaryCrossEntropy)
|
|
1298
|
-
def get_bprop_binary_cross_entropy(self):
|
|
1299
|
-
"""Grad definition for `BinaryCrossEntropy` operation."""
|
|
1300
|
-
grad = G.BinaryCrossEntropyGrad(self.reduction)
|
|
1301
|
-
|
|
1302
|
-
def bprop(x, y, weight, out, dout):
|
|
1303
|
-
dx = grad(x, y, dout, weight)
|
|
1304
|
-
return dx, zeros_like(y), zeros_like(weight)
|
|
1305
|
-
|
|
1306
|
-
return bprop
|
|
1307
|
-
|
|
1308
|
-
|
|
1309
|
-
@bprop_getters.register(P.BCEWithLogitsLoss)
|
|
1310
|
-
def get_bprop_bce_with_logits_loss(self):
|
|
1311
|
-
"""Grad definition for `BCEWithLogitsLoss` operation."""
|
|
1312
|
-
reduction = self.reduction
|
|
1313
|
-
mul = P.Mul()
|
|
1314
|
-
sigmoid = P.Sigmoid()
|
|
1315
|
-
add = P.Add()
|
|
1316
|
-
sub = P.Sub()
|
|
1317
|
-
size = P.Size()
|
|
1318
|
-
neg = P.Neg()
|
|
1319
|
-
log = P.Log()
|
|
1320
|
-
shape = P.Shape()
|
|
1321
|
-
|
|
1322
|
-
def bprop(predict, target, weight, pos_weight, out, dout):
|
|
1323
|
-
sigmoid_input = sigmoid(predict)
|
|
1324
|
-
if pos_weight is not None:
|
|
1325
|
-
t = mul(target, pos_weight)
|
|
1326
|
-
dx = mul(sub(mul(sub(add(t, 1), target), sigmoid_input), t), dout)
|
|
1327
|
-
grad_target = mul(sub(log(sub(1, sigmoid_input)), mul(pos_weight, log(sigmoid_input))), dout)
|
|
1328
|
-
else:
|
|
1329
|
-
dx = mul((sigmoid_input - target), dout)
|
|
1330
|
-
grad_target = mul(predict, neg(dout))
|
|
1331
|
-
if weight is not None:
|
|
1332
|
-
dx = mul(dx, weight)
|
|
1333
|
-
grad_target = mul(grad_target, weight)
|
|
1334
|
-
if reduction == 'mean':
|
|
1335
|
-
dx_size = dyn_size(dx) if F.is_sequence_value_unknown(shape(dx)) else size(dx)
|
|
1336
|
-
target_size = dyn_size(target) if F.is_sequence_value_unknown(shape(target)) else size(target)
|
|
1337
|
-
dx = dx / dx_size
|
|
1338
|
-
grad_target = grad_target / target_size
|
|
1339
|
-
return dx, grad_target, zeros_like(weight), zeros_like(pos_weight)
|
|
1340
|
-
|
|
1341
|
-
return bprop
|
|
1342
|
-
|
|
1343
|
-
|
|
1344
|
-
@bprop_getters.register(P.KLDivLoss)
|
|
1345
|
-
def get_bprop_kl_div_loss(self):
|
|
1346
|
-
"""Grad definition for `KLDivLoss` operation."""
|
|
1347
|
-
reduce_type = self.reduction
|
|
1348
|
-
|
|
1349
|
-
size = P.Size()
|
|
1350
|
-
shape = P.Shape()
|
|
1351
|
-
|
|
1352
|
-
def bprop(x, y, out, dout):
|
|
1353
|
-
if reduce_type == "mean":
|
|
1354
|
-
grad = G.KLDivLossGrad("sum")
|
|
1355
|
-
else:
|
|
1356
|
-
grad = G.KLDivLossGrad(self.reduction)
|
|
1357
|
-
dx = grad(dout, x, y)
|
|
1358
|
-
if reduce_type == "mean":
|
|
1359
|
-
x_size = dyn_size(x) if F.is_sequence_value_unknown(shape(x)) else size(x)
|
|
1360
|
-
return dx / x_size, zeros_like(y)
|
|
1361
|
-
return dx, zeros_like(y)
|
|
1362
|
-
|
|
1363
|
-
return bprop
|
|
1364
|
-
|
|
1365
|
-
|
|
1366
|
-
@bprop_getters.register(P.Dropout)
|
|
1367
|
-
def get_bprop_dropout(self):
|
|
1368
|
-
"""Grad definition for `Dropout` operation."""
|
|
1369
|
-
grad = G.DropoutGrad(self.keep_prob)
|
|
1370
|
-
|
|
1371
|
-
def bprop(x, out, dout):
|
|
1372
|
-
_, mask = out
|
|
1373
|
-
dy, _ = dout
|
|
1374
|
-
dx = grad(dy, mask)
|
|
1375
|
-
return (dx,)
|
|
1376
|
-
|
|
1377
|
-
return bprop
|
|
1378
|
-
|
|
1379
|
-
|
|
1380
|
-
@bprop_getters.register(G.DropoutGrad)
|
|
1381
|
-
def get_bprop_dropout_grad(self):
|
|
1382
|
-
"""Grad definition for `DropoutGrad` operation."""
|
|
1383
|
-
grad = G.DropoutGrad(self.keep_prob)
|
|
1384
|
-
|
|
1385
|
-
def bprop(x, mask, out, dout):
|
|
1386
|
-
dy = dout
|
|
1387
|
-
dx = grad(dy, mask)
|
|
1388
|
-
return dx, zeros_like(mask)
|
|
1389
|
-
|
|
1390
|
-
return bprop
|
|
1391
|
-
|
|
1392
|
-
|
|
1393
|
-
@bprop_getters.register(P.Dropout2D)
|
|
1394
|
-
@bprop_getters.register(P.Dropout3D)
|
|
1395
|
-
def get_bprop_dropout3d(self):
|
|
1396
|
-
"""Grad definition for `Dropout2D` and `Dropout3D` operation."""
|
|
1397
|
-
dtype = P.DType()
|
|
1398
|
-
cast = P.Cast()
|
|
1399
|
-
mul = P.Mul()
|
|
1400
|
-
keep_prob = self.keep_prob
|
|
1401
|
-
|
|
1402
|
-
def bprop(x, out, dout):
|
|
1403
|
-
_, mask = out
|
|
1404
|
-
dy, _ = dout
|
|
1405
|
-
mask = cast(mask, mstype.float32)
|
|
1406
|
-
if keep_prob != 0:
|
|
1407
|
-
dy = dy * (1 / keep_prob)
|
|
1408
|
-
dy = mul(mask, dy)
|
|
1409
|
-
dy = cast(dy, dtype(x))
|
|
1410
|
-
return (dy,)
|
|
1411
|
-
|
|
1412
|
-
return bprop
|
|
1413
|
-
|
|
1414
|
-
|
|
1415
|
-
@bprop_getters.register(P.CTCLoss)
|
|
1416
|
-
def get_bprop_ctc_loss(self):
|
|
1417
|
-
"""Grad definition for `CTCLoss` operation"""
|
|
1418
|
-
expand = P.ExpandDims()
|
|
1419
|
-
|
|
1420
|
-
def bprop(inputs, labels_indices, labels_values, sequence_length, out, dout):
|
|
1421
|
-
grad_loss = out[1]
|
|
1422
|
-
grad = grad_loss * expand(dout[0], -1)
|
|
1423
|
-
return grad, zeros_like(labels_indices), zeros_like(labels_values), zeros_like(sequence_length)
|
|
1424
|
-
|
|
1425
|
-
return bprop
|
|
1426
|
-
|
|
1427
|
-
|
|
1428
|
-
@bprop_getters.register(P.BasicLSTMCell)
|
|
1429
|
-
def get_bprop_basic_lstm_cell(self):
|
|
1430
|
-
"""Grad definition for `BasicLSTMCell` operation."""
|
|
1431
|
-
basic_lstm_cell_cstate_grad = G.BasicLSTMCellCStateGrad(
|
|
1432
|
-
forget_bias=self.forget_bias,
|
|
1433
|
-
activation=self.activation
|
|
1434
|
-
)
|
|
1435
|
-
|
|
1436
|
-
basic_lstm_cell_weight_grad = G.BasicLSTMCellWeightGrad()
|
|
1437
|
-
|
|
1438
|
-
basic_lstm_cell_input_grad = G.BasicLSTMCellInputGrad(keep_prob=self.keep_prob)
|
|
1439
|
-
|
|
1440
|
-
def bprop(x, h, c, w, b, out, dout):
|
|
1441
|
-
_, _, it, jt, ft, ot, tanhct = out
|
|
1442
|
-
dct, dht, _, _, _, _, _ = dout
|
|
1443
|
-
dgate, dct_1 = basic_lstm_cell_cstate_grad(c, dht, dct, it, jt, ft, ot, tanhct)
|
|
1444
|
-
dxt, dht = basic_lstm_cell_input_grad(dgate, w)
|
|
1445
|
-
dw, db = basic_lstm_cell_weight_grad(F.depend(x, dxt), h, dgate)
|
|
1446
|
-
return dxt, dht, dct_1, dw, db
|
|
1447
|
-
|
|
1448
|
-
return bprop
|
|
1449
|
-
|
|
1450
|
-
|
|
1451
|
-
@bprop_getters.register(nps.DeformableOffsets)
|
|
1452
|
-
def get_bprop_deformable_offsets(self):
|
|
1453
|
-
"""Grad definition for `DeformableOffsets` operation."""
|
|
1454
|
-
grad = G.DeformableOffsetsGrad(self.strides, self.pads, self.ksize, self.dilations, self.data_format,
|
|
1455
|
-
self.deformable_groups, self.modulated)
|
|
1456
|
-
|
|
1457
|
-
def bprop(x, offsets, out, dout):
|
|
1458
|
-
out_grad = grad(dout, x, offsets)
|
|
1459
|
-
return out_grad
|
|
1460
|
-
|
|
1461
|
-
return bprop
|
|
1462
|
-
|
|
1463
|
-
|
|
1464
|
-
@bprop_getters.register(P.LRN)
|
|
1465
|
-
def get_bprop_lrn(self):
|
|
1466
|
-
"""Grad definition for `LRN` operation."""
|
|
1467
|
-
grad = G.LRNGrad(self.depth_radius, self.bias, self.alpha, self.beta)
|
|
1468
|
-
|
|
1469
|
-
def bprop(x, out, dout):
|
|
1470
|
-
dx = grad(dout, x, out)
|
|
1471
|
-
return (dx,)
|
|
1472
|
-
|
|
1473
|
-
return bprop
|
|
1474
|
-
|
|
1475
|
-
|
|
1476
|
-
@bprop_getters.register(G.Conv2DBackpropFilter)
|
|
1477
|
-
def get_bprop_conv2d_backprop_filter(self):
|
|
1478
|
-
"""Grad definition for `Conv2DBackpropFilter` operation."""
|
|
1479
|
-
input_grad = P.Conv2DBackpropInput(
|
|
1480
|
-
self.out_channel, self.kernel_size, self.pad_mode, self.pad, self.pad_list, mode=self.mode,
|
|
1481
|
-
dilation=self.dilation, stride=self.stride, group=self.group, data_format=self.format
|
|
1482
|
-
)
|
|
1483
|
-
filter_grad = P.Conv2D(
|
|
1484
|
-
self.out_channel, self.kernel_size, pad_mode=self.pad_mode.lower(), pad=self.pad,
|
|
1485
|
-
dilation=self.dilation, stride=self.stride, group=self.group, data_format=self.format
|
|
1486
|
-
)
|
|
1487
|
-
get_shape = P.Shape()
|
|
1488
|
-
get_dyn_shape = P.TensorShape()
|
|
1489
|
-
|
|
1490
|
-
def bprop(dy, x, filter_size, out, dout):
|
|
1491
|
-
x_shape = get_shape(x)
|
|
1492
|
-
if F.is_sequence_value_unknown(x_shape):
|
|
1493
|
-
x_shape = get_dyn_shape(x)
|
|
1494
|
-
dw_dx = input_grad(dy, dout, x_shape)
|
|
1495
|
-
dw_dy = filter_grad(x, dout)
|
|
1496
|
-
return dw_dy, dw_dx, zeros_like(filter_size)
|
|
1497
|
-
|
|
1498
|
-
return bprop
|
|
1499
|
-
|
|
1500
|
-
|
|
1501
|
-
@bprop_getters.register(nps.UpsampleNearest3D)
|
|
1502
|
-
def get_bprop_upsample_nearest_3d_grad(self):
|
|
1503
|
-
"""Grad definition for `UpsampleNearest3D` operation."""
|
|
1504
|
-
get_shape = P.Shape()
|
|
1505
|
-
output_size = self.output_size
|
|
1506
|
-
scales = self.scales
|
|
1507
|
-
|
|
1508
|
-
def bprop(input_x, out, dout):
|
|
1509
|
-
input_grad = G.UpsampleNearest3DGrad(get_shape(input_x), output_size, scales)
|
|
1510
|
-
dx = input_grad(dout)
|
|
1511
|
-
return (dx,)
|
|
1512
|
-
|
|
1513
|
-
return bprop
|
|
1514
|
-
|
|
1515
|
-
|
|
1516
|
-
@bprop_getters.register(nps.UpsampleTrilinear3D)
|
|
1517
|
-
def get_bprop_upsample_trilinear_3d_grad(self):
|
|
1518
|
-
"""Grad definition for `UpsampleTrilinear3D` operation."""
|
|
1519
|
-
get_shape = P.Shape()
|
|
1520
|
-
output_size = self.output_size
|
|
1521
|
-
scales = self.scales
|
|
1522
|
-
align_corners = self.align_corners
|
|
1523
|
-
|
|
1524
|
-
def bprop(input_x, out, dout):
|
|
1525
|
-
input_grad = G.UpsampleTrilinear3DGrad(get_shape(input_x), output_size, scales, align_corners)
|
|
1526
|
-
dx = input_grad(dout)
|
|
1527
|
-
return (dx,)
|
|
1528
|
-
|
|
1529
|
-
return bprop
|