mindspore 2.0.0a0__cp39-cp39-win_amd64.whl → 2.0.0rc1__cp39-cp39-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (655) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/__init__.py +4 -2
  3. mindspore/_c_dataengine.cp39-win_amd64.pyd +0 -0
  4. mindspore/_c_expression.cp39-win_amd64.pyd +0 -0
  5. mindspore/_c_mindrecord.cp39-win_amd64.pyd +0 -0
  6. mindspore/_check_jit_forbidden_api.py +102 -0
  7. mindspore/_checkparam.py +1066 -1001
  8. mindspore/_extends/parallel_compile/akg_compiler/akg_process.py +4 -3
  9. mindspore/_extends/parallel_compile/akg_compiler/tbe_topi.py +50 -48
  10. mindspore/_extends/parallel_compile/akg_compiler/util.py +9 -4
  11. mindspore/_extends/parallel_compile/tbe_compiler/tbe_adapter.py +4 -4
  12. mindspore/_extends/parallel_compile/tbe_compiler/tbe_helper.py +9 -4
  13. mindspore/_extends/parse/__init__.py +5 -3
  14. mindspore/_extends/parse/namespace.py +16 -1
  15. mindspore/_extends/parse/parser.py +107 -22
  16. mindspore/_extends/parse/resources.py +0 -7
  17. mindspore/_extends/parse/standard_method.py +885 -413
  18. mindspore/amp.py +52 -57
  19. mindspore/boost/boost.py +2 -2
  20. mindspore/boost/boost_cell_wrapper.py +38 -20
  21. mindspore/boost/dim_reduce.py +3 -3
  22. mindspore/boost/group_loss_scale_manager.py +1 -1
  23. mindspore/common/__init__.py +4 -6
  24. mindspore/common/_decorator.py +2 -0
  25. mindspore/common/_register_for_adapter.py +55 -0
  26. mindspore/common/_stub_tensor.py +201 -0
  27. mindspore/common/_utils.py +41 -7
  28. mindspore/common/api.py +215 -141
  29. mindspore/common/dtype.py +8 -1
  30. mindspore/common/dump.py +2 -2
  31. mindspore/common/initializer.py +4 -2
  32. mindspore/common/jit_config.py +17 -13
  33. mindspore/common/mutable.py +33 -13
  34. mindspore/common/parameter.py +23 -21
  35. mindspore/common/seed.py +8 -24
  36. mindspore/common/sparse_tensor.py +62 -41
  37. mindspore/common/tensor.py +852 -1154
  38. mindspore/communication/__init__.py +2 -2
  39. mindspore/communication/_comm_helper.py +11 -4
  40. mindspore/communication/management.py +22 -21
  41. mindspore/config/op_info.config +501 -1008
  42. mindspore/context.py +201 -23
  43. mindspore/dataset/__init__.py +6 -6
  44. mindspore/dataset/audio/__init__.py +7 -7
  45. mindspore/dataset/audio/transforms.py +670 -30
  46. mindspore/dataset/audio/utils.py +47 -4
  47. mindspore/dataset/audio/validators.py +223 -1
  48. mindspore/dataset/callback/ds_callback.py +2 -2
  49. mindspore/dataset/core/config.py +210 -14
  50. mindspore/dataset/core/validator_helpers.py +2 -2
  51. mindspore/{parallel/nn/layers.py → dataset/debug/__init__.py} +7 -8
  52. mindspore/dataset/debug/debug_hook.py +65 -0
  53. mindspore/dataset/debug/pre_defined_hook.py +67 -0
  54. mindspore/dataset/engine/__init__.py +7 -3
  55. mindspore/dataset/engine/cache_client.py +1 -1
  56. mindspore/dataset/engine/datasets.py +322 -66
  57. mindspore/dataset/engine/datasets_audio.py +80 -76
  58. mindspore/dataset/engine/datasets_standard_format.py +51 -38
  59. mindspore/dataset/engine/datasets_text.py +232 -118
  60. mindspore/dataset/engine/datasets_user_defined.py +41 -17
  61. mindspore/dataset/engine/datasets_vision.py +746 -225
  62. mindspore/dataset/engine/graphdata.py +75 -10
  63. mindspore/dataset/engine/iterators.py +45 -5
  64. mindspore/dataset/engine/offload.py +48 -28
  65. mindspore/dataset/engine/validators.py +117 -8
  66. mindspore/dataset/text/__init__.py +6 -5
  67. mindspore/dataset/text/transforms.py +86 -3
  68. mindspore/dataset/text/utils.py +6 -4
  69. mindspore/dataset/text/validators.py +25 -0
  70. mindspore/dataset/transforms/__init__.py +3 -2
  71. mindspore/dataset/transforms/c_transforms.py +1 -1
  72. mindspore/dataset/transforms/transforms.py +2 -2
  73. mindspore/dataset/utils/__init__.py +2 -1
  74. mindspore/dataset/utils/line_reader.py +121 -0
  75. mindspore/dataset/vision/__init__.py +2 -3
  76. mindspore/dataset/vision/c_transforms.py +9 -9
  77. mindspore/dataset/vision/py_transforms.py +5 -5
  78. mindspore/dataset/vision/py_transforms_util.py +2 -0
  79. mindspore/dataset/vision/transforms.py +160 -161
  80. mindspore/dataset/vision/utils.py +3 -3
  81. mindspore/experimental/map_parameter.py +38 -26
  82. mindspore/include/OWNERS +0 -1
  83. mindspore/include/api/callback/callback.h +9 -13
  84. mindspore/include/api/callback/ckpt_saver.h +2 -2
  85. mindspore/include/api/callback/loss_monitor.h +2 -2
  86. mindspore/include/api/callback/lr_scheduler.h +5 -5
  87. mindspore/include/api/callback/time_monitor.h +2 -2
  88. mindspore/include/api/callback/train_accuracy.h +4 -6
  89. mindspore/include/api/cfg.h +19 -6
  90. mindspore/include/api/context.h +44 -9
  91. mindspore/include/api/delegate.h +1 -1
  92. mindspore/include/api/metrics/accuracy.h +2 -2
  93. mindspore/include/api/metrics/metrics.h +4 -3
  94. mindspore/include/api/model.h +9 -4
  95. mindspore/include/api/model_parallel_runner.h +2 -2
  96. mindspore/include/api/net.h +12 -11
  97. mindspore/include/api/serialization.h +19 -3
  98. mindspore/include/api/types.h +3 -3
  99. mindspore/include/dataset/constants.h +7 -0
  100. mindspore/include/dataset/text.h +59 -0
  101. mindspore/jpeg62.dll +0 -0
  102. mindspore/log.py +1 -1
  103. mindspore/mindrecord/filereader.py +18 -0
  104. mindspore/mindrecord/filewriter.py +197 -34
  105. mindspore/mindrecord/shardreader.py +9 -0
  106. mindspore/mindrecord/shardwriter.py +1 -1
  107. mindspore/mindrecord/tools/cifar100_to_mr.py +3 -3
  108. mindspore/mindrecord/tools/cifar10_to_mr.py +3 -3
  109. mindspore/mindrecord/tools/csv_to_mr.py +3 -3
  110. mindspore/mindrecord/tools/imagenet_to_mr.py +16 -11
  111. mindspore/mindrecord/tools/mnist_to_mr.py +2 -2
  112. mindspore/mindrecord/tools/tfrecord_to_mr.py +6 -6
  113. mindspore/mindspore_backend.dll +0 -0
  114. mindspore/mindspore_common.dll +0 -0
  115. mindspore/mindspore_core.dll +0 -0
  116. mindspore/mindspore_glog.dll +0 -0
  117. mindspore/mindspore_shared_lib.dll +0 -0
  118. mindspore/nn/__init__.py +0 -4
  119. mindspore/nn/cell.py +204 -132
  120. mindspore/nn/dynamic_lr.py +1 -1
  121. mindspore/nn/grad/cell_grad.py +7 -6
  122. mindspore/nn/layer/__init__.py +5 -4
  123. mindspore/nn/layer/activation.py +40 -89
  124. mindspore/nn/layer/basic.py +255 -624
  125. mindspore/nn/layer/channel_shuffle.py +7 -6
  126. mindspore/nn/layer/combined.py +1 -1
  127. mindspore/nn/layer/container.py +41 -4
  128. mindspore/nn/layer/conv.py +64 -28
  129. mindspore/nn/layer/dense.py +9 -8
  130. mindspore/nn/layer/embedding.py +27 -25
  131. mindspore/nn/layer/image.py +53 -46
  132. mindspore/nn/layer/math.py +97 -105
  133. mindspore/nn/layer/normalization.py +117 -86
  134. mindspore/nn/layer/padding.py +185 -95
  135. mindspore/nn/layer/pooling.py +817 -414
  136. mindspore/nn/layer/rnn_cells.py +10 -15
  137. mindspore/nn/layer/rnns.py +37 -38
  138. mindspore/nn/layer/thor_layer.py +11 -12
  139. mindspore/nn/layer/timedistributed.py +5 -5
  140. mindspore/nn/layer/transformer.py +701 -0
  141. mindspore/nn/learning_rate_schedule.py +8 -8
  142. mindspore/nn/loss/__init__.py +5 -4
  143. mindspore/nn/loss/loss.py +334 -199
  144. mindspore/nn/optim/ada_grad.py +6 -6
  145. mindspore/nn/optim/adadelta.py +2 -3
  146. mindspore/nn/optim/adafactor.py +4 -5
  147. mindspore/nn/optim/adam.py +126 -62
  148. mindspore/nn/optim/adamax.py +3 -4
  149. mindspore/nn/optim/adasum.py +6 -6
  150. mindspore/nn/optim/asgd.py +2 -2
  151. mindspore/nn/optim/ftrl.py +67 -38
  152. mindspore/nn/optim/lamb.py +4 -5
  153. mindspore/nn/optim/lars.py +2 -2
  154. mindspore/nn/optim/lazyadam.py +43 -4
  155. mindspore/nn/optim/momentum.py +6 -5
  156. mindspore/nn/optim/optimizer.py +3 -1
  157. mindspore/nn/optim/proximal_ada_grad.py +2 -2
  158. mindspore/nn/optim/rmsprop.py +1 -1
  159. mindspore/nn/optim/rprop.py +8 -9
  160. mindspore/nn/optim/sgd.py +19 -13
  161. mindspore/nn/optim/thor.py +10 -15
  162. mindspore/nn/probability/__init__.py +0 -2
  163. mindspore/nn/probability/bijector/bijector.py +4 -4
  164. mindspore/nn/probability/bijector/invert.py +1 -1
  165. mindspore/nn/probability/bijector/softplus.py +2 -2
  166. mindspore/nn/probability/bnn_layers/dense_variational.py +1 -1
  167. mindspore/nn/probability/bnn_layers/layer_distribution.py +2 -2
  168. mindspore/nn/probability/distribution/_utils/utils.py +9 -15
  169. mindspore/nn/probability/distribution/bernoulli.py +3 -3
  170. mindspore/nn/probability/distribution/beta.py +1 -1
  171. mindspore/nn/probability/distribution/categorical.py +5 -7
  172. mindspore/nn/probability/distribution/cauchy.py +3 -3
  173. mindspore/nn/probability/distribution/distribution.py +2 -2
  174. mindspore/nn/probability/distribution/exponential.py +2 -2
  175. mindspore/nn/probability/distribution/gamma.py +3 -3
  176. mindspore/nn/probability/distribution/geometric.py +1 -1
  177. mindspore/nn/probability/distribution/gumbel.py +3 -3
  178. mindspore/nn/probability/distribution/half_normal.py +15 -11
  179. mindspore/nn/probability/distribution/laplace.py +16 -13
  180. mindspore/nn/probability/distribution/logistic.py +2 -2
  181. mindspore/nn/probability/distribution/normal.py +1 -1
  182. mindspore/nn/probability/distribution/poisson.py +1 -1
  183. mindspore/nn/probability/distribution/student_t.py +20 -15
  184. mindspore/nn/probability/distribution/transformed_distribution.py +4 -4
  185. mindspore/nn/probability/distribution/uniform.py +2 -2
  186. mindspore/nn/reinforcement/_tensors_queue.py +3 -3
  187. mindspore/nn/reinforcement/tensor_array.py +2 -2
  188. mindspore/nn/sparse/sparse.py +2 -2
  189. mindspore/nn/wrap/cell_wrapper.py +27 -10
  190. mindspore/nn/wrap/grad_reducer.py +2 -2
  191. mindspore/nn/wrap/loss_scale.py +40 -24
  192. mindspore/numpy/array_creations.py +33 -22
  193. mindspore/numpy/array_ops.py +35 -30
  194. mindspore/numpy/logic_ops.py +6 -27
  195. mindspore/numpy/math_ops.py +22 -19
  196. mindspore/numpy/utils.py +1 -1
  197. mindspore/numpy/utils_const.py +108 -58
  198. mindspore/opencv_core452.dll +0 -0
  199. mindspore/opencv_imgcodecs452.dll +0 -0
  200. mindspore/opencv_imgproc452.dll +0 -0
  201. mindspore/ops/_constants.py +0 -6
  202. mindspore/ops/_grad/__init__.py +2 -1
  203. mindspore/ops/_grad/grad_array_ops.py +86 -117
  204. mindspore/ops/_grad/grad_base.py +23 -1
  205. mindspore/ops/_grad/grad_clip_ops.py +2 -3
  206. mindspore/ops/_grad/grad_comm_ops.py +34 -24
  207. mindspore/ops/_grad/grad_implementations.py +9 -45
  208. mindspore/ops/_grad/grad_inner_ops.py +47 -4
  209. mindspore/ops/_grad/grad_math_ops.py +142 -117
  210. mindspore/ops/_grad/grad_nn_ops.py +71 -165
  211. mindspore/ops/_grad/grad_sequence_ops.py +296 -0
  212. mindspore/ops/_grad/grad_sparse.py +7 -6
  213. mindspore/ops/_grad_experimental/__init__.py +1 -0
  214. mindspore/ops/_grad_experimental/grad_array_ops.py +150 -15
  215. mindspore/ops/_grad_experimental/grad_image_ops.py +16 -7
  216. mindspore/ops/_grad_experimental/grad_inner_ops.py +1 -22
  217. mindspore/ops/_grad_experimental/grad_linalg_ops.py +4 -11
  218. mindspore/ops/_grad_experimental/grad_math_ops.py +210 -89
  219. mindspore/ops/_grad_experimental/grad_nn_ops.py +26 -22
  220. mindspore/ops/_grad_experimental/grad_scalar_ops.py +112 -0
  221. mindspore/ops/_grad_experimental/grad_sparse_ops.py +49 -8
  222. mindspore/ops/_op_impl/_custom_op/batch_matmul_impl.py +1 -1
  223. mindspore/ops/_op_impl/_custom_op/batchnorm_fold.py +2 -2
  224. mindspore/ops/_op_impl/_custom_op/batchnorm_fold2.py +2 -2
  225. mindspore/ops/_op_impl/_custom_op/batchnorm_fold2_grad.py +2 -2
  226. mindspore/ops/_op_impl/_custom_op/batchnorm_fold2_grad_reduce.py +4 -4
  227. mindspore/ops/_op_impl/_custom_op/batchnorm_fold_grad.py +3 -3
  228. mindspore/ops/_op_impl/_custom_op/cholesky_trsm_impl.py +1 -1
  229. mindspore/ops/_op_impl/_custom_op/correction_mul.py +2 -2
  230. mindspore/ops/_op_impl/_custom_op/correction_mul_grad.py +2 -2
  231. mindspore/ops/_op_impl/_custom_op/dsd_back_impl.py +1 -5
  232. mindspore/ops/_op_impl/_custom_op/dsd_impl.py +1 -1
  233. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel.py +2 -2
  234. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel_grad.py +2 -2
  235. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel_grad_reduce.py +2 -2
  236. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer.py +2 -2
  237. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer_grad.py +2 -2
  238. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer_grad_reduce.py +2 -2
  239. mindspore/ops/_op_impl/_custom_op/fake_quant_perchannel.py +2 -2
  240. mindspore/ops/_op_impl/_custom_op/fake_quant_perchannel_grad.py +2 -2
  241. mindspore/ops/_op_impl/_custom_op/fake_quant_perlayer.py +2 -2
  242. mindspore/ops/_op_impl/_custom_op/fake_quant_perlayer_grad.py +2 -2
  243. mindspore/ops/_op_impl/_custom_op/fused_abs_max1_impl.py +1 -1
  244. mindspore/ops/_op_impl/_custom_op/img2col_impl.py +1 -1
  245. mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_left_impl.py +2 -2
  246. mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_right_impl.py +1 -1
  247. mindspore/ops/_op_impl/_custom_op/matmul_cube_fracz_left_cast_impl.py +1 -1
  248. mindspore/ops/_op_impl/_custom_op/matmul_cube_fracz_right_mul_impl.py +1 -1
  249. mindspore/ops/_op_impl/_custom_op/matmul_cube_impl.py +2 -2
  250. mindspore/ops/_op_impl/_custom_op/matmul_dds_impl.py +0 -4
  251. mindspore/ops/_op_impl/_custom_op/matrix_combine_impl.py +1 -1
  252. mindspore/ops/_op_impl/_custom_op/minmax_update_perchannel.py +2 -2
  253. mindspore/ops/_op_impl/_custom_op/minmax_update_perlayer.py +2 -2
  254. mindspore/ops/_op_impl/_custom_op/transpose02314_impl.py +1 -1
  255. mindspore/ops/_op_impl/aicpu/__init__.py +236 -4
  256. mindspore/ops/_op_impl/aicpu/abs.py +36 -0
  257. mindspore/ops/_op_impl/aicpu/{adaptive_avg_pool_2d_v1.py → adaptive_avg_pool_2d.py} +6 -5
  258. mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_2d_grad.py +34 -0
  259. mindspore/ops/_op_impl/aicpu/add.py +43 -0
  260. mindspore/ops/_op_impl/aicpu/addcdiv.py +0 -32
  261. mindspore/ops/_op_impl/aicpu/addcmul.py +0 -84
  262. mindspore/ops/_op_impl/aicpu/affine_grid_grad.py +35 -0
  263. mindspore/ops/_op_impl/aicpu/batch_matmul.py +43 -43
  264. mindspore/ops/_op_impl/aicpu/bernoulli.py +48 -0
  265. mindspore/{compression/common/__init__.py → ops/_op_impl/aicpu/bessel_i0.py} +15 -8
  266. mindspore/ops/_op_impl/aicpu/channel_shuffle.py +40 -0
  267. mindspore/ops/_op_impl/aicpu/conj.py +11 -0
  268. mindspore/ops/_op_impl/aicpu/cumulative_logsumexp.py +0 -3
  269. mindspore/ops/_op_impl/aicpu/deformable_offsets.py +38 -0
  270. mindspore/ops/_op_impl/aicpu/deformable_offsets_grad.py +43 -0
  271. mindspore/ops/_op_impl/aicpu/{adaptive_avg_pool_2d_grad_v1.py → digamma.py} +7 -9
  272. mindspore/ops/_op_impl/aicpu/flatten.py +1 -0
  273. mindspore/ops/_op_impl/aicpu/fmax.py +36 -0
  274. mindspore/ops/_op_impl/aicpu/fmin.py +37 -0
  275. mindspore/ops/_op_impl/aicpu/fractional_max_pool3d_with_fixed_ksize.py +1 -1
  276. mindspore/ops/_op_impl/aicpu/fse_decode.py +43 -0
  277. mindspore/ops/_op_impl/aicpu/greater.py +41 -0
  278. mindspore/ops/_op_impl/aicpu/greater_equal.py +41 -0
  279. mindspore/ops/_op_impl/aicpu/index_put.py +50 -0
  280. mindspore/ops/_op_impl/aicpu/less.py +41 -0
  281. mindspore/{nn/probability/infer/variational/__init__.py → ops/_op_impl/aicpu/lgamma.py} +16 -10
  282. mindspore/ops/_op_impl/aicpu/mirror_pad.py +0 -4
  283. mindspore/ops/_op_impl/aicpu/mirror_pad_grad.py +0 -4
  284. mindspore/ops/_op_impl/aicpu/mul.py +3 -1
  285. mindspore/ops/_op_impl/aicpu/multinomial.py +14 -6
  286. mindspore/ops/_op_impl/aicpu/nllloss.py +38 -0
  287. mindspore/ops/_op_impl/aicpu/nllloss_grad.py +39 -0
  288. mindspore/ops/_op_impl/aicpu/ones_like.py +0 -2
  289. mindspore/ops/_op_impl/aicpu/polar.py +32 -0
  290. mindspore/ops/_op_impl/aicpu/polygamma.py +34 -0
  291. mindspore/ops/_op_impl/aicpu/quant_dtype_cast.py +40 -0
  292. mindspore/ops/_op_impl/aicpu/quantile.py +35 -0
  293. mindspore/ops/_op_impl/aicpu/ragged_tensor_to_sparse.py +73 -0
  294. mindspore/ops/_op_impl/aicpu/randperm_v2.py +41 -0
  295. mindspore/ops/_op_impl/aicpu/resize_bicubic.py +2 -8
  296. mindspore/ops/_op_impl/aicpu/resize_bicubic_grad.py +1 -1
  297. mindspore/ops/_op_impl/aicpu/resize_v2.py +68 -0
  298. mindspore/ops/_op_impl/aicpu/resize_v2_grad.py +68 -0
  299. mindspore/ops/_op_impl/aicpu/scatter_elements.py +4 -0
  300. mindspore/ops/_op_impl/aicpu/scatter_nd_update.py +2 -0
  301. mindspore/ops/_op_impl/aicpu/sequence_add.py +34 -0
  302. mindspore/ops/_op_impl/aicpu/sequence_add_offset.py +34 -0
  303. mindspore/ops/_op_impl/aicpu/sequence_addn.py +38 -0
  304. mindspore/ops/_op_impl/aicpu/smooth_l1_loss.py +35 -0
  305. mindspore/ops/_op_impl/aicpu/smooth_l1_loss_grad.py +37 -0
  306. mindspore/ops/_op_impl/aicpu/sparse_apply_adagrad_da.py +0 -24
  307. mindspore/ops/_op_impl/aicpu/sparse_cross.py +42 -0
  308. mindspore/ops/_op_impl/aicpu/sparse_slice.py +4 -0
  309. mindspore/ops/_op_impl/aicpu/sparse_slice_grad.py +6 -0
  310. mindspore/ops/_op_impl/aicpu/tensor_scatter_update.py +59 -0
  311. mindspore/ops/_op_impl/aicpu/trans_data.py +1 -0
  312. mindspore/ops/_op_impl/aicpu/tril_indices.py +34 -0
  313. mindspore/ops/_op_impl/aicpu/uniform.py +34 -0
  314. mindspore/ops/_op_impl/aicpu/uniform_candidate_sampler.py +1 -0
  315. mindspore/ops/_op_impl/aicpu/unique_consecutive.py +10 -2
  316. mindspore/ops/_op_impl/cpu/dynamic_shape.py +5 -1
  317. mindspore/ops/_op_impl/cpu/sparse_slice.py +4 -0
  318. mindspore/ops/_op_impl/cpu/sparse_slice_grad.py +6 -0
  319. mindspore/ops/_op_impl/cpu/tensor_shape.py +5 -1
  320. mindspore/ops/_op_impl/tbe/__init__.py +27 -611
  321. mindspore/ops/_op_impl/tbe/assign_add_ds.py +1 -0
  322. mindspore/ops/_op_impl/tbe/atomic_addr_clean.py +1 -1
  323. mindspore/ops/_op_impl/tbe/avg_pool_3d_grad.py +1 -1
  324. mindspore/ops/_op_impl/tbe/batch_matmul_ds.py +1 -0
  325. mindspore/ops/_op_impl/tbe/batch_to_space.py +1 -1
  326. mindspore/ops/_op_impl/tbe/batch_to_space_nd.py +1 -1
  327. mindspore/ops/_op_impl/tbe/bn_infer_grad.py +4 -2
  328. mindspore/ops/_op_impl/tbe/bn_training_update.py +0 -1
  329. mindspore/ops/_op_impl/tbe/bn_training_update_ds.py +0 -1
  330. mindspore/ops/_op_impl/tbe/broadcast_to_ds.py +6 -4
  331. mindspore/ops/_op_impl/tbe/cast.py +0 -2
  332. mindspore/ops/_op_impl/tbe/cast_ds.py +3 -3
  333. mindspore/ops/_op_impl/tbe/data_format_dim_map_ds.py +1 -0
  334. mindspore/ops/_op_impl/tbe/depthwise_conv2d.py +2 -2
  335. mindspore/ops/_op_impl/tbe/dynamic_atomic_addr_clean.py +1 -1
  336. mindspore/ops/_op_impl/tbe/gather_nd.py +1 -0
  337. mindspore/ops/_op_impl/tbe/{index_add.py → inplace_index_add.py} +3 -6
  338. mindspore/ops/_op_impl/tbe/matmul_ds.py +2 -0
  339. mindspore/ops/_op_impl/tbe/npu_clear_float_status_v2.py +35 -0
  340. mindspore/ops/_op_impl/tbe/npu_get_float_status_v2.py +35 -0
  341. mindspore/ops/_op_impl/tbe/scatter_mul.py +2 -0
  342. mindspore/ops/_op_impl/tbe/scatter_nd_add.py +0 -2
  343. mindspore/ops/_op_impl/tbe/space_to_batch.py +1 -1
  344. mindspore/ops/_op_impl/tbe/space_to_batch_nd.py +1 -1
  345. mindspore/ops/_op_impl/tbe/trans_data_ds.py +15 -5
  346. mindspore/ops/_register_for_op.py +1 -0
  347. mindspore/ops/_utils/__init__.py +1 -2
  348. mindspore/ops/_utils/utils.py +19 -40
  349. mindspore/ops/_vmap/vmap_array_ops.py +116 -38
  350. mindspore/ops/_vmap/vmap_base.py +16 -9
  351. mindspore/ops/_vmap/vmap_convolution_ops.py +7 -10
  352. mindspore/ops/_vmap/vmap_grad_math_ops.py +4 -4
  353. mindspore/ops/_vmap/vmap_grad_nn_ops.py +7 -5
  354. mindspore/ops/_vmap/vmap_image_ops.py +12 -5
  355. mindspore/ops/_vmap/vmap_math_ops.py +46 -5
  356. mindspore/ops/_vmap/vmap_nn_ops.py +15 -21
  357. mindspore/ops/_vmap/vmap_random_ops.py +1 -1
  358. mindspore/ops/bprop_mindir/AdaptiveAvgPool2D_bprop.mindir +0 -0
  359. mindspore/ops/bprop_mindir/AdaptiveMaxPool2D_bprop.mindir +0 -0
  360. mindspore/ops/bprop_mindir/AvgPool3D_bprop.mindir +150 -0
  361. mindspore/ops/bprop_mindir/AvgPool_bprop.mindir +66 -0
  362. mindspore/ops/bprop_mindir/BCEWithLogitsLoss_bprop.mindir +0 -0
  363. mindspore/ops/bprop_mindir/BatchNormGrad_bprop.mindir +0 -0
  364. mindspore/ops/bprop_mindir/BiasAddGrad_bprop.mindir +0 -0
  365. mindspore/ops/bprop_mindir/BinaryCrossEntropy_bprop.mindir +33 -0
  366. mindspore/ops/bprop_mindir/BroadcastTo_bprop.mindir +220 -106
  367. mindspore/ops/bprop_mindir/CTCLoss_bprop.mindir +0 -0
  368. mindspore/ops/bprop_mindir/Conv2DBackpropFilter_bprop.mindir +240 -0
  369. mindspore/ops/bprop_mindir/Conv2DBackpropInput_bprop.mindir +247 -0
  370. mindspore/ops/bprop_mindir/Conv2DTranspose_bprop.mindir +247 -0
  371. mindspore/ops/bprop_mindir/Conv3DTranspose_bprop.mindir +315 -0
  372. mindspore/ops/bprop_mindir/Conv3D_bprop.mindir +278 -0
  373. mindspore/ops/bprop_mindir/DeformableOffsets_bprop.mindir +58 -0
  374. mindspore/ops/bprop_mindir/DepthwiseConv2dNative_bprop.mindir +138 -0
  375. mindspore/ops/bprop_mindir/Dropout2D_bprop.mindir +0 -0
  376. mindspore/ops/bprop_mindir/Dropout3D_bprop.mindir +0 -0
  377. mindspore/ops/bprop_mindir/DropoutDoMask_bprop.mindir +22 -23
  378. mindspore/ops/bprop_mindir/DropoutGenMask_bprop.mindir +16 -17
  379. mindspore/ops/bprop_mindir/DropoutGrad_bprop.mindir +27 -0
  380. mindspore/ops/bprop_mindir/Dropout_bprop.mindir +0 -0
  381. mindspore/ops/bprop_mindir/DynamicGRUV2_bprop.mindir +0 -0
  382. mindspore/ops/bprop_mindir/DynamicRNN_bprop.mindir +0 -0
  383. mindspore/ops/bprop_mindir/Elu_bprop.mindir +16 -0
  384. mindspore/ops/bprop_mindir/EmbeddingLookup_bprop.mindir +0 -0
  385. mindspore/ops/bprop_mindir/ExpandDims_bprop.mindir +39 -41
  386. mindspore/ops/bprop_mindir/FastGeLU_bprop.mindir +16 -0
  387. mindspore/ops/bprop_mindir/Flatten_bprop.mindir +41 -43
  388. mindspore/ops/bprop_mindir/GatherNd_bprop.mindir +51 -57
  389. mindspore/ops/bprop_mindir/Gather_bprop.mindir +0 -0
  390. mindspore/ops/bprop_mindir/HSigmoid_bprop.mindir +16 -0
  391. mindspore/ops/bprop_mindir/HSwish_bprop.mindir +16 -0
  392. mindspore/ops/bprop_mindir/InstanceNorm_bprop.mindir +0 -0
  393. mindspore/ops/bprop_mindir/KLDivLoss_bprop.mindir +126 -0
  394. mindspore/ops/bprop_mindir/L2Loss_bprop.mindir +15 -0
  395. mindspore/ops/bprop_mindir/L2Normalize_bprop.mindir +30 -0
  396. mindspore/ops/bprop_mindir/LRN_bprop.mindir +43 -0
  397. mindspore/ops/bprop_mindir/LayerNormGrad_bprop.mindir +0 -0
  398. mindspore/ops/bprop_mindir/LogSoftmax_bprop.mindir +23 -0
  399. mindspore/ops/bprop_mindir/MaxPool3DGradGrad_bprop.mindir +74 -0
  400. mindspore/ops/bprop_mindir/MaxPool3DGrad_bprop.mindir +74 -0
  401. mindspore/ops/bprop_mindir/MaxPool3D_bprop.mindir +75 -0
  402. mindspore/ops/bprop_mindir/MaxPoolGradGrad_bprop.mindir +65 -0
  403. mindspore/ops/bprop_mindir/MaxPoolWithArgmax_bprop.mindir +0 -0
  404. mindspore/ops/bprop_mindir/MirrorPad_bprop.mindir +27 -0
  405. mindspore/ops/bprop_mindir/Mish_bprop.mindir +35 -0
  406. mindspore/ops/bprop_mindir/MulNoNan_bprop.mindir +0 -0
  407. mindspore/ops/bprop_mindir/NLLLoss_bprop.mindir +0 -0
  408. mindspore/ops/bprop_mindir/OneHot_bprop.mindir +24 -25
  409. mindspore/ops/bprop_mindir/PReLU_bprop.mindir +0 -0
  410. mindspore/ops/bprop_mindir/Pad_bprop.mindir +0 -0
  411. mindspore/ops/bprop_mindir/Padding_bprop.mindir +0 -0
  412. mindspore/ops/bprop_mindir/RNNTLoss_bprop.mindir +29 -0
  413. mindspore/ops/bprop_mindir/ROIAlign_bprop.mindir +82 -0
  414. mindspore/ops/bprop_mindir/ReLU6_bprop.mindir +16 -0
  415. mindspore/ops/bprop_mindir/ReLUV2_bprop.mindir +0 -0
  416. mindspore/ops/bprop_mindir/ReluGrad_bprop.mindir +18 -19
  417. mindspore/ops/bprop_mindir/Reshape_bprop.mindir +53 -53
  418. mindspore/ops/bprop_mindir/ResizeBilinear_bprop.mindir +29 -0
  419. mindspore/ops/bprop_mindir/ResizeNearestNeighbor_bprop.mindir +77 -85
  420. mindspore/ops/bprop_mindir/SeLU_bprop.mindir +21 -0
  421. mindspore/ops/bprop_mindir/SigmoidCrossEntropyWithLogits_bprop.mindir +21 -0
  422. mindspore/ops/bprop_mindir/SigmoidGrad_bprop.mindir +0 -0
  423. mindspore/ops/bprop_mindir/Sigmoid_bprop.mindir +16 -0
  424. mindspore/ops/bprop_mindir/SmoothL1Loss_bprop.mindir +36 -0
  425. mindspore/ops/bprop_mindir/SoftmaxCrossEntropyWithLogits_bprop.mindir +0 -0
  426. mindspore/ops/bprop_mindir/Softplus_bprop.mindir +16 -0
  427. mindspore/ops/bprop_mindir/Softsign_bprop.mindir +33 -0
  428. mindspore/ops/bprop_mindir/SparseSoftmaxCrossEntropyWithLogits_bprop.mindir +0 -0
  429. mindspore/ops/bprop_mindir/Squeeze_bprop.mindir +37 -39
  430. mindspore/ops/bprop_mindir/StridedSlice_bprop.mindir +70 -72
  431. mindspore/ops/bprop_mindir/TanhGrad_bprop.mindir +0 -0
  432. mindspore/ops/bprop_mindir/Tanh_bprop.mindir +66 -0
  433. mindspore/ops/bprop_mindir/Tile_bprop.mindir +0 -0
  434. mindspore/ops/bprop_mindir/TopK_bprop.mindir +0 -0
  435. mindspore/ops/bprop_mindir/TupleGetItem_bprop.mindir +17 -17
  436. mindspore/ops/bprop_mindir/UpsampleNearest3D_bprop.mindir +32 -0
  437. mindspore/ops/bprop_mindir/UpsampleTrilinear3D_bprop.mindir +38 -0
  438. mindspore/ops/bprop_mindir/generate_mindir.py +2 -0
  439. mindspore/ops/composite/__init__.py +7 -8
  440. mindspore/ops/composite/base.py +101 -47
  441. mindspore/ops/composite/math_ops.py +188 -158
  442. mindspore/ops/composite/multitype_ops/_compile_utils.py +415 -170
  443. mindspore/ops/composite/multitype_ops/_constexpr_utils.py +142 -87
  444. mindspore/ops/composite/multitype_ops/add_impl.py +6 -1
  445. mindspore/ops/composite/multitype_ops/div_impl.py +2 -3
  446. mindspore/ops/composite/multitype_ops/getitem_impl.py +31 -3
  447. mindspore/ops/composite/multitype_ops/greater_equal_impl.py +31 -0
  448. mindspore/ops/composite/multitype_ops/greater_impl.py +31 -0
  449. mindspore/ops/composite/multitype_ops/in_impl.py +9 -0
  450. mindspore/ops/composite/multitype_ops/less_equal_impl.py +31 -0
  451. mindspore/ops/composite/multitype_ops/less_impl.py +31 -0
  452. mindspore/ops/composite/multitype_ops/mul_impl.py +21 -5
  453. mindspore/ops/composite/multitype_ops/not_in_impl.py +9 -0
  454. mindspore/ops/composite/multitype_ops/ones_like_impl.py +2 -4
  455. mindspore/ops/composite/multitype_ops/setitem_impl.py +21 -3
  456. mindspore/ops/composite/multitype_ops/sub_impl.py +1 -1
  457. mindspore/ops/composite/multitype_ops/zeros_like_impl.py +35 -4
  458. mindspore/ops/function/__init__.py +152 -8
  459. mindspore/ops/function/array_func.py +2555 -674
  460. mindspore/ops/function/clip_func.py +209 -13
  461. mindspore/ops/function/debug_func.py +2 -2
  462. mindspore/ops/function/grad/__init__.py +2 -1
  463. mindspore/ops/function/grad/grad_func.py +147 -62
  464. mindspore/ops/function/image_func.py +54 -38
  465. mindspore/ops/function/linalg_func.py +167 -16
  466. mindspore/ops/function/math_func.py +4849 -1492
  467. mindspore/ops/function/nn_func.py +2573 -988
  468. mindspore/ops/function/other_func.py +115 -0
  469. mindspore/ops/function/parameter_func.py +3 -3
  470. mindspore/ops/function/random_func.py +790 -73
  471. mindspore/ops/function/sparse_func.py +98 -78
  472. mindspore/ops/function/sparse_unary_func.py +54 -53
  473. mindspore/ops/function/spectral_func.py +27 -24
  474. mindspore/ops/function/vmap_func.py +22 -2
  475. mindspore/ops/functional.py +97 -37
  476. mindspore/ops/op_info_register.py +70 -28
  477. mindspore/ops/operations/__init__.py +47 -14
  478. mindspore/ops/operations/_csr_ops.py +7 -7
  479. mindspore/ops/operations/_embedding_cache_ops.py +5 -5
  480. mindspore/ops/operations/_grad_ops.py +276 -187
  481. mindspore/ops/operations/_inner_ops.py +319 -113
  482. mindspore/ops/operations/_ms_kernel.py +10 -8
  483. mindspore/ops/operations/_ocr_ops.py +9 -9
  484. mindspore/ops/operations/_opaque_predicate_registry.py +4 -0
  485. mindspore/ops/operations/_quant_ops.py +137 -102
  486. mindspore/ops/operations/_rl_inner_ops.py +121 -60
  487. mindspore/ops/operations/_scalar_ops.py +466 -0
  488. mindspore/ops/operations/_sequence_ops.py +1004 -2
  489. mindspore/ops/operations/_tensor_array.py +10 -11
  490. mindspore/ops/operations/_thor_ops.py +1 -1
  491. mindspore/ops/operations/array_ops.py +801 -466
  492. mindspore/ops/operations/comm_ops.py +51 -49
  493. mindspore/ops/operations/control_ops.py +2 -2
  494. mindspore/ops/operations/custom_ops.py +123 -44
  495. mindspore/ops/operations/debug_ops.py +24 -24
  496. mindspore/ops/operations/image_ops.py +240 -153
  497. mindspore/ops/operations/inner_ops.py +34 -50
  498. mindspore/ops/operations/linalg_ops.py +31 -9
  499. mindspore/ops/operations/math_ops.py +988 -757
  500. mindspore/ops/operations/nn_ops.py +965 -819
  501. mindspore/ops/operations/other_ops.py +51 -40
  502. mindspore/ops/operations/random_ops.py +204 -122
  503. mindspore/ops/operations/rl_ops.py +8 -9
  504. mindspore/ops/operations/sparse_ops.py +254 -93
  505. mindspore/ops/operations/spectral_ops.py +35 -3
  506. mindspore/ops/primitive.py +111 -9
  507. mindspore/parallel/_auto_parallel_context.py +189 -83
  508. mindspore/parallel/_offload_context.py +185 -0
  509. mindspore/parallel/_parallel_serialization.py +99 -7
  510. mindspore/parallel/_ps_context.py +9 -5
  511. mindspore/parallel/_recovery_context.py +1 -1
  512. mindspore/parallel/_tensor.py +7 -1
  513. mindspore/{nn/transformer → parallel/_transformer}/__init__.py +6 -6
  514. mindspore/{nn/transformer → parallel/_transformer}/layers.py +6 -37
  515. mindspore/{nn/transformer → parallel/_transformer}/loss.py +4 -7
  516. mindspore/{nn/transformer → parallel/_transformer}/moe.py +20 -16
  517. mindspore/{nn/transformer → parallel/_transformer}/op_parallel_config.py +3 -3
  518. mindspore/{nn/transformer → parallel/_transformer}/transformer.py +48 -111
  519. mindspore/parallel/_utils.py +1 -2
  520. mindspore/parallel/algo_parameter_config.py +1 -1
  521. mindspore/parallel/checkpoint_transform.py +37 -34
  522. mindspore/parallel/shard.py +17 -18
  523. mindspore/profiler/common/validator/validate_path.py +2 -2
  524. mindspore/profiler/envprofiling.py +69 -47
  525. mindspore/profiler/parser/ascend_timeline_generator.py +49 -42
  526. mindspore/profiler/parser/base_timeline_generator.py +49 -56
  527. mindspore/profiler/parser/cpu_gpu_timeline_generator.py +98 -78
  528. mindspore/profiler/parser/hwts_log_parser.py +1 -1
  529. mindspore/profiler/parser/integrator.py +15 -14
  530. mindspore/profiler/parser/minddata_analyzer.py +2 -2
  531. mindspore/profiler/parser/msadvisor_analyzer.py +12 -25
  532. mindspore/profiler/parser/msadvisor_parser.py +2 -4
  533. mindspore/profiler/parser/optime_parser.py +17 -18
  534. mindspore/profiler/parser/profiler_info.py +2 -1
  535. mindspore/profiler/profiling.py +218 -186
  536. mindspore/rewrite/__init__.py +3 -1
  537. mindspore/rewrite/api/node.py +1 -114
  538. mindspore/rewrite/api/node_type.py +3 -0
  539. mindspore/rewrite/api/pattern_engine.py +31 -1
  540. mindspore/rewrite/api/scoped_value.py +4 -4
  541. mindspore/rewrite/api/symbol_tree.py +3 -78
  542. mindspore/rewrite/api/tree_node_helper.py +1 -1
  543. mindspore/rewrite/ast_creator_register.py +1 -0
  544. mindspore/rewrite/ast_helpers/__init__.py +2 -2
  545. mindspore/rewrite/ast_helpers/ast_creator.py +1 -2
  546. mindspore/rewrite/ast_helpers/ast_finder.py +65 -0
  547. mindspore/rewrite/ast_helpers/ast_modifier.py +11 -3
  548. mindspore/rewrite/ast_transformers/flatten_recursive_stmt.py +18 -2
  549. mindspore/rewrite/namespace.py +0 -2
  550. mindspore/rewrite/node.py +157 -11
  551. mindspore/rewrite/parsers/assign_parser.py +231 -53
  552. mindspore/rewrite/parsers/class_def_parser.py +187 -109
  553. mindspore/rewrite/parsers/for_parser.py +24 -14
  554. mindspore/rewrite/parsers/function_def_parser.py +21 -4
  555. mindspore/rewrite/parsers/if_parser.py +6 -2
  556. mindspore/rewrite/sparsify/__init__.py +0 -0
  557. mindspore/rewrite/sparsify/sparse_transformer.py +448 -0
  558. mindspore/rewrite/sparsify/sparsify.py +109 -0
  559. mindspore/rewrite/sparsify/utils.py +173 -0
  560. mindspore/rewrite/symbol_tree.py +256 -133
  561. mindspore/rewrite/symbol_tree_builder.py +38 -1
  562. mindspore/run_check/_check_version.py +69 -63
  563. mindspore/run_check/run_check.py +2 -1
  564. mindspore/tinyxml2.dll +0 -0
  565. mindspore/train/__init__.py +1 -1
  566. mindspore/train/_utils.py +28 -5
  567. mindspore/train/amp.py +273 -102
  568. mindspore/train/callback/_backup_and_restore.py +5 -5
  569. mindspore/train/callback/_callback.py +2 -2
  570. mindspore/train/callback/_checkpoint.py +3 -3
  571. mindspore/train/callback/_early_stop.py +3 -3
  572. mindspore/train/callback/_lambda_callback.py +2 -2
  573. mindspore/train/callback/_landscape.py +29 -31
  574. mindspore/train/callback/_loss_monitor.py +3 -3
  575. mindspore/train/callback/_on_request_exit.py +3 -3
  576. mindspore/train/callback/_reduce_lr_on_plateau.py +4 -4
  577. mindspore/train/callback/_summary_collector.py +23 -16
  578. mindspore/train/callback/_time_monitor.py +3 -3
  579. mindspore/train/checkpoint_pb2.py +68 -8
  580. mindspore/train/data_sink.py +15 -3
  581. mindspore/train/dataset_helper.py +10 -15
  582. mindspore/train/loss_scale_manager.py +8 -11
  583. mindspore/train/metrics/__init__.py +1 -1
  584. mindspore/train/metrics/bleu_score.py +1 -1
  585. mindspore/train/metrics/confusion_matrix.py +1 -1
  586. mindspore/train/metrics/cosine_similarity.py +1 -1
  587. mindspore/train/metrics/dice.py +2 -2
  588. mindspore/train/metrics/fbeta.py +1 -1
  589. mindspore/train/metrics/hausdorff_distance.py +4 -3
  590. mindspore/train/metrics/mean_surface_distance.py +2 -2
  591. mindspore/train/metrics/occlusion_sensitivity.py +1 -1
  592. mindspore/train/metrics/perplexity.py +1 -1
  593. mindspore/train/metrics/precision.py +1 -1
  594. mindspore/train/metrics/recall.py +1 -1
  595. mindspore/train/metrics/roc.py +2 -2
  596. mindspore/train/metrics/root_mean_square_surface_distance.py +2 -2
  597. mindspore/train/mind_ir_pb2.py +116 -37
  598. mindspore/train/model.py +45 -28
  599. mindspore/train/serialization.py +295 -188
  600. mindspore/train/summary/_summary_adapter.py +1 -1
  601. mindspore/train/summary/summary_record.py +43 -13
  602. mindspore/train/train_thor/convert_utils.py +2 -2
  603. mindspore/train/train_thor/dataset_helper.py +3 -3
  604. mindspore/turbojpeg.dll +0 -0
  605. mindspore/version.py +1 -1
  606. {mindspore-2.0.0a0.dist-info → mindspore-2.0.0rc1.dist-info}/METADATA +3 -2
  607. {mindspore-2.0.0a0.dist-info → mindspore-2.0.0rc1.dist-info}/RECORD +610 -541
  608. mindspore/compression/__init__.py +0 -19
  609. mindspore/compression/common/constant.py +0 -124
  610. mindspore/compression/export/__init__.py +0 -19
  611. mindspore/compression/export/quant_export.py +0 -515
  612. mindspore/compression/quant/__init__.py +0 -28
  613. mindspore/compression/quant/qat.py +0 -634
  614. mindspore/compression/quant/quant_utils.py +0 -462
  615. mindspore/compression/quant/quantizer.py +0 -68
  616. mindspore/nn/layer/quant.py +0 -1868
  617. mindspore/nn/layer/rnn_utils.py +0 -90
  618. mindspore/nn/probability/dpn/__init__.py +0 -22
  619. mindspore/nn/probability/dpn/vae/__init__.py +0 -25
  620. mindspore/nn/probability/dpn/vae/cvae.py +0 -140
  621. mindspore/nn/probability/dpn/vae/vae.py +0 -124
  622. mindspore/nn/probability/infer/__init__.py +0 -22
  623. mindspore/nn/probability/infer/variational/elbo.py +0 -70
  624. mindspore/nn/probability/infer/variational/svi.py +0 -84
  625. mindspore/nn/probability/toolbox/__init__.py +0 -22
  626. mindspore/nn/probability/toolbox/anomaly_detection.py +0 -99
  627. mindspore/nn/probability/toolbox/uncertainty_evaluation.py +0 -364
  628. mindspore/nn/probability/transforms/__init__.py +0 -22
  629. mindspore/nn/probability/transforms/transform_bnn.py +0 -262
  630. mindspore/nn/probability/zhusuan/__init__.py +0 -18
  631. mindspore/nn/probability/zhusuan/framework/__init__.py +0 -18
  632. mindspore/nn/probability/zhusuan/framework/bn.py +0 -95
  633. mindspore/nn/probability/zhusuan/variational/__init__.py +0 -18
  634. mindspore/nn/probability/zhusuan/variational/elbo.py +0 -46
  635. mindspore/ops/_op_impl/aicpu/parallel_concat.py +0 -42
  636. mindspore/ops/_op_impl/tbe/gather_v2.py +0 -56
  637. mindspore/ops/bprop_mindir/AssignAdd_bprop.mindir +0 -19
  638. mindspore/ops/bprop_mindir/Cast_bprop.mindir +0 -19
  639. mindspore/ops/bprop_mindir/LogicalOr_bprop.mindir +0 -19
  640. mindspore/ops/bprop_mindir/MatMul_bprop.mindir +0 -0
  641. mindspore/ops/bprop_mindir/ReLU_bprop.mindir +0 -17
  642. mindspore/ops/bprop_mindir/Transpose_bprop.mindir +0 -0
  643. mindspore/ops/bprop_mindir/UpdateState_bprop.mindir +0 -15
  644. mindspore/ops/composite/array_ops.py +0 -241
  645. mindspore/ops/composite/clip_ops.py +0 -134
  646. mindspore/ops/composite/random_ops.py +0 -426
  647. mindspore/ops/composite/vmap_ops.py +0 -38
  648. mindspore/parallel/nn/__init__.py +0 -42
  649. mindspore/parallel/nn/loss.py +0 -22
  650. mindspore/parallel/nn/moe.py +0 -21
  651. mindspore/parallel/nn/op_parallel_config.py +0 -22
  652. mindspore/parallel/nn/transformer.py +0 -31
  653. {mindspore-2.0.0a0.dist-info → mindspore-2.0.0rc1.dist-info}/WHEEL +0 -0
  654. {mindspore-2.0.0a0.dist-info → mindspore-2.0.0rc1.dist-info}/entry_points.txt +0 -0
  655. {mindspore-2.0.0a0.dist-info → mindspore-2.0.0rc1.dist-info}/top_level.txt +0 -0
@@ -1,426 +0,0 @@
1
- # Copyright 2020 Huawei Technologies Co., Ltd
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ============================================================================
15
- """Operations for random number generators."""
16
- from mindspore.ops.primitive import constexpr
17
- from mindspore.ops import operations as P
18
- from mindspore.ops import functional as F
19
- from mindspore.ops.composite.multitype_ops import _constexpr_utils as const_utils
20
- from mindspore.common import dtype as mstype
21
- from mindspore.common.seed import _get_graph_seed
22
- from mindspore.common.api import _function_forbid_reuse
23
-
24
-
25
- @constexpr(reuse_result=False)
26
- def _get_seed(op_seed, kernel_name):
27
- "Get the graph-level seed."
28
- return _get_graph_seed(op_seed, kernel_name)
29
-
30
-
31
- @_function_forbid_reuse
32
- def normal(shape, mean, stddev, seed=None):
33
- """
34
- Generates random numbers according to the Normal (or Gaussian) random number distribution.
35
-
36
- Args:
37
- shape (tuple): The shape of random tensor to be generated.
38
- The format is :math:`(N,*)` where :math:`*` means, any number of additional dimensions.
39
- mean (Tensor): The mean μ distribution parameter, which specifies the location of the peak,
40
- with data type in [int8, int16, int32, int64, float16, float32].
41
- stddev (Tensor): The deviation σ distribution parameter. It should be greater than 0,
42
- with data type in [int8, int16, int32, int64, float16, float32].
43
- seed (int): Seed is used as entropy source for the Random number engines to generate pseudo-random numbers.
44
- The value must be non-negative. Default: None, which will be treated as 0.
45
-
46
- Returns:
47
- Tensor. The shape should be equal to the broadcasted shape between the input `shape` and shapes
48
- of `mean` and `stddev`.
49
- The dtype is float32.
50
-
51
- Supported Platforms:
52
- ``Ascend`` ``GPU`` ``CPU``
53
-
54
- Examples:
55
- >>> import mindspore
56
- >>> import numpy as np
57
- >>> from mindspore import Tensor, ops
58
- >>> shape = (3, 1, 2)
59
- >>> mean = Tensor(np.array([[3, 4], [5, 6]]), mindspore.float32)
60
- >>> stddev = Tensor(1.0, mindspore.float32)
61
- >>> output = ops.normal(shape, mean, stddev, seed=5)
62
- >>> result = output.shape
63
- >>> print(result)
64
- (3, 2, 2)
65
- >>> shape = (3, 1, 3)
66
- >>> mean = Tensor(np.array([[3, 4, 3], [3, 5, 6]]), mindspore.float32)
67
- >>> stddev = Tensor(1.0, mindspore.float32)
68
- >>> output = ops.normal(shape, mean, stddev, seed=5)
69
- >>> result = output.shape
70
- >>> print(result)
71
- (3, 2, 3)
72
- >>> shape = (3, 1, 3)
73
- >>> mean = Tensor(np.array([[1, 2, 3], [3, 4, 3], [3, 5, 6]]), mindspore.float32)
74
- >>> stddev = Tensor(1.0, mindspore.float32)
75
- >>> output = ops.normal(shape, mean, stddev, seed=5)
76
- >>> result = output.shape
77
- >>> print(result)
78
- (3, 3, 3)
79
- """
80
- mean_dtype = F.dtype(mean)
81
- stddev_dtype = F.dtype(stddev)
82
- const_utils.check_type_valid(mean_dtype, mstype.int_type + (mstype.float16, mstype.float32), 'normal')
83
- const_utils.check_type_valid(stddev_dtype, mstype.int_type + (mstype.float16, mstype.float32), 'normal')
84
- seed1, seed2 = _get_seed(seed, "normal")
85
- stdnormal = P.StandardNormal(seed1, seed2)
86
- _check_shape(shape)
87
- random_normal = stdnormal(shape)
88
- value = random_normal * stddev + mean
89
- return value
90
-
91
-
92
- @_function_forbid_reuse
93
- def laplace(shape, mean, lambda_param, seed=None):
94
- r"""
95
- Generates random numbers according to the Laplace random number distribution.
96
- It is defined as:
97
-
98
- .. math::
99
- \text{f}(x;μ,λ) = \frac{1}{2λ}\exp(-\frac{|x-μ|}{λ}),
100
-
101
- Args:
102
- shape (tuple): The shape of random tensor to be generated.
103
- The format is :math:`(N,*)` where :math:`*` means, any number of additional dimensions.
104
- mean (Tensor): The mean μ distribution parameter, which specifies the location of the peak.
105
- With float32 data type.
106
- lambda_param (Tensor): The parameter used for controlling the variance of this random distribution. The
107
- variance of Laplace distribution is equal to twice the square of lambda_param. With float32 data type.
108
- seed (int, optional): Seed is used as entropy source for Random number engines generating pseudo-random numbers.
109
- Default: None, which will be treated as 0.
110
-
111
- Returns:
112
- Tensor. The shape should be the broadcasted shape of input `shape` and shapes of `mean` and `lambda_param`.
113
- The dtype is float32.
114
-
115
- Supported Platforms:
116
- ``Ascend``
117
-
118
- Examples:
119
- >>> import mindspore
120
- >>> from mindspore import Tensor
121
- >>> from mindspore import ops as ops
122
- >>> shape = (2, 3)
123
- >>> mean = Tensor(1.0, mindspore.float32)
124
- >>> lambda_param = Tensor(1.0, mindspore.float32)
125
- >>> output = ops.laplace(shape, mean, lambda_param, seed=5)
126
- >>> print(output.shape)
127
- (2, 3)
128
- """
129
- mean_dtype = F.dtype(mean)
130
- lambda_param_dtype = F.dtype(lambda_param)
131
- const_utils.check_tensors_dtype_same(mean_dtype, mstype.float32, "laplace")
132
- const_utils.check_tensors_dtype_same(lambda_param_dtype, mstype.float32, "laplace")
133
- seed1, seed2 = _get_seed(seed, "laplace")
134
- stdlaplace = P.StandardLaplace(seed1, seed2)
135
- _check_shape(shape)
136
- rnd = stdlaplace(shape)
137
- value = rnd * lambda_param + mean
138
- return value
139
-
140
-
141
- @_function_forbid_reuse
142
- def uniform(shape, minval, maxval, seed=None, dtype=mstype.float32):
143
- """
144
- Generates random numbers according to the Uniform random number distribution.
145
-
146
- Note:
147
- The number in tensor minval should be strictly less than maxval at any position after broadcasting.
148
-
149
- Args:
150
- shape (tuple): The shape of random tensor to be generated.
151
- The format is :math:`(N,*)` where :math:`*` means, any number of additional dimensions
152
- and the length of :math:`(N,*)` should be less than 8 in broadcast operation.
153
- minval (Tensor): The distribution parameter `a`.
154
- It defines the minimum possible generated value, with int32 or float32 data type.
155
- If dtype is int32, only one number is allowed.
156
- maxval (Tensor): The distribution parameter `b`.
157
- It defines the maximum possible generated value, with int32 or float32 data type.
158
- If dtype is int32, only one number is allowed.
159
- seed (int): Seed is used as entropy source for the random number engines to generate pseudo-random numbers,
160
- must be non-negative. Default: None, which will be treated as 0.
161
- dtype (mindspore.dtype): Type of the Uniform distribution. If it is int32, it generates numbers from discrete
162
- uniform distribution; if it is float32, it generates numbers from continuous uniform distribution. It only
163
- supports these two data types. Default: mindspore.float32.
164
-
165
- Returns:
166
- Tensor. The shape should be equal to the broadcasted shape between the input `shape` and shapes
167
- of `minval` and `maxval`.
168
- The dtype is designated as the input `dtype`.
169
-
170
- Raises:
171
- TypeError: If `shape` is not tuple.
172
- TypeError: If 'minval' or 'maxval' is neither int32 nor float32
173
- and dtype of 'minval' is not the same as 'maxval'.
174
- TypeError: If `seed` is not an int.
175
- TypeError: If 'dtype' is neither int32 nor float32.
176
-
177
- Supported Platforms:
178
- ``Ascend`` ``GPU`` ``CPU``
179
-
180
- Examples:
181
- >>> from mindspore import Tensor, ops
182
- >>> import mindspore
183
- >>> import numpy as np
184
- >>> # For discrete uniform distribution, only one number is allowed for both minval and maxval:
185
- >>> shape = (4, 2)
186
- >>> minval = Tensor(1, mindspore.int32)
187
- >>> maxval = Tensor(2, mindspore.int32)
188
- >>> output = ops.uniform(shape, minval, maxval, seed=5, dtype=mindspore.int32)
189
- >>>
190
- >>> # For continuous uniform distribution, minval and maxval can be multi-dimentional:
191
- >>> shape = (3, 1, 2)
192
- >>> minval = Tensor(np.array([[3, 4], [5, 6]]), mindspore.float32)
193
- >>> maxval = Tensor([8.0, 10.0], mindspore.float32)
194
- >>> output = ops.uniform(shape, minval, maxval, seed=5)
195
- >>> result = output.shape
196
- >>> print(result)
197
- (3, 2, 2)
198
- """
199
- value = F.uniform(shape, minval, maxval, seed, dtype)
200
- return value
201
-
202
-
203
- @_function_forbid_reuse
204
- def gamma(shape, alpha, beta, seed=None):
205
- """
206
- Generates random numbers according to the Gamma random number distribution.
207
-
208
- Args:
209
- shape (tuple): The shape of random tensor to be generated.
210
- The format is :math:`(N,*)` where :math:`*` means, any number of additional dimensions.
211
- alpha (Tensor): The alpha α distribution parameter. It should be greater than 0 with float32 data type.
212
- beta (Tensor): The beta β distribution parameter. It should be greater than 0 with float32 data type.
213
- seed (int): Seed is used as entropy source for the random number engines to generate
214
- pseudo-random numbers, must be non-negative. Default: None, which will be treated as 0.
215
-
216
- Returns:
217
- Tensor. The shape should be equal to the broadcasted shape between the input `shape` and shapes
218
- of `alpha` and `beta`.
219
- The dtype is float32.
220
-
221
- Raises:
222
- TypeError: If `shape` is not a tuple.
223
- TypeError: If neither `alpha` nor `beta` is a Tensor.
224
- TypeError: If `seed` is not an int.
225
- TypeError: If dtype of `alpha` and `beta` is not float32.
226
-
227
- Supported Platforms:
228
- ``Ascend``
229
-
230
- Examples:
231
- >>> import mindspore
232
- >>> import numpy as np
233
- >>> from mindspore import Tensor, ops
234
- >>> # case 1: alpha_shape is (2, 2)
235
- >>> shape = (3, 1, 2)
236
- >>> alpha = Tensor(np.array([[3, 4], [5, 6]]), mindspore.float32)
237
- >>> beta = Tensor(np.array([1.0]), mindspore.float32)
238
- >>> output = ops.gamma(shape, alpha, beta, seed=5)
239
- >>> result = output.shape
240
- >>> print(result)
241
- (3, 2, 2)
242
- >>> # case 2: alpha_shape is (2, 3), so shape is (3, 1, 3)
243
- >>> shape = (3, 1, 3)
244
- >>> alpha = Tensor(np.array([[1, 3, 4], [2, 5, 6]]), mindspore.float32)
245
- >>> beta = Tensor(np.array([1.0]), mindspore.float32)
246
- >>> output = ops.gamma(shape, alpha, beta, seed=5)
247
- >>> result = output.shape
248
- >>> print(result)
249
- (3, 2, 3)
250
- >>> # case 3: beta_shape is (1, 2), the output is different.
251
- >>> shape = (3, 1, 2)
252
- >>> alpha = Tensor(np.array([[3, 4], [5, 6]]), mindspore.float32)
253
- >>> beta = Tensor(np.array([1.0, 2]), mindspore.float32)
254
- >>> output = ops.gamma(shape, alpha, beta, seed=5)
255
- >>> result = output.shape
256
- >>> print(output)
257
- [[[ 2.2132034 5.8855834]]
258
- [ 3.3981476 7.5805717]
259
- [[ 3.3981476 7.5805717]]
260
- [ 3.7190282 19.941492]
261
- [[ 2.9512358 2.5969937]]
262
- [ 3.786061 5.160872 ]]]
263
- >>> # case 4: beta_shape is (2, 1), the output is different.
264
- >>> shape = (3, 1, 2)
265
- >>> alpha = Tensor(np.array([[3, 4], [5, 6]]), mindspore.float32)
266
- >>> beta = Tensor(np.array([[1.0], [2.0]]), mindspore.float32)
267
- >>> output = ops.gamma(shape, alpha, beta, seed=5)
268
- >>> result = output.shape
269
- >>> print(output)
270
- [[[ 5.6085486 7.8280783]]
271
- [ 15.97684 16.116285]
272
- [[ 1.8347423 1.713663]]
273
- [ 3.2434065 15.667398]
274
- [[ 4.2922077 7.3365674]]
275
- [ 5.3876944 13.159832 ]]]
276
- """
277
- seed1, seed2 = _get_seed(seed, "gamma")
278
- gamma_v = P.Gamma(seed1, seed2)
279
- value = gamma_v(shape, alpha, beta)
280
- return value
281
-
282
-
283
- @_function_forbid_reuse
284
- def poisson(shape, mean, seed=None):
285
- r"""
286
- The ops.poisson is deprecated, please use :class:`mindspore.ops.random_poisson`
287
- Generates random numbers according to the Poisson random number distribution.
288
-
289
- .. math::
290
-
291
- \text{P}(i|μ) = \frac{\exp(-μ)μ^{i}}{i!}
292
-
293
- Args:
294
- shape (tuple): The shape of random tensor to be generated.
295
- The format is :math:`(N,*)` where :math:`*` means, any number of additional dimensions.
296
- mean (Tensor): The mean μ distribution parameter. It should be greater than 0 with float32 data type.
297
- seed (int): Seed is used as entropy source for the random number engines to generate pseudo-random numbers
298
- and must be non-negative. Default: None, which will be treated as 0.
299
-
300
- Returns:
301
- Tensor. The shape should be equal to the broadcasted shape between the input "shape" and shapes of `mean`.
302
- The dtype is float32.
303
-
304
- Raises:
305
- TypeError: If `shape` is not a tuple.
306
- TypeError: If `mean` is not a Tensor whose dtype is not float32.
307
- TypeError: If `seed` is not an int.
308
-
309
- Supported Platforms:
310
- deprecated
311
-
312
- Examples:
313
- >>> from mindspore import Tensor, ops
314
- >>> import mindspore
315
- >>> # case 1: It can be broadcast.
316
- >>> shape = (4, 1)
317
- >>> mean = Tensor(np.array([5.0, 10.0]), mindspore.float32)
318
- >>> output = ops.poisson(shape, mean, seed=5)
319
- >>> result = output.shape
320
- >>> print(result)
321
- (4, 2)
322
- >>> # case 2: It can not be broadcast. It is recommended to use the same shape.
323
- >>> shape = (2, 2)
324
- >>> mean = Tensor(np.array([[5.0, 10.0], [5.0, 1.0]]), mindspore.float32)
325
- >>> output = ops.poisson(shape, mean, seed=5)
326
- >>> result = output.shape
327
- >>> print(result)
328
- (2, 2)
329
- """
330
- seed1, seed2 = _get_seed(seed, "poisson")
331
- random_poisson = P.Poisson(seed1, seed2)
332
- value = random_poisson(shape, mean)
333
- return value
334
-
335
-
336
- @_function_forbid_reuse
337
- def multinomial(inputs, num_sample, replacement=True, seed=None):
338
- r"""
339
- Returns a tensor sampled from the multinomial probability distribution located in the corresponding
340
- row of the input tensor.
341
-
342
- Note:
343
- The rows of input do not need to sum to one (in which case we use the values as weights),
344
- but must be non-negative, finite and have a non-zero sum.
345
-
346
- Args:
347
- inputs (Tensor): The input tensor containing probabilities, must be 1 or 2 dimensions, with
348
- float32 data type.
349
- num_sample (int): Number of samples to draw.
350
- replacement (bool, optional): Whether to draw with replacement or not, default: True.
351
- seed (int, optional): Seed is used as entropy source for the random number engines to generate
352
- pseudo-random numbers, must be non-negative. Default: None.
353
-
354
- Returns:
355
- Tensor, has the same rows with input. The number of sampled indices of each row is `num_samples`.
356
- The dtype is float32.
357
-
358
- Raises:
359
- TypeError: If `x` is not a Tensor whose dtype is not float32.
360
- TypeError: If `num_sample` is not an int.
361
- TypeError: If `seed` is neither an int nor an optional.
362
-
363
- Supported Platforms:
364
- ``GPU``
365
-
366
- Examples:
367
- >>> import mindspore
368
- >>> from mindspore import Tensor, ops
369
- >>> from mindspore import dtype as mstype
370
- >>> # case 1: The output is random, and the length of the output is the same as num_sample.
371
- >>> x = Tensor([0, 9, 4, 0], mindspore.float32)
372
- >>> output = ops.multinomial(x, 2)
373
- >>> # print(output)
374
- >>> # [1 2] or [2 1]
375
- >>> # the case where the result is [2 1] in multiple times.
376
- >>> # This is because the value corresponding to the index 1 is larger than the value of the index 2.
377
- >>> print(len(output))
378
- 2
379
- >>> # case 2: The output is random, and the length of the output is the same as num_sample.
380
- >>> # replacement is False(Default).
381
- >>> # If the extracted value is 0, the index value of 1 will be returned.
382
- >>> x = Tensor([0, 9, 4, 0], mstype.float32)
383
- >>> output = ops.multinomial(x, 4)
384
- >>> print(output)
385
- [1 1 2 1]
386
- >>> # case 3: The output is random, num_sample == x_length = 4, and replacement is True,
387
- >>> # Can extract the same elements。
388
- >>> x = Tensor([0, 9, 4, 0], mstype.float32)
389
- >>> output = ops.multinomial(x, 4, True)
390
- >>> print(output)
391
- [1 1 2 2]
392
- """
393
- shape = P.Shape()
394
- reshape = P.Reshape()
395
- const_utils.check_valid_dim(len(shape(inputs)), "multinomial")
396
- seed1, seed2 = _get_seed(seed, "multinomial")
397
- if not replacement:
398
- if shape(inputs)[-1] < num_sample:
399
- const_utils.raise_value_error("For 'multinomial', the 'num_sample' must be less than "
400
- "the last dimension of input without 'replacement', "
401
- "but got 'num_sample': {} and "
402
- "'replacement': {}".format(num_sample, replacement))
403
- n_dist = 1
404
- if len(shape(inputs)) > 1:
405
- n_dist = shape(inputs)[-2]
406
- random_uniform = P.UniformReal(seed1, seed2)((n_dist * shape(inputs)[-1],))
407
- if n_dist != 1:
408
- random_uniform = reshape(random_uniform, (n_dist, shape(inputs)[-1]))
409
- vals = P.RealDiv()(P.Log()(random_uniform), inputs + 1e-6)
410
- _, indices = P.TopK()(vals, num_sample)
411
- return indices
412
- return P.Multinomial(seed1, seed2)(inputs, num_sample)
413
-
414
-
415
- def _check_shape(input_shape):
416
- """
417
- Check 'shape' value.
418
- """
419
- if not isinstance(input_shape, tuple):
420
- const_utils.raise_type_error("Type of 'shape' must be tuple, but got: {}".format(type(input_shape)))
421
- for item in input_shape:
422
- if not isinstance(item, int):
423
- const_utils.raise_type_error("Elements of 'shape' must be int, but got: {}".format(type(item)))
424
- if item < 1:
425
- const_utils.raise_value_error("Elements of 'shape' must be positive int, but got: {}".format(item))
426
- return True
@@ -1,38 +0,0 @@
1
- # Copyright 2022 Huawei Technologies Co., Ltd
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ============================================================================
15
-
16
- """Vmap operations."""
17
- from __future__ import absolute_import
18
-
19
- from mindspore._c_expression import VmapGeneralPreprocess_, VmapGeneralRulePyAdapter_
20
-
21
-
22
- class _VmapGeneralPreprocess(VmapGeneralPreprocess_):
23
- """
24
- General preprocessing of VmapRules. If the source axes of all inputs are `None`,
25
- means that vectorization is not performed, taking out the original input and call
26
- the primitive directly.
27
- """
28
- def __init__(self):
29
- VmapGeneralPreprocess_.__init__(self, "VmapGeneralPreprocess")
30
-
31
-
32
- class _VmapGeneralRule(VmapGeneralRulePyAdapter_):
33
- """
34
- General rule python adapter is a adapter for general rule in c++. Some operators can
35
- implement loop-stack method in their vmaprule by calling this adapter.
36
- """
37
- def __init__(self, prim, axis_size):
38
- VmapGeneralRulePyAdapter_.__init__(self, 'vmapgeneralrule', prim, axis_size)
@@ -1,42 +0,0 @@
1
- # Copyright 2021 Huawei Technologies Co., Ltd
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ============================================================================
15
- """
16
- NOTE:
17
- Transformer Networks.
18
- This is an experimental interface that is subject to change or deletion.
19
- The import path of Transformer APIs have been modified from `mindspore.parallel.nn` to `mindspore.nn.transformer`,
20
- while the usage of these APIs stay unchanged. The original import path will retain one or two versions.
21
- You can view the changes using the examples described below:
22
-
23
- # r1.5
24
- from mindspore.parallel.nn import Transformer
25
-
26
- # Current
27
- from mindspore.nn.transformer import Transformer
28
- """
29
- from __future__ import absolute_import
30
- from mindspore import log
31
- from mindspore.nn.transformer import AttentionMask, VocabEmbedding, MultiHeadAttention, FeedForward, \
32
- TransformerEncoder, TransformerDecoder, TransformerEncoderLayer, TransformerDecoderLayer, Transformer, \
33
- TransformerOpParallelConfig, \
34
- EmbeddingOpParallelConfig, TransformerRecomputeConfig, MoEConfig, FixedSparseAttention, CrossEntropyLoss, \
35
- OpParallelConfig
36
-
37
- __all__ = ["AttentionMask", "VocabEmbedding", "MultiHeadAttention", "FeedForward", "TransformerEncoder",
38
- "TransformerDecoder", "TransformerEncoderLayer", "TransformerDecoderLayer", "Transformer",
39
- "TransformerOpParallelConfig", "EmbeddingOpParallelConfig", "TransformerRecomputeConfig", "MoEConfig",
40
- "FixedSparseAttention", "CrossEntropyLoss", "OpParallelConfig"]
41
-
42
- log.warning("'mindspore.parallel.nn' will be deprecated in the future. Please use 'mindspore.nn.transformer' instead.")
@@ -1,22 +0,0 @@
1
- # Copyright 2021 Huawei Technologies Co., Ltd
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ============================================================================
15
- """
16
- Parallel Loss for the Parallel Training
17
- This is an experimental interface that is subject to change or deletion.
18
- """
19
- from __future__ import absolute_import
20
- from mindspore.nn.transformer.loss import CrossEntropyLoss
21
-
22
- __all__ = ["CrossEntropyLoss"]
@@ -1,21 +0,0 @@
1
- # Copyright 2021 Huawei Technologies Co., Ltd
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ============================================================================
15
- """
16
- Note: Mixture of Expert (MoE) structure. This is an experimental interface that is subject to change or deletion.
17
- """
18
- from __future__ import absolute_import
19
- from mindspore.nn.transformer.moe import MoEConfig, default_moe_config
20
-
21
- __all__ = ["MoEConfig", "default_moe_config"]
@@ -1,22 +0,0 @@
1
- # Copyright 2021 Huawei Technologies Co., Ltd
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ============================================================================
15
- """
16
- Parallel Config for the Parallel Training
17
- This is an experimental interface that is subject to change and/or deletion.
18
- """
19
- from __future__ import absolute_import
20
- from mindspore.nn.transformer.op_parallel_config import OpParallelConfig, default_dpmp_config
21
-
22
- __all__ = ["OpParallelConfig", "default_dpmp_config"]
@@ -1,31 +0,0 @@
1
- # Copyright 2021 Huawei Technologies Co., Ltd
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ============================================================================
15
- """
16
- Note:
17
- Transformer Networks. This is interface that is subject to change or deletion.
18
- """
19
- from __future__ import absolute_import
20
- from mindspore.nn.transformer.transformer import AttentionMask, VocabEmbedding, MultiHeadAttention, FeedForward, \
21
- TransformerEncoder, TransformerDecoder, TransformerEncoderLayer, TransformerDecoderLayer, Transformer, \
22
- TransformerOpParallelConfig, \
23
- EmbeddingOpParallelConfig, TransformerRecomputeConfig, \
24
- default_transformer_config, default_embedding_parallel_config, default_dpmp_config, default_moe_config, \
25
- default_transformer_recompute_config
26
-
27
- __all__ = ["AttentionMask", "VocabEmbedding", "MultiHeadAttention", "FeedForward", "TransformerEncoder",
28
- "TransformerDecoder", "TransformerEncoderLayer", "TransformerDecoderLayer", "Transformer",
29
- "TransformerOpParallelConfig", "EmbeddingOpParallelConfig", "TransformerRecomputeConfig",
30
- "default_transformer_config", "default_embedding_parallel_config", "default_dpmp_config",
31
- "default_moe_config", "default_transformer_recompute_config"]