mindspore 2.0.0a0__cp39-cp39-win_amd64.whl → 2.0.0rc1__cp39-cp39-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (655) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/__init__.py +4 -2
  3. mindspore/_c_dataengine.cp39-win_amd64.pyd +0 -0
  4. mindspore/_c_expression.cp39-win_amd64.pyd +0 -0
  5. mindspore/_c_mindrecord.cp39-win_amd64.pyd +0 -0
  6. mindspore/_check_jit_forbidden_api.py +102 -0
  7. mindspore/_checkparam.py +1066 -1001
  8. mindspore/_extends/parallel_compile/akg_compiler/akg_process.py +4 -3
  9. mindspore/_extends/parallel_compile/akg_compiler/tbe_topi.py +50 -48
  10. mindspore/_extends/parallel_compile/akg_compiler/util.py +9 -4
  11. mindspore/_extends/parallel_compile/tbe_compiler/tbe_adapter.py +4 -4
  12. mindspore/_extends/parallel_compile/tbe_compiler/tbe_helper.py +9 -4
  13. mindspore/_extends/parse/__init__.py +5 -3
  14. mindspore/_extends/parse/namespace.py +16 -1
  15. mindspore/_extends/parse/parser.py +107 -22
  16. mindspore/_extends/parse/resources.py +0 -7
  17. mindspore/_extends/parse/standard_method.py +885 -413
  18. mindspore/amp.py +52 -57
  19. mindspore/boost/boost.py +2 -2
  20. mindspore/boost/boost_cell_wrapper.py +38 -20
  21. mindspore/boost/dim_reduce.py +3 -3
  22. mindspore/boost/group_loss_scale_manager.py +1 -1
  23. mindspore/common/__init__.py +4 -6
  24. mindspore/common/_decorator.py +2 -0
  25. mindspore/common/_register_for_adapter.py +55 -0
  26. mindspore/common/_stub_tensor.py +201 -0
  27. mindspore/common/_utils.py +41 -7
  28. mindspore/common/api.py +215 -141
  29. mindspore/common/dtype.py +8 -1
  30. mindspore/common/dump.py +2 -2
  31. mindspore/common/initializer.py +4 -2
  32. mindspore/common/jit_config.py +17 -13
  33. mindspore/common/mutable.py +33 -13
  34. mindspore/common/parameter.py +23 -21
  35. mindspore/common/seed.py +8 -24
  36. mindspore/common/sparse_tensor.py +62 -41
  37. mindspore/common/tensor.py +852 -1154
  38. mindspore/communication/__init__.py +2 -2
  39. mindspore/communication/_comm_helper.py +11 -4
  40. mindspore/communication/management.py +22 -21
  41. mindspore/config/op_info.config +501 -1008
  42. mindspore/context.py +201 -23
  43. mindspore/dataset/__init__.py +6 -6
  44. mindspore/dataset/audio/__init__.py +7 -7
  45. mindspore/dataset/audio/transforms.py +670 -30
  46. mindspore/dataset/audio/utils.py +47 -4
  47. mindspore/dataset/audio/validators.py +223 -1
  48. mindspore/dataset/callback/ds_callback.py +2 -2
  49. mindspore/dataset/core/config.py +210 -14
  50. mindspore/dataset/core/validator_helpers.py +2 -2
  51. mindspore/{parallel/nn/layers.py → dataset/debug/__init__.py} +7 -8
  52. mindspore/dataset/debug/debug_hook.py +65 -0
  53. mindspore/dataset/debug/pre_defined_hook.py +67 -0
  54. mindspore/dataset/engine/__init__.py +7 -3
  55. mindspore/dataset/engine/cache_client.py +1 -1
  56. mindspore/dataset/engine/datasets.py +322 -66
  57. mindspore/dataset/engine/datasets_audio.py +80 -76
  58. mindspore/dataset/engine/datasets_standard_format.py +51 -38
  59. mindspore/dataset/engine/datasets_text.py +232 -118
  60. mindspore/dataset/engine/datasets_user_defined.py +41 -17
  61. mindspore/dataset/engine/datasets_vision.py +746 -225
  62. mindspore/dataset/engine/graphdata.py +75 -10
  63. mindspore/dataset/engine/iterators.py +45 -5
  64. mindspore/dataset/engine/offload.py +48 -28
  65. mindspore/dataset/engine/validators.py +117 -8
  66. mindspore/dataset/text/__init__.py +6 -5
  67. mindspore/dataset/text/transforms.py +86 -3
  68. mindspore/dataset/text/utils.py +6 -4
  69. mindspore/dataset/text/validators.py +25 -0
  70. mindspore/dataset/transforms/__init__.py +3 -2
  71. mindspore/dataset/transforms/c_transforms.py +1 -1
  72. mindspore/dataset/transforms/transforms.py +2 -2
  73. mindspore/dataset/utils/__init__.py +2 -1
  74. mindspore/dataset/utils/line_reader.py +121 -0
  75. mindspore/dataset/vision/__init__.py +2 -3
  76. mindspore/dataset/vision/c_transforms.py +9 -9
  77. mindspore/dataset/vision/py_transforms.py +5 -5
  78. mindspore/dataset/vision/py_transforms_util.py +2 -0
  79. mindspore/dataset/vision/transforms.py +160 -161
  80. mindspore/dataset/vision/utils.py +3 -3
  81. mindspore/experimental/map_parameter.py +38 -26
  82. mindspore/include/OWNERS +0 -1
  83. mindspore/include/api/callback/callback.h +9 -13
  84. mindspore/include/api/callback/ckpt_saver.h +2 -2
  85. mindspore/include/api/callback/loss_monitor.h +2 -2
  86. mindspore/include/api/callback/lr_scheduler.h +5 -5
  87. mindspore/include/api/callback/time_monitor.h +2 -2
  88. mindspore/include/api/callback/train_accuracy.h +4 -6
  89. mindspore/include/api/cfg.h +19 -6
  90. mindspore/include/api/context.h +44 -9
  91. mindspore/include/api/delegate.h +1 -1
  92. mindspore/include/api/metrics/accuracy.h +2 -2
  93. mindspore/include/api/metrics/metrics.h +4 -3
  94. mindspore/include/api/model.h +9 -4
  95. mindspore/include/api/model_parallel_runner.h +2 -2
  96. mindspore/include/api/net.h +12 -11
  97. mindspore/include/api/serialization.h +19 -3
  98. mindspore/include/api/types.h +3 -3
  99. mindspore/include/dataset/constants.h +7 -0
  100. mindspore/include/dataset/text.h +59 -0
  101. mindspore/jpeg62.dll +0 -0
  102. mindspore/log.py +1 -1
  103. mindspore/mindrecord/filereader.py +18 -0
  104. mindspore/mindrecord/filewriter.py +197 -34
  105. mindspore/mindrecord/shardreader.py +9 -0
  106. mindspore/mindrecord/shardwriter.py +1 -1
  107. mindspore/mindrecord/tools/cifar100_to_mr.py +3 -3
  108. mindspore/mindrecord/tools/cifar10_to_mr.py +3 -3
  109. mindspore/mindrecord/tools/csv_to_mr.py +3 -3
  110. mindspore/mindrecord/tools/imagenet_to_mr.py +16 -11
  111. mindspore/mindrecord/tools/mnist_to_mr.py +2 -2
  112. mindspore/mindrecord/tools/tfrecord_to_mr.py +6 -6
  113. mindspore/mindspore_backend.dll +0 -0
  114. mindspore/mindspore_common.dll +0 -0
  115. mindspore/mindspore_core.dll +0 -0
  116. mindspore/mindspore_glog.dll +0 -0
  117. mindspore/mindspore_shared_lib.dll +0 -0
  118. mindspore/nn/__init__.py +0 -4
  119. mindspore/nn/cell.py +204 -132
  120. mindspore/nn/dynamic_lr.py +1 -1
  121. mindspore/nn/grad/cell_grad.py +7 -6
  122. mindspore/nn/layer/__init__.py +5 -4
  123. mindspore/nn/layer/activation.py +40 -89
  124. mindspore/nn/layer/basic.py +255 -624
  125. mindspore/nn/layer/channel_shuffle.py +7 -6
  126. mindspore/nn/layer/combined.py +1 -1
  127. mindspore/nn/layer/container.py +41 -4
  128. mindspore/nn/layer/conv.py +64 -28
  129. mindspore/nn/layer/dense.py +9 -8
  130. mindspore/nn/layer/embedding.py +27 -25
  131. mindspore/nn/layer/image.py +53 -46
  132. mindspore/nn/layer/math.py +97 -105
  133. mindspore/nn/layer/normalization.py +117 -86
  134. mindspore/nn/layer/padding.py +185 -95
  135. mindspore/nn/layer/pooling.py +817 -414
  136. mindspore/nn/layer/rnn_cells.py +10 -15
  137. mindspore/nn/layer/rnns.py +37 -38
  138. mindspore/nn/layer/thor_layer.py +11 -12
  139. mindspore/nn/layer/timedistributed.py +5 -5
  140. mindspore/nn/layer/transformer.py +701 -0
  141. mindspore/nn/learning_rate_schedule.py +8 -8
  142. mindspore/nn/loss/__init__.py +5 -4
  143. mindspore/nn/loss/loss.py +334 -199
  144. mindspore/nn/optim/ada_grad.py +6 -6
  145. mindspore/nn/optim/adadelta.py +2 -3
  146. mindspore/nn/optim/adafactor.py +4 -5
  147. mindspore/nn/optim/adam.py +126 -62
  148. mindspore/nn/optim/adamax.py +3 -4
  149. mindspore/nn/optim/adasum.py +6 -6
  150. mindspore/nn/optim/asgd.py +2 -2
  151. mindspore/nn/optim/ftrl.py +67 -38
  152. mindspore/nn/optim/lamb.py +4 -5
  153. mindspore/nn/optim/lars.py +2 -2
  154. mindspore/nn/optim/lazyadam.py +43 -4
  155. mindspore/nn/optim/momentum.py +6 -5
  156. mindspore/nn/optim/optimizer.py +3 -1
  157. mindspore/nn/optim/proximal_ada_grad.py +2 -2
  158. mindspore/nn/optim/rmsprop.py +1 -1
  159. mindspore/nn/optim/rprop.py +8 -9
  160. mindspore/nn/optim/sgd.py +19 -13
  161. mindspore/nn/optim/thor.py +10 -15
  162. mindspore/nn/probability/__init__.py +0 -2
  163. mindspore/nn/probability/bijector/bijector.py +4 -4
  164. mindspore/nn/probability/bijector/invert.py +1 -1
  165. mindspore/nn/probability/bijector/softplus.py +2 -2
  166. mindspore/nn/probability/bnn_layers/dense_variational.py +1 -1
  167. mindspore/nn/probability/bnn_layers/layer_distribution.py +2 -2
  168. mindspore/nn/probability/distribution/_utils/utils.py +9 -15
  169. mindspore/nn/probability/distribution/bernoulli.py +3 -3
  170. mindspore/nn/probability/distribution/beta.py +1 -1
  171. mindspore/nn/probability/distribution/categorical.py +5 -7
  172. mindspore/nn/probability/distribution/cauchy.py +3 -3
  173. mindspore/nn/probability/distribution/distribution.py +2 -2
  174. mindspore/nn/probability/distribution/exponential.py +2 -2
  175. mindspore/nn/probability/distribution/gamma.py +3 -3
  176. mindspore/nn/probability/distribution/geometric.py +1 -1
  177. mindspore/nn/probability/distribution/gumbel.py +3 -3
  178. mindspore/nn/probability/distribution/half_normal.py +15 -11
  179. mindspore/nn/probability/distribution/laplace.py +16 -13
  180. mindspore/nn/probability/distribution/logistic.py +2 -2
  181. mindspore/nn/probability/distribution/normal.py +1 -1
  182. mindspore/nn/probability/distribution/poisson.py +1 -1
  183. mindspore/nn/probability/distribution/student_t.py +20 -15
  184. mindspore/nn/probability/distribution/transformed_distribution.py +4 -4
  185. mindspore/nn/probability/distribution/uniform.py +2 -2
  186. mindspore/nn/reinforcement/_tensors_queue.py +3 -3
  187. mindspore/nn/reinforcement/tensor_array.py +2 -2
  188. mindspore/nn/sparse/sparse.py +2 -2
  189. mindspore/nn/wrap/cell_wrapper.py +27 -10
  190. mindspore/nn/wrap/grad_reducer.py +2 -2
  191. mindspore/nn/wrap/loss_scale.py +40 -24
  192. mindspore/numpy/array_creations.py +33 -22
  193. mindspore/numpy/array_ops.py +35 -30
  194. mindspore/numpy/logic_ops.py +6 -27
  195. mindspore/numpy/math_ops.py +22 -19
  196. mindspore/numpy/utils.py +1 -1
  197. mindspore/numpy/utils_const.py +108 -58
  198. mindspore/opencv_core452.dll +0 -0
  199. mindspore/opencv_imgcodecs452.dll +0 -0
  200. mindspore/opencv_imgproc452.dll +0 -0
  201. mindspore/ops/_constants.py +0 -6
  202. mindspore/ops/_grad/__init__.py +2 -1
  203. mindspore/ops/_grad/grad_array_ops.py +86 -117
  204. mindspore/ops/_grad/grad_base.py +23 -1
  205. mindspore/ops/_grad/grad_clip_ops.py +2 -3
  206. mindspore/ops/_grad/grad_comm_ops.py +34 -24
  207. mindspore/ops/_grad/grad_implementations.py +9 -45
  208. mindspore/ops/_grad/grad_inner_ops.py +47 -4
  209. mindspore/ops/_grad/grad_math_ops.py +142 -117
  210. mindspore/ops/_grad/grad_nn_ops.py +71 -165
  211. mindspore/ops/_grad/grad_sequence_ops.py +296 -0
  212. mindspore/ops/_grad/grad_sparse.py +7 -6
  213. mindspore/ops/_grad_experimental/__init__.py +1 -0
  214. mindspore/ops/_grad_experimental/grad_array_ops.py +150 -15
  215. mindspore/ops/_grad_experimental/grad_image_ops.py +16 -7
  216. mindspore/ops/_grad_experimental/grad_inner_ops.py +1 -22
  217. mindspore/ops/_grad_experimental/grad_linalg_ops.py +4 -11
  218. mindspore/ops/_grad_experimental/grad_math_ops.py +210 -89
  219. mindspore/ops/_grad_experimental/grad_nn_ops.py +26 -22
  220. mindspore/ops/_grad_experimental/grad_scalar_ops.py +112 -0
  221. mindspore/ops/_grad_experimental/grad_sparse_ops.py +49 -8
  222. mindspore/ops/_op_impl/_custom_op/batch_matmul_impl.py +1 -1
  223. mindspore/ops/_op_impl/_custom_op/batchnorm_fold.py +2 -2
  224. mindspore/ops/_op_impl/_custom_op/batchnorm_fold2.py +2 -2
  225. mindspore/ops/_op_impl/_custom_op/batchnorm_fold2_grad.py +2 -2
  226. mindspore/ops/_op_impl/_custom_op/batchnorm_fold2_grad_reduce.py +4 -4
  227. mindspore/ops/_op_impl/_custom_op/batchnorm_fold_grad.py +3 -3
  228. mindspore/ops/_op_impl/_custom_op/cholesky_trsm_impl.py +1 -1
  229. mindspore/ops/_op_impl/_custom_op/correction_mul.py +2 -2
  230. mindspore/ops/_op_impl/_custom_op/correction_mul_grad.py +2 -2
  231. mindspore/ops/_op_impl/_custom_op/dsd_back_impl.py +1 -5
  232. mindspore/ops/_op_impl/_custom_op/dsd_impl.py +1 -1
  233. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel.py +2 -2
  234. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel_grad.py +2 -2
  235. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel_grad_reduce.py +2 -2
  236. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer.py +2 -2
  237. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer_grad.py +2 -2
  238. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer_grad_reduce.py +2 -2
  239. mindspore/ops/_op_impl/_custom_op/fake_quant_perchannel.py +2 -2
  240. mindspore/ops/_op_impl/_custom_op/fake_quant_perchannel_grad.py +2 -2
  241. mindspore/ops/_op_impl/_custom_op/fake_quant_perlayer.py +2 -2
  242. mindspore/ops/_op_impl/_custom_op/fake_quant_perlayer_grad.py +2 -2
  243. mindspore/ops/_op_impl/_custom_op/fused_abs_max1_impl.py +1 -1
  244. mindspore/ops/_op_impl/_custom_op/img2col_impl.py +1 -1
  245. mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_left_impl.py +2 -2
  246. mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_right_impl.py +1 -1
  247. mindspore/ops/_op_impl/_custom_op/matmul_cube_fracz_left_cast_impl.py +1 -1
  248. mindspore/ops/_op_impl/_custom_op/matmul_cube_fracz_right_mul_impl.py +1 -1
  249. mindspore/ops/_op_impl/_custom_op/matmul_cube_impl.py +2 -2
  250. mindspore/ops/_op_impl/_custom_op/matmul_dds_impl.py +0 -4
  251. mindspore/ops/_op_impl/_custom_op/matrix_combine_impl.py +1 -1
  252. mindspore/ops/_op_impl/_custom_op/minmax_update_perchannel.py +2 -2
  253. mindspore/ops/_op_impl/_custom_op/minmax_update_perlayer.py +2 -2
  254. mindspore/ops/_op_impl/_custom_op/transpose02314_impl.py +1 -1
  255. mindspore/ops/_op_impl/aicpu/__init__.py +236 -4
  256. mindspore/ops/_op_impl/aicpu/abs.py +36 -0
  257. mindspore/ops/_op_impl/aicpu/{adaptive_avg_pool_2d_v1.py → adaptive_avg_pool_2d.py} +6 -5
  258. mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_2d_grad.py +34 -0
  259. mindspore/ops/_op_impl/aicpu/add.py +43 -0
  260. mindspore/ops/_op_impl/aicpu/addcdiv.py +0 -32
  261. mindspore/ops/_op_impl/aicpu/addcmul.py +0 -84
  262. mindspore/ops/_op_impl/aicpu/affine_grid_grad.py +35 -0
  263. mindspore/ops/_op_impl/aicpu/batch_matmul.py +43 -43
  264. mindspore/ops/_op_impl/aicpu/bernoulli.py +48 -0
  265. mindspore/{compression/common/__init__.py → ops/_op_impl/aicpu/bessel_i0.py} +15 -8
  266. mindspore/ops/_op_impl/aicpu/channel_shuffle.py +40 -0
  267. mindspore/ops/_op_impl/aicpu/conj.py +11 -0
  268. mindspore/ops/_op_impl/aicpu/cumulative_logsumexp.py +0 -3
  269. mindspore/ops/_op_impl/aicpu/deformable_offsets.py +38 -0
  270. mindspore/ops/_op_impl/aicpu/deformable_offsets_grad.py +43 -0
  271. mindspore/ops/_op_impl/aicpu/{adaptive_avg_pool_2d_grad_v1.py → digamma.py} +7 -9
  272. mindspore/ops/_op_impl/aicpu/flatten.py +1 -0
  273. mindspore/ops/_op_impl/aicpu/fmax.py +36 -0
  274. mindspore/ops/_op_impl/aicpu/fmin.py +37 -0
  275. mindspore/ops/_op_impl/aicpu/fractional_max_pool3d_with_fixed_ksize.py +1 -1
  276. mindspore/ops/_op_impl/aicpu/fse_decode.py +43 -0
  277. mindspore/ops/_op_impl/aicpu/greater.py +41 -0
  278. mindspore/ops/_op_impl/aicpu/greater_equal.py +41 -0
  279. mindspore/ops/_op_impl/aicpu/index_put.py +50 -0
  280. mindspore/ops/_op_impl/aicpu/less.py +41 -0
  281. mindspore/{nn/probability/infer/variational/__init__.py → ops/_op_impl/aicpu/lgamma.py} +16 -10
  282. mindspore/ops/_op_impl/aicpu/mirror_pad.py +0 -4
  283. mindspore/ops/_op_impl/aicpu/mirror_pad_grad.py +0 -4
  284. mindspore/ops/_op_impl/aicpu/mul.py +3 -1
  285. mindspore/ops/_op_impl/aicpu/multinomial.py +14 -6
  286. mindspore/ops/_op_impl/aicpu/nllloss.py +38 -0
  287. mindspore/ops/_op_impl/aicpu/nllloss_grad.py +39 -0
  288. mindspore/ops/_op_impl/aicpu/ones_like.py +0 -2
  289. mindspore/ops/_op_impl/aicpu/polar.py +32 -0
  290. mindspore/ops/_op_impl/aicpu/polygamma.py +34 -0
  291. mindspore/ops/_op_impl/aicpu/quant_dtype_cast.py +40 -0
  292. mindspore/ops/_op_impl/aicpu/quantile.py +35 -0
  293. mindspore/ops/_op_impl/aicpu/ragged_tensor_to_sparse.py +73 -0
  294. mindspore/ops/_op_impl/aicpu/randperm_v2.py +41 -0
  295. mindspore/ops/_op_impl/aicpu/resize_bicubic.py +2 -8
  296. mindspore/ops/_op_impl/aicpu/resize_bicubic_grad.py +1 -1
  297. mindspore/ops/_op_impl/aicpu/resize_v2.py +68 -0
  298. mindspore/ops/_op_impl/aicpu/resize_v2_grad.py +68 -0
  299. mindspore/ops/_op_impl/aicpu/scatter_elements.py +4 -0
  300. mindspore/ops/_op_impl/aicpu/scatter_nd_update.py +2 -0
  301. mindspore/ops/_op_impl/aicpu/sequence_add.py +34 -0
  302. mindspore/ops/_op_impl/aicpu/sequence_add_offset.py +34 -0
  303. mindspore/ops/_op_impl/aicpu/sequence_addn.py +38 -0
  304. mindspore/ops/_op_impl/aicpu/smooth_l1_loss.py +35 -0
  305. mindspore/ops/_op_impl/aicpu/smooth_l1_loss_grad.py +37 -0
  306. mindspore/ops/_op_impl/aicpu/sparse_apply_adagrad_da.py +0 -24
  307. mindspore/ops/_op_impl/aicpu/sparse_cross.py +42 -0
  308. mindspore/ops/_op_impl/aicpu/sparse_slice.py +4 -0
  309. mindspore/ops/_op_impl/aicpu/sparse_slice_grad.py +6 -0
  310. mindspore/ops/_op_impl/aicpu/tensor_scatter_update.py +59 -0
  311. mindspore/ops/_op_impl/aicpu/trans_data.py +1 -0
  312. mindspore/ops/_op_impl/aicpu/tril_indices.py +34 -0
  313. mindspore/ops/_op_impl/aicpu/uniform.py +34 -0
  314. mindspore/ops/_op_impl/aicpu/uniform_candidate_sampler.py +1 -0
  315. mindspore/ops/_op_impl/aicpu/unique_consecutive.py +10 -2
  316. mindspore/ops/_op_impl/cpu/dynamic_shape.py +5 -1
  317. mindspore/ops/_op_impl/cpu/sparse_slice.py +4 -0
  318. mindspore/ops/_op_impl/cpu/sparse_slice_grad.py +6 -0
  319. mindspore/ops/_op_impl/cpu/tensor_shape.py +5 -1
  320. mindspore/ops/_op_impl/tbe/__init__.py +27 -611
  321. mindspore/ops/_op_impl/tbe/assign_add_ds.py +1 -0
  322. mindspore/ops/_op_impl/tbe/atomic_addr_clean.py +1 -1
  323. mindspore/ops/_op_impl/tbe/avg_pool_3d_grad.py +1 -1
  324. mindspore/ops/_op_impl/tbe/batch_matmul_ds.py +1 -0
  325. mindspore/ops/_op_impl/tbe/batch_to_space.py +1 -1
  326. mindspore/ops/_op_impl/tbe/batch_to_space_nd.py +1 -1
  327. mindspore/ops/_op_impl/tbe/bn_infer_grad.py +4 -2
  328. mindspore/ops/_op_impl/tbe/bn_training_update.py +0 -1
  329. mindspore/ops/_op_impl/tbe/bn_training_update_ds.py +0 -1
  330. mindspore/ops/_op_impl/tbe/broadcast_to_ds.py +6 -4
  331. mindspore/ops/_op_impl/tbe/cast.py +0 -2
  332. mindspore/ops/_op_impl/tbe/cast_ds.py +3 -3
  333. mindspore/ops/_op_impl/tbe/data_format_dim_map_ds.py +1 -0
  334. mindspore/ops/_op_impl/tbe/depthwise_conv2d.py +2 -2
  335. mindspore/ops/_op_impl/tbe/dynamic_atomic_addr_clean.py +1 -1
  336. mindspore/ops/_op_impl/tbe/gather_nd.py +1 -0
  337. mindspore/ops/_op_impl/tbe/{index_add.py → inplace_index_add.py} +3 -6
  338. mindspore/ops/_op_impl/tbe/matmul_ds.py +2 -0
  339. mindspore/ops/_op_impl/tbe/npu_clear_float_status_v2.py +35 -0
  340. mindspore/ops/_op_impl/tbe/npu_get_float_status_v2.py +35 -0
  341. mindspore/ops/_op_impl/tbe/scatter_mul.py +2 -0
  342. mindspore/ops/_op_impl/tbe/scatter_nd_add.py +0 -2
  343. mindspore/ops/_op_impl/tbe/space_to_batch.py +1 -1
  344. mindspore/ops/_op_impl/tbe/space_to_batch_nd.py +1 -1
  345. mindspore/ops/_op_impl/tbe/trans_data_ds.py +15 -5
  346. mindspore/ops/_register_for_op.py +1 -0
  347. mindspore/ops/_utils/__init__.py +1 -2
  348. mindspore/ops/_utils/utils.py +19 -40
  349. mindspore/ops/_vmap/vmap_array_ops.py +116 -38
  350. mindspore/ops/_vmap/vmap_base.py +16 -9
  351. mindspore/ops/_vmap/vmap_convolution_ops.py +7 -10
  352. mindspore/ops/_vmap/vmap_grad_math_ops.py +4 -4
  353. mindspore/ops/_vmap/vmap_grad_nn_ops.py +7 -5
  354. mindspore/ops/_vmap/vmap_image_ops.py +12 -5
  355. mindspore/ops/_vmap/vmap_math_ops.py +46 -5
  356. mindspore/ops/_vmap/vmap_nn_ops.py +15 -21
  357. mindspore/ops/_vmap/vmap_random_ops.py +1 -1
  358. mindspore/ops/bprop_mindir/AdaptiveAvgPool2D_bprop.mindir +0 -0
  359. mindspore/ops/bprop_mindir/AdaptiveMaxPool2D_bprop.mindir +0 -0
  360. mindspore/ops/bprop_mindir/AvgPool3D_bprop.mindir +150 -0
  361. mindspore/ops/bprop_mindir/AvgPool_bprop.mindir +66 -0
  362. mindspore/ops/bprop_mindir/BCEWithLogitsLoss_bprop.mindir +0 -0
  363. mindspore/ops/bprop_mindir/BatchNormGrad_bprop.mindir +0 -0
  364. mindspore/ops/bprop_mindir/BiasAddGrad_bprop.mindir +0 -0
  365. mindspore/ops/bprop_mindir/BinaryCrossEntropy_bprop.mindir +33 -0
  366. mindspore/ops/bprop_mindir/BroadcastTo_bprop.mindir +220 -106
  367. mindspore/ops/bprop_mindir/CTCLoss_bprop.mindir +0 -0
  368. mindspore/ops/bprop_mindir/Conv2DBackpropFilter_bprop.mindir +240 -0
  369. mindspore/ops/bprop_mindir/Conv2DBackpropInput_bprop.mindir +247 -0
  370. mindspore/ops/bprop_mindir/Conv2DTranspose_bprop.mindir +247 -0
  371. mindspore/ops/bprop_mindir/Conv3DTranspose_bprop.mindir +315 -0
  372. mindspore/ops/bprop_mindir/Conv3D_bprop.mindir +278 -0
  373. mindspore/ops/bprop_mindir/DeformableOffsets_bprop.mindir +58 -0
  374. mindspore/ops/bprop_mindir/DepthwiseConv2dNative_bprop.mindir +138 -0
  375. mindspore/ops/bprop_mindir/Dropout2D_bprop.mindir +0 -0
  376. mindspore/ops/bprop_mindir/Dropout3D_bprop.mindir +0 -0
  377. mindspore/ops/bprop_mindir/DropoutDoMask_bprop.mindir +22 -23
  378. mindspore/ops/bprop_mindir/DropoutGenMask_bprop.mindir +16 -17
  379. mindspore/ops/bprop_mindir/DropoutGrad_bprop.mindir +27 -0
  380. mindspore/ops/bprop_mindir/Dropout_bprop.mindir +0 -0
  381. mindspore/ops/bprop_mindir/DynamicGRUV2_bprop.mindir +0 -0
  382. mindspore/ops/bprop_mindir/DynamicRNN_bprop.mindir +0 -0
  383. mindspore/ops/bprop_mindir/Elu_bprop.mindir +16 -0
  384. mindspore/ops/bprop_mindir/EmbeddingLookup_bprop.mindir +0 -0
  385. mindspore/ops/bprop_mindir/ExpandDims_bprop.mindir +39 -41
  386. mindspore/ops/bprop_mindir/FastGeLU_bprop.mindir +16 -0
  387. mindspore/ops/bprop_mindir/Flatten_bprop.mindir +41 -43
  388. mindspore/ops/bprop_mindir/GatherNd_bprop.mindir +51 -57
  389. mindspore/ops/bprop_mindir/Gather_bprop.mindir +0 -0
  390. mindspore/ops/bprop_mindir/HSigmoid_bprop.mindir +16 -0
  391. mindspore/ops/bprop_mindir/HSwish_bprop.mindir +16 -0
  392. mindspore/ops/bprop_mindir/InstanceNorm_bprop.mindir +0 -0
  393. mindspore/ops/bprop_mindir/KLDivLoss_bprop.mindir +126 -0
  394. mindspore/ops/bprop_mindir/L2Loss_bprop.mindir +15 -0
  395. mindspore/ops/bprop_mindir/L2Normalize_bprop.mindir +30 -0
  396. mindspore/ops/bprop_mindir/LRN_bprop.mindir +43 -0
  397. mindspore/ops/bprop_mindir/LayerNormGrad_bprop.mindir +0 -0
  398. mindspore/ops/bprop_mindir/LogSoftmax_bprop.mindir +23 -0
  399. mindspore/ops/bprop_mindir/MaxPool3DGradGrad_bprop.mindir +74 -0
  400. mindspore/ops/bprop_mindir/MaxPool3DGrad_bprop.mindir +74 -0
  401. mindspore/ops/bprop_mindir/MaxPool3D_bprop.mindir +75 -0
  402. mindspore/ops/bprop_mindir/MaxPoolGradGrad_bprop.mindir +65 -0
  403. mindspore/ops/bprop_mindir/MaxPoolWithArgmax_bprop.mindir +0 -0
  404. mindspore/ops/bprop_mindir/MirrorPad_bprop.mindir +27 -0
  405. mindspore/ops/bprop_mindir/Mish_bprop.mindir +35 -0
  406. mindspore/ops/bprop_mindir/MulNoNan_bprop.mindir +0 -0
  407. mindspore/ops/bprop_mindir/NLLLoss_bprop.mindir +0 -0
  408. mindspore/ops/bprop_mindir/OneHot_bprop.mindir +24 -25
  409. mindspore/ops/bprop_mindir/PReLU_bprop.mindir +0 -0
  410. mindspore/ops/bprop_mindir/Pad_bprop.mindir +0 -0
  411. mindspore/ops/bprop_mindir/Padding_bprop.mindir +0 -0
  412. mindspore/ops/bprop_mindir/RNNTLoss_bprop.mindir +29 -0
  413. mindspore/ops/bprop_mindir/ROIAlign_bprop.mindir +82 -0
  414. mindspore/ops/bprop_mindir/ReLU6_bprop.mindir +16 -0
  415. mindspore/ops/bprop_mindir/ReLUV2_bprop.mindir +0 -0
  416. mindspore/ops/bprop_mindir/ReluGrad_bprop.mindir +18 -19
  417. mindspore/ops/bprop_mindir/Reshape_bprop.mindir +53 -53
  418. mindspore/ops/bprop_mindir/ResizeBilinear_bprop.mindir +29 -0
  419. mindspore/ops/bprop_mindir/ResizeNearestNeighbor_bprop.mindir +77 -85
  420. mindspore/ops/bprop_mindir/SeLU_bprop.mindir +21 -0
  421. mindspore/ops/bprop_mindir/SigmoidCrossEntropyWithLogits_bprop.mindir +21 -0
  422. mindspore/ops/bprop_mindir/SigmoidGrad_bprop.mindir +0 -0
  423. mindspore/ops/bprop_mindir/Sigmoid_bprop.mindir +16 -0
  424. mindspore/ops/bprop_mindir/SmoothL1Loss_bprop.mindir +36 -0
  425. mindspore/ops/bprop_mindir/SoftmaxCrossEntropyWithLogits_bprop.mindir +0 -0
  426. mindspore/ops/bprop_mindir/Softplus_bprop.mindir +16 -0
  427. mindspore/ops/bprop_mindir/Softsign_bprop.mindir +33 -0
  428. mindspore/ops/bprop_mindir/SparseSoftmaxCrossEntropyWithLogits_bprop.mindir +0 -0
  429. mindspore/ops/bprop_mindir/Squeeze_bprop.mindir +37 -39
  430. mindspore/ops/bprop_mindir/StridedSlice_bprop.mindir +70 -72
  431. mindspore/ops/bprop_mindir/TanhGrad_bprop.mindir +0 -0
  432. mindspore/ops/bprop_mindir/Tanh_bprop.mindir +66 -0
  433. mindspore/ops/bprop_mindir/Tile_bprop.mindir +0 -0
  434. mindspore/ops/bprop_mindir/TopK_bprop.mindir +0 -0
  435. mindspore/ops/bprop_mindir/TupleGetItem_bprop.mindir +17 -17
  436. mindspore/ops/bprop_mindir/UpsampleNearest3D_bprop.mindir +32 -0
  437. mindspore/ops/bprop_mindir/UpsampleTrilinear3D_bprop.mindir +38 -0
  438. mindspore/ops/bprop_mindir/generate_mindir.py +2 -0
  439. mindspore/ops/composite/__init__.py +7 -8
  440. mindspore/ops/composite/base.py +101 -47
  441. mindspore/ops/composite/math_ops.py +188 -158
  442. mindspore/ops/composite/multitype_ops/_compile_utils.py +415 -170
  443. mindspore/ops/composite/multitype_ops/_constexpr_utils.py +142 -87
  444. mindspore/ops/composite/multitype_ops/add_impl.py +6 -1
  445. mindspore/ops/composite/multitype_ops/div_impl.py +2 -3
  446. mindspore/ops/composite/multitype_ops/getitem_impl.py +31 -3
  447. mindspore/ops/composite/multitype_ops/greater_equal_impl.py +31 -0
  448. mindspore/ops/composite/multitype_ops/greater_impl.py +31 -0
  449. mindspore/ops/composite/multitype_ops/in_impl.py +9 -0
  450. mindspore/ops/composite/multitype_ops/less_equal_impl.py +31 -0
  451. mindspore/ops/composite/multitype_ops/less_impl.py +31 -0
  452. mindspore/ops/composite/multitype_ops/mul_impl.py +21 -5
  453. mindspore/ops/composite/multitype_ops/not_in_impl.py +9 -0
  454. mindspore/ops/composite/multitype_ops/ones_like_impl.py +2 -4
  455. mindspore/ops/composite/multitype_ops/setitem_impl.py +21 -3
  456. mindspore/ops/composite/multitype_ops/sub_impl.py +1 -1
  457. mindspore/ops/composite/multitype_ops/zeros_like_impl.py +35 -4
  458. mindspore/ops/function/__init__.py +152 -8
  459. mindspore/ops/function/array_func.py +2555 -674
  460. mindspore/ops/function/clip_func.py +209 -13
  461. mindspore/ops/function/debug_func.py +2 -2
  462. mindspore/ops/function/grad/__init__.py +2 -1
  463. mindspore/ops/function/grad/grad_func.py +147 -62
  464. mindspore/ops/function/image_func.py +54 -38
  465. mindspore/ops/function/linalg_func.py +167 -16
  466. mindspore/ops/function/math_func.py +4849 -1492
  467. mindspore/ops/function/nn_func.py +2573 -988
  468. mindspore/ops/function/other_func.py +115 -0
  469. mindspore/ops/function/parameter_func.py +3 -3
  470. mindspore/ops/function/random_func.py +790 -73
  471. mindspore/ops/function/sparse_func.py +98 -78
  472. mindspore/ops/function/sparse_unary_func.py +54 -53
  473. mindspore/ops/function/spectral_func.py +27 -24
  474. mindspore/ops/function/vmap_func.py +22 -2
  475. mindspore/ops/functional.py +97 -37
  476. mindspore/ops/op_info_register.py +70 -28
  477. mindspore/ops/operations/__init__.py +47 -14
  478. mindspore/ops/operations/_csr_ops.py +7 -7
  479. mindspore/ops/operations/_embedding_cache_ops.py +5 -5
  480. mindspore/ops/operations/_grad_ops.py +276 -187
  481. mindspore/ops/operations/_inner_ops.py +319 -113
  482. mindspore/ops/operations/_ms_kernel.py +10 -8
  483. mindspore/ops/operations/_ocr_ops.py +9 -9
  484. mindspore/ops/operations/_opaque_predicate_registry.py +4 -0
  485. mindspore/ops/operations/_quant_ops.py +137 -102
  486. mindspore/ops/operations/_rl_inner_ops.py +121 -60
  487. mindspore/ops/operations/_scalar_ops.py +466 -0
  488. mindspore/ops/operations/_sequence_ops.py +1004 -2
  489. mindspore/ops/operations/_tensor_array.py +10 -11
  490. mindspore/ops/operations/_thor_ops.py +1 -1
  491. mindspore/ops/operations/array_ops.py +801 -466
  492. mindspore/ops/operations/comm_ops.py +51 -49
  493. mindspore/ops/operations/control_ops.py +2 -2
  494. mindspore/ops/operations/custom_ops.py +123 -44
  495. mindspore/ops/operations/debug_ops.py +24 -24
  496. mindspore/ops/operations/image_ops.py +240 -153
  497. mindspore/ops/operations/inner_ops.py +34 -50
  498. mindspore/ops/operations/linalg_ops.py +31 -9
  499. mindspore/ops/operations/math_ops.py +988 -757
  500. mindspore/ops/operations/nn_ops.py +965 -819
  501. mindspore/ops/operations/other_ops.py +51 -40
  502. mindspore/ops/operations/random_ops.py +204 -122
  503. mindspore/ops/operations/rl_ops.py +8 -9
  504. mindspore/ops/operations/sparse_ops.py +254 -93
  505. mindspore/ops/operations/spectral_ops.py +35 -3
  506. mindspore/ops/primitive.py +111 -9
  507. mindspore/parallel/_auto_parallel_context.py +189 -83
  508. mindspore/parallel/_offload_context.py +185 -0
  509. mindspore/parallel/_parallel_serialization.py +99 -7
  510. mindspore/parallel/_ps_context.py +9 -5
  511. mindspore/parallel/_recovery_context.py +1 -1
  512. mindspore/parallel/_tensor.py +7 -1
  513. mindspore/{nn/transformer → parallel/_transformer}/__init__.py +6 -6
  514. mindspore/{nn/transformer → parallel/_transformer}/layers.py +6 -37
  515. mindspore/{nn/transformer → parallel/_transformer}/loss.py +4 -7
  516. mindspore/{nn/transformer → parallel/_transformer}/moe.py +20 -16
  517. mindspore/{nn/transformer → parallel/_transformer}/op_parallel_config.py +3 -3
  518. mindspore/{nn/transformer → parallel/_transformer}/transformer.py +48 -111
  519. mindspore/parallel/_utils.py +1 -2
  520. mindspore/parallel/algo_parameter_config.py +1 -1
  521. mindspore/parallel/checkpoint_transform.py +37 -34
  522. mindspore/parallel/shard.py +17 -18
  523. mindspore/profiler/common/validator/validate_path.py +2 -2
  524. mindspore/profiler/envprofiling.py +69 -47
  525. mindspore/profiler/parser/ascend_timeline_generator.py +49 -42
  526. mindspore/profiler/parser/base_timeline_generator.py +49 -56
  527. mindspore/profiler/parser/cpu_gpu_timeline_generator.py +98 -78
  528. mindspore/profiler/parser/hwts_log_parser.py +1 -1
  529. mindspore/profiler/parser/integrator.py +15 -14
  530. mindspore/profiler/parser/minddata_analyzer.py +2 -2
  531. mindspore/profiler/parser/msadvisor_analyzer.py +12 -25
  532. mindspore/profiler/parser/msadvisor_parser.py +2 -4
  533. mindspore/profiler/parser/optime_parser.py +17 -18
  534. mindspore/profiler/parser/profiler_info.py +2 -1
  535. mindspore/profiler/profiling.py +218 -186
  536. mindspore/rewrite/__init__.py +3 -1
  537. mindspore/rewrite/api/node.py +1 -114
  538. mindspore/rewrite/api/node_type.py +3 -0
  539. mindspore/rewrite/api/pattern_engine.py +31 -1
  540. mindspore/rewrite/api/scoped_value.py +4 -4
  541. mindspore/rewrite/api/symbol_tree.py +3 -78
  542. mindspore/rewrite/api/tree_node_helper.py +1 -1
  543. mindspore/rewrite/ast_creator_register.py +1 -0
  544. mindspore/rewrite/ast_helpers/__init__.py +2 -2
  545. mindspore/rewrite/ast_helpers/ast_creator.py +1 -2
  546. mindspore/rewrite/ast_helpers/ast_finder.py +65 -0
  547. mindspore/rewrite/ast_helpers/ast_modifier.py +11 -3
  548. mindspore/rewrite/ast_transformers/flatten_recursive_stmt.py +18 -2
  549. mindspore/rewrite/namespace.py +0 -2
  550. mindspore/rewrite/node.py +157 -11
  551. mindspore/rewrite/parsers/assign_parser.py +231 -53
  552. mindspore/rewrite/parsers/class_def_parser.py +187 -109
  553. mindspore/rewrite/parsers/for_parser.py +24 -14
  554. mindspore/rewrite/parsers/function_def_parser.py +21 -4
  555. mindspore/rewrite/parsers/if_parser.py +6 -2
  556. mindspore/rewrite/sparsify/__init__.py +0 -0
  557. mindspore/rewrite/sparsify/sparse_transformer.py +448 -0
  558. mindspore/rewrite/sparsify/sparsify.py +109 -0
  559. mindspore/rewrite/sparsify/utils.py +173 -0
  560. mindspore/rewrite/symbol_tree.py +256 -133
  561. mindspore/rewrite/symbol_tree_builder.py +38 -1
  562. mindspore/run_check/_check_version.py +69 -63
  563. mindspore/run_check/run_check.py +2 -1
  564. mindspore/tinyxml2.dll +0 -0
  565. mindspore/train/__init__.py +1 -1
  566. mindspore/train/_utils.py +28 -5
  567. mindspore/train/amp.py +273 -102
  568. mindspore/train/callback/_backup_and_restore.py +5 -5
  569. mindspore/train/callback/_callback.py +2 -2
  570. mindspore/train/callback/_checkpoint.py +3 -3
  571. mindspore/train/callback/_early_stop.py +3 -3
  572. mindspore/train/callback/_lambda_callback.py +2 -2
  573. mindspore/train/callback/_landscape.py +29 -31
  574. mindspore/train/callback/_loss_monitor.py +3 -3
  575. mindspore/train/callback/_on_request_exit.py +3 -3
  576. mindspore/train/callback/_reduce_lr_on_plateau.py +4 -4
  577. mindspore/train/callback/_summary_collector.py +23 -16
  578. mindspore/train/callback/_time_monitor.py +3 -3
  579. mindspore/train/checkpoint_pb2.py +68 -8
  580. mindspore/train/data_sink.py +15 -3
  581. mindspore/train/dataset_helper.py +10 -15
  582. mindspore/train/loss_scale_manager.py +8 -11
  583. mindspore/train/metrics/__init__.py +1 -1
  584. mindspore/train/metrics/bleu_score.py +1 -1
  585. mindspore/train/metrics/confusion_matrix.py +1 -1
  586. mindspore/train/metrics/cosine_similarity.py +1 -1
  587. mindspore/train/metrics/dice.py +2 -2
  588. mindspore/train/metrics/fbeta.py +1 -1
  589. mindspore/train/metrics/hausdorff_distance.py +4 -3
  590. mindspore/train/metrics/mean_surface_distance.py +2 -2
  591. mindspore/train/metrics/occlusion_sensitivity.py +1 -1
  592. mindspore/train/metrics/perplexity.py +1 -1
  593. mindspore/train/metrics/precision.py +1 -1
  594. mindspore/train/metrics/recall.py +1 -1
  595. mindspore/train/metrics/roc.py +2 -2
  596. mindspore/train/metrics/root_mean_square_surface_distance.py +2 -2
  597. mindspore/train/mind_ir_pb2.py +116 -37
  598. mindspore/train/model.py +45 -28
  599. mindspore/train/serialization.py +295 -188
  600. mindspore/train/summary/_summary_adapter.py +1 -1
  601. mindspore/train/summary/summary_record.py +43 -13
  602. mindspore/train/train_thor/convert_utils.py +2 -2
  603. mindspore/train/train_thor/dataset_helper.py +3 -3
  604. mindspore/turbojpeg.dll +0 -0
  605. mindspore/version.py +1 -1
  606. {mindspore-2.0.0a0.dist-info → mindspore-2.0.0rc1.dist-info}/METADATA +3 -2
  607. {mindspore-2.0.0a0.dist-info → mindspore-2.0.0rc1.dist-info}/RECORD +610 -541
  608. mindspore/compression/__init__.py +0 -19
  609. mindspore/compression/common/constant.py +0 -124
  610. mindspore/compression/export/__init__.py +0 -19
  611. mindspore/compression/export/quant_export.py +0 -515
  612. mindspore/compression/quant/__init__.py +0 -28
  613. mindspore/compression/quant/qat.py +0 -634
  614. mindspore/compression/quant/quant_utils.py +0 -462
  615. mindspore/compression/quant/quantizer.py +0 -68
  616. mindspore/nn/layer/quant.py +0 -1868
  617. mindspore/nn/layer/rnn_utils.py +0 -90
  618. mindspore/nn/probability/dpn/__init__.py +0 -22
  619. mindspore/nn/probability/dpn/vae/__init__.py +0 -25
  620. mindspore/nn/probability/dpn/vae/cvae.py +0 -140
  621. mindspore/nn/probability/dpn/vae/vae.py +0 -124
  622. mindspore/nn/probability/infer/__init__.py +0 -22
  623. mindspore/nn/probability/infer/variational/elbo.py +0 -70
  624. mindspore/nn/probability/infer/variational/svi.py +0 -84
  625. mindspore/nn/probability/toolbox/__init__.py +0 -22
  626. mindspore/nn/probability/toolbox/anomaly_detection.py +0 -99
  627. mindspore/nn/probability/toolbox/uncertainty_evaluation.py +0 -364
  628. mindspore/nn/probability/transforms/__init__.py +0 -22
  629. mindspore/nn/probability/transforms/transform_bnn.py +0 -262
  630. mindspore/nn/probability/zhusuan/__init__.py +0 -18
  631. mindspore/nn/probability/zhusuan/framework/__init__.py +0 -18
  632. mindspore/nn/probability/zhusuan/framework/bn.py +0 -95
  633. mindspore/nn/probability/zhusuan/variational/__init__.py +0 -18
  634. mindspore/nn/probability/zhusuan/variational/elbo.py +0 -46
  635. mindspore/ops/_op_impl/aicpu/parallel_concat.py +0 -42
  636. mindspore/ops/_op_impl/tbe/gather_v2.py +0 -56
  637. mindspore/ops/bprop_mindir/AssignAdd_bprop.mindir +0 -19
  638. mindspore/ops/bprop_mindir/Cast_bprop.mindir +0 -19
  639. mindspore/ops/bprop_mindir/LogicalOr_bprop.mindir +0 -19
  640. mindspore/ops/bprop_mindir/MatMul_bprop.mindir +0 -0
  641. mindspore/ops/bprop_mindir/ReLU_bprop.mindir +0 -17
  642. mindspore/ops/bprop_mindir/Transpose_bprop.mindir +0 -0
  643. mindspore/ops/bprop_mindir/UpdateState_bprop.mindir +0 -15
  644. mindspore/ops/composite/array_ops.py +0 -241
  645. mindspore/ops/composite/clip_ops.py +0 -134
  646. mindspore/ops/composite/random_ops.py +0 -426
  647. mindspore/ops/composite/vmap_ops.py +0 -38
  648. mindspore/parallel/nn/__init__.py +0 -42
  649. mindspore/parallel/nn/loss.py +0 -22
  650. mindspore/parallel/nn/moe.py +0 -21
  651. mindspore/parallel/nn/op_parallel_config.py +0 -22
  652. mindspore/parallel/nn/transformer.py +0 -31
  653. {mindspore-2.0.0a0.dist-info → mindspore-2.0.0rc1.dist-info}/WHEEL +0 -0
  654. {mindspore-2.0.0a0.dist-info → mindspore-2.0.0rc1.dist-info}/entry_points.txt +0 -0
  655. {mindspore-2.0.0a0.dist-info → mindspore-2.0.0rc1.dist-info}/top_level.txt +0 -0
@@ -1,262 +0,0 @@
1
- # Copyright 2020 Huawei Technologies Co., Ltd
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ============================================================================
15
- """Transform DNN to BNN."""
16
- import mindspore.nn as nn
17
- from ...wrap.cell_wrapper import TrainOneStepCell
18
- from ....nn import optim
19
- from ....nn import layer
20
- from ...probability import bnn_layers
21
- from ..bnn_layers.bnn_cell_wrapper import WithBNNLossCell
22
- from ..bnn_layers.conv_variational import ConvReparam
23
- from ..bnn_layers.dense_variational import DenseReparam
24
-
25
- __all__ = ['TransformToBNN']
26
-
27
-
28
- class TransformToBNN:
29
- r"""
30
- Transform Deep Neural Network (DNN) model to Bayesian Neural Network (BNN) model.
31
-
32
- Args:
33
- trainable_dnn (Cell): A trainable DNN model (backbone) wrapped by TrainOneStepCell.
34
- dnn_factor (int, float): The coefficient of backbone's loss, which is computed by loss function. Default: 1.
35
- bnn_factor (int, float): The coefficient of KL loss, which is KL divergence of Bayesian layer. Default: 1.
36
-
37
- Supported Platforms:
38
- ``Ascend`` ``GPU``
39
-
40
- Examples:
41
- >>> from mindspore.nn.probability import bnn_layers
42
- >>>
43
- >>> class Net(nn.Cell):
44
- ... def __init__(self):
45
- ... super(Net, self).__init__()
46
- ... self.conv = nn.Conv2d(3, 64, 3, has_bias=False, weight_init='normal')
47
- ... self.bn = nn.BatchNorm2d(64)
48
- ... self.relu = nn.ReLU()
49
- ... self.flatten = nn.Flatten()
50
- ... self.fc = nn.Dense(64*224*224, 12) # padding=0
51
- ...
52
- ... def construct(self, x):
53
- ... x = self.conv(x)
54
- ... x = self.bn(x)
55
- ... x = self.relu(x)
56
- ... x = self.flatten(x)
57
- ... out = self.fc(x)
58
- ... return out
59
- >>>
60
- >>> net = Net()
61
- >>> criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
62
- >>> optim = nn.AdamWeightDecay(params=net.trainable_params(), learning_rate=0.0001)
63
- >>> net_with_loss = nn.WithLossCell(net, criterion)
64
- >>> train_network = nn.TrainOneStepCell(net_with_loss, optim)
65
- >>> bnn_transformer = TransformToBNN(train_network, 60000, 0.0001)
66
- """
67
-
68
- def __init__(self, trainable_dnn, dnn_factor=1, bnn_factor=1):
69
- if isinstance(dnn_factor, bool) or not isinstance(dnn_factor, (int, float)):
70
- raise TypeError('The type of `dnn_factor` must be `int` or `float`')
71
- if dnn_factor < 0:
72
- raise ValueError('The value of `dnn_factor` must >= 0')
73
-
74
- if isinstance(bnn_factor, bool) or not isinstance(bnn_factor, (int, float)):
75
- raise TypeError('The type of `bnn_factor` must be `int` or `float`')
76
- if bnn_factor < 0:
77
- raise ValueError('The value of `bnn_factor` must >= 0')
78
-
79
- net_with_loss = trainable_dnn.network
80
- self.optimizer = trainable_dnn.optimizer
81
- self.backbone = net_with_loss.backbone_network
82
- self.loss_fn = getattr(net_with_loss, "_loss_fn")
83
- self.dnn_factor = dnn_factor
84
- self.bnn_factor = bnn_factor
85
-
86
- def transform_to_bnn_model(self,
87
- get_dense_args=lambda dp: {"in_channels": dp.in_channels, "has_bias": dp.has_bias,
88
- "out_channels": dp.out_channels,
89
- "activation": dp.activation},
90
- get_conv_args=lambda dp: {"in_channels": dp.in_channels,
91
- "out_channels": dp.out_channels,
92
- "pad_mode": dp.pad_mode, "kernel_size": dp.kernel_size,
93
- "stride": dp.stride, "has_bias": dp.has_bias,
94
- "padding": dp.padding, "dilation": dp.dilation,
95
- "group": dp.group},
96
- add_dense_args=None,
97
- add_conv_args=None):
98
- r"""
99
- Transform the whole DNN model to BNN model, and wrap BNN model by TrainOneStepCell.
100
-
101
- Args:
102
- get_dense_args: The arguments gotten from the DNN full connection layer. Default: lambda dp:
103
- {"in_channels": dp.in_channels, "out_channels": dp.out_channels, "has_bias": dp.has_bias}.
104
- get_conv_args: The arguments gotten from the DNN convolutional layer. Default: lambda dp:
105
- {"in_channels": dp.in_channels, "out_channels": dp.out_channels, "pad_mode": dp.pad_mode,
106
- "kernel_size": dp.kernel_size, "stride": dp.stride, "has_bias": dp.has_bias}.
107
- add_dense_args (dict): The new arguments added to BNN full connection layer. Note that the arguments in
108
- `add_dense_args` must not duplicate arguments in `get_dense_args`. Default: None.
109
- add_conv_args (dict): The new arguments added to BNN convolutional layer. Note that the arguments in
110
- `add_conv_args` must not duplicate arguments in `get_conv_args`. Default: None.
111
-
112
- Returns:
113
- Cell, a trainable BNN model wrapped by TrainOneStepCell.
114
-
115
- Supported Platforms:
116
- ``Ascend`` ``GPU``
117
-
118
- Examples:
119
- >>> net = Net()
120
- >>> criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
121
- >>> optim = nn.AdamWeightDecay(params=net.trainable_params(), learning_rate=0.0001)
122
- >>> net_with_loss = nn.WithLossCell(net, criterion)
123
- >>> train_network = nn.TrainOneStepCell(net_with_loss, optim)
124
- >>> bnn_transformer = TransformToBNN(train_network, 60000, 0.1)
125
- >>> train_bnn_network = bnn_transformer.transform_to_bnn_model()
126
- """
127
- if not add_dense_args:
128
- add_dense_args = {}
129
- if not add_conv_args:
130
- add_conv_args = {}
131
-
132
- self._replace_all_bnn_layers(self.backbone, get_dense_args, get_conv_args, add_dense_args, add_conv_args)
133
-
134
- # rename layers of BNN model to prevent duplication of names
135
- for value, param in self.backbone.parameters_and_names():
136
- param.name = value
137
-
138
- bnn_with_loss = WithBNNLossCell(self.backbone, self.loss_fn, self.dnn_factor, self.bnn_factor)
139
- bnn_optimizer = self._create_optimizer_with_bnn_params()
140
- train_bnn_network = TrainOneStepCell(bnn_with_loss, bnn_optimizer)
141
- return train_bnn_network
142
-
143
- def transform_to_bnn_layer(self, dnn_layer_type, bnn_layer_type, get_args=None, add_args=None):
144
- r"""
145
- Transform a specific type of layers in DNN model to corresponding BNN layer.
146
-
147
- Args:
148
- dnn_layer_type (Cell): The type of DNN layer to be transformed to BNN layer. The optional values are
149
- nn.Dense and nn.Conv2d.
150
- bnn_layer_type (Cell): The type of BNN layer to be transformed to. The optional values are
151
- DenseReparam and ConvReparam.
152
- get_args: The arguments gotten from the DNN layer. Default: None.
153
- add_args (dict): The new arguments added to BNN layer. Note that the arguments in `add_args` must not
154
- duplicate arguments in `get_args`. Default: None.
155
-
156
- Returns:
157
- Cell, a trainable model wrapped by TrainOneStepCell, whose specific type of layer is transformed to the
158
- corresponding bayesian layer.
159
-
160
- Supported Platforms:
161
- ``Ascend`` ``GPU``
162
-
163
- Examples:
164
- >>> import mindspore.nn as nn
165
- >>> from mindspore.nn.probability import bnn_layers
166
- >>> net = LeNet()
167
- >>> criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
168
- >>> optim = nn.AdamWeightDecay(params=net.trainable_params(), learning_rate=0.0001)
169
- >>> net_with_loss = nn.WithLossCell(net, criterion)
170
- >>> train_network = nn.TrainOneStepCell(net_with_loss, optim)
171
- >>> bnn_transformer = TransformToBNN(train_network, 60000, 0.1)
172
- >>> train_bnn_network = bnn_transformer.transform_to_bnn_layer(nn.Dense, bnn_layers.DenseReparam)
173
- """
174
- if dnn_layer_type.__name__ not in ["Dense", "Conv2d"]:
175
- raise ValueError(' \'dnn_layer\'' + str(dnn_layer_type) +
176
- ', should be one of values in \'nn.Dense\', \'nn.Conv2d\'.')
177
-
178
- if bnn_layer_type.__name__ not in ["DenseReparam", "ConvReparam"]:
179
- raise ValueError(' \'bnn_layer\'' + str(bnn_layer_type) +
180
- ', should be one of values in \'DenseReparam\', \'ConvReparam\'.')
181
-
182
- dnn_layer_type = getattr(layer, dnn_layer_type.__name__)
183
- bnn_layer_type = getattr(bnn_layers, bnn_layer_type.__name__)
184
-
185
- if not get_args:
186
- if dnn_layer_type.__name__ == "Dense":
187
- get_args = self._get_dense_args
188
- else:
189
- get_args = self._get_conv_args
190
-
191
- if not add_args:
192
- add_args = {}
193
-
194
- self._replace_specified_dnn_layers(self.backbone, dnn_layer_type, bnn_layer_type, get_args, add_args)
195
- for value, param in self.backbone.parameters_and_names():
196
- param.name = value
197
-
198
- bnn_with_loss = WithBNNLossCell(self.backbone, self.loss_fn, self.dnn_factor, self.bnn_factor)
199
- bnn_optimizer = self._create_optimizer_with_bnn_params()
200
-
201
- train_bnn_network = TrainOneStepCell(bnn_with_loss, bnn_optimizer)
202
- return train_bnn_network
203
-
204
- def _get_dense_args(self, dense_layer):
205
- """Get arguments from dense layer."""
206
- dense_args = {"in_channels": dense_layer.in_channels, "has_bias": dense_layer.has_bias,
207
- "out_channels": dense_layer.out_channels, "activation": dense_layer.activation}
208
- return dense_args
209
-
210
- def _get_conv_args(self, conv_layer):
211
- """Get arguments from conv2d layer."""
212
- conv_args = {"in_channels": conv_layer.in_channels, "out_channels": conv_layer.out_channels,
213
- "pad_mode": conv_layer.pad_mode, "kernel_size": conv_layer.kernel_size,
214
- "stride": conv_layer.stride, "has_bias": conv_layer.has_bias,
215
- "padding": conv_layer.padding, "dilation": conv_layer.dilation,
216
- "group": conv_layer.group}
217
- return conv_args
218
-
219
- def _create_optimizer_with_bnn_params(self):
220
- """Create new optimizer that contains bnn trainable parameters."""
221
- name = self.optimizer.__class__.__name__
222
- modules = optim.__all__
223
-
224
- if name not in modules:
225
- raise TypeError('The optimizer can be {}, but got {}'.format(str(modules), name))
226
-
227
- optimizer = getattr(optim, name)
228
-
229
- args = {'params': self.backbone.trainable_params()}
230
- params = optimizer.__init__.__code__.co_varnames
231
- _params = self.optimizer.__dict__['_params']
232
- for param in params:
233
- if param in _params:
234
- args[param] = self.optimizer.__getattr__(param).data.asnumpy().tolist()
235
-
236
- new_optimizer = optimizer(**args)
237
- return new_optimizer
238
-
239
- def _replace_all_bnn_layers(self, backbone, get_dense_args, get_conv_args, add_dense_args, add_conv_args):
240
- """Replace both dense layer and conv2d layer in DNN model to bayesian layers."""
241
- for name, cell in backbone.name_cells().items():
242
- if isinstance(cell, nn.Dense):
243
- dense_args = get_dense_args(cell)
244
- new_layer = DenseReparam(**dense_args, **add_dense_args)
245
- setattr(backbone, name, new_layer)
246
- elif isinstance(cell, nn.Conv2d):
247
- conv_args = get_conv_args(cell)
248
- new_layer = ConvReparam(**conv_args, **add_conv_args)
249
- setattr(backbone, name, new_layer)
250
- else:
251
- self._replace_all_bnn_layers(cell, get_dense_args, get_conv_args, add_dense_args,
252
- add_conv_args)
253
-
254
- def _replace_specified_dnn_layers(self, backbone, dnn_layer, bnn_layer, get_args, add_args):
255
- """Convert a specific type of layers in DNN model to corresponding bayesian layers."""
256
- for name, cell in backbone.name_cells().items():
257
- if isinstance(cell, dnn_layer):
258
- args = get_args(cell)
259
- new_layer = bnn_layer(**args, **add_args)
260
- setattr(backbone, name, new_layer)
261
- else:
262
- self._replace_specified_dnn_layers(cell, dnn_layer, bnn_layer, get_args, add_args)
@@ -1,18 +0,0 @@
1
- # Copyright 2020 Huawei Technologies Co., Ltd
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ============================================================================
15
- """ Zhusuan package: a probalistic programming library """
16
-
17
- from .framework import BayesianNet
18
- from .variational import ELBO
@@ -1,18 +0,0 @@
1
- # Copyright 2020 Huawei Technologies Co., Ltd
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ============================================================================
15
-
16
- """ Core functionality for Zhusuan """
17
-
18
- from .bn import BayesianNet
@@ -1,95 +0,0 @@
1
- # Copyright 2020 Huawei Technologies Co., Ltd
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ============================================================================
15
- """ Bayesian Network """
16
-
17
- import mindspore.nn as nn
18
-
19
- import mindspore.nn.probability.distribution as msd
20
- from mindspore.common import dtype as mstype
21
- from mindspore.ops import operations as P
22
-
23
-
24
- class BayesianNet(nn.Cell):
25
- """
26
- We currently support 3 types of variables: x = observation, z = latent, y = condition.
27
- A Bayeisian Network models a generative process for certain variables: p(x,z|y) or p(z|x,y) or p(x|z,y)
28
- """
29
-
30
- def __init__(self):
31
- super().__init__()
32
- self.normal_dist = msd.Normal(dtype=mstype.float32)
33
- self.bernoulli_dist = msd.Bernoulli(dtype=mstype.float32)
34
-
35
- self.reduce_sum = P.ReduceSum(keep_dims=True)
36
-
37
- def normal(self,
38
- name,
39
- observation=None,
40
- mean=None,
41
- std=None,
42
- seed=0,
43
- dtype=mstype.float32,
44
- shape=(),
45
- reparameterize=True):
46
- """ Normal distribution wrapper """
47
-
48
- if not isinstance(name, str):
49
- raise TypeError("The type of `name` must be string")
50
-
51
- if observation is None:
52
- if reparameterize:
53
- epsilon = self.normal_dist('sample', shape, self.zeros(
54
- mean.shape), self.ones(std.shape))
55
- sample = mean + std * epsilon
56
- else:
57
- sample = self.normal_dist('sample', shape, mean, std)
58
- else:
59
- sample = observation
60
-
61
- log_prob = self.reduce_sum(self.normal_dist(
62
- 'log_prob', sample, mean, std), 1)
63
- return sample, log_prob
64
-
65
- def bernoulli(self,
66
- name,
67
- observation=None,
68
- probs=None,
69
- seed=0,
70
- dtype=mstype.float32,
71
- shape=()):
72
- """ Bernoulli distribution wrapper """
73
-
74
- if not isinstance(name, str):
75
- raise TypeError("The type of `name` must be string")
76
-
77
- if observation is None:
78
- sample = self.bernoulli_dist('sample', shape, probs)
79
- else:
80
- sample = observation
81
-
82
- log_prob = self.reduce_sum(
83
- self.bernoulli_dist('log_prob', sample, probs), 1)
84
- return sample, log_prob
85
-
86
- def construct(self, *inputs, **kwargs):
87
- """
88
- We currently fix the parameters of the construct function.
89
- Args:
90
- the inputs must consist of 3 variables in order.
91
- x: data sample, observation
92
- z: latent variable
93
- y: conditional information
94
- """
95
- raise NotImplementedError
@@ -1,18 +0,0 @@
1
- # Copyright 2020 Huawei Technologies Co., Ltd
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ============================================================================
15
-
16
- """ Variational inference related codes """
17
-
18
- from .elbo import ELBO
@@ -1,46 +0,0 @@
1
- # Copyright 2020 Huawei Technologies Co., Ltd
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ============================================================================
15
- """ ELBO """
16
-
17
- import mindspore.nn as nn
18
-
19
- from mindspore.ops import operations as P
20
-
21
-
22
- class ELBO(nn.Cell):
23
- """ ELBO class """
24
- def __init__(self, generator, variational):
25
- super().__init__()
26
- self.generator = generator
27
- self.variational = variational
28
- self.reshape_op = P.Reshape()
29
- self.reduce_mean = P.ReduceMean(keep_dims=False)
30
- self.square = P.Square()
31
-
32
- def construct(self, *inputs, **kwargs):
33
- if len(inputs) >= 2:
34
- x, y = inputs[0], inputs[1]
35
- elif len(inputs) >= 1:
36
- x = inputs[0]
37
- y = None
38
- else:
39
- x = None
40
- y = None
41
-
42
- z, log_prob_z = self.variational(x, None, y)
43
- _, log_prob_x_, _, log_prob_z_ = self.generator(x, z, y)
44
-
45
- elbo = self.reduce_mean(log_prob_x_) + self.reduce_mean(log_prob_z_) - self.reduce_mean(log_prob_z)
46
- return -elbo
@@ -1,42 +0,0 @@
1
- # Copyright 2022 Huawei Technologies Co., Ltd
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ============================================================================
15
-
16
- """ParallelConcat op"""
17
- from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
18
-
19
- parallel_concat_op_info = AiCPURegOp("ParallelConcat") \
20
- .fusion_type("OPAQUE") \
21
- .input(0, "x", "dynamic") \
22
- .output(0, "y", "required") \
23
- .dtype_format(DataType.U8_Default, DataType.U8_Default) \
24
- .dtype_format(DataType.U16_Default, DataType.U16_Default) \
25
- .dtype_format(DataType.U32_Default, DataType.U32_Default) \
26
- .dtype_format(DataType.U64_Default, DataType.U64_Default) \
27
- .dtype_format(DataType.I8_Default, DataType.I8_Default) \
28
- .dtype_format(DataType.I16_Default, DataType.I16_Default) \
29
- .dtype_format(DataType.I32_Default, DataType.I32_Default) \
30
- .dtype_format(DataType.I64_Default, DataType.I64_Default) \
31
- .dtype_format(DataType.F16_Default, DataType.F16_Default) \
32
- .dtype_format(DataType.F32_Default, DataType.F32_Default) \
33
- .dtype_format(DataType.F64_Default, DataType.F64_Default) \
34
- .dtype_format(DataType.C64_Default, DataType.C64_Default) \
35
- .dtype_format(DataType.C128_Default, DataType.C128_Default) \
36
- .get_op_info()
37
-
38
-
39
- @op_info_register(parallel_concat_op_info)
40
- def _parallel_concat_aicpu():
41
- """ParallelConcat AiCPU register"""
42
- return
@@ -1,56 +0,0 @@
1
- # Copyright 2020 Huawei Technologies Co., Ltd
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ============================================================================
15
-
16
- """GatherV2 op"""
17
- from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
18
-
19
- gather_v2_op_info = TBERegOp("Gather") \
20
- .fusion_type("OPAQUE") \
21
- .async_flag(False) \
22
- .binfile_name("gather_v2_d.so") \
23
- .compute_cost(10) \
24
- .kernel_name("gather_v2_d") \
25
- .partial_flag(True) \
26
- .attr("axis", "required", "int", "all") \
27
- .input(0, "x", False, "required", "all") \
28
- .input(1, "indices", False, "required", "all") \
29
- .output(0, "y", False, "required", "all") \
30
- .dtype_format(DataType.F16_Default, DataType.I32_Default, DataType.F16_Default) \
31
- .dtype_format(DataType.F32_Default, DataType.I32_Default, DataType.F32_Default) \
32
- .dtype_format(DataType.I8_Default, DataType.I32_Default, DataType.I8_Default) \
33
- .dtype_format(DataType.U8_Default, DataType.I32_Default, DataType.U8_Default) \
34
- .dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.I32_Default) \
35
- .dtype_format(DataType.U32_Default, DataType.I32_Default, DataType.U32_Default) \
36
- .dtype_format(DataType.I16_Default, DataType.I32_Default, DataType.I16_Default) \
37
- .dtype_format(DataType.U16_Default, DataType.I32_Default, DataType.U16_Default) \
38
- .dtype_format(DataType.I64_Default, DataType.I32_Default, DataType.I64_Default) \
39
- .dtype_format(DataType.U64_Default, DataType.I32_Default, DataType.U64_Default) \
40
- .dtype_format(DataType.F16_Default, DataType.I64_Default, DataType.F16_Default) \
41
- .dtype_format(DataType.F32_Default, DataType.I64_Default, DataType.F32_Default) \
42
- .dtype_format(DataType.I8_Default, DataType.I64_Default, DataType.I8_Default) \
43
- .dtype_format(DataType.U8_Default, DataType.I64_Default, DataType.U8_Default) \
44
- .dtype_format(DataType.I32_Default, DataType.I64_Default, DataType.I32_Default) \
45
- .dtype_format(DataType.U32_Default, DataType.I64_Default, DataType.U32_Default) \
46
- .dtype_format(DataType.I16_Default, DataType.I64_Default, DataType.I16_Default) \
47
- .dtype_format(DataType.U16_Default, DataType.I64_Default, DataType.U16_Default) \
48
- .dtype_format(DataType.I64_Default, DataType.I64_Default, DataType.I64_Default) \
49
- .dtype_format(DataType.U64_Default, DataType.I64_Default, DataType.U64_Default) \
50
- .get_op_info()
51
-
52
-
53
- @op_info_register(gather_v2_op_info)
54
- def _gather_v2_tbe():
55
- """GatherV2 TBE register"""
56
- return
@@ -1,19 +0,0 @@
1
-
2
- 0.1.1 MindSpore*2.0.0:�
3
- }'get_bprop_assign_add.1231:[CNode]1232:1'get_bprop_assign_add.1231:[CNode]1232:1"REF::bprop.1233:Default/bprop.1233-op958get_bprop_assign_add.1231*
4
- get_bprop_assign_add.1231:self*
5
- get_bprop_assign_add.1231:x*
6
- get_bprop_assign_add.1231:y*
7
- get_bprop_assign_add.1231:out*
8
- get_bprop_assign_add.1231:dout2)
9
- 'get_bprop_assign_add.1231:[CNode]1232:1:@864154f4834e62d84d34aab9399558528d5e734f6725d5daf7fbc1907cb32a1aJ/grad_math_ops.pyB�
10
- �
11
- get_bprop_assign_add.1231:xbprop.1233:[CNode]1234:2bprop.1233:[CNode]1234:2".REF::MetaFuncGraph::hyper_map[zeros_like_leaf]:/Default/S-Prim-hyper_map[zeros_like_leaf]-op959
12
- �
13
- get_bprop_assign_add.1231:ybprop.1233:[CNode]1235:3bprop.1233:[CNode]1235:3".REF::MetaFuncGraph::hyper_map[zeros_like_leaf]:/Default/S-Prim-hyper_map[zeros_like_leaf]-op960
14
- �
15
- bprop.1233:[CNode]1234:2
16
- bprop.1233:[CNode]1235:3bprop.1233:[CNode]1236:4bprop.1233:[CNode]1236:4"REF::S-Prim-MakeTuple:5:Default/S-Prim-MakeTuple-op961
17
- bprop.12332
18
- bprop.1233:[CNode]1236:4Pb&
19
- S-Prim-MakeTuple:5S-Prim-MakeTupleh
@@ -1,19 +0,0 @@
1
-
2
- 0.1.1 MindSpore*2.0.0:�
3
- ]get_bprop_cast.6:[CNode]7:1get_bprop_cast.6:[CNode]7:1" REF::bprop.8:Default/bprop.8-op3get_bprop_cast.6*
4
- get_bprop_cast.6:self*
5
- get_bprop_cast.6:x*
6
- get_bprop_cast.6:t*
7
- get_bprop_cast.6:out*
8
- get_bprop_cast.6:dout2
9
- get_bprop_cast.6:[CNode]7:1:@2a049f3579950913c6ea42bb677f44470016652aa549a6dee2350ea48d50f039J/grad_array_ops.pyB�
10
- �
11
- get_bprop_cast.6:dout
12
- get_bprop_cast.6:x bprop.8:dx:2 bprop.8:dx:2"REF::MetaFuncGraph::dout_cast:Default/S-Prim-dout_cast-op4
13
- �
14
- get_bprop_cast.6:tbprop.8:[CNode]9:3bprop.8:[CNode]9:3".REF::MetaFuncGraph::hyper_map[zeros_like_leaf]:-Default/S-Prim-hyper_map[zeros_like_leaf]-op5
15
- �
16
- bprop.8:dx:2
17
- bprop.8:[CNode]9:3bprop.8:[CNode]10:4bprop.8:[CNode]10:4"REF::S-Prim-MakeTuple:5:Default/S-Prim-MakeTuple-op6bprop.82
18
- bprop.8:[CNode]10:4Pb&
19
- S-Prim-MakeTuple:5S-Prim-MakeTupleh
@@ -1,19 +0,0 @@
1
-
2
- 0.1.1 MindSpore*2.0.0:�
3
- }'get_bprop_logical_or.1225:[CNode]1226:1'get_bprop_logical_or.1225:[CNode]1226:1"REF::bprop.1227:Default/bprop.1227-op954get_bprop_logical_or.1225*
4
- get_bprop_logical_or.1225:self*
5
- get_bprop_logical_or.1225:x*
6
- get_bprop_logical_or.1225:y*
7
- get_bprop_logical_or.1225:out*
8
- get_bprop_logical_or.1225:dout2)
9
- 'get_bprop_logical_or.1225:[CNode]1226:1:@906051cca7d6d4b88a09a10b80bb5f0541066115667786dd7364cba0508be483J/grad_math_ops.pyB�
10
- �
11
- get_bprop_logical_or.1225:xbprop.1227:[CNode]1228:2bprop.1227:[CNode]1228:2".REF::MetaFuncGraph::hyper_map[zeros_like_leaf]:/Default/S-Prim-hyper_map[zeros_like_leaf]-op955
12
- �
13
- get_bprop_logical_or.1225:ybprop.1227:[CNode]1229:3bprop.1227:[CNode]1229:3".REF::MetaFuncGraph::hyper_map[zeros_like_leaf]:/Default/S-Prim-hyper_map[zeros_like_leaf]-op956
14
- �
15
- bprop.1227:[CNode]1228:2
16
- bprop.1227:[CNode]1229:3bprop.1227:[CNode]1230:4bprop.1227:[CNode]1230:4"REF::S-Prim-MakeTuple:5:Default/S-Prim-MakeTuple-op957
17
- bprop.12272
18
- bprop.1227:[CNode]1230:4Pb&
19
- S-Prim-MakeTuple:5S-Prim-MakeTupleh
@@ -1,17 +0,0 @@
1
-
2
- 0.1.1 MindSpore*2.0.0:�
3
- q!get_bprop_relu.1273:[CNode]1274:1!get_bprop_relu.1273:[CNode]1274:1"REF::bprop.1275:Default/bprop.1275-op987
4
- � get_bprop_relu.1273:input_grad:2 get_bprop_relu.1273:input_grad:2";REF::ClassType::mindspore.ops.operations._grad_ops.ReluGrad:ADefault/class 'mindspore.ops.operations._grad_ops.ReluGrad'-op988get_bprop_relu.1273*
5
- get_bprop_relu.1273:self*
6
- get_bprop_relu.1273:x*
7
- get_bprop_relu.1273:out*
8
- get_bprop_relu.1273:dout2#
9
- !get_bprop_relu.1273:[CNode]1274:1:@92fe953ca276bba8b43b979895a017d6283e879df08b1a28bbae49b041d910b5J/grad_nn_ops.pyB�
10
- �
11
- get_bprop_relu.1273:dout
12
- get_bprop_relu.1273:outbprop.1275:dx:3bprop.1275:dx:3"%REF::get_bprop_relu.1273:input_grad:2:989
13
- ~
14
- bprop.1275:dx:3bprop.1275:[CNode]1276:4bprop.1275:[CNode]1276:4"REF::S-Prim-MakeTuple:5:Default/S-Prim-MakeTuple-op990
15
- bprop.12752
16
- bprop.1275:[CNode]1276:4Pb&
17
- S-Prim-MakeTuple:5S-Prim-MakeTupleh
@@ -1,15 +0,0 @@
1
-
2
- 0.1.1 MindSpore*2.0.0:�
3
- �
4
- bprop_update_state.1331:u_monad%bprop_update_state.1331:[CNode]1332:1%bprop_update_state.1331:[CNode]1332:1".REF::MetaFuncGraph::hyper_map[zeros_like_leaf]:0Default/S-Prim-hyper_map[zeros_like_leaf]-op1032
5
- �
6
- bprop_update_state.1331:x%bprop_update_state.1331:[CNode]1333:2%bprop_update_state.1331:[CNode]1333:2".REF::MetaFuncGraph::hyper_map[zeros_like_leaf]:0Default/S-Prim-hyper_map[zeros_like_leaf]-op1033
7
- �
8
- %bprop_update_state.1331:[CNode]1332:1
9
- %bprop_update_state.1331:[CNode]1333:2%bprop_update_state.1331:[CNode]1334:3%bprop_update_state.1331:[CNode]1334:3"REF::S-Prim-MakeTuple:4:Default/S-Prim-MakeTuple-op1034bprop_update_state.1331*!
10
- bprop_update_state.1331:u_monad*
11
- bprop_update_state.1331:x*
12
- bprop_update_state.1331:out*
13
- bprop_update_state.1331:dout2'
14
- %bprop_update_state.1331:[CNode]1334:3:@adde661b2e2f38680f80f0269960db717f31a852326a1f3bda24e010ea8bb153J/grad_implementations.pyPb&
15
- S-Prim-MakeTuple:4S-Prim-MakeTupleh