mindspore 2.0.0a0__cp38-cp38-win_amd64.whl → 2.0.0rc1__cp38-cp38-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (655) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/__init__.py +4 -2
  3. mindspore/_c_dataengine.cp38-win_amd64.pyd +0 -0
  4. mindspore/_c_expression.cp38-win_amd64.pyd +0 -0
  5. mindspore/_c_mindrecord.cp38-win_amd64.pyd +0 -0
  6. mindspore/_check_jit_forbidden_api.py +102 -0
  7. mindspore/_checkparam.py +1066 -1001
  8. mindspore/_extends/parallel_compile/akg_compiler/akg_process.py +4 -3
  9. mindspore/_extends/parallel_compile/akg_compiler/tbe_topi.py +50 -48
  10. mindspore/_extends/parallel_compile/akg_compiler/util.py +9 -4
  11. mindspore/_extends/parallel_compile/tbe_compiler/tbe_adapter.py +4 -4
  12. mindspore/_extends/parallel_compile/tbe_compiler/tbe_helper.py +9 -4
  13. mindspore/_extends/parse/__init__.py +5 -3
  14. mindspore/_extends/parse/namespace.py +16 -1
  15. mindspore/_extends/parse/parser.py +107 -22
  16. mindspore/_extends/parse/resources.py +0 -7
  17. mindspore/_extends/parse/standard_method.py +885 -413
  18. mindspore/amp.py +52 -57
  19. mindspore/boost/boost.py +2 -2
  20. mindspore/boost/boost_cell_wrapper.py +38 -20
  21. mindspore/boost/dim_reduce.py +3 -3
  22. mindspore/boost/group_loss_scale_manager.py +1 -1
  23. mindspore/common/__init__.py +4 -6
  24. mindspore/common/_decorator.py +2 -0
  25. mindspore/common/_register_for_adapter.py +55 -0
  26. mindspore/common/_stub_tensor.py +201 -0
  27. mindspore/common/_utils.py +41 -7
  28. mindspore/common/api.py +215 -141
  29. mindspore/common/dtype.py +8 -1
  30. mindspore/common/dump.py +2 -2
  31. mindspore/common/initializer.py +4 -2
  32. mindspore/common/jit_config.py +17 -13
  33. mindspore/common/mutable.py +33 -13
  34. mindspore/common/parameter.py +23 -21
  35. mindspore/common/seed.py +8 -24
  36. mindspore/common/sparse_tensor.py +62 -41
  37. mindspore/common/tensor.py +852 -1154
  38. mindspore/communication/__init__.py +2 -2
  39. mindspore/communication/_comm_helper.py +11 -4
  40. mindspore/communication/management.py +22 -21
  41. mindspore/config/op_info.config +501 -1008
  42. mindspore/context.py +201 -23
  43. mindspore/dataset/__init__.py +6 -6
  44. mindspore/dataset/audio/__init__.py +7 -7
  45. mindspore/dataset/audio/transforms.py +670 -30
  46. mindspore/dataset/audio/utils.py +47 -4
  47. mindspore/dataset/audio/validators.py +223 -1
  48. mindspore/dataset/callback/ds_callback.py +2 -2
  49. mindspore/dataset/core/config.py +210 -14
  50. mindspore/dataset/core/validator_helpers.py +2 -2
  51. mindspore/{parallel/nn/layers.py → dataset/debug/__init__.py} +7 -8
  52. mindspore/dataset/debug/debug_hook.py +65 -0
  53. mindspore/dataset/debug/pre_defined_hook.py +67 -0
  54. mindspore/dataset/engine/__init__.py +7 -3
  55. mindspore/dataset/engine/cache_client.py +1 -1
  56. mindspore/dataset/engine/datasets.py +322 -66
  57. mindspore/dataset/engine/datasets_audio.py +80 -76
  58. mindspore/dataset/engine/datasets_standard_format.py +51 -38
  59. mindspore/dataset/engine/datasets_text.py +232 -118
  60. mindspore/dataset/engine/datasets_user_defined.py +41 -17
  61. mindspore/dataset/engine/datasets_vision.py +746 -225
  62. mindspore/dataset/engine/graphdata.py +75 -10
  63. mindspore/dataset/engine/iterators.py +45 -5
  64. mindspore/dataset/engine/offload.py +48 -28
  65. mindspore/dataset/engine/validators.py +117 -8
  66. mindspore/dataset/text/__init__.py +6 -5
  67. mindspore/dataset/text/transforms.py +86 -3
  68. mindspore/dataset/text/utils.py +6 -4
  69. mindspore/dataset/text/validators.py +25 -0
  70. mindspore/dataset/transforms/__init__.py +3 -2
  71. mindspore/dataset/transforms/c_transforms.py +1 -1
  72. mindspore/dataset/transforms/transforms.py +2 -2
  73. mindspore/dataset/utils/__init__.py +2 -1
  74. mindspore/dataset/utils/line_reader.py +121 -0
  75. mindspore/dataset/vision/__init__.py +2 -3
  76. mindspore/dataset/vision/c_transforms.py +9 -9
  77. mindspore/dataset/vision/py_transforms.py +5 -5
  78. mindspore/dataset/vision/py_transforms_util.py +2 -0
  79. mindspore/dataset/vision/transforms.py +160 -161
  80. mindspore/dataset/vision/utils.py +3 -3
  81. mindspore/experimental/map_parameter.py +38 -26
  82. mindspore/include/OWNERS +0 -1
  83. mindspore/include/api/callback/callback.h +9 -13
  84. mindspore/include/api/callback/ckpt_saver.h +2 -2
  85. mindspore/include/api/callback/loss_monitor.h +2 -2
  86. mindspore/include/api/callback/lr_scheduler.h +5 -5
  87. mindspore/include/api/callback/time_monitor.h +2 -2
  88. mindspore/include/api/callback/train_accuracy.h +4 -6
  89. mindspore/include/api/cfg.h +19 -6
  90. mindspore/include/api/context.h +44 -9
  91. mindspore/include/api/delegate.h +1 -1
  92. mindspore/include/api/metrics/accuracy.h +2 -2
  93. mindspore/include/api/metrics/metrics.h +4 -3
  94. mindspore/include/api/model.h +9 -4
  95. mindspore/include/api/model_parallel_runner.h +2 -2
  96. mindspore/include/api/net.h +12 -11
  97. mindspore/include/api/serialization.h +19 -3
  98. mindspore/include/api/types.h +3 -3
  99. mindspore/include/dataset/constants.h +7 -0
  100. mindspore/include/dataset/text.h +59 -0
  101. mindspore/jpeg62.dll +0 -0
  102. mindspore/log.py +1 -1
  103. mindspore/mindrecord/filereader.py +18 -0
  104. mindspore/mindrecord/filewriter.py +197 -34
  105. mindspore/mindrecord/shardreader.py +9 -0
  106. mindspore/mindrecord/shardwriter.py +1 -1
  107. mindspore/mindrecord/tools/cifar100_to_mr.py +3 -3
  108. mindspore/mindrecord/tools/cifar10_to_mr.py +3 -3
  109. mindspore/mindrecord/tools/csv_to_mr.py +3 -3
  110. mindspore/mindrecord/tools/imagenet_to_mr.py +16 -11
  111. mindspore/mindrecord/tools/mnist_to_mr.py +2 -2
  112. mindspore/mindrecord/tools/tfrecord_to_mr.py +6 -6
  113. mindspore/mindspore_backend.dll +0 -0
  114. mindspore/mindspore_common.dll +0 -0
  115. mindspore/mindspore_core.dll +0 -0
  116. mindspore/mindspore_glog.dll +0 -0
  117. mindspore/mindspore_shared_lib.dll +0 -0
  118. mindspore/nn/__init__.py +0 -4
  119. mindspore/nn/cell.py +204 -132
  120. mindspore/nn/dynamic_lr.py +1 -1
  121. mindspore/nn/grad/cell_grad.py +7 -6
  122. mindspore/nn/layer/__init__.py +5 -4
  123. mindspore/nn/layer/activation.py +40 -89
  124. mindspore/nn/layer/basic.py +255 -624
  125. mindspore/nn/layer/channel_shuffle.py +7 -6
  126. mindspore/nn/layer/combined.py +1 -1
  127. mindspore/nn/layer/container.py +41 -4
  128. mindspore/nn/layer/conv.py +64 -28
  129. mindspore/nn/layer/dense.py +9 -8
  130. mindspore/nn/layer/embedding.py +27 -25
  131. mindspore/nn/layer/image.py +53 -46
  132. mindspore/nn/layer/math.py +97 -105
  133. mindspore/nn/layer/normalization.py +117 -86
  134. mindspore/nn/layer/padding.py +185 -95
  135. mindspore/nn/layer/pooling.py +817 -414
  136. mindspore/nn/layer/rnn_cells.py +10 -15
  137. mindspore/nn/layer/rnns.py +37 -38
  138. mindspore/nn/layer/thor_layer.py +11 -12
  139. mindspore/nn/layer/timedistributed.py +5 -5
  140. mindspore/nn/layer/transformer.py +701 -0
  141. mindspore/nn/learning_rate_schedule.py +8 -8
  142. mindspore/nn/loss/__init__.py +5 -4
  143. mindspore/nn/loss/loss.py +334 -199
  144. mindspore/nn/optim/ada_grad.py +6 -6
  145. mindspore/nn/optim/adadelta.py +2 -3
  146. mindspore/nn/optim/adafactor.py +4 -5
  147. mindspore/nn/optim/adam.py +126 -62
  148. mindspore/nn/optim/adamax.py +3 -4
  149. mindspore/nn/optim/adasum.py +6 -6
  150. mindspore/nn/optim/asgd.py +2 -2
  151. mindspore/nn/optim/ftrl.py +67 -38
  152. mindspore/nn/optim/lamb.py +4 -5
  153. mindspore/nn/optim/lars.py +2 -2
  154. mindspore/nn/optim/lazyadam.py +43 -4
  155. mindspore/nn/optim/momentum.py +6 -5
  156. mindspore/nn/optim/optimizer.py +3 -1
  157. mindspore/nn/optim/proximal_ada_grad.py +2 -2
  158. mindspore/nn/optim/rmsprop.py +1 -1
  159. mindspore/nn/optim/rprop.py +8 -9
  160. mindspore/nn/optim/sgd.py +19 -13
  161. mindspore/nn/optim/thor.py +10 -15
  162. mindspore/nn/probability/__init__.py +0 -2
  163. mindspore/nn/probability/bijector/bijector.py +4 -4
  164. mindspore/nn/probability/bijector/invert.py +1 -1
  165. mindspore/nn/probability/bijector/softplus.py +2 -2
  166. mindspore/nn/probability/bnn_layers/dense_variational.py +1 -1
  167. mindspore/nn/probability/bnn_layers/layer_distribution.py +2 -2
  168. mindspore/nn/probability/distribution/_utils/utils.py +9 -15
  169. mindspore/nn/probability/distribution/bernoulli.py +3 -3
  170. mindspore/nn/probability/distribution/beta.py +1 -1
  171. mindspore/nn/probability/distribution/categorical.py +5 -7
  172. mindspore/nn/probability/distribution/cauchy.py +3 -3
  173. mindspore/nn/probability/distribution/distribution.py +2 -2
  174. mindspore/nn/probability/distribution/exponential.py +2 -2
  175. mindspore/nn/probability/distribution/gamma.py +3 -3
  176. mindspore/nn/probability/distribution/geometric.py +1 -1
  177. mindspore/nn/probability/distribution/gumbel.py +3 -3
  178. mindspore/nn/probability/distribution/half_normal.py +15 -11
  179. mindspore/nn/probability/distribution/laplace.py +16 -13
  180. mindspore/nn/probability/distribution/logistic.py +2 -2
  181. mindspore/nn/probability/distribution/normal.py +1 -1
  182. mindspore/nn/probability/distribution/poisson.py +1 -1
  183. mindspore/nn/probability/distribution/student_t.py +20 -15
  184. mindspore/nn/probability/distribution/transformed_distribution.py +4 -4
  185. mindspore/nn/probability/distribution/uniform.py +2 -2
  186. mindspore/nn/reinforcement/_tensors_queue.py +3 -3
  187. mindspore/nn/reinforcement/tensor_array.py +2 -2
  188. mindspore/nn/sparse/sparse.py +2 -2
  189. mindspore/nn/wrap/cell_wrapper.py +27 -10
  190. mindspore/nn/wrap/grad_reducer.py +2 -2
  191. mindspore/nn/wrap/loss_scale.py +40 -24
  192. mindspore/numpy/array_creations.py +33 -22
  193. mindspore/numpy/array_ops.py +35 -30
  194. mindspore/numpy/logic_ops.py +6 -27
  195. mindspore/numpy/math_ops.py +22 -19
  196. mindspore/numpy/utils.py +1 -1
  197. mindspore/numpy/utils_const.py +108 -58
  198. mindspore/opencv_core452.dll +0 -0
  199. mindspore/opencv_imgcodecs452.dll +0 -0
  200. mindspore/opencv_imgproc452.dll +0 -0
  201. mindspore/ops/_constants.py +0 -6
  202. mindspore/ops/_grad/__init__.py +2 -1
  203. mindspore/ops/_grad/grad_array_ops.py +86 -117
  204. mindspore/ops/_grad/grad_base.py +23 -1
  205. mindspore/ops/_grad/grad_clip_ops.py +2 -3
  206. mindspore/ops/_grad/grad_comm_ops.py +34 -24
  207. mindspore/ops/_grad/grad_implementations.py +9 -45
  208. mindspore/ops/_grad/grad_inner_ops.py +47 -4
  209. mindspore/ops/_grad/grad_math_ops.py +142 -117
  210. mindspore/ops/_grad/grad_nn_ops.py +71 -165
  211. mindspore/ops/_grad/grad_sequence_ops.py +296 -0
  212. mindspore/ops/_grad/grad_sparse.py +7 -6
  213. mindspore/ops/_grad_experimental/__init__.py +1 -0
  214. mindspore/ops/_grad_experimental/grad_array_ops.py +150 -15
  215. mindspore/ops/_grad_experimental/grad_image_ops.py +16 -7
  216. mindspore/ops/_grad_experimental/grad_inner_ops.py +1 -22
  217. mindspore/ops/_grad_experimental/grad_linalg_ops.py +4 -11
  218. mindspore/ops/_grad_experimental/grad_math_ops.py +210 -89
  219. mindspore/ops/_grad_experimental/grad_nn_ops.py +26 -22
  220. mindspore/ops/_grad_experimental/grad_scalar_ops.py +112 -0
  221. mindspore/ops/_grad_experimental/grad_sparse_ops.py +49 -8
  222. mindspore/ops/_op_impl/_custom_op/batch_matmul_impl.py +1 -1
  223. mindspore/ops/_op_impl/_custom_op/batchnorm_fold.py +2 -2
  224. mindspore/ops/_op_impl/_custom_op/batchnorm_fold2.py +2 -2
  225. mindspore/ops/_op_impl/_custom_op/batchnorm_fold2_grad.py +2 -2
  226. mindspore/ops/_op_impl/_custom_op/batchnorm_fold2_grad_reduce.py +4 -4
  227. mindspore/ops/_op_impl/_custom_op/batchnorm_fold_grad.py +3 -3
  228. mindspore/ops/_op_impl/_custom_op/cholesky_trsm_impl.py +1 -1
  229. mindspore/ops/_op_impl/_custom_op/correction_mul.py +2 -2
  230. mindspore/ops/_op_impl/_custom_op/correction_mul_grad.py +2 -2
  231. mindspore/ops/_op_impl/_custom_op/dsd_back_impl.py +1 -5
  232. mindspore/ops/_op_impl/_custom_op/dsd_impl.py +1 -1
  233. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel.py +2 -2
  234. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel_grad.py +2 -2
  235. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel_grad_reduce.py +2 -2
  236. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer.py +2 -2
  237. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer_grad.py +2 -2
  238. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer_grad_reduce.py +2 -2
  239. mindspore/ops/_op_impl/_custom_op/fake_quant_perchannel.py +2 -2
  240. mindspore/ops/_op_impl/_custom_op/fake_quant_perchannel_grad.py +2 -2
  241. mindspore/ops/_op_impl/_custom_op/fake_quant_perlayer.py +2 -2
  242. mindspore/ops/_op_impl/_custom_op/fake_quant_perlayer_grad.py +2 -2
  243. mindspore/ops/_op_impl/_custom_op/fused_abs_max1_impl.py +1 -1
  244. mindspore/ops/_op_impl/_custom_op/img2col_impl.py +1 -1
  245. mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_left_impl.py +2 -2
  246. mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_right_impl.py +1 -1
  247. mindspore/ops/_op_impl/_custom_op/matmul_cube_fracz_left_cast_impl.py +1 -1
  248. mindspore/ops/_op_impl/_custom_op/matmul_cube_fracz_right_mul_impl.py +1 -1
  249. mindspore/ops/_op_impl/_custom_op/matmul_cube_impl.py +2 -2
  250. mindspore/ops/_op_impl/_custom_op/matmul_dds_impl.py +0 -4
  251. mindspore/ops/_op_impl/_custom_op/matrix_combine_impl.py +1 -1
  252. mindspore/ops/_op_impl/_custom_op/minmax_update_perchannel.py +2 -2
  253. mindspore/ops/_op_impl/_custom_op/minmax_update_perlayer.py +2 -2
  254. mindspore/ops/_op_impl/_custom_op/transpose02314_impl.py +1 -1
  255. mindspore/ops/_op_impl/aicpu/__init__.py +236 -4
  256. mindspore/ops/_op_impl/aicpu/abs.py +36 -0
  257. mindspore/ops/_op_impl/aicpu/{adaptive_avg_pool_2d_v1.py → adaptive_avg_pool_2d.py} +6 -5
  258. mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_2d_grad.py +34 -0
  259. mindspore/ops/_op_impl/aicpu/add.py +43 -0
  260. mindspore/ops/_op_impl/aicpu/addcdiv.py +0 -32
  261. mindspore/ops/_op_impl/aicpu/addcmul.py +0 -84
  262. mindspore/ops/_op_impl/aicpu/affine_grid_grad.py +35 -0
  263. mindspore/ops/_op_impl/aicpu/batch_matmul.py +43 -43
  264. mindspore/ops/_op_impl/aicpu/bernoulli.py +48 -0
  265. mindspore/{compression/common/__init__.py → ops/_op_impl/aicpu/bessel_i0.py} +15 -8
  266. mindspore/ops/_op_impl/aicpu/channel_shuffle.py +40 -0
  267. mindspore/ops/_op_impl/aicpu/conj.py +11 -0
  268. mindspore/ops/_op_impl/aicpu/cumulative_logsumexp.py +0 -3
  269. mindspore/ops/_op_impl/aicpu/deformable_offsets.py +38 -0
  270. mindspore/ops/_op_impl/aicpu/deformable_offsets_grad.py +43 -0
  271. mindspore/ops/_op_impl/aicpu/{adaptive_avg_pool_2d_grad_v1.py → digamma.py} +7 -9
  272. mindspore/ops/_op_impl/aicpu/flatten.py +1 -0
  273. mindspore/ops/_op_impl/aicpu/fmax.py +36 -0
  274. mindspore/ops/_op_impl/aicpu/fmin.py +37 -0
  275. mindspore/ops/_op_impl/aicpu/fractional_max_pool3d_with_fixed_ksize.py +1 -1
  276. mindspore/ops/_op_impl/aicpu/fse_decode.py +43 -0
  277. mindspore/ops/_op_impl/aicpu/greater.py +41 -0
  278. mindspore/ops/_op_impl/aicpu/greater_equal.py +41 -0
  279. mindspore/ops/_op_impl/aicpu/index_put.py +50 -0
  280. mindspore/ops/_op_impl/aicpu/less.py +41 -0
  281. mindspore/{nn/probability/infer/variational/__init__.py → ops/_op_impl/aicpu/lgamma.py} +16 -10
  282. mindspore/ops/_op_impl/aicpu/mirror_pad.py +0 -4
  283. mindspore/ops/_op_impl/aicpu/mirror_pad_grad.py +0 -4
  284. mindspore/ops/_op_impl/aicpu/mul.py +3 -1
  285. mindspore/ops/_op_impl/aicpu/multinomial.py +14 -6
  286. mindspore/ops/_op_impl/aicpu/nllloss.py +38 -0
  287. mindspore/ops/_op_impl/aicpu/nllloss_grad.py +39 -0
  288. mindspore/ops/_op_impl/aicpu/ones_like.py +0 -2
  289. mindspore/ops/_op_impl/aicpu/polar.py +32 -0
  290. mindspore/ops/_op_impl/aicpu/polygamma.py +34 -0
  291. mindspore/ops/_op_impl/aicpu/quant_dtype_cast.py +40 -0
  292. mindspore/ops/_op_impl/aicpu/quantile.py +35 -0
  293. mindspore/ops/_op_impl/aicpu/ragged_tensor_to_sparse.py +73 -0
  294. mindspore/ops/_op_impl/aicpu/randperm_v2.py +41 -0
  295. mindspore/ops/_op_impl/aicpu/resize_bicubic.py +2 -8
  296. mindspore/ops/_op_impl/aicpu/resize_bicubic_grad.py +1 -1
  297. mindspore/ops/_op_impl/aicpu/resize_v2.py +68 -0
  298. mindspore/ops/_op_impl/aicpu/resize_v2_grad.py +68 -0
  299. mindspore/ops/_op_impl/aicpu/scatter_elements.py +4 -0
  300. mindspore/ops/_op_impl/aicpu/scatter_nd_update.py +2 -0
  301. mindspore/ops/_op_impl/aicpu/sequence_add.py +34 -0
  302. mindspore/ops/_op_impl/aicpu/sequence_add_offset.py +34 -0
  303. mindspore/ops/_op_impl/aicpu/sequence_addn.py +38 -0
  304. mindspore/ops/_op_impl/aicpu/smooth_l1_loss.py +35 -0
  305. mindspore/ops/_op_impl/aicpu/smooth_l1_loss_grad.py +37 -0
  306. mindspore/ops/_op_impl/aicpu/sparse_apply_adagrad_da.py +0 -24
  307. mindspore/ops/_op_impl/aicpu/sparse_cross.py +42 -0
  308. mindspore/ops/_op_impl/aicpu/sparse_slice.py +4 -0
  309. mindspore/ops/_op_impl/aicpu/sparse_slice_grad.py +6 -0
  310. mindspore/ops/_op_impl/aicpu/tensor_scatter_update.py +59 -0
  311. mindspore/ops/_op_impl/aicpu/trans_data.py +1 -0
  312. mindspore/ops/_op_impl/aicpu/tril_indices.py +34 -0
  313. mindspore/ops/_op_impl/aicpu/uniform.py +34 -0
  314. mindspore/ops/_op_impl/aicpu/uniform_candidate_sampler.py +1 -0
  315. mindspore/ops/_op_impl/aicpu/unique_consecutive.py +10 -2
  316. mindspore/ops/_op_impl/cpu/dynamic_shape.py +5 -1
  317. mindspore/ops/_op_impl/cpu/sparse_slice.py +4 -0
  318. mindspore/ops/_op_impl/cpu/sparse_slice_grad.py +6 -0
  319. mindspore/ops/_op_impl/cpu/tensor_shape.py +5 -1
  320. mindspore/ops/_op_impl/tbe/__init__.py +27 -611
  321. mindspore/ops/_op_impl/tbe/assign_add_ds.py +1 -0
  322. mindspore/ops/_op_impl/tbe/atomic_addr_clean.py +1 -1
  323. mindspore/ops/_op_impl/tbe/avg_pool_3d_grad.py +1 -1
  324. mindspore/ops/_op_impl/tbe/batch_matmul_ds.py +1 -0
  325. mindspore/ops/_op_impl/tbe/batch_to_space.py +1 -1
  326. mindspore/ops/_op_impl/tbe/batch_to_space_nd.py +1 -1
  327. mindspore/ops/_op_impl/tbe/bn_infer_grad.py +4 -2
  328. mindspore/ops/_op_impl/tbe/bn_training_update.py +0 -1
  329. mindspore/ops/_op_impl/tbe/bn_training_update_ds.py +0 -1
  330. mindspore/ops/_op_impl/tbe/broadcast_to_ds.py +6 -4
  331. mindspore/ops/_op_impl/tbe/cast.py +0 -2
  332. mindspore/ops/_op_impl/tbe/cast_ds.py +3 -3
  333. mindspore/ops/_op_impl/tbe/data_format_dim_map_ds.py +1 -0
  334. mindspore/ops/_op_impl/tbe/depthwise_conv2d.py +2 -2
  335. mindspore/ops/_op_impl/tbe/dynamic_atomic_addr_clean.py +1 -1
  336. mindspore/ops/_op_impl/tbe/gather_nd.py +1 -0
  337. mindspore/ops/_op_impl/tbe/{index_add.py → inplace_index_add.py} +3 -6
  338. mindspore/ops/_op_impl/tbe/matmul_ds.py +2 -0
  339. mindspore/ops/_op_impl/tbe/npu_clear_float_status_v2.py +35 -0
  340. mindspore/ops/_op_impl/tbe/npu_get_float_status_v2.py +35 -0
  341. mindspore/ops/_op_impl/tbe/scatter_mul.py +2 -0
  342. mindspore/ops/_op_impl/tbe/scatter_nd_add.py +0 -2
  343. mindspore/ops/_op_impl/tbe/space_to_batch.py +1 -1
  344. mindspore/ops/_op_impl/tbe/space_to_batch_nd.py +1 -1
  345. mindspore/ops/_op_impl/tbe/trans_data_ds.py +15 -5
  346. mindspore/ops/_register_for_op.py +1 -0
  347. mindspore/ops/_utils/__init__.py +1 -2
  348. mindspore/ops/_utils/utils.py +19 -40
  349. mindspore/ops/_vmap/vmap_array_ops.py +116 -38
  350. mindspore/ops/_vmap/vmap_base.py +16 -9
  351. mindspore/ops/_vmap/vmap_convolution_ops.py +7 -10
  352. mindspore/ops/_vmap/vmap_grad_math_ops.py +4 -4
  353. mindspore/ops/_vmap/vmap_grad_nn_ops.py +7 -5
  354. mindspore/ops/_vmap/vmap_image_ops.py +12 -5
  355. mindspore/ops/_vmap/vmap_math_ops.py +46 -5
  356. mindspore/ops/_vmap/vmap_nn_ops.py +15 -21
  357. mindspore/ops/_vmap/vmap_random_ops.py +1 -1
  358. mindspore/ops/bprop_mindir/AdaptiveAvgPool2D_bprop.mindir +0 -0
  359. mindspore/ops/bprop_mindir/AdaptiveMaxPool2D_bprop.mindir +0 -0
  360. mindspore/ops/bprop_mindir/AvgPool3D_bprop.mindir +150 -0
  361. mindspore/ops/bprop_mindir/AvgPool_bprop.mindir +66 -0
  362. mindspore/ops/bprop_mindir/BCEWithLogitsLoss_bprop.mindir +0 -0
  363. mindspore/ops/bprop_mindir/BatchNormGrad_bprop.mindir +0 -0
  364. mindspore/ops/bprop_mindir/BiasAddGrad_bprop.mindir +0 -0
  365. mindspore/ops/bprop_mindir/BinaryCrossEntropy_bprop.mindir +33 -0
  366. mindspore/ops/bprop_mindir/BroadcastTo_bprop.mindir +220 -106
  367. mindspore/ops/bprop_mindir/CTCLoss_bprop.mindir +0 -0
  368. mindspore/ops/bprop_mindir/Conv2DBackpropFilter_bprop.mindir +240 -0
  369. mindspore/ops/bprop_mindir/Conv2DBackpropInput_bprop.mindir +247 -0
  370. mindspore/ops/bprop_mindir/Conv2DTranspose_bprop.mindir +247 -0
  371. mindspore/ops/bprop_mindir/Conv3DTranspose_bprop.mindir +315 -0
  372. mindspore/ops/bprop_mindir/Conv3D_bprop.mindir +278 -0
  373. mindspore/ops/bprop_mindir/DeformableOffsets_bprop.mindir +58 -0
  374. mindspore/ops/bprop_mindir/DepthwiseConv2dNative_bprop.mindir +138 -0
  375. mindspore/ops/bprop_mindir/Dropout2D_bprop.mindir +0 -0
  376. mindspore/ops/bprop_mindir/Dropout3D_bprop.mindir +0 -0
  377. mindspore/ops/bprop_mindir/DropoutDoMask_bprop.mindir +22 -23
  378. mindspore/ops/bprop_mindir/DropoutGenMask_bprop.mindir +16 -17
  379. mindspore/ops/bprop_mindir/DropoutGrad_bprop.mindir +27 -0
  380. mindspore/ops/bprop_mindir/Dropout_bprop.mindir +0 -0
  381. mindspore/ops/bprop_mindir/DynamicGRUV2_bprop.mindir +0 -0
  382. mindspore/ops/bprop_mindir/DynamicRNN_bprop.mindir +0 -0
  383. mindspore/ops/bprop_mindir/Elu_bprop.mindir +16 -0
  384. mindspore/ops/bprop_mindir/EmbeddingLookup_bprop.mindir +0 -0
  385. mindspore/ops/bprop_mindir/ExpandDims_bprop.mindir +39 -41
  386. mindspore/ops/bprop_mindir/FastGeLU_bprop.mindir +16 -0
  387. mindspore/ops/bprop_mindir/Flatten_bprop.mindir +41 -43
  388. mindspore/ops/bprop_mindir/GatherNd_bprop.mindir +51 -57
  389. mindspore/ops/bprop_mindir/Gather_bprop.mindir +0 -0
  390. mindspore/ops/bprop_mindir/HSigmoid_bprop.mindir +16 -0
  391. mindspore/ops/bprop_mindir/HSwish_bprop.mindir +16 -0
  392. mindspore/ops/bprop_mindir/InstanceNorm_bprop.mindir +0 -0
  393. mindspore/ops/bprop_mindir/KLDivLoss_bprop.mindir +126 -0
  394. mindspore/ops/bprop_mindir/L2Loss_bprop.mindir +15 -0
  395. mindspore/ops/bprop_mindir/L2Normalize_bprop.mindir +30 -0
  396. mindspore/ops/bprop_mindir/LRN_bprop.mindir +43 -0
  397. mindspore/ops/bprop_mindir/LayerNormGrad_bprop.mindir +0 -0
  398. mindspore/ops/bprop_mindir/LogSoftmax_bprop.mindir +23 -0
  399. mindspore/ops/bprop_mindir/MaxPool3DGradGrad_bprop.mindir +74 -0
  400. mindspore/ops/bprop_mindir/MaxPool3DGrad_bprop.mindir +74 -0
  401. mindspore/ops/bprop_mindir/MaxPool3D_bprop.mindir +75 -0
  402. mindspore/ops/bprop_mindir/MaxPoolGradGrad_bprop.mindir +65 -0
  403. mindspore/ops/bprop_mindir/MaxPoolWithArgmax_bprop.mindir +0 -0
  404. mindspore/ops/bprop_mindir/MirrorPad_bprop.mindir +27 -0
  405. mindspore/ops/bprop_mindir/Mish_bprop.mindir +35 -0
  406. mindspore/ops/bprop_mindir/MulNoNan_bprop.mindir +0 -0
  407. mindspore/ops/bprop_mindir/NLLLoss_bprop.mindir +0 -0
  408. mindspore/ops/bprop_mindir/OneHot_bprop.mindir +24 -25
  409. mindspore/ops/bprop_mindir/PReLU_bprop.mindir +0 -0
  410. mindspore/ops/bprop_mindir/Pad_bprop.mindir +0 -0
  411. mindspore/ops/bprop_mindir/Padding_bprop.mindir +0 -0
  412. mindspore/ops/bprop_mindir/RNNTLoss_bprop.mindir +29 -0
  413. mindspore/ops/bprop_mindir/ROIAlign_bprop.mindir +82 -0
  414. mindspore/ops/bprop_mindir/ReLU6_bprop.mindir +16 -0
  415. mindspore/ops/bprop_mindir/ReLUV2_bprop.mindir +0 -0
  416. mindspore/ops/bprop_mindir/ReluGrad_bprop.mindir +18 -19
  417. mindspore/ops/bprop_mindir/Reshape_bprop.mindir +53 -53
  418. mindspore/ops/bprop_mindir/ResizeBilinear_bprop.mindir +29 -0
  419. mindspore/ops/bprop_mindir/ResizeNearestNeighbor_bprop.mindir +77 -85
  420. mindspore/ops/bprop_mindir/SeLU_bprop.mindir +21 -0
  421. mindspore/ops/bprop_mindir/SigmoidCrossEntropyWithLogits_bprop.mindir +21 -0
  422. mindspore/ops/bprop_mindir/SigmoidGrad_bprop.mindir +0 -0
  423. mindspore/ops/bprop_mindir/Sigmoid_bprop.mindir +16 -0
  424. mindspore/ops/bprop_mindir/SmoothL1Loss_bprop.mindir +36 -0
  425. mindspore/ops/bprop_mindir/SoftmaxCrossEntropyWithLogits_bprop.mindir +0 -0
  426. mindspore/ops/bprop_mindir/Softplus_bprop.mindir +16 -0
  427. mindspore/ops/bprop_mindir/Softsign_bprop.mindir +33 -0
  428. mindspore/ops/bprop_mindir/SparseSoftmaxCrossEntropyWithLogits_bprop.mindir +0 -0
  429. mindspore/ops/bprop_mindir/Squeeze_bprop.mindir +37 -39
  430. mindspore/ops/bprop_mindir/StridedSlice_bprop.mindir +70 -72
  431. mindspore/ops/bprop_mindir/TanhGrad_bprop.mindir +0 -0
  432. mindspore/ops/bprop_mindir/Tanh_bprop.mindir +66 -0
  433. mindspore/ops/bprop_mindir/Tile_bprop.mindir +0 -0
  434. mindspore/ops/bprop_mindir/TopK_bprop.mindir +0 -0
  435. mindspore/ops/bprop_mindir/TupleGetItem_bprop.mindir +17 -17
  436. mindspore/ops/bprop_mindir/UpsampleNearest3D_bprop.mindir +32 -0
  437. mindspore/ops/bprop_mindir/UpsampleTrilinear3D_bprop.mindir +38 -0
  438. mindspore/ops/bprop_mindir/generate_mindir.py +2 -0
  439. mindspore/ops/composite/__init__.py +7 -8
  440. mindspore/ops/composite/base.py +101 -47
  441. mindspore/ops/composite/math_ops.py +188 -158
  442. mindspore/ops/composite/multitype_ops/_compile_utils.py +415 -170
  443. mindspore/ops/composite/multitype_ops/_constexpr_utils.py +142 -87
  444. mindspore/ops/composite/multitype_ops/add_impl.py +6 -1
  445. mindspore/ops/composite/multitype_ops/div_impl.py +2 -3
  446. mindspore/ops/composite/multitype_ops/getitem_impl.py +31 -3
  447. mindspore/ops/composite/multitype_ops/greater_equal_impl.py +31 -0
  448. mindspore/ops/composite/multitype_ops/greater_impl.py +31 -0
  449. mindspore/ops/composite/multitype_ops/in_impl.py +9 -0
  450. mindspore/ops/composite/multitype_ops/less_equal_impl.py +31 -0
  451. mindspore/ops/composite/multitype_ops/less_impl.py +31 -0
  452. mindspore/ops/composite/multitype_ops/mul_impl.py +21 -5
  453. mindspore/ops/composite/multitype_ops/not_in_impl.py +9 -0
  454. mindspore/ops/composite/multitype_ops/ones_like_impl.py +2 -4
  455. mindspore/ops/composite/multitype_ops/setitem_impl.py +21 -3
  456. mindspore/ops/composite/multitype_ops/sub_impl.py +1 -1
  457. mindspore/ops/composite/multitype_ops/zeros_like_impl.py +35 -4
  458. mindspore/ops/function/__init__.py +152 -8
  459. mindspore/ops/function/array_func.py +2555 -674
  460. mindspore/ops/function/clip_func.py +209 -13
  461. mindspore/ops/function/debug_func.py +2 -2
  462. mindspore/ops/function/grad/__init__.py +2 -1
  463. mindspore/ops/function/grad/grad_func.py +147 -62
  464. mindspore/ops/function/image_func.py +54 -38
  465. mindspore/ops/function/linalg_func.py +167 -16
  466. mindspore/ops/function/math_func.py +4849 -1492
  467. mindspore/ops/function/nn_func.py +2573 -988
  468. mindspore/ops/function/other_func.py +115 -0
  469. mindspore/ops/function/parameter_func.py +3 -3
  470. mindspore/ops/function/random_func.py +790 -73
  471. mindspore/ops/function/sparse_func.py +98 -78
  472. mindspore/ops/function/sparse_unary_func.py +54 -53
  473. mindspore/ops/function/spectral_func.py +27 -24
  474. mindspore/ops/function/vmap_func.py +22 -2
  475. mindspore/ops/functional.py +97 -37
  476. mindspore/ops/op_info_register.py +70 -28
  477. mindspore/ops/operations/__init__.py +47 -14
  478. mindspore/ops/operations/_csr_ops.py +7 -7
  479. mindspore/ops/operations/_embedding_cache_ops.py +5 -5
  480. mindspore/ops/operations/_grad_ops.py +276 -187
  481. mindspore/ops/operations/_inner_ops.py +319 -113
  482. mindspore/ops/operations/_ms_kernel.py +10 -8
  483. mindspore/ops/operations/_ocr_ops.py +9 -9
  484. mindspore/ops/operations/_opaque_predicate_registry.py +4 -0
  485. mindspore/ops/operations/_quant_ops.py +137 -102
  486. mindspore/ops/operations/_rl_inner_ops.py +121 -60
  487. mindspore/ops/operations/_scalar_ops.py +466 -0
  488. mindspore/ops/operations/_sequence_ops.py +1004 -2
  489. mindspore/ops/operations/_tensor_array.py +10 -11
  490. mindspore/ops/operations/_thor_ops.py +1 -1
  491. mindspore/ops/operations/array_ops.py +801 -466
  492. mindspore/ops/operations/comm_ops.py +51 -49
  493. mindspore/ops/operations/control_ops.py +2 -2
  494. mindspore/ops/operations/custom_ops.py +123 -44
  495. mindspore/ops/operations/debug_ops.py +24 -24
  496. mindspore/ops/operations/image_ops.py +240 -153
  497. mindspore/ops/operations/inner_ops.py +34 -50
  498. mindspore/ops/operations/linalg_ops.py +31 -9
  499. mindspore/ops/operations/math_ops.py +988 -757
  500. mindspore/ops/operations/nn_ops.py +965 -819
  501. mindspore/ops/operations/other_ops.py +51 -40
  502. mindspore/ops/operations/random_ops.py +204 -122
  503. mindspore/ops/operations/rl_ops.py +8 -9
  504. mindspore/ops/operations/sparse_ops.py +254 -93
  505. mindspore/ops/operations/spectral_ops.py +35 -3
  506. mindspore/ops/primitive.py +111 -9
  507. mindspore/parallel/_auto_parallel_context.py +189 -83
  508. mindspore/parallel/_offload_context.py +185 -0
  509. mindspore/parallel/_parallel_serialization.py +99 -7
  510. mindspore/parallel/_ps_context.py +9 -5
  511. mindspore/parallel/_recovery_context.py +1 -1
  512. mindspore/parallel/_tensor.py +7 -1
  513. mindspore/{nn/transformer → parallel/_transformer}/__init__.py +6 -6
  514. mindspore/{nn/transformer → parallel/_transformer}/layers.py +6 -37
  515. mindspore/{nn/transformer → parallel/_transformer}/loss.py +4 -7
  516. mindspore/{nn/transformer → parallel/_transformer}/moe.py +20 -16
  517. mindspore/{nn/transformer → parallel/_transformer}/op_parallel_config.py +3 -3
  518. mindspore/{nn/transformer → parallel/_transformer}/transformer.py +48 -111
  519. mindspore/parallel/_utils.py +1 -2
  520. mindspore/parallel/algo_parameter_config.py +1 -1
  521. mindspore/parallel/checkpoint_transform.py +37 -34
  522. mindspore/parallel/shard.py +17 -18
  523. mindspore/profiler/common/validator/validate_path.py +2 -2
  524. mindspore/profiler/envprofiling.py +69 -47
  525. mindspore/profiler/parser/ascend_timeline_generator.py +49 -42
  526. mindspore/profiler/parser/base_timeline_generator.py +49 -56
  527. mindspore/profiler/parser/cpu_gpu_timeline_generator.py +98 -78
  528. mindspore/profiler/parser/hwts_log_parser.py +1 -1
  529. mindspore/profiler/parser/integrator.py +15 -14
  530. mindspore/profiler/parser/minddata_analyzer.py +2 -2
  531. mindspore/profiler/parser/msadvisor_analyzer.py +12 -25
  532. mindspore/profiler/parser/msadvisor_parser.py +2 -4
  533. mindspore/profiler/parser/optime_parser.py +17 -18
  534. mindspore/profiler/parser/profiler_info.py +2 -1
  535. mindspore/profiler/profiling.py +218 -186
  536. mindspore/rewrite/__init__.py +3 -1
  537. mindspore/rewrite/api/node.py +1 -114
  538. mindspore/rewrite/api/node_type.py +3 -0
  539. mindspore/rewrite/api/pattern_engine.py +31 -1
  540. mindspore/rewrite/api/scoped_value.py +4 -4
  541. mindspore/rewrite/api/symbol_tree.py +3 -78
  542. mindspore/rewrite/api/tree_node_helper.py +1 -1
  543. mindspore/rewrite/ast_creator_register.py +1 -0
  544. mindspore/rewrite/ast_helpers/__init__.py +2 -2
  545. mindspore/rewrite/ast_helpers/ast_creator.py +1 -2
  546. mindspore/rewrite/ast_helpers/ast_finder.py +65 -0
  547. mindspore/rewrite/ast_helpers/ast_modifier.py +11 -3
  548. mindspore/rewrite/ast_transformers/flatten_recursive_stmt.py +18 -2
  549. mindspore/rewrite/namespace.py +0 -2
  550. mindspore/rewrite/node.py +157 -11
  551. mindspore/rewrite/parsers/assign_parser.py +231 -53
  552. mindspore/rewrite/parsers/class_def_parser.py +187 -109
  553. mindspore/rewrite/parsers/for_parser.py +24 -14
  554. mindspore/rewrite/parsers/function_def_parser.py +21 -4
  555. mindspore/rewrite/parsers/if_parser.py +6 -2
  556. mindspore/rewrite/sparsify/__init__.py +0 -0
  557. mindspore/rewrite/sparsify/sparse_transformer.py +448 -0
  558. mindspore/rewrite/sparsify/sparsify.py +109 -0
  559. mindspore/rewrite/sparsify/utils.py +173 -0
  560. mindspore/rewrite/symbol_tree.py +256 -133
  561. mindspore/rewrite/symbol_tree_builder.py +38 -1
  562. mindspore/run_check/_check_version.py +69 -63
  563. mindspore/run_check/run_check.py +2 -1
  564. mindspore/tinyxml2.dll +0 -0
  565. mindspore/train/__init__.py +1 -1
  566. mindspore/train/_utils.py +28 -5
  567. mindspore/train/amp.py +273 -102
  568. mindspore/train/callback/_backup_and_restore.py +5 -5
  569. mindspore/train/callback/_callback.py +2 -2
  570. mindspore/train/callback/_checkpoint.py +3 -3
  571. mindspore/train/callback/_early_stop.py +3 -3
  572. mindspore/train/callback/_lambda_callback.py +2 -2
  573. mindspore/train/callback/_landscape.py +29 -31
  574. mindspore/train/callback/_loss_monitor.py +3 -3
  575. mindspore/train/callback/_on_request_exit.py +3 -3
  576. mindspore/train/callback/_reduce_lr_on_plateau.py +4 -4
  577. mindspore/train/callback/_summary_collector.py +23 -16
  578. mindspore/train/callback/_time_monitor.py +3 -3
  579. mindspore/train/checkpoint_pb2.py +68 -8
  580. mindspore/train/data_sink.py +15 -3
  581. mindspore/train/dataset_helper.py +10 -15
  582. mindspore/train/loss_scale_manager.py +8 -11
  583. mindspore/train/metrics/__init__.py +1 -1
  584. mindspore/train/metrics/bleu_score.py +1 -1
  585. mindspore/train/metrics/confusion_matrix.py +1 -1
  586. mindspore/train/metrics/cosine_similarity.py +1 -1
  587. mindspore/train/metrics/dice.py +2 -2
  588. mindspore/train/metrics/fbeta.py +1 -1
  589. mindspore/train/metrics/hausdorff_distance.py +4 -3
  590. mindspore/train/metrics/mean_surface_distance.py +2 -2
  591. mindspore/train/metrics/occlusion_sensitivity.py +1 -1
  592. mindspore/train/metrics/perplexity.py +1 -1
  593. mindspore/train/metrics/precision.py +1 -1
  594. mindspore/train/metrics/recall.py +1 -1
  595. mindspore/train/metrics/roc.py +2 -2
  596. mindspore/train/metrics/root_mean_square_surface_distance.py +2 -2
  597. mindspore/train/mind_ir_pb2.py +116 -37
  598. mindspore/train/model.py +45 -28
  599. mindspore/train/serialization.py +295 -188
  600. mindspore/train/summary/_summary_adapter.py +1 -1
  601. mindspore/train/summary/summary_record.py +43 -13
  602. mindspore/train/train_thor/convert_utils.py +2 -2
  603. mindspore/train/train_thor/dataset_helper.py +3 -3
  604. mindspore/turbojpeg.dll +0 -0
  605. mindspore/version.py +1 -1
  606. {mindspore-2.0.0a0.dist-info → mindspore-2.0.0rc1.dist-info}/METADATA +3 -2
  607. {mindspore-2.0.0a0.dist-info → mindspore-2.0.0rc1.dist-info}/RECORD +610 -541
  608. mindspore/compression/__init__.py +0 -19
  609. mindspore/compression/common/constant.py +0 -124
  610. mindspore/compression/export/__init__.py +0 -19
  611. mindspore/compression/export/quant_export.py +0 -515
  612. mindspore/compression/quant/__init__.py +0 -28
  613. mindspore/compression/quant/qat.py +0 -634
  614. mindspore/compression/quant/quant_utils.py +0 -462
  615. mindspore/compression/quant/quantizer.py +0 -68
  616. mindspore/nn/layer/quant.py +0 -1868
  617. mindspore/nn/layer/rnn_utils.py +0 -90
  618. mindspore/nn/probability/dpn/__init__.py +0 -22
  619. mindspore/nn/probability/dpn/vae/__init__.py +0 -25
  620. mindspore/nn/probability/dpn/vae/cvae.py +0 -140
  621. mindspore/nn/probability/dpn/vae/vae.py +0 -124
  622. mindspore/nn/probability/infer/__init__.py +0 -22
  623. mindspore/nn/probability/infer/variational/elbo.py +0 -70
  624. mindspore/nn/probability/infer/variational/svi.py +0 -84
  625. mindspore/nn/probability/toolbox/__init__.py +0 -22
  626. mindspore/nn/probability/toolbox/anomaly_detection.py +0 -99
  627. mindspore/nn/probability/toolbox/uncertainty_evaluation.py +0 -364
  628. mindspore/nn/probability/transforms/__init__.py +0 -22
  629. mindspore/nn/probability/transforms/transform_bnn.py +0 -262
  630. mindspore/nn/probability/zhusuan/__init__.py +0 -18
  631. mindspore/nn/probability/zhusuan/framework/__init__.py +0 -18
  632. mindspore/nn/probability/zhusuan/framework/bn.py +0 -95
  633. mindspore/nn/probability/zhusuan/variational/__init__.py +0 -18
  634. mindspore/nn/probability/zhusuan/variational/elbo.py +0 -46
  635. mindspore/ops/_op_impl/aicpu/parallel_concat.py +0 -42
  636. mindspore/ops/_op_impl/tbe/gather_v2.py +0 -56
  637. mindspore/ops/bprop_mindir/AssignAdd_bprop.mindir +0 -19
  638. mindspore/ops/bprop_mindir/Cast_bprop.mindir +0 -19
  639. mindspore/ops/bprop_mindir/LogicalOr_bprop.mindir +0 -19
  640. mindspore/ops/bprop_mindir/MatMul_bprop.mindir +0 -0
  641. mindspore/ops/bprop_mindir/ReLU_bprop.mindir +0 -17
  642. mindspore/ops/bprop_mindir/Transpose_bprop.mindir +0 -0
  643. mindspore/ops/bprop_mindir/UpdateState_bprop.mindir +0 -15
  644. mindspore/ops/composite/array_ops.py +0 -241
  645. mindspore/ops/composite/clip_ops.py +0 -134
  646. mindspore/ops/composite/random_ops.py +0 -426
  647. mindspore/ops/composite/vmap_ops.py +0 -38
  648. mindspore/parallel/nn/__init__.py +0 -42
  649. mindspore/parallel/nn/loss.py +0 -22
  650. mindspore/parallel/nn/moe.py +0 -21
  651. mindspore/parallel/nn/op_parallel_config.py +0 -22
  652. mindspore/parallel/nn/transformer.py +0 -31
  653. {mindspore-2.0.0a0.dist-info → mindspore-2.0.0rc1.dist-info}/WHEEL +0 -0
  654. {mindspore-2.0.0a0.dist-info → mindspore-2.0.0rc1.dist-info}/entry_points.txt +0 -0
  655. {mindspore-2.0.0a0.dist-info → mindspore-2.0.0rc1.dist-info}/top_level.txt +0 -0
@@ -1,28 +0,0 @@
1
- # Copyright 2020 Huawei Technologies Co., Ltd
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ============================================================================
15
- """
16
- Quantization module, including base class of the quantizer, the quantization aware training algorithm,
17
- and quantization utils.
18
-
19
- Note: This is an experimental interface that is subject to change and/or deletion.
20
- """
21
-
22
- from __future__ import absolute_import
23
- from .quantizer import OptimizeOption
24
- from .qat import QuantizationAwareTraining, create_quant_config
25
- from .quant_utils import load_nonquant_param_into_quant_net, query_quant_layers
26
-
27
- __all__ = ["load_nonquant_param_into_quant_net", "query_quant_layers", "QuantizationAwareTraining",
28
- "create_quant_config", "OptimizeOption"]
@@ -1,634 +0,0 @@
1
- # Copyright 2020-2022 Huawei Technologies Co., Ltd
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ============================================================================
15
- """
16
- Quantization aware training
17
-
18
- User can use quantization aware to train a model. MindSpore supports quantization aware training,
19
- which models quantization errors in both the forward and backward passes using fake-quantization
20
- operations. Note that the entire computation is carried out in floating point. At the end of quantization
21
- aware training, MindSpore provides conversion functions to convert the trained model into lower precision.
22
-
23
- Note: This is an experimental interface that is subject to change and/or deletion.
24
- """
25
-
26
- from __future__ import absolute_import
27
- import re
28
- import numpy as np
29
- import mindspore.context as context
30
- from mindspore import log as logger
31
- from mindspore import nn, ops
32
- from mindspore._checkparam import Validator, Rel
33
- from mindspore.nn.layer import quant
34
- from mindspore.ops import functional as F
35
- from ..common import QuantDtype
36
- from .quantizer import Quantizer, OptimizeOption
37
- from .quant_utils import compute_kl_threshold
38
-
39
- __all__ = ["QuantizationAwareTraining", "create_quant_config"]
40
-
41
-
42
- def create_quant_config(quant_observer=(nn.FakeQuantWithMinMaxObserver, nn.FakeQuantWithMinMaxObserver),
43
- quant_delay=(0, 0),
44
- quant_dtype=(QuantDtype.INT8, QuantDtype.INT8),
45
- per_channel=(False, False),
46
- symmetric=(False, False),
47
- narrow_range=(False, False),
48
- mode="DEFAULT"):
49
- r"""
50
- Config the observer type of weights and data flow with quant parameters.
51
-
52
- Args:
53
- quant_observer (Union[Observer, list, tuple]): The types of observer for quantization. The first element
54
- applies to weights and the second applies to data flow. Currently, only
55
- :class:`FakeQuantWithMinMaxObserver` supported.
56
- Default: (nn.FakeQuantWithMinMaxObserver, nn.FakeQuantWithMinMaxObserver).
57
- quant_delay (Union[int, list, tuple]): Number of steps after which weights and activations are quantized
58
- during train and eval. The first element represents weights and the second element represents data flow.
59
- Default: (0, 0).
60
- quant_dtype (Union[QuantDtype, list, tuple]): Datatype used to quantize weights and activations. The first
61
- element represents weights and the second element represents data flow.
62
- Default: (QuantDtype.INT8, QuantDtype.INT8).
63
- per_channel (Union[bool, list, tuple]): Quantization granularity based on layer or on channel. If `True`
64
- then base on per channel, otherwise base on per layer. The first element represents weights
65
- and the second element represents data flow, and the second element must be `False` now.
66
- Default: (False, False).
67
- symmetric (Union[bool, list, tuple]): Whether the quantization algorithm is symmetric or not. If `True` then
68
- base on symmetric, otherwise base on asymmetric. The first element represents weights and the second
69
- element represents data flow. Default: (False, False).
70
- narrow_range (Union[bool, list, tuple]): Whether the quantization algorithm uses narrow range or not.
71
- The first element represents weights and the second element represents data flow.
72
- Default: (False, False).
73
- mode (str): Optional quantization mode, currently only `DEFAULT`(QAT) and `LEARNED_SCALE` are supported.
74
- Default: "DEFAULT".
75
-
76
- Returns:
77
- QuantConfig, contains the observer type of weight and activation.
78
-
79
- Raises:
80
- ValueError: If the second element of `per_channel` is not `False`.
81
- """
82
- if per_channel[-1]:
83
- raise ValueError("Arg 'per_channel' second element must be 'False'.")
84
- weight_observer = quant_observer[0].partial_init(quant_delay=quant_delay[0], quant_dtype=quant_dtype[0],
85
- per_channel=per_channel[0], symmetric=symmetric[0],
86
- narrow_range=narrow_range[0], mode=mode)
87
- act_observer = quant_observer[-1].partial_init(quant_delay=quant_delay[-1], quant_dtype=quant_dtype[-1],
88
- per_channel=per_channel[-1], symmetric=symmetric[-1],
89
- narrow_range=narrow_range[-1], mode=mode)
90
- return quant.QuantConfig(weight=weight_observer, activation=act_observer)
91
-
92
-
93
- class _AddFakeQuantInput(nn.Cell):
94
- """
95
- Add FakeQuant OP at input of the network. Only support one input case.
96
- """
97
-
98
- def __init__(self, network, quant_delay=0):
99
- super(_AddFakeQuantInput, self).__init__(auto_prefix=False)
100
- self.fake_quant_input = quant.FakeQuantWithMinMaxObserver(min_init=-6, max_init=6,
101
- quant_delay=quant_delay, ema=True)
102
- self.fake_quant_input.update_parameters_name('fake_quant_input.')
103
- self.network = network
104
-
105
- def construct(self, data):
106
- data = self.fake_quant_input(data)
107
- output = self.network(data)
108
- return output
109
-
110
-
111
- class _AddFakeQuantAfterSubCell(nn.Cell):
112
- """
113
- Add FakeQuant OP after of the sub Cell.
114
- """
115
-
116
- def __init__(self, subcell, **kwargs):
117
- super(_AddFakeQuantAfterSubCell, self).__init__(auto_prefix=False)
118
- self.subcell = subcell
119
- self.mode = "DEFAULT"
120
- self.max_init = 6
121
- self.min_init = -6
122
-
123
- if kwargs.get("optimize_option") is not None and OptimizeOption.LEARNED_SCALE in kwargs["optimize_option"]:
124
- self.mode = "LEARNED_SCALE"
125
- self.max_init = 16
126
- self.min_init = -16
127
-
128
- self.fake_quant_act = quant.FakeQuantWithMinMaxObserver(min_init=self.min_init,
129
- max_init=self.max_init,
130
- ema=True,
131
- quant_dtype=kwargs.get("quant_dtype"),
132
- quant_delay=kwargs.get("quant_delay"),
133
- per_channel=kwargs.get("per_channel"),
134
- symmetric=kwargs.get("symmetric"),
135
- narrow_range=kwargs.get("narrow_range"),
136
- mode=self.mode)
137
-
138
- def construct(self, *data):
139
- output = self.subcell(*data)
140
- output = self.fake_quant_act(output)
141
- return output
142
-
143
-
144
- class QuantizationAwareTraining(Quantizer):
145
- r"""
146
- Quantizer for quantization aware training.
147
-
148
- Args:
149
- bn_fold (bool): Whether to use bn fold ops for simulation inference operation. Default: True.
150
- freeze_bn (int): Number of steps after which BatchNorm OP parameters fixed to global mean and variance.
151
- Default: 1e7.
152
- quant_delay (Union[int, list, tuple]): Number of steps after which weights and activations are quantized
153
- during train and eval. The first element represents weights and the second element represents data flow.
154
- Default: (0, 0).
155
- quant_dtype (Union[QuantDtype, list, tuple]): Datatype used to quantize weights and activations. The first
156
- element represents weights and the second element represents data flow. It is necessary to consider the
157
- precision support of hardware devices in the practical quantization infer scenario.
158
- Default: (QuantDtype.INT8, QuantDtype.INT8).
159
- per_channel (Union[bool, list, tuple]): Quantization granularity based on layer or on channel. If `True`
160
- then base on per channel, otherwise base on per layer. The first element represents weights and the
161
- second element represents data flow, and the second element must be `False` now. Default: (False, False).
162
- symmetric (Union[bool, list, tuple]): Whether the quantization algorithm is symmetric or not. If `True` then
163
- base on symmetric, otherwise base on asymmetric. The first element represents weights and the second
164
- element represents data flow. Default: (False, False).
165
- narrow_range (Union[bool, list, tuple]): Whether the quantization algorithm uses narrow range or not.
166
- The first element represents weights and the second element represents data flow.
167
- Default: (False, False).
168
- optimize_option (Union[OptimizeOption, list, tuple]): Specifies the quant algorithm and options, currently
169
- only support `QAT` and `LEARNED_SCALE` (Note that, if both `QAT` and `LEARNED_SCALE` are configured,
170
- `LEARNED_SCALE` has a higher priority. `LEARNED_SCALE` currently only work under some constraints, which
171
- includes: freeze_bn=0, quant_delay=0, symmetric=True, narrow_range=True, More specifically, for operators
172
- such as Relu and Relu6, which only have positive values, we add a negative truncation to optimize this
173
- scenario, and narrow_range will automatically match to False). Default: OptimizeOption.QAT.
174
- one_conv_fold (bool): Whether to use one conv bn fold ops for simulation inference operation. Default: True.
175
-
176
- Supported Platforms:
177
- ``Ascend`` ``GPU``
178
-
179
- Raises:
180
- TypeError: If the element of `quant_delay` or `freeze_bn` is not int.
181
- TypeError: If `bn_fold`, `one_conv_fold` or the element of `per_channel`, `symmetric`, `narrow_range`
182
- is not bool.
183
- TypeError: If the element of `quant_dtype` is not `QuantDtype`.
184
- ValueError: If the length of `quant_delay`, `quant_dtype`, `per_channel`, `symmetric` or `narrow_range` is
185
- not less than 2.
186
- ValueError: If the `optimize_option` is `LEARNED_SCALE` and `freeze_bn` is not equal to 0.
187
- ValueError: If the `optimize_option` is `LEARNED_SCALE` and `symmetric` is not (True, True).
188
- ValueError: If the `optimize_option` is `LEARNED_SCALE` and `narrow_range` is not (True, True).
189
- ValueError: If the `optimize_option` is `LEARNED_SCALE` and `quant_delay` is not (0, 0).
190
-
191
- Examples:
192
- >>> from mindspore.compression.quant import QuantizationAwareTraining
193
- >>> from mindspore import nn
194
- >>> class LeNet5(nn.Cell):
195
- ... def __init__(self, num_class=10, channel=1):
196
- ... super(LeNet5, self).__init__()
197
- ... self.type = "fusion"
198
- ... self.num_class = num_class
199
- ...
200
- ... # change `nn.Conv2d` to `nn.Conv2dBnAct`
201
- ... self.conv1 = nn.Conv2dBnAct(channel, 6, 5, pad_mode='valid', activation='relu')
202
- ... self.conv2 = nn.Conv2dBnAct(6, 16, 5, pad_mode='valid', activation='relu')
203
- ... # change `nn.Dense` to `nn.DenseBnAct`
204
- ... self.fc1 = nn.DenseBnAct(16 * 5 * 5, 120, activation='relu')
205
- ... self.fc2 = nn.DenseBnAct(120, 84, activation='relu')
206
- ... self.fc3 = nn.DenseBnAct(84, self.num_class)
207
- ...
208
- ... self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
209
- ... self.flatten = nn.Flatten()
210
- ...
211
- ... def construct(self, x):
212
- ... x = self.conv1(x)
213
- ... x = self.max_pool2d(x)
214
- ... x = self.conv2(x)
215
- ... x = self.max_pool2d(x)
216
- ... x = self.flatten(x)
217
- ... x = self.fc1(x)
218
- ... x = self.fc2(x)
219
- ... x = self.fc3(x)
220
- ... return x
221
- ...
222
- >>> net = LeNet5()
223
- >>> quantizer = QuantizationAwareTraining(bn_fold=False, per_channel=[True, False], symmetric=[True, False])
224
- >>> net_qat = quantizer.quantize(net)
225
- """
226
- __quant_op_name = ["Add", "Sub", "Mul", "RealDiv", "ReduceMean"]
227
-
228
- def __init__(self,
229
- bn_fold=True,
230
- freeze_bn=10000000,
231
- quant_delay=(0, 0),
232
- quant_dtype=(QuantDtype.INT8, QuantDtype.INT8),
233
- per_channel=(False, False),
234
- symmetric=(False, False),
235
- narrow_range=(False, False),
236
- optimize_option=OptimizeOption.QAT,
237
- one_conv_fold=True):
238
- """Init for QuantizationAwareTraining quantizer"""
239
- super(QuantizationAwareTraining, self).__init__(optimize_option=optimize_option)
240
-
241
- def convert2list(name, value):
242
- if not isinstance(value, list) and not isinstance(value, tuple):
243
- value = [value]
244
- elif len(value) > 2:
245
- raise ValueError("input `{}` len should less then 2".format(name))
246
- return value
247
-
248
- quant_delay_list = convert2list("quant delay", quant_delay)
249
- quant_dtype_list = convert2list("quant dtype", quant_dtype)
250
- per_channel_list = convert2list("per channel", per_channel)
251
- symmetric_list = convert2list("symmetric", symmetric)
252
- narrow_range_list = convert2list("narrow range", narrow_range)
253
-
254
- self.weight_qdelay = Validator.check_non_negative_int(quant_delay_list[0], "quant delay")
255
- self.act_qdelay = Validator.check_int(quant_delay_list[-1], 0, Rel.GE, "quant delay")
256
- self.bn_fold = Validator.check_bool(bn_fold, "bn fold")
257
- self.freeze_bn = Validator.check_non_negative_int(freeze_bn, "freeze bn")
258
- self.weight_dtype = Validator.check_isinstance("weights dtype", quant_dtype_list[0], QuantDtype)
259
- self.act_dtype = Validator.check_isinstance("activations dtype", quant_dtype_list[-1], QuantDtype)
260
- self.weight_channel = Validator.check_bool(per_channel_list[0], "per channel")
261
- self.act_channel = Validator.check_bool(per_channel_list[-1], "per channel")
262
- self.weight_symmetric = Validator.check_bool(symmetric_list[0], "symmetric")
263
- self.act_symmetric = Validator.check_bool(symmetric_list[-1], "symmetric")
264
- self.weight_range = Validator.check_bool(narrow_range_list[0], "narrow range")
265
- self.act_range = Validator.check_bool(narrow_range_list[-1], "narrow range")
266
- self.one_conv_fold = Validator.check_bool(one_conv_fold, "one conv fold")
267
- self._convert_method_map = {nn.Conv2dBnAct: self._convert_conv,
268
- nn.DenseBnAct: self._convert_dense}
269
- self.mode = "DEFAULT"
270
- if OptimizeOption.LEARNED_SCALE in self.optimize_option:
271
- self.mode = "LEARNED_SCALE"
272
- if not self.weight_symmetric or not self.act_symmetric:
273
- raise ValueError("OptimizeOption.LEARNED_SCALE currently only support "
274
- "symmetric=(True, True) for quant")
275
- if not self.weight_range or not self.act_range:
276
- raise ValueError("OptimizeOption.LEARNED_SCALE currently only support narrow_range=(True, True) "
277
- "for quant")
278
- if self.freeze_bn != 0:
279
- raise ValueError("OptimizeOption.LEARNED_SCALE currently only support freeze_bn equal to 0, "
280
- "but get freeze_bn={}".format(self.freeze_bn))
281
- if self.weight_qdelay != 0 or self.act_qdelay != 0:
282
- raise ValueError("OptimizeOption.LEARNED_SCALE currently only support quant_delay=(0, 0)")
283
- self.quant_config = create_quant_config(quant_delay=quant_delay_list,
284
- quant_dtype=quant_dtype_list,
285
- per_channel=per_channel_list,
286
- symmetric=symmetric_list,
287
- narrow_range=narrow_range_list,
288
- mode=self.mode)
289
- self.eps = 1e-5
290
-
291
- @staticmethod
292
- def _convert_op_name(name):
293
- pattern = re.compile(r'([A-Z]{1})')
294
- name_new = re.sub(pattern, r'_\1', name).lower()
295
- if name_new[0] == '_':
296
- name_new = name_new[1:]
297
- return name_new
298
-
299
- def quantize(self, network):
300
- """
301
- Quant API to convert input network to a quantization aware training network.
302
-
303
- Note:
304
- Please refer to the Examples of class: `mindspore.compression.quant.QuantizationAwareTraining`.
305
-
306
- Args:
307
- network (Cell): network to be quantized.
308
-
309
- Returns:
310
- Cell, a quantization aware training network.
311
-
312
- Raises:
313
- KeyError: If the `device_target` set in context is not in `support_device`.
314
- """
315
-
316
- logger.warning("The compression module is deprecated and may not be supported in later version, please use "
317
- "MindSpore Golden Stick(https://gitee.com/mindspore/golden-stick) instead.")
318
- support_device = ["Ascend", "GPU"]
319
- if context.get_context('device_target') not in support_device:
320
- raise KeyError("Unsupported {} device target.".format(context.get_context('device_target')))
321
-
322
- if OptimizeOption.QAT in self.optimize_option or OptimizeOption.LEARNED_SCALE in self.optimize_option:
323
- network.update_cell_prefix()
324
- network = self._convert_subcells2quant(network)
325
- network.update_cell_type("quant")
326
- return network
327
-
328
- def _convert_subcells2quant(self, network):
329
- """
330
- convert sub cell like `Conv2dBnAct` and `DenseBnAct` to quant cell
331
- """
332
- cells = network.name_cells()
333
- change = False
334
- for name in cells:
335
- subcell = cells[name]
336
- if subcell == network:
337
- continue
338
- if isinstance(subcell, (nn.Conv2dBnAct, nn.DenseBnAct)):
339
- prefix = subcell.param_prefix
340
- new_subcell = self._convert_method_map[type(subcell)](subcell)
341
- new_subcell.update_parameters_name(prefix + '.')
342
- network.insert_child_to_cell(name, new_subcell)
343
- change = True
344
- else:
345
- self._convert_subcells2quant(subcell)
346
- if isinstance(network, nn.SequentialCell) and change:
347
- network.cell_list = list(network.cells())
348
-
349
- # add FakeQuant OP after OP in white list, but not including those wrapped in the below quantization cell.
350
- if isinstance(network, (nn.FakeQuantWithMinMaxObserver,
351
- nn.Conv2dBnFoldQuantOneConv,
352
- nn.Conv2dBnFoldQuant,
353
- nn.Conv2dBnWithoutFoldQuant,
354
- nn.Conv2dQuant,
355
- nn.DenseQuant,
356
- nn.ActQuant,
357
- nn.TensorAddQuant,
358
- nn.MulQuant)):
359
- return network
360
-
361
- add_list = []
362
- for name in network.__dict__:
363
- if name[0] == '_':
364
- continue
365
- attr = network.__dict__[name]
366
- if isinstance(attr, ops.Primitive) and attr.name in self.__quant_op_name:
367
- add_list.append((name, attr))
368
- for name, prim_op in add_list:
369
- prefix = name
370
- add_quant = _AddFakeQuantAfterSubCell(prim_op,
371
- quant_dtype=self.act_dtype,
372
- quant_delay=self.act_qdelay,
373
- per_channel=self.act_channel,
374
- symmetric=self.act_symmetric,
375
- narrow_range=self.act_range,
376
- optimize_option=self.optimize_option)
377
- if network.param_prefix:
378
- prefix = '.'.join([network.param_prefix, prefix])
379
- add_quant.update_parameters_name(prefix + '.')
380
- del network.__dict__[name]
381
- network.insert_child_to_cell(name, add_quant)
382
- return network
383
-
384
- def _convert_conv(self, subcell):
385
- """
386
- convert Conv2d cell to quant cell
387
- """
388
- min_init = -6
389
- max_init = 6
390
- if self.eps == 0:
391
- raise ValueError("`epsilon` is zero may lead to divide zero error")
392
- if OptimizeOption.LEARNED_SCALE in self.optimize_option:
393
- subcell_weight_para = subcell.conv.weight.data.asnumpy()
394
- if subcell.has_bn:
395
- scale_factor = (subcell.batchnorm.gamma.data.asnumpy() /
396
- np.sqrt(subcell.batchnorm.moving_variance.data.asnumpy() + self.eps))
397
- subcell_weight_para = subcell_weight_para * scale_factor.reshape(-1, 1, 1, 1)
398
- min_init, max_init = self._kl_init(subcell_weight_para, self.weight_dtype)
399
- self.quant_config = self.quant_config._replace(
400
- weight=self.quant_config.weight.partial_init(min_init=min_init, max_init=max_init))
401
-
402
- conv_inner = subcell.conv
403
- if subcell.has_bn:
404
- bn_inner = subcell.batchnorm
405
- if self.bn_fold:
406
- if self.one_conv_fold:
407
- conv_inner = quant.Conv2dBnFoldQuantOneConv(conv_inner.in_channels,
408
- conv_inner.out_channels,
409
- kernel_size=conv_inner.kernel_size,
410
- stride=conv_inner.stride,
411
- pad_mode=conv_inner.pad_mode,
412
- padding=conv_inner.padding,
413
- dilation=conv_inner.dilation,
414
- group=conv_inner.group,
415
- eps=bn_inner.eps,
416
- momentum=1 - bn_inner.momentum,
417
- has_bias=conv_inner.has_bias,
418
- bias_init=conv_inner.bias_init,
419
- quant_config=self.quant_config,
420
- quant_dtype=self.weight_dtype,
421
- fake=True)
422
- else:
423
- conv_inner = quant.Conv2dBnFoldQuant(conv_inner.in_channels,
424
- conv_inner.out_channels,
425
- kernel_size=conv_inner.kernel_size,
426
- stride=conv_inner.stride,
427
- pad_mode=conv_inner.pad_mode,
428
- padding=conv_inner.padding,
429
- dilation=conv_inner.dilation,
430
- group=conv_inner.group,
431
- eps=bn_inner.eps,
432
- momentum=1 - bn_inner.momentum,
433
- has_bias=conv_inner.has_bias,
434
- bias_init=conv_inner.bias_init,
435
- freeze_bn=self.freeze_bn,
436
- quant_config=self.quant_config,
437
- quant_dtype=self.weight_dtype,
438
- fake=True)
439
- # change original network Batch Normalization OP parameters to quant network
440
- conv_inner.gamma = subcell.batchnorm.gamma
441
- conv_inner.beta = subcell.batchnorm.beta
442
- conv_inner.moving_mean = subcell.batchnorm.moving_mean
443
- conv_inner.moving_variance = subcell.batchnorm.moving_variance
444
- else:
445
- conv_inner = quant.Conv2dBnWithoutFoldQuant(conv_inner.in_channels,
446
- conv_inner.out_channels,
447
- kernel_size=conv_inner.kernel_size,
448
- stride=conv_inner.stride,
449
- pad_mode=conv_inner.pad_mode,
450
- padding=conv_inner.padding,
451
- dilation=conv_inner.dilation,
452
- group=conv_inner.group,
453
- eps=bn_inner.eps,
454
- momentum=1 - bn_inner.momentum,
455
- has_bias=conv_inner.has_bias,
456
- bias_init=conv_inner.bias_init,
457
- quant_config=self.quant_config)
458
- # change original network Batch Normalization OP parameters to quant network
459
- conv_inner.batchnorm.gamma = subcell.batchnorm.gamma
460
- conv_inner.batchnorm.beta = subcell.batchnorm.beta
461
- conv_inner.batchnorm.moving_mean = subcell.batchnorm.moving_mean
462
- conv_inner.batchnorm.moving_variance = subcell.batchnorm.moving_variance
463
- del subcell.batchnorm
464
- subcell.batchnorm = None
465
- subcell.has_bn = False
466
- else:
467
- conv_inner = quant.Conv2dQuant(conv_inner.in_channels, conv_inner.out_channels,
468
- kernel_size=conv_inner.kernel_size, stride=conv_inner.stride,
469
- pad_mode=conv_inner.pad_mode, padding=conv_inner.padding,
470
- dilation=conv_inner.dilation, group=conv_inner.group,
471
- has_bias=conv_inner.has_bias, quant_config=self.quant_config,
472
- quant_dtype=self.weight_dtype)
473
- # change original network Conv2D OP parameters to quant network
474
- conv_inner.weight = subcell.conv.weight
475
- if subcell.conv.has_bias:
476
- conv_inner.bias = subcell.conv.bias
477
- subcell.conv = conv_inner
478
- if subcell.has_act and subcell.activation is not None:
479
- subcell.activation = self._convert_activation(subcell.activation)
480
- elif subcell.after_fake:
481
- subcell.has_act = True
482
- subcell.activation = _AddFakeQuantAfterSubCell(F.identity, quant_dtype=self.act_dtype,
483
- quant_delay=self.act_qdelay, per_channel=self.act_channel,
484
- symmetric=self.act_symmetric, narrow_range=self.act_range,
485
- optimize_option=self.optimize_option)
486
- return subcell
487
-
488
- def _convert_dense(self, subcell):
489
- """
490
- convert dense cell to quant cell
491
- """
492
- min_init = -6
493
- max_init = 6
494
- if self.eps == 0:
495
- raise ValueError("`epsilon` is zero may lead to divide zero error")
496
- if OptimizeOption.LEARNED_SCALE in self.optimize_option:
497
- subcell_weight_para = subcell.dense.weight.data.asnumpy()
498
- if subcell.has_bn:
499
- scale_factor = (subcell.batchnorm.gamma.data.asnumpy() /
500
- np.sqrt(subcell.batchnorm.moving_variance.data.asnumpy() + self.eps))
501
- subcell_weight_para = subcell_weight_para * scale_factor.reshape(-1, 1, 1, 1)
502
- min_init, max_init = self._kl_init(subcell_weight_para, self.weight_dtype)
503
- self.quant_config = self.quant_config._replace(
504
- weight=self.quant_config.weight.partial_init(min_init=min_init, max_init=max_init))
505
-
506
- dense_inner = subcell.dense
507
- dense_inner = quant.DenseQuant(dense_inner.in_channels,
508
- dense_inner.out_channels,
509
- has_bias=dense_inner.has_bias,
510
- quant_config=self.quant_config,
511
- quant_dtype=self.weight_dtype)
512
- # change original network Dense OP parameters to quant network
513
- dense_inner.weight = subcell.dense.weight
514
- if subcell.dense.has_bias:
515
- dense_inner.bias = subcell.dense.bias
516
- subcell.dense = dense_inner
517
- if subcell.has_act and subcell.activation is not None:
518
- subcell.activation = self._convert_activation(subcell.activation)
519
- elif subcell.after_fake:
520
- subcell.has_act = True
521
- subcell.activation = _AddFakeQuantAfterSubCell(F.identity,
522
- quant_dtype=self.act_dtype,
523
- quant_delay=self.act_qdelay,
524
- per_channel=self.act_channel,
525
- symmetric=self.act_symmetric,
526
- narrow_range=self.act_range,
527
- optimize_option=self.optimize_option)
528
- return subcell
529
-
530
- def _convert_activation(self, activation):
531
- """
532
- convert activation cell to quant cell
533
- """
534
- act_class = activation.__class__
535
- act_list = [nn.ReLU, nn.ReLU6, nn.Sigmoid]
536
- act_list_with_fake_before = [nn.LeakyReLU, nn.HSigmoid, nn.HSwish]
537
-
538
- if act_class in act_list:
539
- return quant.ActQuant(activation=activation,
540
- quant_config=self.quant_config,
541
- quant_dtype=self.act_dtype)
542
- if act_class in act_list_with_fake_before:
543
- return quant.ActQuant(activation=activation,
544
- ema=True,
545
- fake_before=True,
546
- quant_config=self.quant_config,
547
- quant_dtype=self.act_dtype)
548
- raise ValueError("Unsupported activation in auto quant: ", act_class)
549
-
550
- def _kl_init(self, subcell_weight_para, weight_dtype):
551
- """
552
- Calculate the value of max_init and min_init with compute_kl_threshold.
553
- """
554
- if self.weight_channel:
555
- max_init = [compute_kl_threshold(weight_para_each, weight_dtype)
556
- for weight_para_each in subcell_weight_para]
557
- min_init = [-x for x in max_init]
558
- else:
559
- max_init = [compute_kl_threshold(subcell_weight_para, weight_dtype)]
560
- min_init = [-x for x in max_init]
561
- return min_init, max_init
562
-
563
- def _set_mixed_bits(self, network, strategy):
564
- r"""
565
- Set network's quantization strategy, this function is currently only valid for `LEARNED_SCALE`
566
- optimize_option.
567
-
568
- Args:
569
- network (Cell): Input network.
570
- strategy (list): The quantization strategy for layers that need to be quantified (eg. [[8], [8],
571
- ..., [6], [4], [8]]), currently only the quant_dtype for weights of the dense layer and the
572
- convolution layer is supported.
573
-
574
- Returns:
575
- Cell, a network with mixed bit strategy configured.
576
-
577
- Raises:
578
- ValueError: If `OptimizeOption.LEARNED_SCALE` is not in `self.optimize_option`.
579
- """
580
- if OptimizeOption.LEARNED_SCALE not in self.optimize_option:
581
- raise ValueError("The `_set_mixed_bits` function is currently only valid for `LEARNED_SCALE` "
582
- "optimize_option.")
583
-
584
- quantizable_idx = []
585
- pass_cell = None
586
- for i, cell_and_name in enumerate(network.cells_and_names()):
587
- cell = cell_and_name[1]
588
- if isinstance(cell, (nn.Conv2dBnAct, nn.DenseBnAct)) and cell is not pass_cell:
589
- quantizable_idx.append(i)
590
-
591
- if len(quantizable_idx) != len(strategy):
592
- raise ValueError("The dimension of quantifiable layers is not consistent with that of strategy.")
593
-
594
- quantizable_layer_bit_dict = {idx: bit for idx, bit in zip(quantizable_idx, strategy)}
595
- type_map = {
596
- QuantDtype.INT2.num_bits: QuantDtype.INT2,
597
- QuantDtype.INT3.num_bits: QuantDtype.INT3,
598
- QuantDtype.INT4.num_bits: QuantDtype.INT4,
599
- QuantDtype.INT5.num_bits: QuantDtype.INT5,
600
- QuantDtype.INT6.num_bits: QuantDtype.INT6,
601
- QuantDtype.INT7.num_bits: QuantDtype.INT7,
602
- QuantDtype.INT8.num_bits: QuantDtype.INT8
603
- }
604
- if self.eps == 0:
605
- raise ValueError("`epsilon` is zero may lead to divide zero error")
606
- for i, cell_and_name in enumerate(network.cells_and_names()):
607
- cell = cell_and_name[1]
608
- if i not in quantizable_idx:
609
- continue
610
- if isinstance(cell, (nn.Conv2dBnAct, nn.DenseBnAct)):
611
- cell.weight_dtype = type_map.get(quantizable_layer_bit_dict[i][0])
612
- if cell.weight_dtype is None:
613
- raise ValueError("Input strategy is invalid: ", quantizable_layer_bit_dict[i][0])
614
- if isinstance(cell, nn.Conv2dBnAct):
615
- subcell_weight_para = cell.conv.weight.data.asnumpy()
616
- if hasattr(cell.conv, 'gamma'):
617
- scale_factor = (cell.conv.gamma.data.asnumpy() /
618
- np.sqrt(cell.conv.moving_variance.data.asnumpy() + self.eps))
619
- subcell_weight_para = subcell_weight_para * scale_factor.reshape(-1, 1, 1, 1)
620
- min_init, max_init = self._kl_init(subcell_weight_para, cell.weight_dtype)
621
- cell.conv.fake_quant_weight.reset(quant_dtype=cell.weight_dtype,
622
- min_init=min_init,
623
- max_init=max_init)
624
- elif isinstance(cell, nn.DenseBnAct):
625
- subcell_weight_para = cell.dense.weight.data.asnumpy()
626
- if hasattr(cell.dense, 'gamma'):
627
- scale_factor = (cell.dense.gamma.data.asnumpy() /
628
- np.sqrt(cell.dense.moving_variance.data.asnumpy() + self.eps))
629
- subcell_weight_para = subcell_weight_para * scale_factor.reshape(-1, 1, 1, 1)
630
- min_init, max_init = self._kl_init(subcell_weight_para, cell.weight_dtype)
631
- cell.dense.fake_quant_weight.reset(quant_dtype=cell.weight_dtype,
632
- min_init=min_init,
633
- max_init=max_init)
634
- return network