mindspore 2.0.0a0__cp38-cp38-win_amd64.whl → 2.0.0rc1__cp38-cp38-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (655) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/__init__.py +4 -2
  3. mindspore/_c_dataengine.cp38-win_amd64.pyd +0 -0
  4. mindspore/_c_expression.cp38-win_amd64.pyd +0 -0
  5. mindspore/_c_mindrecord.cp38-win_amd64.pyd +0 -0
  6. mindspore/_check_jit_forbidden_api.py +102 -0
  7. mindspore/_checkparam.py +1066 -1001
  8. mindspore/_extends/parallel_compile/akg_compiler/akg_process.py +4 -3
  9. mindspore/_extends/parallel_compile/akg_compiler/tbe_topi.py +50 -48
  10. mindspore/_extends/parallel_compile/akg_compiler/util.py +9 -4
  11. mindspore/_extends/parallel_compile/tbe_compiler/tbe_adapter.py +4 -4
  12. mindspore/_extends/parallel_compile/tbe_compiler/tbe_helper.py +9 -4
  13. mindspore/_extends/parse/__init__.py +5 -3
  14. mindspore/_extends/parse/namespace.py +16 -1
  15. mindspore/_extends/parse/parser.py +107 -22
  16. mindspore/_extends/parse/resources.py +0 -7
  17. mindspore/_extends/parse/standard_method.py +885 -413
  18. mindspore/amp.py +52 -57
  19. mindspore/boost/boost.py +2 -2
  20. mindspore/boost/boost_cell_wrapper.py +38 -20
  21. mindspore/boost/dim_reduce.py +3 -3
  22. mindspore/boost/group_loss_scale_manager.py +1 -1
  23. mindspore/common/__init__.py +4 -6
  24. mindspore/common/_decorator.py +2 -0
  25. mindspore/common/_register_for_adapter.py +55 -0
  26. mindspore/common/_stub_tensor.py +201 -0
  27. mindspore/common/_utils.py +41 -7
  28. mindspore/common/api.py +215 -141
  29. mindspore/common/dtype.py +8 -1
  30. mindspore/common/dump.py +2 -2
  31. mindspore/common/initializer.py +4 -2
  32. mindspore/common/jit_config.py +17 -13
  33. mindspore/common/mutable.py +33 -13
  34. mindspore/common/parameter.py +23 -21
  35. mindspore/common/seed.py +8 -24
  36. mindspore/common/sparse_tensor.py +62 -41
  37. mindspore/common/tensor.py +852 -1154
  38. mindspore/communication/__init__.py +2 -2
  39. mindspore/communication/_comm_helper.py +11 -4
  40. mindspore/communication/management.py +22 -21
  41. mindspore/config/op_info.config +501 -1008
  42. mindspore/context.py +201 -23
  43. mindspore/dataset/__init__.py +6 -6
  44. mindspore/dataset/audio/__init__.py +7 -7
  45. mindspore/dataset/audio/transforms.py +670 -30
  46. mindspore/dataset/audio/utils.py +47 -4
  47. mindspore/dataset/audio/validators.py +223 -1
  48. mindspore/dataset/callback/ds_callback.py +2 -2
  49. mindspore/dataset/core/config.py +210 -14
  50. mindspore/dataset/core/validator_helpers.py +2 -2
  51. mindspore/{parallel/nn/layers.py → dataset/debug/__init__.py} +7 -8
  52. mindspore/dataset/debug/debug_hook.py +65 -0
  53. mindspore/dataset/debug/pre_defined_hook.py +67 -0
  54. mindspore/dataset/engine/__init__.py +7 -3
  55. mindspore/dataset/engine/cache_client.py +1 -1
  56. mindspore/dataset/engine/datasets.py +322 -66
  57. mindspore/dataset/engine/datasets_audio.py +80 -76
  58. mindspore/dataset/engine/datasets_standard_format.py +51 -38
  59. mindspore/dataset/engine/datasets_text.py +232 -118
  60. mindspore/dataset/engine/datasets_user_defined.py +41 -17
  61. mindspore/dataset/engine/datasets_vision.py +746 -225
  62. mindspore/dataset/engine/graphdata.py +75 -10
  63. mindspore/dataset/engine/iterators.py +45 -5
  64. mindspore/dataset/engine/offload.py +48 -28
  65. mindspore/dataset/engine/validators.py +117 -8
  66. mindspore/dataset/text/__init__.py +6 -5
  67. mindspore/dataset/text/transforms.py +86 -3
  68. mindspore/dataset/text/utils.py +6 -4
  69. mindspore/dataset/text/validators.py +25 -0
  70. mindspore/dataset/transforms/__init__.py +3 -2
  71. mindspore/dataset/transforms/c_transforms.py +1 -1
  72. mindspore/dataset/transforms/transforms.py +2 -2
  73. mindspore/dataset/utils/__init__.py +2 -1
  74. mindspore/dataset/utils/line_reader.py +121 -0
  75. mindspore/dataset/vision/__init__.py +2 -3
  76. mindspore/dataset/vision/c_transforms.py +9 -9
  77. mindspore/dataset/vision/py_transforms.py +5 -5
  78. mindspore/dataset/vision/py_transforms_util.py +2 -0
  79. mindspore/dataset/vision/transforms.py +160 -161
  80. mindspore/dataset/vision/utils.py +3 -3
  81. mindspore/experimental/map_parameter.py +38 -26
  82. mindspore/include/OWNERS +0 -1
  83. mindspore/include/api/callback/callback.h +9 -13
  84. mindspore/include/api/callback/ckpt_saver.h +2 -2
  85. mindspore/include/api/callback/loss_monitor.h +2 -2
  86. mindspore/include/api/callback/lr_scheduler.h +5 -5
  87. mindspore/include/api/callback/time_monitor.h +2 -2
  88. mindspore/include/api/callback/train_accuracy.h +4 -6
  89. mindspore/include/api/cfg.h +19 -6
  90. mindspore/include/api/context.h +44 -9
  91. mindspore/include/api/delegate.h +1 -1
  92. mindspore/include/api/metrics/accuracy.h +2 -2
  93. mindspore/include/api/metrics/metrics.h +4 -3
  94. mindspore/include/api/model.h +9 -4
  95. mindspore/include/api/model_parallel_runner.h +2 -2
  96. mindspore/include/api/net.h +12 -11
  97. mindspore/include/api/serialization.h +19 -3
  98. mindspore/include/api/types.h +3 -3
  99. mindspore/include/dataset/constants.h +7 -0
  100. mindspore/include/dataset/text.h +59 -0
  101. mindspore/jpeg62.dll +0 -0
  102. mindspore/log.py +1 -1
  103. mindspore/mindrecord/filereader.py +18 -0
  104. mindspore/mindrecord/filewriter.py +197 -34
  105. mindspore/mindrecord/shardreader.py +9 -0
  106. mindspore/mindrecord/shardwriter.py +1 -1
  107. mindspore/mindrecord/tools/cifar100_to_mr.py +3 -3
  108. mindspore/mindrecord/tools/cifar10_to_mr.py +3 -3
  109. mindspore/mindrecord/tools/csv_to_mr.py +3 -3
  110. mindspore/mindrecord/tools/imagenet_to_mr.py +16 -11
  111. mindspore/mindrecord/tools/mnist_to_mr.py +2 -2
  112. mindspore/mindrecord/tools/tfrecord_to_mr.py +6 -6
  113. mindspore/mindspore_backend.dll +0 -0
  114. mindspore/mindspore_common.dll +0 -0
  115. mindspore/mindspore_core.dll +0 -0
  116. mindspore/mindspore_glog.dll +0 -0
  117. mindspore/mindspore_shared_lib.dll +0 -0
  118. mindspore/nn/__init__.py +0 -4
  119. mindspore/nn/cell.py +204 -132
  120. mindspore/nn/dynamic_lr.py +1 -1
  121. mindspore/nn/grad/cell_grad.py +7 -6
  122. mindspore/nn/layer/__init__.py +5 -4
  123. mindspore/nn/layer/activation.py +40 -89
  124. mindspore/nn/layer/basic.py +255 -624
  125. mindspore/nn/layer/channel_shuffle.py +7 -6
  126. mindspore/nn/layer/combined.py +1 -1
  127. mindspore/nn/layer/container.py +41 -4
  128. mindspore/nn/layer/conv.py +64 -28
  129. mindspore/nn/layer/dense.py +9 -8
  130. mindspore/nn/layer/embedding.py +27 -25
  131. mindspore/nn/layer/image.py +53 -46
  132. mindspore/nn/layer/math.py +97 -105
  133. mindspore/nn/layer/normalization.py +117 -86
  134. mindspore/nn/layer/padding.py +185 -95
  135. mindspore/nn/layer/pooling.py +817 -414
  136. mindspore/nn/layer/rnn_cells.py +10 -15
  137. mindspore/nn/layer/rnns.py +37 -38
  138. mindspore/nn/layer/thor_layer.py +11 -12
  139. mindspore/nn/layer/timedistributed.py +5 -5
  140. mindspore/nn/layer/transformer.py +701 -0
  141. mindspore/nn/learning_rate_schedule.py +8 -8
  142. mindspore/nn/loss/__init__.py +5 -4
  143. mindspore/nn/loss/loss.py +334 -199
  144. mindspore/nn/optim/ada_grad.py +6 -6
  145. mindspore/nn/optim/adadelta.py +2 -3
  146. mindspore/nn/optim/adafactor.py +4 -5
  147. mindspore/nn/optim/adam.py +126 -62
  148. mindspore/nn/optim/adamax.py +3 -4
  149. mindspore/nn/optim/adasum.py +6 -6
  150. mindspore/nn/optim/asgd.py +2 -2
  151. mindspore/nn/optim/ftrl.py +67 -38
  152. mindspore/nn/optim/lamb.py +4 -5
  153. mindspore/nn/optim/lars.py +2 -2
  154. mindspore/nn/optim/lazyadam.py +43 -4
  155. mindspore/nn/optim/momentum.py +6 -5
  156. mindspore/nn/optim/optimizer.py +3 -1
  157. mindspore/nn/optim/proximal_ada_grad.py +2 -2
  158. mindspore/nn/optim/rmsprop.py +1 -1
  159. mindspore/nn/optim/rprop.py +8 -9
  160. mindspore/nn/optim/sgd.py +19 -13
  161. mindspore/nn/optim/thor.py +10 -15
  162. mindspore/nn/probability/__init__.py +0 -2
  163. mindspore/nn/probability/bijector/bijector.py +4 -4
  164. mindspore/nn/probability/bijector/invert.py +1 -1
  165. mindspore/nn/probability/bijector/softplus.py +2 -2
  166. mindspore/nn/probability/bnn_layers/dense_variational.py +1 -1
  167. mindspore/nn/probability/bnn_layers/layer_distribution.py +2 -2
  168. mindspore/nn/probability/distribution/_utils/utils.py +9 -15
  169. mindspore/nn/probability/distribution/bernoulli.py +3 -3
  170. mindspore/nn/probability/distribution/beta.py +1 -1
  171. mindspore/nn/probability/distribution/categorical.py +5 -7
  172. mindspore/nn/probability/distribution/cauchy.py +3 -3
  173. mindspore/nn/probability/distribution/distribution.py +2 -2
  174. mindspore/nn/probability/distribution/exponential.py +2 -2
  175. mindspore/nn/probability/distribution/gamma.py +3 -3
  176. mindspore/nn/probability/distribution/geometric.py +1 -1
  177. mindspore/nn/probability/distribution/gumbel.py +3 -3
  178. mindspore/nn/probability/distribution/half_normal.py +15 -11
  179. mindspore/nn/probability/distribution/laplace.py +16 -13
  180. mindspore/nn/probability/distribution/logistic.py +2 -2
  181. mindspore/nn/probability/distribution/normal.py +1 -1
  182. mindspore/nn/probability/distribution/poisson.py +1 -1
  183. mindspore/nn/probability/distribution/student_t.py +20 -15
  184. mindspore/nn/probability/distribution/transformed_distribution.py +4 -4
  185. mindspore/nn/probability/distribution/uniform.py +2 -2
  186. mindspore/nn/reinforcement/_tensors_queue.py +3 -3
  187. mindspore/nn/reinforcement/tensor_array.py +2 -2
  188. mindspore/nn/sparse/sparse.py +2 -2
  189. mindspore/nn/wrap/cell_wrapper.py +27 -10
  190. mindspore/nn/wrap/grad_reducer.py +2 -2
  191. mindspore/nn/wrap/loss_scale.py +40 -24
  192. mindspore/numpy/array_creations.py +33 -22
  193. mindspore/numpy/array_ops.py +35 -30
  194. mindspore/numpy/logic_ops.py +6 -27
  195. mindspore/numpy/math_ops.py +22 -19
  196. mindspore/numpy/utils.py +1 -1
  197. mindspore/numpy/utils_const.py +108 -58
  198. mindspore/opencv_core452.dll +0 -0
  199. mindspore/opencv_imgcodecs452.dll +0 -0
  200. mindspore/opencv_imgproc452.dll +0 -0
  201. mindspore/ops/_constants.py +0 -6
  202. mindspore/ops/_grad/__init__.py +2 -1
  203. mindspore/ops/_grad/grad_array_ops.py +86 -117
  204. mindspore/ops/_grad/grad_base.py +23 -1
  205. mindspore/ops/_grad/grad_clip_ops.py +2 -3
  206. mindspore/ops/_grad/grad_comm_ops.py +34 -24
  207. mindspore/ops/_grad/grad_implementations.py +9 -45
  208. mindspore/ops/_grad/grad_inner_ops.py +47 -4
  209. mindspore/ops/_grad/grad_math_ops.py +142 -117
  210. mindspore/ops/_grad/grad_nn_ops.py +71 -165
  211. mindspore/ops/_grad/grad_sequence_ops.py +296 -0
  212. mindspore/ops/_grad/grad_sparse.py +7 -6
  213. mindspore/ops/_grad_experimental/__init__.py +1 -0
  214. mindspore/ops/_grad_experimental/grad_array_ops.py +150 -15
  215. mindspore/ops/_grad_experimental/grad_image_ops.py +16 -7
  216. mindspore/ops/_grad_experimental/grad_inner_ops.py +1 -22
  217. mindspore/ops/_grad_experimental/grad_linalg_ops.py +4 -11
  218. mindspore/ops/_grad_experimental/grad_math_ops.py +210 -89
  219. mindspore/ops/_grad_experimental/grad_nn_ops.py +26 -22
  220. mindspore/ops/_grad_experimental/grad_scalar_ops.py +112 -0
  221. mindspore/ops/_grad_experimental/grad_sparse_ops.py +49 -8
  222. mindspore/ops/_op_impl/_custom_op/batch_matmul_impl.py +1 -1
  223. mindspore/ops/_op_impl/_custom_op/batchnorm_fold.py +2 -2
  224. mindspore/ops/_op_impl/_custom_op/batchnorm_fold2.py +2 -2
  225. mindspore/ops/_op_impl/_custom_op/batchnorm_fold2_grad.py +2 -2
  226. mindspore/ops/_op_impl/_custom_op/batchnorm_fold2_grad_reduce.py +4 -4
  227. mindspore/ops/_op_impl/_custom_op/batchnorm_fold_grad.py +3 -3
  228. mindspore/ops/_op_impl/_custom_op/cholesky_trsm_impl.py +1 -1
  229. mindspore/ops/_op_impl/_custom_op/correction_mul.py +2 -2
  230. mindspore/ops/_op_impl/_custom_op/correction_mul_grad.py +2 -2
  231. mindspore/ops/_op_impl/_custom_op/dsd_back_impl.py +1 -5
  232. mindspore/ops/_op_impl/_custom_op/dsd_impl.py +1 -1
  233. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel.py +2 -2
  234. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel_grad.py +2 -2
  235. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel_grad_reduce.py +2 -2
  236. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer.py +2 -2
  237. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer_grad.py +2 -2
  238. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer_grad_reduce.py +2 -2
  239. mindspore/ops/_op_impl/_custom_op/fake_quant_perchannel.py +2 -2
  240. mindspore/ops/_op_impl/_custom_op/fake_quant_perchannel_grad.py +2 -2
  241. mindspore/ops/_op_impl/_custom_op/fake_quant_perlayer.py +2 -2
  242. mindspore/ops/_op_impl/_custom_op/fake_quant_perlayer_grad.py +2 -2
  243. mindspore/ops/_op_impl/_custom_op/fused_abs_max1_impl.py +1 -1
  244. mindspore/ops/_op_impl/_custom_op/img2col_impl.py +1 -1
  245. mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_left_impl.py +2 -2
  246. mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_right_impl.py +1 -1
  247. mindspore/ops/_op_impl/_custom_op/matmul_cube_fracz_left_cast_impl.py +1 -1
  248. mindspore/ops/_op_impl/_custom_op/matmul_cube_fracz_right_mul_impl.py +1 -1
  249. mindspore/ops/_op_impl/_custom_op/matmul_cube_impl.py +2 -2
  250. mindspore/ops/_op_impl/_custom_op/matmul_dds_impl.py +0 -4
  251. mindspore/ops/_op_impl/_custom_op/matrix_combine_impl.py +1 -1
  252. mindspore/ops/_op_impl/_custom_op/minmax_update_perchannel.py +2 -2
  253. mindspore/ops/_op_impl/_custom_op/minmax_update_perlayer.py +2 -2
  254. mindspore/ops/_op_impl/_custom_op/transpose02314_impl.py +1 -1
  255. mindspore/ops/_op_impl/aicpu/__init__.py +236 -4
  256. mindspore/ops/_op_impl/aicpu/abs.py +36 -0
  257. mindspore/ops/_op_impl/aicpu/{adaptive_avg_pool_2d_v1.py → adaptive_avg_pool_2d.py} +6 -5
  258. mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_2d_grad.py +34 -0
  259. mindspore/ops/_op_impl/aicpu/add.py +43 -0
  260. mindspore/ops/_op_impl/aicpu/addcdiv.py +0 -32
  261. mindspore/ops/_op_impl/aicpu/addcmul.py +0 -84
  262. mindspore/ops/_op_impl/aicpu/affine_grid_grad.py +35 -0
  263. mindspore/ops/_op_impl/aicpu/batch_matmul.py +43 -43
  264. mindspore/ops/_op_impl/aicpu/bernoulli.py +48 -0
  265. mindspore/{compression/common/__init__.py → ops/_op_impl/aicpu/bessel_i0.py} +15 -8
  266. mindspore/ops/_op_impl/aicpu/channel_shuffle.py +40 -0
  267. mindspore/ops/_op_impl/aicpu/conj.py +11 -0
  268. mindspore/ops/_op_impl/aicpu/cumulative_logsumexp.py +0 -3
  269. mindspore/ops/_op_impl/aicpu/deformable_offsets.py +38 -0
  270. mindspore/ops/_op_impl/aicpu/deformable_offsets_grad.py +43 -0
  271. mindspore/ops/_op_impl/aicpu/{adaptive_avg_pool_2d_grad_v1.py → digamma.py} +7 -9
  272. mindspore/ops/_op_impl/aicpu/flatten.py +1 -0
  273. mindspore/ops/_op_impl/aicpu/fmax.py +36 -0
  274. mindspore/ops/_op_impl/aicpu/fmin.py +37 -0
  275. mindspore/ops/_op_impl/aicpu/fractional_max_pool3d_with_fixed_ksize.py +1 -1
  276. mindspore/ops/_op_impl/aicpu/fse_decode.py +43 -0
  277. mindspore/ops/_op_impl/aicpu/greater.py +41 -0
  278. mindspore/ops/_op_impl/aicpu/greater_equal.py +41 -0
  279. mindspore/ops/_op_impl/aicpu/index_put.py +50 -0
  280. mindspore/ops/_op_impl/aicpu/less.py +41 -0
  281. mindspore/{nn/probability/infer/variational/__init__.py → ops/_op_impl/aicpu/lgamma.py} +16 -10
  282. mindspore/ops/_op_impl/aicpu/mirror_pad.py +0 -4
  283. mindspore/ops/_op_impl/aicpu/mirror_pad_grad.py +0 -4
  284. mindspore/ops/_op_impl/aicpu/mul.py +3 -1
  285. mindspore/ops/_op_impl/aicpu/multinomial.py +14 -6
  286. mindspore/ops/_op_impl/aicpu/nllloss.py +38 -0
  287. mindspore/ops/_op_impl/aicpu/nllloss_grad.py +39 -0
  288. mindspore/ops/_op_impl/aicpu/ones_like.py +0 -2
  289. mindspore/ops/_op_impl/aicpu/polar.py +32 -0
  290. mindspore/ops/_op_impl/aicpu/polygamma.py +34 -0
  291. mindspore/ops/_op_impl/aicpu/quant_dtype_cast.py +40 -0
  292. mindspore/ops/_op_impl/aicpu/quantile.py +35 -0
  293. mindspore/ops/_op_impl/aicpu/ragged_tensor_to_sparse.py +73 -0
  294. mindspore/ops/_op_impl/aicpu/randperm_v2.py +41 -0
  295. mindspore/ops/_op_impl/aicpu/resize_bicubic.py +2 -8
  296. mindspore/ops/_op_impl/aicpu/resize_bicubic_grad.py +1 -1
  297. mindspore/ops/_op_impl/aicpu/resize_v2.py +68 -0
  298. mindspore/ops/_op_impl/aicpu/resize_v2_grad.py +68 -0
  299. mindspore/ops/_op_impl/aicpu/scatter_elements.py +4 -0
  300. mindspore/ops/_op_impl/aicpu/scatter_nd_update.py +2 -0
  301. mindspore/ops/_op_impl/aicpu/sequence_add.py +34 -0
  302. mindspore/ops/_op_impl/aicpu/sequence_add_offset.py +34 -0
  303. mindspore/ops/_op_impl/aicpu/sequence_addn.py +38 -0
  304. mindspore/ops/_op_impl/aicpu/smooth_l1_loss.py +35 -0
  305. mindspore/ops/_op_impl/aicpu/smooth_l1_loss_grad.py +37 -0
  306. mindspore/ops/_op_impl/aicpu/sparse_apply_adagrad_da.py +0 -24
  307. mindspore/ops/_op_impl/aicpu/sparse_cross.py +42 -0
  308. mindspore/ops/_op_impl/aicpu/sparse_slice.py +4 -0
  309. mindspore/ops/_op_impl/aicpu/sparse_slice_grad.py +6 -0
  310. mindspore/ops/_op_impl/aicpu/tensor_scatter_update.py +59 -0
  311. mindspore/ops/_op_impl/aicpu/trans_data.py +1 -0
  312. mindspore/ops/_op_impl/aicpu/tril_indices.py +34 -0
  313. mindspore/ops/_op_impl/aicpu/uniform.py +34 -0
  314. mindspore/ops/_op_impl/aicpu/uniform_candidate_sampler.py +1 -0
  315. mindspore/ops/_op_impl/aicpu/unique_consecutive.py +10 -2
  316. mindspore/ops/_op_impl/cpu/dynamic_shape.py +5 -1
  317. mindspore/ops/_op_impl/cpu/sparse_slice.py +4 -0
  318. mindspore/ops/_op_impl/cpu/sparse_slice_grad.py +6 -0
  319. mindspore/ops/_op_impl/cpu/tensor_shape.py +5 -1
  320. mindspore/ops/_op_impl/tbe/__init__.py +27 -611
  321. mindspore/ops/_op_impl/tbe/assign_add_ds.py +1 -0
  322. mindspore/ops/_op_impl/tbe/atomic_addr_clean.py +1 -1
  323. mindspore/ops/_op_impl/tbe/avg_pool_3d_grad.py +1 -1
  324. mindspore/ops/_op_impl/tbe/batch_matmul_ds.py +1 -0
  325. mindspore/ops/_op_impl/tbe/batch_to_space.py +1 -1
  326. mindspore/ops/_op_impl/tbe/batch_to_space_nd.py +1 -1
  327. mindspore/ops/_op_impl/tbe/bn_infer_grad.py +4 -2
  328. mindspore/ops/_op_impl/tbe/bn_training_update.py +0 -1
  329. mindspore/ops/_op_impl/tbe/bn_training_update_ds.py +0 -1
  330. mindspore/ops/_op_impl/tbe/broadcast_to_ds.py +6 -4
  331. mindspore/ops/_op_impl/tbe/cast.py +0 -2
  332. mindspore/ops/_op_impl/tbe/cast_ds.py +3 -3
  333. mindspore/ops/_op_impl/tbe/data_format_dim_map_ds.py +1 -0
  334. mindspore/ops/_op_impl/tbe/depthwise_conv2d.py +2 -2
  335. mindspore/ops/_op_impl/tbe/dynamic_atomic_addr_clean.py +1 -1
  336. mindspore/ops/_op_impl/tbe/gather_nd.py +1 -0
  337. mindspore/ops/_op_impl/tbe/{index_add.py → inplace_index_add.py} +3 -6
  338. mindspore/ops/_op_impl/tbe/matmul_ds.py +2 -0
  339. mindspore/ops/_op_impl/tbe/npu_clear_float_status_v2.py +35 -0
  340. mindspore/ops/_op_impl/tbe/npu_get_float_status_v2.py +35 -0
  341. mindspore/ops/_op_impl/tbe/scatter_mul.py +2 -0
  342. mindspore/ops/_op_impl/tbe/scatter_nd_add.py +0 -2
  343. mindspore/ops/_op_impl/tbe/space_to_batch.py +1 -1
  344. mindspore/ops/_op_impl/tbe/space_to_batch_nd.py +1 -1
  345. mindspore/ops/_op_impl/tbe/trans_data_ds.py +15 -5
  346. mindspore/ops/_register_for_op.py +1 -0
  347. mindspore/ops/_utils/__init__.py +1 -2
  348. mindspore/ops/_utils/utils.py +19 -40
  349. mindspore/ops/_vmap/vmap_array_ops.py +116 -38
  350. mindspore/ops/_vmap/vmap_base.py +16 -9
  351. mindspore/ops/_vmap/vmap_convolution_ops.py +7 -10
  352. mindspore/ops/_vmap/vmap_grad_math_ops.py +4 -4
  353. mindspore/ops/_vmap/vmap_grad_nn_ops.py +7 -5
  354. mindspore/ops/_vmap/vmap_image_ops.py +12 -5
  355. mindspore/ops/_vmap/vmap_math_ops.py +46 -5
  356. mindspore/ops/_vmap/vmap_nn_ops.py +15 -21
  357. mindspore/ops/_vmap/vmap_random_ops.py +1 -1
  358. mindspore/ops/bprop_mindir/AdaptiveAvgPool2D_bprop.mindir +0 -0
  359. mindspore/ops/bprop_mindir/AdaptiveMaxPool2D_bprop.mindir +0 -0
  360. mindspore/ops/bprop_mindir/AvgPool3D_bprop.mindir +150 -0
  361. mindspore/ops/bprop_mindir/AvgPool_bprop.mindir +66 -0
  362. mindspore/ops/bprop_mindir/BCEWithLogitsLoss_bprop.mindir +0 -0
  363. mindspore/ops/bprop_mindir/BatchNormGrad_bprop.mindir +0 -0
  364. mindspore/ops/bprop_mindir/BiasAddGrad_bprop.mindir +0 -0
  365. mindspore/ops/bprop_mindir/BinaryCrossEntropy_bprop.mindir +33 -0
  366. mindspore/ops/bprop_mindir/BroadcastTo_bprop.mindir +220 -106
  367. mindspore/ops/bprop_mindir/CTCLoss_bprop.mindir +0 -0
  368. mindspore/ops/bprop_mindir/Conv2DBackpropFilter_bprop.mindir +240 -0
  369. mindspore/ops/bprop_mindir/Conv2DBackpropInput_bprop.mindir +247 -0
  370. mindspore/ops/bprop_mindir/Conv2DTranspose_bprop.mindir +247 -0
  371. mindspore/ops/bprop_mindir/Conv3DTranspose_bprop.mindir +315 -0
  372. mindspore/ops/bprop_mindir/Conv3D_bprop.mindir +278 -0
  373. mindspore/ops/bprop_mindir/DeformableOffsets_bprop.mindir +58 -0
  374. mindspore/ops/bprop_mindir/DepthwiseConv2dNative_bprop.mindir +138 -0
  375. mindspore/ops/bprop_mindir/Dropout2D_bprop.mindir +0 -0
  376. mindspore/ops/bprop_mindir/Dropout3D_bprop.mindir +0 -0
  377. mindspore/ops/bprop_mindir/DropoutDoMask_bprop.mindir +22 -23
  378. mindspore/ops/bprop_mindir/DropoutGenMask_bprop.mindir +16 -17
  379. mindspore/ops/bprop_mindir/DropoutGrad_bprop.mindir +27 -0
  380. mindspore/ops/bprop_mindir/Dropout_bprop.mindir +0 -0
  381. mindspore/ops/bprop_mindir/DynamicGRUV2_bprop.mindir +0 -0
  382. mindspore/ops/bprop_mindir/DynamicRNN_bprop.mindir +0 -0
  383. mindspore/ops/bprop_mindir/Elu_bprop.mindir +16 -0
  384. mindspore/ops/bprop_mindir/EmbeddingLookup_bprop.mindir +0 -0
  385. mindspore/ops/bprop_mindir/ExpandDims_bprop.mindir +39 -41
  386. mindspore/ops/bprop_mindir/FastGeLU_bprop.mindir +16 -0
  387. mindspore/ops/bprop_mindir/Flatten_bprop.mindir +41 -43
  388. mindspore/ops/bprop_mindir/GatherNd_bprop.mindir +51 -57
  389. mindspore/ops/bprop_mindir/Gather_bprop.mindir +0 -0
  390. mindspore/ops/bprop_mindir/HSigmoid_bprop.mindir +16 -0
  391. mindspore/ops/bprop_mindir/HSwish_bprop.mindir +16 -0
  392. mindspore/ops/bprop_mindir/InstanceNorm_bprop.mindir +0 -0
  393. mindspore/ops/bprop_mindir/KLDivLoss_bprop.mindir +126 -0
  394. mindspore/ops/bprop_mindir/L2Loss_bprop.mindir +15 -0
  395. mindspore/ops/bprop_mindir/L2Normalize_bprop.mindir +30 -0
  396. mindspore/ops/bprop_mindir/LRN_bprop.mindir +43 -0
  397. mindspore/ops/bprop_mindir/LayerNormGrad_bprop.mindir +0 -0
  398. mindspore/ops/bprop_mindir/LogSoftmax_bprop.mindir +23 -0
  399. mindspore/ops/bprop_mindir/MaxPool3DGradGrad_bprop.mindir +74 -0
  400. mindspore/ops/bprop_mindir/MaxPool3DGrad_bprop.mindir +74 -0
  401. mindspore/ops/bprop_mindir/MaxPool3D_bprop.mindir +75 -0
  402. mindspore/ops/bprop_mindir/MaxPoolGradGrad_bprop.mindir +65 -0
  403. mindspore/ops/bprop_mindir/MaxPoolWithArgmax_bprop.mindir +0 -0
  404. mindspore/ops/bprop_mindir/MirrorPad_bprop.mindir +27 -0
  405. mindspore/ops/bprop_mindir/Mish_bprop.mindir +35 -0
  406. mindspore/ops/bprop_mindir/MulNoNan_bprop.mindir +0 -0
  407. mindspore/ops/bprop_mindir/NLLLoss_bprop.mindir +0 -0
  408. mindspore/ops/bprop_mindir/OneHot_bprop.mindir +24 -25
  409. mindspore/ops/bprop_mindir/PReLU_bprop.mindir +0 -0
  410. mindspore/ops/bprop_mindir/Pad_bprop.mindir +0 -0
  411. mindspore/ops/bprop_mindir/Padding_bprop.mindir +0 -0
  412. mindspore/ops/bprop_mindir/RNNTLoss_bprop.mindir +29 -0
  413. mindspore/ops/bprop_mindir/ROIAlign_bprop.mindir +82 -0
  414. mindspore/ops/bprop_mindir/ReLU6_bprop.mindir +16 -0
  415. mindspore/ops/bprop_mindir/ReLUV2_bprop.mindir +0 -0
  416. mindspore/ops/bprop_mindir/ReluGrad_bprop.mindir +18 -19
  417. mindspore/ops/bprop_mindir/Reshape_bprop.mindir +53 -53
  418. mindspore/ops/bprop_mindir/ResizeBilinear_bprop.mindir +29 -0
  419. mindspore/ops/bprop_mindir/ResizeNearestNeighbor_bprop.mindir +77 -85
  420. mindspore/ops/bprop_mindir/SeLU_bprop.mindir +21 -0
  421. mindspore/ops/bprop_mindir/SigmoidCrossEntropyWithLogits_bprop.mindir +21 -0
  422. mindspore/ops/bprop_mindir/SigmoidGrad_bprop.mindir +0 -0
  423. mindspore/ops/bprop_mindir/Sigmoid_bprop.mindir +16 -0
  424. mindspore/ops/bprop_mindir/SmoothL1Loss_bprop.mindir +36 -0
  425. mindspore/ops/bprop_mindir/SoftmaxCrossEntropyWithLogits_bprop.mindir +0 -0
  426. mindspore/ops/bprop_mindir/Softplus_bprop.mindir +16 -0
  427. mindspore/ops/bprop_mindir/Softsign_bprop.mindir +33 -0
  428. mindspore/ops/bprop_mindir/SparseSoftmaxCrossEntropyWithLogits_bprop.mindir +0 -0
  429. mindspore/ops/bprop_mindir/Squeeze_bprop.mindir +37 -39
  430. mindspore/ops/bprop_mindir/StridedSlice_bprop.mindir +70 -72
  431. mindspore/ops/bprop_mindir/TanhGrad_bprop.mindir +0 -0
  432. mindspore/ops/bprop_mindir/Tanh_bprop.mindir +66 -0
  433. mindspore/ops/bprop_mindir/Tile_bprop.mindir +0 -0
  434. mindspore/ops/bprop_mindir/TopK_bprop.mindir +0 -0
  435. mindspore/ops/bprop_mindir/TupleGetItem_bprop.mindir +17 -17
  436. mindspore/ops/bprop_mindir/UpsampleNearest3D_bprop.mindir +32 -0
  437. mindspore/ops/bprop_mindir/UpsampleTrilinear3D_bprop.mindir +38 -0
  438. mindspore/ops/bprop_mindir/generate_mindir.py +2 -0
  439. mindspore/ops/composite/__init__.py +7 -8
  440. mindspore/ops/composite/base.py +101 -47
  441. mindspore/ops/composite/math_ops.py +188 -158
  442. mindspore/ops/composite/multitype_ops/_compile_utils.py +415 -170
  443. mindspore/ops/composite/multitype_ops/_constexpr_utils.py +142 -87
  444. mindspore/ops/composite/multitype_ops/add_impl.py +6 -1
  445. mindspore/ops/composite/multitype_ops/div_impl.py +2 -3
  446. mindspore/ops/composite/multitype_ops/getitem_impl.py +31 -3
  447. mindspore/ops/composite/multitype_ops/greater_equal_impl.py +31 -0
  448. mindspore/ops/composite/multitype_ops/greater_impl.py +31 -0
  449. mindspore/ops/composite/multitype_ops/in_impl.py +9 -0
  450. mindspore/ops/composite/multitype_ops/less_equal_impl.py +31 -0
  451. mindspore/ops/composite/multitype_ops/less_impl.py +31 -0
  452. mindspore/ops/composite/multitype_ops/mul_impl.py +21 -5
  453. mindspore/ops/composite/multitype_ops/not_in_impl.py +9 -0
  454. mindspore/ops/composite/multitype_ops/ones_like_impl.py +2 -4
  455. mindspore/ops/composite/multitype_ops/setitem_impl.py +21 -3
  456. mindspore/ops/composite/multitype_ops/sub_impl.py +1 -1
  457. mindspore/ops/composite/multitype_ops/zeros_like_impl.py +35 -4
  458. mindspore/ops/function/__init__.py +152 -8
  459. mindspore/ops/function/array_func.py +2555 -674
  460. mindspore/ops/function/clip_func.py +209 -13
  461. mindspore/ops/function/debug_func.py +2 -2
  462. mindspore/ops/function/grad/__init__.py +2 -1
  463. mindspore/ops/function/grad/grad_func.py +147 -62
  464. mindspore/ops/function/image_func.py +54 -38
  465. mindspore/ops/function/linalg_func.py +167 -16
  466. mindspore/ops/function/math_func.py +4849 -1492
  467. mindspore/ops/function/nn_func.py +2573 -988
  468. mindspore/ops/function/other_func.py +115 -0
  469. mindspore/ops/function/parameter_func.py +3 -3
  470. mindspore/ops/function/random_func.py +790 -73
  471. mindspore/ops/function/sparse_func.py +98 -78
  472. mindspore/ops/function/sparse_unary_func.py +54 -53
  473. mindspore/ops/function/spectral_func.py +27 -24
  474. mindspore/ops/function/vmap_func.py +22 -2
  475. mindspore/ops/functional.py +97 -37
  476. mindspore/ops/op_info_register.py +70 -28
  477. mindspore/ops/operations/__init__.py +47 -14
  478. mindspore/ops/operations/_csr_ops.py +7 -7
  479. mindspore/ops/operations/_embedding_cache_ops.py +5 -5
  480. mindspore/ops/operations/_grad_ops.py +276 -187
  481. mindspore/ops/operations/_inner_ops.py +319 -113
  482. mindspore/ops/operations/_ms_kernel.py +10 -8
  483. mindspore/ops/operations/_ocr_ops.py +9 -9
  484. mindspore/ops/operations/_opaque_predicate_registry.py +4 -0
  485. mindspore/ops/operations/_quant_ops.py +137 -102
  486. mindspore/ops/operations/_rl_inner_ops.py +121 -60
  487. mindspore/ops/operations/_scalar_ops.py +466 -0
  488. mindspore/ops/operations/_sequence_ops.py +1004 -2
  489. mindspore/ops/operations/_tensor_array.py +10 -11
  490. mindspore/ops/operations/_thor_ops.py +1 -1
  491. mindspore/ops/operations/array_ops.py +801 -466
  492. mindspore/ops/operations/comm_ops.py +51 -49
  493. mindspore/ops/operations/control_ops.py +2 -2
  494. mindspore/ops/operations/custom_ops.py +123 -44
  495. mindspore/ops/operations/debug_ops.py +24 -24
  496. mindspore/ops/operations/image_ops.py +240 -153
  497. mindspore/ops/operations/inner_ops.py +34 -50
  498. mindspore/ops/operations/linalg_ops.py +31 -9
  499. mindspore/ops/operations/math_ops.py +988 -757
  500. mindspore/ops/operations/nn_ops.py +965 -819
  501. mindspore/ops/operations/other_ops.py +51 -40
  502. mindspore/ops/operations/random_ops.py +204 -122
  503. mindspore/ops/operations/rl_ops.py +8 -9
  504. mindspore/ops/operations/sparse_ops.py +254 -93
  505. mindspore/ops/operations/spectral_ops.py +35 -3
  506. mindspore/ops/primitive.py +111 -9
  507. mindspore/parallel/_auto_parallel_context.py +189 -83
  508. mindspore/parallel/_offload_context.py +185 -0
  509. mindspore/parallel/_parallel_serialization.py +99 -7
  510. mindspore/parallel/_ps_context.py +9 -5
  511. mindspore/parallel/_recovery_context.py +1 -1
  512. mindspore/parallel/_tensor.py +7 -1
  513. mindspore/{nn/transformer → parallel/_transformer}/__init__.py +6 -6
  514. mindspore/{nn/transformer → parallel/_transformer}/layers.py +6 -37
  515. mindspore/{nn/transformer → parallel/_transformer}/loss.py +4 -7
  516. mindspore/{nn/transformer → parallel/_transformer}/moe.py +20 -16
  517. mindspore/{nn/transformer → parallel/_transformer}/op_parallel_config.py +3 -3
  518. mindspore/{nn/transformer → parallel/_transformer}/transformer.py +48 -111
  519. mindspore/parallel/_utils.py +1 -2
  520. mindspore/parallel/algo_parameter_config.py +1 -1
  521. mindspore/parallel/checkpoint_transform.py +37 -34
  522. mindspore/parallel/shard.py +17 -18
  523. mindspore/profiler/common/validator/validate_path.py +2 -2
  524. mindspore/profiler/envprofiling.py +69 -47
  525. mindspore/profiler/parser/ascend_timeline_generator.py +49 -42
  526. mindspore/profiler/parser/base_timeline_generator.py +49 -56
  527. mindspore/profiler/parser/cpu_gpu_timeline_generator.py +98 -78
  528. mindspore/profiler/parser/hwts_log_parser.py +1 -1
  529. mindspore/profiler/parser/integrator.py +15 -14
  530. mindspore/profiler/parser/minddata_analyzer.py +2 -2
  531. mindspore/profiler/parser/msadvisor_analyzer.py +12 -25
  532. mindspore/profiler/parser/msadvisor_parser.py +2 -4
  533. mindspore/profiler/parser/optime_parser.py +17 -18
  534. mindspore/profiler/parser/profiler_info.py +2 -1
  535. mindspore/profiler/profiling.py +218 -186
  536. mindspore/rewrite/__init__.py +3 -1
  537. mindspore/rewrite/api/node.py +1 -114
  538. mindspore/rewrite/api/node_type.py +3 -0
  539. mindspore/rewrite/api/pattern_engine.py +31 -1
  540. mindspore/rewrite/api/scoped_value.py +4 -4
  541. mindspore/rewrite/api/symbol_tree.py +3 -78
  542. mindspore/rewrite/api/tree_node_helper.py +1 -1
  543. mindspore/rewrite/ast_creator_register.py +1 -0
  544. mindspore/rewrite/ast_helpers/__init__.py +2 -2
  545. mindspore/rewrite/ast_helpers/ast_creator.py +1 -2
  546. mindspore/rewrite/ast_helpers/ast_finder.py +65 -0
  547. mindspore/rewrite/ast_helpers/ast_modifier.py +11 -3
  548. mindspore/rewrite/ast_transformers/flatten_recursive_stmt.py +18 -2
  549. mindspore/rewrite/namespace.py +0 -2
  550. mindspore/rewrite/node.py +157 -11
  551. mindspore/rewrite/parsers/assign_parser.py +231 -53
  552. mindspore/rewrite/parsers/class_def_parser.py +187 -109
  553. mindspore/rewrite/parsers/for_parser.py +24 -14
  554. mindspore/rewrite/parsers/function_def_parser.py +21 -4
  555. mindspore/rewrite/parsers/if_parser.py +6 -2
  556. mindspore/rewrite/sparsify/__init__.py +0 -0
  557. mindspore/rewrite/sparsify/sparse_transformer.py +448 -0
  558. mindspore/rewrite/sparsify/sparsify.py +109 -0
  559. mindspore/rewrite/sparsify/utils.py +173 -0
  560. mindspore/rewrite/symbol_tree.py +256 -133
  561. mindspore/rewrite/symbol_tree_builder.py +38 -1
  562. mindspore/run_check/_check_version.py +69 -63
  563. mindspore/run_check/run_check.py +2 -1
  564. mindspore/tinyxml2.dll +0 -0
  565. mindspore/train/__init__.py +1 -1
  566. mindspore/train/_utils.py +28 -5
  567. mindspore/train/amp.py +273 -102
  568. mindspore/train/callback/_backup_and_restore.py +5 -5
  569. mindspore/train/callback/_callback.py +2 -2
  570. mindspore/train/callback/_checkpoint.py +3 -3
  571. mindspore/train/callback/_early_stop.py +3 -3
  572. mindspore/train/callback/_lambda_callback.py +2 -2
  573. mindspore/train/callback/_landscape.py +29 -31
  574. mindspore/train/callback/_loss_monitor.py +3 -3
  575. mindspore/train/callback/_on_request_exit.py +3 -3
  576. mindspore/train/callback/_reduce_lr_on_plateau.py +4 -4
  577. mindspore/train/callback/_summary_collector.py +23 -16
  578. mindspore/train/callback/_time_monitor.py +3 -3
  579. mindspore/train/checkpoint_pb2.py +68 -8
  580. mindspore/train/data_sink.py +15 -3
  581. mindspore/train/dataset_helper.py +10 -15
  582. mindspore/train/loss_scale_manager.py +8 -11
  583. mindspore/train/metrics/__init__.py +1 -1
  584. mindspore/train/metrics/bleu_score.py +1 -1
  585. mindspore/train/metrics/confusion_matrix.py +1 -1
  586. mindspore/train/metrics/cosine_similarity.py +1 -1
  587. mindspore/train/metrics/dice.py +2 -2
  588. mindspore/train/metrics/fbeta.py +1 -1
  589. mindspore/train/metrics/hausdorff_distance.py +4 -3
  590. mindspore/train/metrics/mean_surface_distance.py +2 -2
  591. mindspore/train/metrics/occlusion_sensitivity.py +1 -1
  592. mindspore/train/metrics/perplexity.py +1 -1
  593. mindspore/train/metrics/precision.py +1 -1
  594. mindspore/train/metrics/recall.py +1 -1
  595. mindspore/train/metrics/roc.py +2 -2
  596. mindspore/train/metrics/root_mean_square_surface_distance.py +2 -2
  597. mindspore/train/mind_ir_pb2.py +116 -37
  598. mindspore/train/model.py +45 -28
  599. mindspore/train/serialization.py +295 -188
  600. mindspore/train/summary/_summary_adapter.py +1 -1
  601. mindspore/train/summary/summary_record.py +43 -13
  602. mindspore/train/train_thor/convert_utils.py +2 -2
  603. mindspore/train/train_thor/dataset_helper.py +3 -3
  604. mindspore/turbojpeg.dll +0 -0
  605. mindspore/version.py +1 -1
  606. {mindspore-2.0.0a0.dist-info → mindspore-2.0.0rc1.dist-info}/METADATA +3 -2
  607. {mindspore-2.0.0a0.dist-info → mindspore-2.0.0rc1.dist-info}/RECORD +610 -541
  608. mindspore/compression/__init__.py +0 -19
  609. mindspore/compression/common/constant.py +0 -124
  610. mindspore/compression/export/__init__.py +0 -19
  611. mindspore/compression/export/quant_export.py +0 -515
  612. mindspore/compression/quant/__init__.py +0 -28
  613. mindspore/compression/quant/qat.py +0 -634
  614. mindspore/compression/quant/quant_utils.py +0 -462
  615. mindspore/compression/quant/quantizer.py +0 -68
  616. mindspore/nn/layer/quant.py +0 -1868
  617. mindspore/nn/layer/rnn_utils.py +0 -90
  618. mindspore/nn/probability/dpn/__init__.py +0 -22
  619. mindspore/nn/probability/dpn/vae/__init__.py +0 -25
  620. mindspore/nn/probability/dpn/vae/cvae.py +0 -140
  621. mindspore/nn/probability/dpn/vae/vae.py +0 -124
  622. mindspore/nn/probability/infer/__init__.py +0 -22
  623. mindspore/nn/probability/infer/variational/elbo.py +0 -70
  624. mindspore/nn/probability/infer/variational/svi.py +0 -84
  625. mindspore/nn/probability/toolbox/__init__.py +0 -22
  626. mindspore/nn/probability/toolbox/anomaly_detection.py +0 -99
  627. mindspore/nn/probability/toolbox/uncertainty_evaluation.py +0 -364
  628. mindspore/nn/probability/transforms/__init__.py +0 -22
  629. mindspore/nn/probability/transforms/transform_bnn.py +0 -262
  630. mindspore/nn/probability/zhusuan/__init__.py +0 -18
  631. mindspore/nn/probability/zhusuan/framework/__init__.py +0 -18
  632. mindspore/nn/probability/zhusuan/framework/bn.py +0 -95
  633. mindspore/nn/probability/zhusuan/variational/__init__.py +0 -18
  634. mindspore/nn/probability/zhusuan/variational/elbo.py +0 -46
  635. mindspore/ops/_op_impl/aicpu/parallel_concat.py +0 -42
  636. mindspore/ops/_op_impl/tbe/gather_v2.py +0 -56
  637. mindspore/ops/bprop_mindir/AssignAdd_bprop.mindir +0 -19
  638. mindspore/ops/bprop_mindir/Cast_bprop.mindir +0 -19
  639. mindspore/ops/bprop_mindir/LogicalOr_bprop.mindir +0 -19
  640. mindspore/ops/bprop_mindir/MatMul_bprop.mindir +0 -0
  641. mindspore/ops/bprop_mindir/ReLU_bprop.mindir +0 -17
  642. mindspore/ops/bprop_mindir/Transpose_bprop.mindir +0 -0
  643. mindspore/ops/bprop_mindir/UpdateState_bprop.mindir +0 -15
  644. mindspore/ops/composite/array_ops.py +0 -241
  645. mindspore/ops/composite/clip_ops.py +0 -134
  646. mindspore/ops/composite/random_ops.py +0 -426
  647. mindspore/ops/composite/vmap_ops.py +0 -38
  648. mindspore/parallel/nn/__init__.py +0 -42
  649. mindspore/parallel/nn/loss.py +0 -22
  650. mindspore/parallel/nn/moe.py +0 -21
  651. mindspore/parallel/nn/op_parallel_config.py +0 -22
  652. mindspore/parallel/nn/transformer.py +0 -31
  653. {mindspore-2.0.0a0.dist-info → mindspore-2.0.0rc1.dist-info}/WHEEL +0 -0
  654. {mindspore-2.0.0a0.dist-info → mindspore-2.0.0rc1.dist-info}/entry_points.txt +0 -0
  655. {mindspore-2.0.0a0.dist-info → mindspore-2.0.0rc1.dist-info}/top_level.txt +0 -0
@@ -16,7 +16,7 @@
16
16
  from __future__ import absolute_import
17
17
 
18
18
  from mindspore.common._decorator import deprecated
19
- from mindspore._checkparam import Validator, Rel
19
+ from mindspore import _checkparam as Validator
20
20
  from mindspore.common import dtype as mstype
21
21
  from mindspore.ops.primitive import PrimitiveWithInfer, prim_attr_register, Primitive
22
22
  from mindspore.ops._utils import get_broadcast_shape
@@ -53,15 +53,14 @@ class NonDeterministicInts(Primitive):
53
53
  ValueError: If the number of elements of output is more than 1000000.
54
54
 
55
55
  Supported Platforms:
56
- ``CPU``
56
+ ``Ascend`` ``GPU`` ``CPU``
57
57
 
58
58
  Examples:
59
- >>> shape = Tensor(np.array([2,2]), mstype.int32)
59
+ >>> shape = Tensor((3,4), mstype.int32)
60
60
  >>> ndints = ops.NonDeterministicInts(dtype=mstype.int32)
61
61
  >>> output = ndints(shape)
62
- >>> print(output)
63
- [[13031056 -141954883 ]
64
- [ 140364228 290834494 ]]
62
+ >>> print(output.shape)
63
+ (3, 4)
65
64
  """
66
65
 
67
66
  @prim_attr_register
@@ -70,28 +69,29 @@ class NonDeterministicInts(Primitive):
70
69
  self.dtype = dtype
71
70
  self.add_prim_attr("max_length", 1000000)
72
71
  self.init_prim_io_names(inputs=["shape"], outputs=["output"])
73
- valid_values = (mstype.int32, mstype.int64)
74
- Validator.check_type_name("dtype", dtype, valid_values, self.name)
75
72
  self.add_prim_attr("side_effect_hidden", True)
73
+ valid_values = (mstype.int32, mstype.int64, mstype.uint32, mstype.uint64)
74
+ Validator.check_type_name("dtype", dtype, valid_values, self.name)
76
75
 
77
76
 
78
77
  class TruncatedNormal(Primitive):
79
78
  """
80
- Returns a tensor of the specified shape filled with truncated normal values.
79
+ Returns a Tensor of the specified shape filled with truncated normal values.
81
80
 
82
- The generated values follow a normal distribution.
81
+ The generated values conform to a Gaussian distribution.
83
82
 
84
- .. warning::
85
- The value of `shape` must be greater than zero. The output length can not exceed 1000000.
83
+ Note:
84
+ - The value of `shape` must be greater than zero. The output length can not exceed 1000000.
85
+ - When `seed` or `seed2` is assigned a non-zero value, that value will be used as the seed.
86
+ Otherwise, a random seed will be used instead.
86
87
 
87
88
  Args:
88
- seed (int, optional): An optional int. Defaults to 0. If either `seed` or `seed2` are set to be non-zero,
89
- the seed is set by the given seed. Otherwise, it is seeded by a random seed.
90
- seed2 (int, optional): An optional int. Defaults to 0. A second seed to avoid seed collision.
89
+ seed (int, optional): Random number seed. Default: 0.
90
+ seed2 (int, optional): The second seed to avoid seed collision. Default: 0.
91
91
  dtype (mindspore.dtype, optional): Specified output data type. Must be one of the following types:
92
92
  mindspore.float16, mindspore.float32 and mindspore.float64. Default: mindspore.float32.
93
93
 
94
- Inputs
94
+ Inputs:
95
95
  - **shape** (Tensor) - The shape of random tensor to be generated. Its type must be one of the following types:
96
96
  mindspore.int32 and mindspore.int64.
97
97
 
@@ -108,7 +108,7 @@ class TruncatedNormal(Primitive):
108
108
  ValueError: If the number of elements of output is more than 1000000.
109
109
 
110
110
  Supported Platforms:
111
- ``GPU`` ``CPU``
111
+ ``Ascend`` ``GPU`` ``CPU``
112
112
 
113
113
  Examples:
114
114
  >>> shape = Tensor(np.array([2, 2]), mstype.int32)
@@ -126,12 +126,12 @@ class TruncatedNormal(Primitive):
126
126
  """Initialize TruncatedNormal"""
127
127
  self.dtype = dtype
128
128
  self.add_prim_attr("max_length", 1000000)
129
+ self.add_prim_attr("side_effect_hidden", True)
129
130
  self.init_prim_io_names(inputs=["shape"], outputs=["output"])
130
131
  Validator.check_value_type('seed', seed, [int], self.name)
131
132
  Validator.check_value_type('seed2', seed2, [int], self.name)
132
133
  valid_values = (mstype.float16, mstype.float32, mstype.float64)
133
134
  Validator.check_type_name("dtype", dtype, valid_values, self.name)
134
- self.add_prim_attr("side_effect_hidden", True)
135
135
 
136
136
 
137
137
  class StandardNormal(Primitive):
@@ -140,6 +140,16 @@ class StandardNormal(Primitive):
140
140
 
141
141
  Refer to :func:`mindspore.ops.standard_normal` for more details.
142
142
 
143
+ Args:
144
+ seed (int): Random seed, must be non-negative. Default: 0.
145
+ seed2 (int): Random seed2, must be non-negative. A second seed to avoid seed collision. Default: 0.
146
+
147
+ Inputs:
148
+ - **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed.
149
+
150
+ Outputs:
151
+ Tensor. The shape is the same as the input `shape`. The dtype is float32.
152
+
143
153
  Supported Platforms:
144
154
  ``Ascend`` ``GPU`` ``CPU``
145
155
 
@@ -169,7 +179,7 @@ class StandardLaplace(Primitive):
169
179
  It is defined as:
170
180
 
171
181
  .. math::
172
- \text{f}(x) = \frac{1}{2}\exp(-|x|),
182
+ \text{f}(x) = \frac{1}{2}\exp(-|x|)
173
183
 
174
184
  Args:
175
185
  seed (int): Random seed. Default: 0.
@@ -277,11 +287,13 @@ class LogNormalReverse(Primitive):
277
287
  .. math::
278
288
  \text{f}(x;1.0,2.0)=\frac{1}{x\delta \sqrt[]{2\pi} }e^{-\frac{(\ln x-\mu )^2}{2\delta ^2} }
279
289
 
290
+ where \mu, \delta is mean and standard deviation of lognormal distribution respectively.
291
+
280
292
  Args:
281
293
  mean (float, optional): the mean of normal distribution. With float data type.
282
- Default: 2.0.
283
- std (float, optional): the std of normal distribution. With float data type.
284
294
  Default: 1.0.
295
+ std (float, optional): the std of normal distribution. With float data type.
296
+ Default: 2.0.
285
297
 
286
298
  Inputs:
287
299
  - **input** (Tensor) - The tensor to be generated with log-normal distribution.
@@ -311,47 +323,9 @@ class LogNormalReverse(Primitive):
311
323
  @prim_attr_register
312
324
  def __init__(self, mean=1.0, std=2.0):
313
325
  """Initialize LogNormalReverse"""
326
+ self.add_prim_attr("side_effect_hidden", True)
314
327
  Validator.check_value_type("mean", mean, [float], self.name)
315
328
  Validator.check_value_type("std", std, [float], self.name)
316
- self.add_prim_attr("side_effect_hidden", True)
317
-
318
-
319
- class RandomGammaGrad(Primitive):
320
- r"""
321
- Computes the derivative of a random sample of Gamma with respect to alpha.:
322
-
323
- Inputs:
324
- - **alpha** (Tensor) - α is the shape parameter of RandomGamma distribution.
325
- It must be greater than 0. Must be one of the following types: float32, float64.
326
- - **sample** (Tensor) - The sample of random gamma tensor. Must be one of the
327
- following types: float32, float64.
328
-
329
- Outputs:
330
- The dtype is the same type as alpha.
331
- The output shape is derived from the input through broadcasting.
332
-
333
- Raises:
334
- TypeError: If data type of `alpha` and `sample` is not float32 or float64.
335
- TypeError: If data type of `alpha` and `sample` is not same.
336
- ValueError: If the shape last dim of `sample` and `alpha` is not equal.
337
-
338
- Supported Platforms:
339
- ``GPU``
340
-
341
- Examples:
342
- >>> alpha = Tensor(np.array([1., 0.6, 3., 26.]), mstype.float32)
343
- >>> sample = Tensor(np.array([6., 7, 11., 0.5]), mstype.float32)
344
- >>> randomgammagrad = ops.RandomGammaGrad()
345
- >>> output = randomgammagrad(alpha, sample)
346
- >>> print(output)
347
- [2.5142431 3.4334087 1.8847835 0.07780622]
348
- """
349
-
350
- @prim_attr_register
351
- def __init__(self):
352
- """Initialize RandomGammaGrad"""
353
- self.init_prim_io_names(inputs=['alpha', 'sample'], outputs=['output'])
354
- self.add_prim_attr("side_effect_hidden", True)
355
329
 
356
330
 
357
331
  class Gamma(PrimitiveWithInfer):
@@ -445,24 +419,29 @@ class ParameterizedTruncatedNormal(Primitive):
445
419
  `min` and `max` should be :math:`()` or :math:`(batch\_size, )`.
446
420
 
447
421
  Note:
448
- The value in tensor `min` must be strictly less than `max` at any position after broadcasting.
422
+ - The value in tensor `min` must be strictly less than `max` at any position after broadcasting.
423
+ - When `seed` or `seed2` is assigned a non-zero value, that value will be used as the seed.
424
+ Otherwise, a random seed will be used instead.
449
425
 
450
426
  Args:
451
- seed (int, optional): Random number seed. If either `seed` or `seed2` are set to be non-zero,
452
- the seed is set by the given seed. Otherwise, it is seeded by a random seed. Default: 0.
453
- seed2 (int, optional): A second seed to avoid seed collision. Default: 0.
427
+ seed (int, optional): Random number seed. Default: 0.
428
+ seed2 (int, optional): The second seed to avoid seed collision. Default: 0.
454
429
 
455
430
  Inputs:
456
- - **shape** (Tensor) - The shape of random tensor to be generated. Its type must be one of the following types:
457
- int32 and int64.
431
+ - **shape** (Tensor) - The shape of random tensor to be generated.
432
+ It has shape :math:`(batch\_size, *)` where :math:`*` is an additional
433
+ dimension with a length of no less than 1.
434
+ Its type must be one of the following types: int32 and int64.
458
435
  - **mean** (Tensor) - The parameter defines the mean of truncated normal distribution.
436
+ It has shape :math:`()` or :math:`(batch\_size, )`.
459
437
  Its type must be one of the following types:float16, float32, float64.
460
438
  - **stdevs** (Tensor) - The parameter defines the standard deviation for truncation of
461
- the normal distribution. It must be greater than 0 and have the same type as means.
439
+ the normal distribution.
440
+ It must be greater than 0 and have the same shape and type as means.
462
441
  - **min** (Tensor) - The parameter defines the minimum of
463
- truncated normal distribution. It must have the same type as means.
442
+ truncated normal distribution. It must have the same shape and type as means.
464
443
  - **max** (Tensor) - The parameter defines the maximum of
465
- truncated normal distribution. It must have the same type as means.
444
+ truncated normal distribution. It must have the same shape and type as means.
466
445
 
467
446
  Outputs:
468
447
  Tensor. Its shape is specified by the input `shape` and it must have the same type as means.
@@ -479,14 +458,14 @@ class ParameterizedTruncatedNormal(Primitive):
479
458
  ValueError: If `shape` is not a 1-D tensor.
480
459
 
481
460
  Supported Platforms:
482
- ``CPU``
461
+ ``Ascend`` ``GPU`` ``CPU``
483
462
 
484
463
  Examples:
485
464
  >>> shape = Tensor(np.array([2, 3]), mstype.int32)
486
- >>> mean = Tensor(np.array([0], mstype.float32))
487
- >>> stdevs = Tensor(np.array([1], mstype.float32))
488
- >>> min = Tensor(np.array([-100], mstype.float32))
489
- >>> max = Tensor(np.array([100], mstype.float32))
465
+ >>> mean = Tensor(np.array([0]), mstype.float32)
466
+ >>> stdevs = Tensor(np.array([1]), mstype.float32)
467
+ >>> min = Tensor(np.array([-100]), mstype.float32)
468
+ >>> max = Tensor(np.array([100]), mstype.float32)
490
469
  >>> seed = 1
491
470
  >>> seed2 = 2
492
471
  >>> parameterized_truncated_normal = ops.ParameterizedTruncatedNormal(seed=seed, seed2=seed2)
@@ -501,9 +480,9 @@ class ParameterizedTruncatedNormal(Primitive):
501
480
  """Initialize ParameterizedTruncatedNormal"""
502
481
  self.init_prim_io_names(
503
482
  inputs=['shape', 'mean', 'stdevs', 'min', 'max'], outputs=['y'])
483
+ self.add_prim_attr("side_effect_hidden", True)
504
484
  Validator.check_value_type('seed', seed, [int], self.name)
505
485
  Validator.check_value_type('seed2', seed2, [int], self.name)
506
- self.add_prim_attr("side_effect_hidden", True)
507
486
 
508
487
 
509
488
  class Poisson(PrimitiveWithInfer):
@@ -601,7 +580,7 @@ class RandomPoisson(Primitive):
601
580
  ValueError: If `shape` elements are negative.
602
581
 
603
582
  Supported Platforms:
604
- ``Ascend`` ``GPU`` ``CPU``
583
+ ``GPU`` ``CPU``
605
584
 
606
585
  Examples:
607
586
  >>> shape = Tensor(np.array([2, 3]), mstype.int32)
@@ -620,10 +599,10 @@ class RandomPoisson(Primitive):
620
599
  self.init_prim_io_names(inputs=['shape', 'rate'], outputs=['output'])
621
600
  Validator.check_value_type('seed', seed, [int], self.name)
622
601
  Validator.check_value_type('seed2', seed2, [int], self.name)
602
+ self.add_prim_attr("side_effect_hidden", True)
623
603
  valid_values = (mstype.int64, mstype.int32,
624
604
  mstype.float16, mstype.float32, mstype.float64)
625
605
  Validator.check_type_name("dtype", dtype, valid_values, self.name)
626
- self.add_prim_attr("side_effect_hidden", True)
627
606
 
628
607
 
629
608
  class UniformInt(Primitive):
@@ -638,17 +617,18 @@ class UniformInt(Primitive):
638
617
  the :math:`b` indicates the max distribution parameter.
639
618
 
640
619
  Note:
641
- The number in tensor minval must be strictly less than maxval at any position after broadcasting.
620
+ - The number in tensor minval must be strictly less than maxval at any position after broadcasting.
621
+ - If neither `seed` nor `seed2` is assigned a non-zero value, a randomly generated seed is used instead.
642
622
 
643
623
  Args:
644
624
  seed (int): Random seed, must be non-negative. Default: 0.
645
625
  seed2 (int): Random seed2, must be non-negative. A second seed to avoid seed collision. Default: 0.
646
626
 
647
627
  Inputs:
648
- - **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed.
649
- - **minval** (Tensor) - The distribution parameter, a.
628
+ - **shape** (Union[tuple, Tensor]) - The shape of random tensor to be generated. Only constant value is allowed.
629
+ - **minval** (Tensor) - The distribution parameter, :math:`a`.
650
630
  It defines the minimum possibly generated value, with int32 data type. Only one number is supported.
651
- - **maxval** (Tensor) - The distribution parameter, b.
631
+ - **maxval** (Tensor) - The distribution parameter, :math:`b`.
652
632
  It defines the maximum possibly generated value, with int32 data type. Only one number is supported.
653
633
 
654
634
  Outputs:
@@ -656,7 +636,7 @@ class UniformInt(Primitive):
656
636
 
657
637
  Raises:
658
638
  TypeError: If neither `seed` nor `seed2` is an int.
659
- TypeError: If `shape` is not a tuple.
639
+ TypeError: If `shape` is neither a tuple nor a Tensor.
660
640
  TypeError: If neither `minval` nor `maxval` is a Tensor.
661
641
  ValueError: If `shape` is not a constant value.
662
642
 
@@ -694,7 +674,7 @@ class UniformReal(Primitive):
694
674
  final generated random number, must be non-negative. Default: 0.
695
675
 
696
676
  .. note::
697
- - Global random seed and operator-level random seed are not set: Use the default value as the random seed.
677
+ - Global random seed and operator-level random seed are not set: Use a randomly generated seed.
698
678
  - Global random seed is set, but operator-level random seed is not set: A global random seed will splice
699
679
  with a randomly generated seed.
700
680
  - Global random seed is not set, operator-level random seed is set: The default global random seed is used,
@@ -703,14 +683,14 @@ class UniformReal(Primitive):
703
683
  operator-level random seed.
704
684
 
705
685
  Inputs:
706
- - **shape** (tuple) - The shape of tensor to be generated. Only constant value is allowed.
686
+ - **shape** (Union[tuple, Tensor]) - The shape of tensor to be generated. Only constant value is allowed.
707
687
 
708
688
  Outputs:
709
689
  Tensor. The shape that the input 'shape' denotes. The dtype is float32.
710
690
 
711
691
  Raises:
712
692
  TypeError: If `seed` or `seed2` is not an int.
713
- TypeError: If `shape` is not a tuple.
693
+ TypeError: If `shape` is neither a tuple nor a Tensor.
714
694
  ValueError: If `shape` is not a constant value.
715
695
 
716
696
  Supported Platforms:
@@ -739,6 +719,22 @@ class RandomChoiceWithMask(Primitive):
739
719
 
740
720
  Refer to :func:`mindspore.ops.choice_with_mask` for more details.
741
721
 
722
+ Args:
723
+ count (int, optional): Number of items expected to get and the number must be greater than 0. Default: 256.
724
+ seed (int, optional): Seed is used as entropy source for Random number engines generating
725
+ pseudo-random numbers. Default: 0.
726
+ seed2 (int, optional): Second seed to avoid collision. Default: 0.
727
+
728
+ Inputs:
729
+ - **input_x** (Tensor[bool]) - The input tensor.
730
+ The input tensor rank must be greater than or equal to 1 and less than or equal to 5.
731
+
732
+ Outputs:
733
+ Two tensors, the first one is the index tensor and the other one is the mask tensor.
734
+
735
+ - **index** (Tensor) - The output shape is 2-D.
736
+ - **mask** (Tensor) - The output shape is 1-D.
737
+
742
738
  Supported Platforms:
743
739
  ``Ascend`` ``GPU`` ``CPU``
744
740
 
@@ -765,7 +761,7 @@ class RandomChoiceWithMask(Primitive):
765
761
 
766
762
 
767
763
  class RandomCategorical(PrimitiveWithInfer):
768
- """
764
+ r"""
769
765
  Generates random samples from a given categorical distribution tensor.
770
766
 
771
767
  Args:
@@ -773,12 +769,12 @@ class RandomCategorical(PrimitiveWithInfer):
773
769
  mindspore.int32 and mindspore.int64. Default: mindspore.int64.
774
770
 
775
771
  Inputs:
776
- - **logits** (Tensor) - The input tensor. 2-D Tensor with shape [batch_size, num_classes].
772
+ - **logits** (Tensor) - The input tensor. 2-D Tensor with shape :math:`(batch\_size, num\_classes)`.
777
773
  - **num_sample** (int) - Number of sample to be drawn. Only constant values is allowed.
778
774
  - **seed** (int) - Random seed. Default: 0. Only constant values is allowed.
779
775
 
780
776
  Outputs:
781
- - **output** (Tensor) - The output Tensor with shape [batch_size, num_samples].
777
+ - **output** (Tensor) - The output Tensor with shape :math:`(batch_size, num_samples)`.
782
778
 
783
779
  Raises:
784
780
  TypeError: If `dtype` is not one of the following: mindspore.int16, mindspore.int32, mindspore.int64.
@@ -833,8 +829,7 @@ class Multinomial(Primitive):
833
829
 
834
830
  Inputs:
835
831
  - **x** (Tensor) - the input tensor containing the cumsum of probabilities, must be 1 or 2
836
- dimensions. Must be one of the following types: float16, float32, float64. CPU and GPU
837
- supports x 1 or 2 dimensions and Ascend only supports 2 dimensions.
832
+ dimensions.
838
833
  - **num_samples** (int) - number of samples to draw, must be a nonnegative number.
839
834
 
840
835
  Outputs:
@@ -842,19 +837,18 @@ class Multinomial(Primitive):
842
837
 
843
838
  Raises:
844
839
  TypeError: If neither `seed` nor `seed2` is an int.
845
- TypeError: If `x` is not a Tensor whose dtype is float16, float32, float64.
846
840
  TypeError: If dtype of `num_samples` is not int.
847
841
  TypeError: If `dtype` is not int32 or int64.
848
842
  ValueError: If `seed` or `seed2` is less than 0.
849
843
 
850
844
  Supported Platforms:
851
- ``GPU`` ``CPU``
845
+ ``Ascend`` ``GPU`` ``CPU``
852
846
 
853
847
  Examples:
854
848
  >>> x = Tensor([[0., 9., 4., 0.]], mstype.float32)
855
849
  >>> multinomial = ops.Multinomial(seed=10)
856
850
  >>> output = multinomial(x, 2)
857
- >>> print(output) # run in CPU
851
+ >>> print(output)
858
852
  [[1 1]]
859
853
  """
860
854
 
@@ -873,21 +867,42 @@ class Multinomial(Primitive):
873
867
 
874
868
  class MultinomialWithReplacement(Primitive):
875
869
  r"""
876
- Returns a tensor where each row contains numsamples indices sampled from the multinomial distribution.
870
+ Returns a tensor where each row contains `numsamples` indices sampled from the multinomial distribution
871
+ with replacement. It diffs from `Multinomial` in that it allows the same outcome to be chosen multiple times.
872
+
873
+ .. warning::
874
+ This is an experimental API that is subject to change or deletion.
875
+
876
+ Refer to :func:`mindspore.ops.multinomial_with_replacement` for more details.
877
877
 
878
878
  Note:
879
879
  The rows of input do not need to sum to one (in which case we use the values as weights),
880
880
  but must be non-negative, finite and have a non-zero sum.
881
881
 
882
- Refer to :func:`mindspore.ops.multinomial_with_replacement` for more details.
882
+ Args:
883
+ numsamples (int): number of samples to draw, must be a nonnegative number.
884
+ replacement (bool, optional): Whether to draw with replacement or not. Default: False.
885
+
886
+ Inputs:
887
+ - **x** (Tensor) - the input tensor containing the cumsum of probabilities, must be 1 or 2
888
+ dimensions.
889
+ - **seed** (Tensor) - If `seed` is set to -1, and `offset` is set to 0, the random number
890
+ generator is seeded by a random seed. Otherwise, it is seeded by the given seed.
891
+ Supported dtype: int64.
892
+ - **offset** (Tensor) - Offset used to avoid seed collision. Supported dtype: int64.
893
+
894
+ Outputs:
895
+ Tensor with the same rows as `x`, each row has `numsamples` sampled indices.
883
896
 
884
897
  Supported Platforms:
885
- ``Ascend`` ``CPU``
898
+ ``CPU``
886
899
 
887
900
  Examples:
888
901
  >>> x = Tensor([[0., 9., 4., 0.]], mstype.float32)
902
+ >>> seed = Tensor(2, mstype.int64)
903
+ >>> offset = Tensor(5, mstype.int64)
889
904
  >>> multinomialwithreplacement = ops.MultinomialWithReplacement(numsamples=2,replacement=True)
890
- >>> output = multinomialwithreplacement(x, 2, 5)
905
+ >>> output = multinomialwithreplacement(x, seed, offset)
891
906
  >>> print(output)
892
907
  [[1 1]]
893
908
  """
@@ -901,7 +916,7 @@ class MultinomialWithReplacement(Primitive):
901
916
  self.add_prim_attr("side_effect_hidden", True)
902
917
 
903
918
 
904
- class UniformCandidateSampler(PrimitiveWithInfer):
919
+ class UniformCandidateSampler(Primitive):
905
920
  r"""
906
921
  Uniform candidate sampler.
907
922
 
@@ -935,30 +950,19 @@ class UniformCandidateSampler(PrimitiveWithInfer):
935
950
  Validator.check_value_type(
936
951
  "remove_accidental_hits", remove_accidental_hits, [bool], self.name)
937
952
  Validator.check("value of num_true", num_true,
938
- '', 0, Rel.GT, self.name)
953
+ '', 0, Validator.GT, self.name)
939
954
  Validator.check("value of num_sampled", num_sampled,
940
- '', 0, Rel.GT, self.name)
955
+ '', 0, Validator.GT, self.name)
941
956
  Validator.check("value of range_max", range_max,
942
- '', 0, Rel.GT, self.name)
957
+ '', 0, Validator.GT, self.name)
943
958
  self.num_true = num_true
944
959
  if unique:
945
960
  Validator.check('value of num_sampled', num_sampled,
946
- "value of range_max", range_max, Rel.LE, self.name)
947
- Validator.check("value of seed", seed, '', 0, Rel.GE, self.name)
961
+ "value of range_max", range_max, Validator.LE, self.name)
962
+ Validator.check("value of seed", seed, '', 0, Validator.GE, self.name)
948
963
  self.num_sampled = num_sampled
949
964
  self.add_prim_attr("side_effect_hidden", True)
950
965
 
951
- def infer_dtype(self, true_classes_type):
952
- Validator.check_subclass(
953
- "true_classes_type", true_classes_type, mstype.tensor, self.name)
954
- Validator.check_tensor_dtype_valid("true_classes_type", true_classes_type,
955
- (mstype.int32, mstype.int64), self.name)
956
- return true_classes_type, mstype.float32, mstype.float32
957
-
958
- def infer_shape(self, true_classes_shape):
959
- Validator.check("true_class.shape[1]", true_classes_shape[1],
960
- "num_true", self.num_true, Rel.EQ, self.name)
961
- return [self.num_sampled], true_classes_shape, [self.num_sampled]
962
966
 
963
967
 
964
968
  class LogUniformCandidateSampler(Primitive):
@@ -996,16 +1000,16 @@ class LogUniformCandidateSampler(Primitive):
996
1000
  Validator.check_value_type("range_max", range_max, [int], self.name)
997
1001
  Validator.check_value_type("seed", seed, [int], self.name)
998
1002
  self.num_true = Validator.check_number(
999
- "num_true", num_true, 1, Rel.GE, self.name)
1003
+ "num_true", num_true, 1, Validator.GE, self.name)
1000
1004
  self.num_sampled = Validator.check_number(
1001
- "num_sampled", num_sampled, 1, Rel.GE, self.name)
1002
- Validator.check_number("range_max", range_max, 1, Rel.GE, self.name)
1005
+ "num_sampled", num_sampled, 1, Validator.GE, self.name)
1006
+ Validator.check_number("range_max", range_max, 1, Validator.GE, self.name)
1003
1007
  if unique:
1004
1008
  Validator.check("range_max", range_max, "num_sampled",
1005
- num_sampled, Rel.GE, self.name)
1009
+ num_sampled, Validator.GE, self.name)
1006
1010
  self.range_max = range_max
1007
1011
  self.unique = unique
1008
- self.seed = Validator.check_number("seed", seed, 0, Rel.GE, self.name)
1012
+ self.seed = Validator.check_number("seed", seed, 0, Validator.GE, self.name)
1009
1013
  self.add_prim_attr("side_effect_hidden", True)
1010
1014
 
1011
1015
 
@@ -1014,9 +1018,10 @@ class RandomShuffle(Primitive):
1014
1018
  Randomly shuffles a Tensor along its first dimension.
1015
1019
 
1016
1020
  Args:
1017
- seed (int): Random seed. If `seed` or `seed2` is set to non-zero, the random number generator will be seeded
1018
- by the given seed. Otherwise, it will be seeded randomly. The seed must be non-negative. Default: 0.
1019
- seed2 (int): Random seed2, a second seed to avoid seed collision. If `seed` is 0, the `seed2` will be used as
1021
+ seed (int, optional): Random seed. If `seed` or `seed2` is set to non-zero, the random number generator
1022
+ will be seeded by the given seed. Otherwise, it will be seeded randomly.
1023
+ The `seed` must be non-negative. Default: 0.
1024
+ seed2 (int, optional): A second seed to avoid seed collision. If `seed` is 0, the `seed2` will be used as
1020
1025
  the seed of the random generator. It must be non-negative. Default: 0.
1021
1026
 
1022
1027
  Inputs:
@@ -1046,3 +1051,80 @@ class RandomShuffle(Primitive):
1046
1051
  self.add_prim_attr("side_effect_hidden", True)
1047
1052
  Validator.check_non_negative_int(seed, "seed", self.name)
1048
1053
  Validator.check_non_negative_int(seed2, "seed2", self.name)
1054
+
1055
+
1056
+ class Uniform(Primitive):
1057
+ r"""
1058
+ Generates random numbers according to the Uniform random number distribution.
1059
+
1060
+ Args:
1061
+ minval(float):must be non-negative. Default: 0.0.
1062
+ maxval(float):must be non-negative. Default: 1.0.
1063
+
1064
+ Inputs:
1065
+ - **x** (Tensor) - The x of random tensor to be generated.
1066
+ Only constant value is allowed, and the date type is float16, float32, float64.
1067
+
1068
+ Raises:
1069
+ TypeError: If `minval` or `maxval` is not a float.
1070
+ TypeError: If `x`is not a Tensor.
1071
+ ValueError: If `minval` is larger than `maxval`.
1072
+
1073
+ Outputs:
1074
+ - **output** (Tensor) - With the same type and shape as the 'x'.
1075
+
1076
+ Supported Platforms:
1077
+ ``GPU`` ``CPU``
1078
+
1079
+ Examples:
1080
+ >>> x = Tensor(np.random.randn(3,4), mstype.float64)
1081
+ >>> uniform = Uniform(minval=1.0, maxval=2.0)
1082
+ >>> y = uniform(x)
1083
+ >>> print(y.shape)
1084
+ (3, 4)
1085
+ """
1086
+
1087
+ @prim_attr_register
1088
+ def __init__(self, minval=0., maxval=1., seed=0, offset=0):
1089
+ """Initialize Uniform"""
1090
+ self.init_prim_io_names(inputs=['x'], outputs=['y'])
1091
+ self.add_prim_attr("from", minval)
1092
+ self.add_prim_attr("to", maxval)
1093
+ Validator.check_value_type('seed', seed, [int], self.name)
1094
+ Validator.check_value_type('offset', offset, [int], self.name)
1095
+ Validator.check('minval', minval, 'maxval', maxval, Validator.LE, self.name)
1096
+ Validator.check_non_negative_float(minval, "minval", self.name)
1097
+ Validator.check_non_negative_float(maxval, "maxval", self.name)
1098
+ self.add_prim_attr("side_effect_hidden", True)
1099
+
1100
+
1101
+ class RandpermV2(Primitive):
1102
+ r"""
1103
+ Generates random permutation of integers from 0 to n-1 without repeating.
1104
+
1105
+ Refer to :func:`mindspore.ops.randperm` for more detail.
1106
+
1107
+ Supported Platforms:
1108
+ ``CPU``
1109
+
1110
+ Examples:
1111
+ >>> n = Tensor([4], mstype.int64)
1112
+ >>> seed = 0
1113
+ >>> offset = 0
1114
+ >>> randperm = ops.RandpermV2(layout=0, dtype=mstype.int64)
1115
+ >>> output = randperm(n, seed, offset)
1116
+ >>> print(output)
1117
+ [1 0 2 3]
1118
+ """
1119
+
1120
+ @prim_attr_register
1121
+ def __init__(self, layout=0, dtype=mstype.int64):
1122
+ """Initialize RandpermV2"""
1123
+ self.dtype = dtype
1124
+ self.layout = layout
1125
+ Validator.check_value_type('layout', layout, [int], self.name)
1126
+ Validator.check_non_negative_int(layout, 'layout', self.name)
1127
+ valid_values = (mstype.int32, mstype.int64, mstype.int16, mstype.int8, mstype.uint8, mstype.float64
1128
+ , mstype.float32, mstype.float16)
1129
+ Validator.check_type_name("dtype", dtype, valid_values, self.name)
1130
+ self.add_prim_attr("side_effect_hidden", True)