mindspore 1.10.0__cp38-cp38-win_amd64.whl → 2.0.0rc1__cp38-cp38-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mindspore might be problematic. Click here for more details.
- mindspore/.commit_id +1 -1
- mindspore/ConcurrencyCheck.dll +0 -0
- mindspore/CppBuildInsights.dll +0 -0
- mindspore/CppCoreCheck.dll +0 -0
- mindspore/EnumIndex.dll +0 -0
- mindspore/EspXEngine.dll +0 -0
- mindspore/HResultCheck.dll +0 -0
- mindspore/KernelTraceControl.dll +0 -0
- mindspore/LocalESPC.dll +0 -0
- mindspore/Microsoft.Diagnostics.Tracing.EventSource.dll +0 -0
- mindspore/Microsoft.VisualStudio.RemoteControl.dll +0 -0
- mindspore/Microsoft.VisualStudio.Telemetry.dll +0 -0
- mindspore/Microsoft.VisualStudio.Utilities.Internal.dll +0 -0
- mindspore/Newtonsoft.Json.dll +0 -0
- mindspore/System.Runtime.CompilerServices.Unsafe.dll +0 -0
- mindspore/VariantClear.dll +0 -0
- mindspore/__init__.py +9 -4
- mindspore/_c_dataengine.cp38-win_amd64.pyd +0 -0
- mindspore/_c_expression.cp38-win_amd64.pyd +0 -0
- mindspore/_c_mindrecord.cp38-win_amd64.pyd +0 -0
- mindspore/_check_jit_forbidden_api.py +102 -0
- mindspore/_checkparam.py +1066 -1001
- mindspore/_extends/builtin_operations.py +32 -4
- mindspore/_extends/graph_kernel/model/graph_split.py +66 -222
- mindspore/_extends/parallel_compile/akg_compiler/akg_process.py +12 -9
- mindspore/_extends/parallel_compile/akg_compiler/build_tbe_kernel.py +119 -26
- mindspore/_extends/parallel_compile/akg_compiler/tbe_topi.py +50 -50
- mindspore/_extends/parallel_compile/akg_compiler/util.py +9 -6
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_adapter.py +4 -25
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_helper.py +9 -4
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_job_manager.py +1 -27
- mindspore/_extends/parse/__init__.py +5 -3
- mindspore/_extends/parse/namespace.py +17 -2
- mindspore/_extends/parse/parser.py +193 -34
- mindspore/_extends/parse/resources.py +7 -8
- mindspore/_extends/parse/standard_method.py +1780 -435
- mindspore/_extends/parse/trope.py +3 -1
- mindspore/amp.py +53 -58
- mindspore/atlprov.dll +0 -0
- mindspore/boost/adasum.py +3 -2
- mindspore/boost/boost.py +2 -2
- mindspore/boost/boost_cell_wrapper.py +46 -26
- mindspore/boost/dim_reduce.py +6 -5
- mindspore/boost/grad_accumulation.py +2 -1
- mindspore/boost/group_loss_scale_manager.py +1 -1
- mindspore/c1.dll +0 -0
- mindspore/c1xx.dll +0 -0
- mindspore/c2.dll +0 -0
- mindspore/cfgpersist.dll +0 -0
- mindspore/clang_rt.asan_dbg_dynamic-x86_64.dll +0 -0
- mindspore/clang_rt.asan_dynamic-x86_64.dll +0 -0
- mindspore/common/__init__.py +11 -10
- mindspore/common/_decorator.py +2 -0
- mindspore/common/_register_for_adapter.py +55 -0
- mindspore/common/_stub_tensor.py +201 -0
- mindspore/common/_utils.py +57 -0
- mindspore/common/api.py +582 -297
- mindspore/common/dtype.py +66 -18
- mindspore/common/dump.py +2 -2
- mindspore/common/initializer.py +38 -1
- mindspore/common/jit_config.py +25 -13
- mindspore/common/mutable.py +53 -24
- mindspore/common/parameter.py +60 -37
- mindspore/common/seed.py +8 -24
- mindspore/common/sparse_tensor.py +927 -0
- mindspore/common/tensor.py +1627 -3900
- mindspore/communication/__init__.py +10 -5
- mindspore/communication/_comm_helper.py +78 -214
- mindspore/communication/_hccl_management.py +2 -1
- mindspore/communication/management.py +136 -47
- mindspore/config/op_info.config +501 -1008
- mindspore/context.py +291 -56
- mindspore/d3dcompiler_47.dll +0 -0
- mindspore/dataset/__init__.py +12 -8
- mindspore/dataset/audio/__init__.py +9 -9
- mindspore/dataset/audio/transforms.py +1090 -228
- mindspore/dataset/audio/utils.py +87 -39
- mindspore/dataset/audio/validators.py +223 -1
- mindspore/dataset/callback/ds_callback.py +17 -15
- mindspore/dataset/core/config.py +246 -17
- mindspore/dataset/core/py_util_helpers.py +4 -3
- mindspore/dataset/core/validator_helpers.py +10 -10
- mindspore/{parallel/nn/layers.py → dataset/debug/__init__.py} +7 -8
- mindspore/dataset/debug/debug_hook.py +65 -0
- mindspore/dataset/debug/pre_defined_hook.py +67 -0
- mindspore/dataset/engine/__init__.py +7 -3
- mindspore/dataset/engine/cache_client.py +9 -9
- mindspore/dataset/engine/datasets.py +648 -477
- mindspore/dataset/engine/datasets_audio.py +165 -167
- mindspore/dataset/engine/datasets_standard_format.py +93 -67
- mindspore/dataset/engine/datasets_text.py +492 -342
- mindspore/dataset/engine/datasets_user_defined.py +85 -50
- mindspore/dataset/engine/datasets_vision.py +1224 -699
- mindspore/dataset/engine/graphdata.py +134 -69
- mindspore/dataset/engine/iterators.py +50 -9
- mindspore/dataset/engine/offload.py +52 -31
- mindspore/dataset/engine/samplers.py +27 -24
- mindspore/dataset/engine/serializer_deserializer.py +14 -15
- mindspore/dataset/engine/validators.py +213 -52
- mindspore/dataset/text/__init__.py +10 -8
- mindspore/dataset/text/transforms.py +152 -57
- mindspore/dataset/text/utils.py +98 -49
- mindspore/dataset/text/validators.py +25 -0
- mindspore/dataset/transforms/__init__.py +4 -2
- mindspore/dataset/transforms/c_transforms.py +11 -13
- mindspore/dataset/transforms/py_transforms.py +2 -2
- mindspore/dataset/transforms/py_transforms_util.py +10 -0
- mindspore/dataset/transforms/transforms.py +13 -15
- mindspore/dataset/transforms/validators.py +7 -7
- mindspore/dataset/utils/__init__.py +2 -1
- mindspore/dataset/utils/browse_dataset.py +13 -13
- mindspore/dataset/utils/line_reader.py +121 -0
- mindspore/dataset/vision/__init__.py +8 -7
- mindspore/dataset/vision/c_transforms.py +125 -126
- mindspore/dataset/vision/py_transforms.py +37 -37
- mindspore/dataset/vision/py_transforms_util.py +23 -20
- mindspore/dataset/vision/transforms.py +316 -315
- mindspore/dataset/vision/utils.py +313 -17
- mindspore/dataset/vision/validators.py +6 -6
- mindspore/default_config.py +0 -1
- mindspore/dpcmi.dll +0 -0
- mindspore/{compression → experimental}/__init__.py +6 -5
- mindspore/experimental/map_parameter.py +275 -0
- mindspore/include/OWNERS +0 -1
- mindspore/include/api/callback/callback.h +9 -13
- mindspore/include/api/callback/ckpt_saver.h +2 -2
- mindspore/include/api/callback/loss_monitor.h +2 -2
- mindspore/include/api/callback/lr_scheduler.h +5 -5
- mindspore/include/api/callback/time_monitor.h +2 -2
- mindspore/include/api/callback/train_accuracy.h +4 -6
- mindspore/include/api/cfg.h +19 -6
- mindspore/include/api/context.h +70 -9
- mindspore/include/api/delegate.h +8 -1
- mindspore/include/api/dual_abi_helper.h +8 -24
- mindspore/include/api/metrics/accuracy.h +2 -2
- mindspore/include/api/metrics/metrics.h +4 -3
- mindspore/include/api/model.h +9 -4
- mindspore/include/api/model_group.h +68 -0
- mindspore/include/api/model_parallel_runner.h +17 -17
- mindspore/include/api/net.h +12 -11
- mindspore/include/api/serialization.h +20 -4
- mindspore/include/api/status.h +7 -1
- mindspore/include/api/types.h +25 -21
- mindspore/include/api/visible.h +4 -0
- mindspore/include/c_api/model_c.h +5 -0
- mindspore/include/c_api/status_c.h +1 -1
- mindspore/include/dataset/config.h +1 -1
- mindspore/include/dataset/constants.h +14 -0
- mindspore/include/dataset/text.h +59 -0
- mindspore/include/dataset/vision.h +56 -117
- mindspore/include/dataset/vision_lite.h +102 -0
- mindspore/jpeg62.dll +0 -0
- mindspore/log.py +28 -28
- mindspore/mindrecord/common/exceptions.py +2 -4
- mindspore/mindrecord/filereader.py +19 -1
- mindspore/mindrecord/filewriter.py +250 -88
- mindspore/mindrecord/mindpage.py +13 -13
- mindspore/mindrecord/shardheader.py +15 -15
- mindspore/mindrecord/shardreader.py +9 -0
- mindspore/mindrecord/shardwriter.py +29 -29
- mindspore/mindrecord/tools/cifar100_to_mr.py +9 -9
- mindspore/mindrecord/tools/cifar10_to_mr.py +9 -9
- mindspore/mindrecord/tools/csv_to_mr.py +4 -4
- mindspore/mindrecord/tools/imagenet_to_mr.py +70 -65
- mindspore/mindrecord/tools/mnist_to_mr.py +41 -41
- mindspore/mindrecord/tools/tfrecord_to_mr.py +6 -6
- mindspore/{libmindspore_backend.dll → mindspore_backend.dll} +0 -0
- mindspore/mindspore_common.dll +0 -0
- mindspore/mindspore_core.dll +0 -0
- mindspore/mindspore_glog.dll +0 -0
- mindspore/mindspore_shared_lib.dll +0 -0
- mindspore/msobj140.dll +0 -0
- mindspore/mspdb140.dll +0 -0
- mindspore/mspdbcore.dll +0 -0
- mindspore/mspdbst.dll +0 -0
- mindspore/mspft140.dll +0 -0
- mindspore/msvcdis140.dll +0 -0
- mindspore/msvcp140_1.dll +0 -0
- mindspore/msvcp140_2.dll +0 -0
- mindspore/msvcp140_atomic_wait.dll +0 -0
- mindspore/msvcp140_codecvt_ids.dll +0 -0
- mindspore/nn/__init__.py +1 -5
- mindspore/nn/cell.py +297 -234
- mindspore/nn/dynamic_lr.py +1 -1
- mindspore/nn/grad/cell_grad.py +17 -42
- mindspore/nn/layer/__init__.py +7 -4
- mindspore/nn/layer/activation.py +131 -88
- mindspore/nn/layer/basic.py +313 -613
- mindspore/nn/layer/channel_shuffle.py +103 -0
- mindspore/nn/layer/combined.py +1 -1
- mindspore/nn/layer/container.py +52 -6
- mindspore/nn/layer/conv.py +112 -43
- mindspore/nn/layer/dense.py +10 -9
- mindspore/nn/layer/embedding.py +36 -34
- mindspore/nn/layer/image.py +123 -27
- mindspore/nn/layer/math.py +108 -107
- mindspore/nn/layer/normalization.py +212 -366
- mindspore/nn/layer/padding.py +370 -42
- mindspore/nn/layer/pooling.py +1443 -219
- mindspore/nn/layer/rnn_cells.py +11 -16
- mindspore/nn/layer/rnns.py +38 -39
- mindspore/nn/layer/thor_layer.py +24 -25
- mindspore/nn/layer/timedistributed.py +5 -5
- mindspore/nn/layer/transformer.py +701 -0
- mindspore/nn/learning_rate_schedule.py +8 -8
- mindspore/nn/loss/__init__.py +9 -6
- mindspore/nn/loss/loss.py +678 -142
- mindspore/nn/metrics.py +53 -0
- mindspore/nn/optim/_dist_optimizer_registry.py +2 -2
- mindspore/nn/optim/ada_grad.py +8 -8
- mindspore/nn/optim/adadelta.py +2 -3
- mindspore/nn/optim/adafactor.py +18 -14
- mindspore/nn/optim/adam.py +429 -87
- mindspore/nn/optim/adamax.py +5 -6
- mindspore/nn/optim/adasum.py +10 -8
- mindspore/nn/optim/asgd.py +7 -7
- mindspore/nn/optim/ftrl.py +81 -11
- mindspore/nn/optim/lamb.py +7 -8
- mindspore/nn/optim/lars.py +4 -4
- mindspore/nn/optim/lazyadam.py +82 -7
- mindspore/nn/optim/momentum.py +8 -7
- mindspore/nn/optim/optimizer.py +19 -10
- mindspore/nn/optim/proximal_ada_grad.py +6 -5
- mindspore/nn/optim/rmsprop.py +3 -3
- mindspore/nn/optim/rprop.py +20 -16
- mindspore/nn/optim/sgd.py +21 -15
- mindspore/nn/optim/thor.py +23 -21
- mindspore/nn/probability/__init__.py +0 -2
- mindspore/nn/probability/bijector/bijector.py +7 -6
- mindspore/nn/probability/bijector/invert.py +4 -2
- mindspore/nn/probability/bijector/softplus.py +2 -2
- mindspore/nn/probability/bnn_layers/dense_variational.py +1 -1
- mindspore/nn/probability/bnn_layers/layer_distribution.py +2 -2
- mindspore/nn/probability/distribution/__init__.py +6 -0
- mindspore/nn/probability/distribution/_utils/custom_ops.py +3 -2
- mindspore/nn/probability/distribution/_utils/utils.py +11 -17
- mindspore/nn/probability/distribution/bernoulli.py +6 -6
- mindspore/nn/probability/distribution/beta.py +1 -1
- mindspore/nn/probability/distribution/categorical.py +9 -9
- mindspore/nn/probability/distribution/cauchy.py +8 -8
- mindspore/nn/probability/distribution/distribution.py +12 -6
- mindspore/nn/probability/distribution/exponential.py +5 -5
- mindspore/nn/probability/distribution/gamma.py +3 -3
- mindspore/nn/probability/distribution/geometric.py +6 -5
- mindspore/nn/probability/distribution/gumbel.py +5 -5
- mindspore/nn/probability/distribution/half_normal.py +133 -0
- mindspore/nn/probability/distribution/laplace.py +128 -0
- mindspore/nn/probability/distribution/log_normal.py +0 -1
- mindspore/nn/probability/distribution/logistic.py +4 -5
- mindspore/nn/probability/distribution/normal.py +11 -15
- mindspore/nn/probability/distribution/poisson.py +6 -2
- mindspore/nn/probability/distribution/student_t.py +150 -0
- mindspore/nn/probability/distribution/transformed_distribution.py +4 -4
- mindspore/nn/probability/distribution/uniform.py +5 -5
- mindspore/nn/reinforcement/_tensors_queue.py +3 -3
- mindspore/nn/reinforcement/tensor_array.py +2 -2
- mindspore/nn/sparse/sparse.py +8 -1
- mindspore/nn/wrap/cell_wrapper.py +55 -27
- mindspore/nn/wrap/grad_reducer.py +20 -11
- mindspore/nn/wrap/loss_scale.py +47 -30
- mindspore/numpy/array_creations.py +33 -22
- mindspore/numpy/array_ops.py +46 -42
- mindspore/numpy/logic_ops.py +6 -27
- mindspore/numpy/math_ops.py +26 -19
- mindspore/numpy/utils.py +1 -8
- mindspore/numpy/utils_const.py +112 -62
- mindspore/opencv_core452.dll +0 -0
- mindspore/opencv_imgcodecs452.dll +0 -0
- mindspore/opencv_imgproc452.dll +0 -0
- mindspore/ops/__init__.py +6 -3
- mindspore/ops/_constants.py +0 -6
- mindspore/ops/_grad/__init__.py +2 -1
- mindspore/ops/_grad/grad_array_ops.py +209 -152
- mindspore/ops/_grad/grad_base.py +55 -17
- mindspore/ops/_grad/grad_clip_ops.py +11 -3
- mindspore/ops/_grad/grad_comm_ops.py +58 -47
- mindspore/ops/_grad/grad_implementations.py +21 -61
- mindspore/ops/_grad/grad_inner_ops.py +48 -6
- mindspore/ops/_grad/grad_math_ops.py +306 -161
- mindspore/ops/_grad/grad_nn_ops.py +192 -181
- mindspore/ops/_grad/grad_other_ops.py +1 -1
- mindspore/ops/_grad/grad_quant_ops.py +5 -5
- mindspore/ops/_grad/grad_sequence_ops.py +296 -0
- mindspore/ops/_grad/grad_sparse.py +15 -9
- mindspore/ops/_grad_experimental/__init__.py +1 -0
- mindspore/ops/_grad_experimental/grad_array_ops.py +441 -55
- mindspore/ops/_grad_experimental/grad_image_ops.py +25 -7
- mindspore/ops/_grad_experimental/grad_inner_ops.py +3 -44
- mindspore/ops/_grad_experimental/grad_linalg_ops.py +16 -21
- mindspore/ops/_grad_experimental/grad_math_ops.py +979 -49
- mindspore/ops/_grad_experimental/grad_nn_ops.py +78 -8
- mindspore/ops/_grad_experimental/grad_scalar_ops.py +112 -0
- mindspore/ops/_grad_experimental/grad_sparse_ops.py +197 -13
- mindspore/ops/_op_impl/__init__.py +3 -3
- mindspore/ops/_op_impl/_custom_op/__init__.py +0 -1
- mindspore/ops/_op_impl/_custom_op/_basic.py +0 -1
- mindspore/ops/_op_impl/_custom_op/batch_matmul_impl.py +1 -1
- mindspore/ops/_op_impl/_custom_op/batchnorm_fold.py +4 -2
- mindspore/ops/_op_impl/_custom_op/batchnorm_fold2.py +2 -2
- mindspore/ops/_op_impl/_custom_op/batchnorm_fold2_grad.py +2 -2
- mindspore/ops/_op_impl/_custom_op/batchnorm_fold2_grad_reduce.py +5 -5
- mindspore/ops/_op_impl/_custom_op/batchnorm_fold_grad.py +3 -3
- mindspore/ops/_op_impl/_custom_op/cholesky_trsm_impl.py +1 -1
- mindspore/ops/_op_impl/_custom_op/correction_mul.py +3 -3
- mindspore/ops/_op_impl/_custom_op/correction_mul_grad.py +2 -2
- mindspore/ops/_op_impl/_custom_op/dsd_back_impl.py +4 -8
- mindspore/ops/_op_impl/_custom_op/dsd_impl.py +1 -1
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel.py +2 -2
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel_grad.py +2 -2
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel_grad_reduce.py +2 -2
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer.py +2 -2
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer_grad.py +2 -2
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer_grad_reduce.py +2 -2
- mindspore/ops/_op_impl/_custom_op/fake_quant_perchannel.py +2 -2
- mindspore/ops/_op_impl/_custom_op/fake_quant_perchannel_grad.py +2 -2
- mindspore/ops/_op_impl/_custom_op/fake_quant_perlayer.py +2 -2
- mindspore/ops/_op_impl/_custom_op/fake_quant_perlayer_grad.py +2 -2
- mindspore/ops/_op_impl/_custom_op/fused_abs_max1_impl.py +1 -1
- mindspore/ops/_op_impl/_custom_op/img2col_impl.py +1 -1
- mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_left_impl.py +2 -2
- mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_right_impl.py +1 -1
- mindspore/ops/_op_impl/_custom_op/matmul_cube_fracz_left_cast_impl.py +1 -1
- mindspore/ops/_op_impl/_custom_op/matmul_cube_fracz_right_mul_impl.py +1 -1
- mindspore/ops/_op_impl/_custom_op/matmul_cube_impl.py +2 -2
- mindspore/ops/_op_impl/_custom_op/matmul_dds_grad_impl.py +0 -1
- mindspore/ops/_op_impl/_custom_op/matmul_dds_impl.py +0 -1
- mindspore/ops/_op_impl/_custom_op/matrix_combine_impl.py +1 -1
- mindspore/ops/_op_impl/_custom_op/minmax_update_perchannel.py +2 -2
- mindspore/ops/_op_impl/_custom_op/minmax_update_perlayer.py +2 -2
- mindspore/ops/_op_impl/_custom_op/transpose02314_impl.py +1 -1
- mindspore/ops/_op_impl/aicpu/__init__.py +238 -3
- mindspore/ops/_op_impl/aicpu/abs.py +36 -0
- mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_2d.py +34 -0
- mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_2d_grad.py +34 -0
- mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_3d.py +39 -0
- mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_3d_grad.py +39 -0
- mindspore/ops/_op_impl/aicpu/adaptive_max_pool_2d_grad.py +37 -0
- mindspore/ops/_op_impl/aicpu/adaptive_max_pool_3d.py +42 -0
- mindspore/ops/_op_impl/aicpu/adaptive_max_pool_3d_grad.py +152 -0
- mindspore/ops/_op_impl/aicpu/add.py +43 -0
- mindspore/ops/_op_impl/aicpu/addcdiv.py +0 -32
- mindspore/ops/_op_impl/aicpu/addcmul.py +0 -84
- mindspore/ops/_op_impl/aicpu/affine_grid_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/arg_max.py +75 -0
- mindspore/ops/_op_impl/aicpu/arg_min.py +75 -0
- mindspore/ops/_op_impl/aicpu/argmin_with_value.py +43 -0
- mindspore/ops/_op_impl/aicpu/batch_matmul.py +43 -0
- mindspore/ops/_op_impl/aicpu/batch_norm_grad_grad.py +49 -0
- mindspore/ops/_op_impl/aicpu/bernoulli.py +48 -0
- mindspore/ops/_op_impl/aicpu/bessel_i0.py +31 -0
- mindspore/ops/_op_impl/aicpu/bias_add.py +44 -0
- mindspore/ops/_op_impl/aicpu/bias_add_grad.py +43 -0
- mindspore/ops/_op_impl/aicpu/bincount.py +33 -0
- mindspore/{nn/probability/infer/variational/__init__.py → ops/_op_impl/aicpu/cauchy.py} +17 -10
- mindspore/ops/_op_impl/aicpu/channel_shuffle.py +40 -0
- mindspore/ops/_op_impl/aicpu/cholesky.py +1 -1
- mindspore/ops/_op_impl/{cpu/bias_add.py → aicpu/choleskygrad.py} +9 -7
- mindspore/ops/_op_impl/aicpu/combined_non_max_suppression.py +42 -0
- mindspore/ops/_op_impl/aicpu/concat_offset.py +42 -0
- mindspore/ops/_op_impl/aicpu/concat_offset_v1.py +31 -0
- mindspore/ops/_op_impl/aicpu/conj.py +11 -0
- mindspore/ops/_op_impl/aicpu/crop_and_resize_grad_image.py +38 -0
- mindspore/ops/_op_impl/aicpu/cumulative_logsumexp.py +36 -0
- mindspore/ops/_op_impl/aicpu/deformable_offsets.py +38 -0
- mindspore/ops/_op_impl/aicpu/deformable_offsets_grad.py +2 -2
- mindspore/ops/_op_impl/aicpu/dense_to_sparse_set_operation.py +48 -0
- mindspore/ops/_op_impl/aicpu/diag.py +36 -0
- mindspore/ops/_op_impl/aicpu/diag_part.py +36 -0
- mindspore/ops/_op_impl/aicpu/diagonal.py +35 -0
- mindspore/ops/_op_impl/{cpu/bias_add_grad.py → aicpu/digamma.py} +9 -7
- mindspore/ops/_op_impl/aicpu/eig.py +35 -0
- mindspore/ops/_op_impl/aicpu/fft_with_size.py +41 -0
- mindspore/ops/_op_impl/aicpu/flatten.py +1 -0
- mindspore/ops/_op_impl/aicpu/fmax.py +36 -0
- mindspore/ops/_op_impl/aicpu/fmin.py +37 -0
- mindspore/ops/_op_impl/aicpu/fractional_max_pool3d_with_fixed_ksize.py +1 -1
- mindspore/ops/_op_impl/aicpu/fse_decode.py +43 -0
- mindspore/ops/_op_impl/aicpu/glu.py +33 -0
- mindspore/ops/_op_impl/aicpu/glu_grad.py +34 -0
- mindspore/ops/_op_impl/aicpu/greater.py +41 -0
- mindspore/ops/_op_impl/aicpu/greater_equal.py +41 -0
- mindspore/ops/_op_impl/aicpu/index_put.py +50 -0
- mindspore/ops/_op_impl/{tbe/scatter_add_ds.py → aicpu/inplace_index_add.py} +17 -21
- mindspore/ops/_op_impl/aicpu/instance_norm_v2.py +41 -0
- mindspore/ops/_op_impl/aicpu/instance_norm_v2_grad.py +44 -0
- mindspore/ops/_op_impl/aicpu/layer_norm_grad_grad.py +47 -0
- mindspore/ops/_op_impl/aicpu/less.py +41 -0
- mindspore/ops/_op_impl/aicpu/less_equal.py +41 -0
- mindspore/ops/_op_impl/aicpu/lgamma.py +32 -0
- mindspore/ops/_op_impl/aicpu/log_normal_reverse.py +33 -0
- mindspore/ops/_op_impl/aicpu/logit.py +33 -0
- mindspore/ops/_op_impl/aicpu/logit_grad.py +34 -0
- mindspore/ops/_op_impl/aicpu/masked_fill.py +42 -0
- mindspore/ops/_op_impl/aicpu/masked_scatter.py +39 -0
- mindspore/ops/_op_impl/aicpu/matmul.py +39 -0
- mindspore/ops/_op_impl/aicpu/matrix_logarithm.py +31 -0
- mindspore/ops/_op_impl/aicpu/matrix_power.py +32 -0
- mindspore/ops/_op_impl/aicpu/matrix_solve_ls.py +36 -0
- mindspore/ops/_op_impl/aicpu/matrix_triangular_solve.py +36 -0
- mindspore/ops/_op_impl/aicpu/mirror_pad.py +2 -0
- mindspore/ops/_op_impl/aicpu/mirror_pad_grad.py +0 -4
- mindspore/ops/_op_impl/aicpu/mul.py +3 -1
- mindspore/ops/_op_impl/aicpu/multinomial.py +14 -6
- mindspore/ops/_op_impl/aicpu/multinomial_with_replacement.py +35 -0
- mindspore/ops/_op_impl/aicpu/nan_to_num.py +34 -0
- mindspore/ops/_op_impl/aicpu/nllloss.py +38 -0
- mindspore/ops/_op_impl/aicpu/nllloss_grad.py +39 -0
- mindspore/ops/_op_impl/aicpu/ones_like.py +0 -2
- mindspore/ops/_op_impl/aicpu/polar.py +32 -0
- mindspore/ops/_op_impl/aicpu/polygamma.py +34 -0
- mindspore/ops/_op_impl/aicpu/qr.py +36 -0
- mindspore/ops/_op_impl/aicpu/quant_dtype_cast.py +40 -0
- mindspore/ops/_op_impl/aicpu/quantile.py +35 -0
- mindspore/ops/_op_impl/aicpu/ragged_tensor_to_sparse.py +73 -0
- mindspore/ops/_op_impl/aicpu/ragged_tensor_to_tensor.py +74 -0
- mindspore/ops/_op_impl/aicpu/random_shuffle.py +3 -0
- mindspore/ops/_op_impl/aicpu/randperm_v2.py +41 -0
- mindspore/ops/_op_impl/aicpu/range.py +36 -0
- mindspore/ops/_op_impl/aicpu/reciprocal.py +34 -0
- mindspore/ops/_op_impl/aicpu/reciprocal_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/reduce_sum.py +57 -0
- mindspore/ops/_op_impl/aicpu/resize_bicubic.py +2 -8
- mindspore/ops/_op_impl/aicpu/resize_bicubic_grad.py +1 -1
- mindspore/ops/_op_impl/aicpu/resize_v2.py +68 -0
- mindspore/ops/_op_impl/aicpu/resize_v2_grad.py +68 -0
- mindspore/ops/_op_impl/aicpu/scatter_elements.py +4 -0
- mindspore/ops/_op_impl/aicpu/scatter_nd_update.py +2 -0
- mindspore/ops/_op_impl/aicpu/search_sorted.py +12 -6
- mindspore/ops/_op_impl/aicpu/self_adjoint_eig.py +34 -0
- mindspore/ops/_op_impl/aicpu/sequence_add.py +34 -0
- mindspore/ops/_op_impl/aicpu/sequence_add_offset.py +34 -0
- mindspore/ops/_op_impl/aicpu/sequence_addn.py +38 -0
- mindspore/ops/_op_impl/aicpu/slice_grad.py +76 -0
- mindspore/ops/_op_impl/aicpu/smooth_l1_loss.py +35 -0
- mindspore/ops/_op_impl/aicpu/smooth_l1_loss_grad.py +37 -0
- mindspore/ops/_op_impl/aicpu/sort.py +39 -0
- mindspore/ops/_op_impl/aicpu/sparse_apply_adagrad_da.py +0 -24
- mindspore/ops/_op_impl/aicpu/sparse_cross.py +42 -0
- mindspore/ops/_op_impl/aicpu/sparse_fill_empty_rows.py +63 -0
- mindspore/ops/_op_impl/aicpu/sparse_fill_empty_rows_grad.py +45 -0
- mindspore/ops/_op_impl/aicpu/sparse_matrix_mat_mul.py +56 -0
- mindspore/ops/_op_impl/{tbe/slice_ds.py → aicpu/sparse_segment_sum.py} +16 -24
- mindspore/ops/_op_impl/aicpu/sparse_segment_sum_with_num_segments.py +68 -0
- mindspore/ops/_op_impl/aicpu/sparse_slice.py +63 -0
- mindspore/ops/_op_impl/aicpu/sparse_slice_grad.py +61 -0
- mindspore/ops/_op_impl/aicpu/squared_difference.py +2 -0
- mindspore/ops/_op_impl/aicpu/strided_slice_v2.py +93 -0
- mindspore/ops/_op_impl/aicpu/strided_slice_v2_grad.py +66 -0
- mindspore/ops/_op_impl/aicpu/tensor_scatter_update.py +59 -0
- mindspore/ops/_op_impl/{tbe/gather_v2.py → aicpu/tile.py} +24 -24
- mindspore/ops/_op_impl/aicpu/tridiagonal_solve.py +35 -0
- mindspore/ops/_op_impl/aicpu/tril_indices.py +34 -0
- mindspore/ops/_op_impl/aicpu/triu_indices.py +34 -0
- mindspore/ops/_op_impl/aicpu/uniform.py +34 -0
- mindspore/ops/_op_impl/aicpu/uniform_candidate_sampler.py +1 -0
- mindspore/ops/_op_impl/aicpu/unique_consecutive.py +10 -2
- mindspore/ops/_op_impl/cpu/__init__.py +1 -2
- mindspore/ops/_op_impl/cpu/dynamic_shape.py +5 -1
- mindspore/ops/_op_impl/cpu/maximum_grad.py +2 -0
- mindspore/{compression/common/__init__.py → ops/_op_impl/cpu/pyexecute.py} +13 -8
- mindspore/ops/_op_impl/cpu/reduce_sum.py +8 -0
- mindspore/ops/_op_impl/cpu/sparse_slice.py +62 -0
- mindspore/ops/_op_impl/cpu/sparse_slice_grad.py +60 -0
- mindspore/ops/_op_impl/cpu/tensor_shape.py +5 -1
- mindspore/ops/_op_impl/tbe/__init__.py +27 -608
- mindspore/ops/_op_impl/tbe/addcdiv_ds.py +42 -0
- mindspore/ops/_op_impl/tbe/addcmul_ds.py +44 -0
- mindspore/ops/_op_impl/tbe/assign_add_ds.py +1 -0
- mindspore/ops/_op_impl/tbe/atomic_addr_clean.py +1 -1
- mindspore/ops/_op_impl/tbe/avg_pool_3d_grad.py +1 -1
- mindspore/ops/_op_impl/tbe/basic_lstm_cell_c_state_grad_v2.py +0 -1
- mindspore/ops/_op_impl/tbe/batch_to_space.py +1 -1
- mindspore/ops/_op_impl/tbe/batch_to_space_nd.py +1 -1
- mindspore/ops/_op_impl/tbe/batch_to_space_nd_v2.py +41 -0
- mindspore/ops/_op_impl/tbe/bce_with_logits_loss.py +1 -0
- mindspore/ops/_op_impl/tbe/bias_add_grad.py +2 -0
- mindspore/ops/_op_impl/tbe/bn_infer_grad.py +4 -2
- mindspore/ops/_op_impl/tbe/bn_infer_grad_ds.py +40 -0
- mindspore/ops/_op_impl/tbe/bn_training_update.py +0 -1
- mindspore/ops/_op_impl/tbe/bn_training_update_ds.py +0 -1
- mindspore/ops/_op_impl/tbe/broadcast_to_ds.py +6 -4
- mindspore/ops/_op_impl/tbe/cast.py +0 -2
- mindspore/ops/_op_impl/tbe/cast_ds.py +3 -3
- mindspore/ops/_op_impl/tbe/ctc_loss_v2.py +0 -2
- mindspore/ops/_op_impl/tbe/ctc_loss_v2_grad.py +0 -2
- mindspore/ops/_op_impl/tbe/data_format_dim_map_ds.py +1 -0
- mindspore/ops/_op_impl/tbe/deformable_offsets.py +1 -0
- mindspore/ops/_op_impl/tbe/depthwise_conv2d.py +1 -1
- mindspore/ops/_op_impl/tbe/dynamic_atomic_addr_clean.py +1 -1
- mindspore/ops/_op_impl/tbe/gather_nd.py +1 -0
- mindspore/ops/_op_impl/tbe/greater.py +2 -0
- mindspore/ops/_op_impl/tbe/{index_add.py → inplace_index_add.py} +3 -6
- mindspore/ops/_op_impl/tbe/layer_norm_beta_gamma_backprop_v2.py +0 -1
- mindspore/ops/_op_impl/tbe/npu_clear_float_status_v2.py +35 -0
- mindspore/ops/_op_impl/tbe/npu_get_float_status_v2.py +35 -0
- mindspore/ops/_op_impl/tbe/one_hot_ds.py +0 -6
- mindspore/ops/_op_impl/tbe/{greater_ds.py → reduce_all_ds.py} +13 -16
- mindspore/ops/_op_impl/tbe/reduce_any_ds.py +39 -0
- mindspore/ops/_op_impl/tbe/roi_align_ds.py +44 -0
- mindspore/ops/_op_impl/tbe/roi_align_grad_ds.py +44 -0
- mindspore/ops/_op_impl/tbe/scatter_add.py +2 -0
- mindspore/ops/_op_impl/tbe/scatter_nd_add.py +2 -2
- mindspore/ops/_op_impl/tbe/slice.py +26 -15
- mindspore/ops/_op_impl/tbe/space_to_batch.py +1 -1
- mindspore/ops/_op_impl/tbe/space_to_batch_nd.py +1 -1
- mindspore/ops/_op_impl/tbe/strided_slice_grad_d.py +1 -0
- mindspore/ops/_op_impl/tbe/trans_data_ds.py +15 -5
- mindspore/ops/_op_impl/tbe/unsorted_segment_sum.py +1 -1
- mindspore/ops/_op_impl/tbe/unsorted_segment_sum_ds.py +2 -0
- mindspore/ops/_primitive_cache.py +3 -2
- mindspore/ops/_register_for_op.py +11 -0
- mindspore/ops/_utils/__init__.py +1 -1
- mindspore/ops/_utils/utils.py +20 -41
- mindspore/ops/_vmap/__init__.py +2 -2
- mindspore/ops/_vmap/vmap_array_ops.py +170 -78
- mindspore/ops/_vmap/vmap_base.py +24 -10
- mindspore/ops/_vmap/vmap_convolution_ops.py +7 -10
- mindspore/ops/_vmap/vmap_grad_math_ops.py +4 -4
- mindspore/ops/_vmap/vmap_grad_nn_ops.py +41 -9
- mindspore/ops/_vmap/vmap_image_ops.py +52 -0
- mindspore/ops/_vmap/vmap_math_ops.py +77 -6
- mindspore/ops/_vmap/vmap_nn_ops.py +78 -29
- mindspore/ops/_vmap/vmap_other_ops.py +3 -1
- mindspore/ops/_vmap/vmap_random_ops.py +55 -3
- mindspore/ops/_vmap/vmap_sparse_ops.py +1 -0
- mindspore/ops/bprop_mindir/AdaptiveAvgPool2D_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/AdaptiveMaxPool2D_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/ApproximateEqual_bprop.mindir +18 -19
- mindspore/ops/bprop_mindir/Argmax_bprop.mindir +13 -12
- mindspore/ops/bprop_mindir/Argmin_bprop.mindir +14 -13
- mindspore/ops/bprop_mindir/AssignSub_bprop.mindir +17 -18
- mindspore/ops/bprop_mindir/Assign_bprop.mindir +16 -16
- mindspore/ops/bprop_mindir/AvgPool3D_bprop.mindir +150 -0
- mindspore/ops/bprop_mindir/AvgPool_bprop.mindir +66 -0
- mindspore/ops/bprop_mindir/BCEWithLogitsLoss_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/BNTrainingReduce_bprop.mindir +13 -12
- mindspore/ops/bprop_mindir/BatchNormGrad_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/BatchToSpaceND_bprop.mindir +28 -0
- mindspore/ops/bprop_mindir/BiasAddGrad_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/BinaryCrossEntropy_bprop.mindir +33 -0
- mindspore/ops/bprop_mindir/BroadcastTo_bprop.mindir +306 -0
- mindspore/ops/bprop_mindir/Broadcast_bprop.mindir +12 -8
- mindspore/ops/bprop_mindir/CTCLoss_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Concat_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Conv2DBackpropFilter_bprop.mindir +240 -0
- mindspore/ops/bprop_mindir/Conv2DBackpropInput_bprop.mindir +247 -0
- mindspore/ops/bprop_mindir/Conv2DTranspose_bprop.mindir +247 -0
- mindspore/ops/bprop_mindir/Conv3DTranspose_bprop.mindir +315 -0
- mindspore/ops/bprop_mindir/Conv3D_bprop.mindir +278 -0
- mindspore/ops/bprop_mindir/DType_bprop.mindir +12 -12
- mindspore/ops/bprop_mindir/DeformableOffsets_bprop.mindir +58 -0
- mindspore/ops/bprop_mindir/Depend_bprop.mindir +12 -13
- mindspore/ops/bprop_mindir/DepthToSpace_bprop.mindir +23 -0
- mindspore/ops/bprop_mindir/DepthwiseConv2dNative_bprop.mindir +138 -0
- mindspore/ops/bprop_mindir/DiagPart_bprop.mindir +15 -0
- mindspore/ops/bprop_mindir/Dropout2D_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Dropout3D_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/DropoutDoMask_bprop.mindir +22 -24
- mindspore/ops/bprop_mindir/DropoutGenMask_bprop.mindir +16 -14
- mindspore/ops/bprop_mindir/DropoutGrad_bprop.mindir +27 -0
- mindspore/ops/bprop_mindir/Dropout_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/DynamicGRUV2_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/DynamicRNN_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/DynamicShape_bprop.mindir +12 -12
- mindspore/ops/bprop_mindir/Elu_bprop.mindir +16 -0
- mindspore/ops/bprop_mindir/EmbeddingLookup_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Equal_bprop.mindir +18 -19
- mindspore/ops/bprop_mindir/ExpandDims_bprop.mindir +58 -0
- mindspore/ops/bprop_mindir/FastGeLU_bprop.mindir +16 -0
- mindspore/ops/bprop_mindir/Flatten_bprop.mindir +54 -0
- mindspore/ops/bprop_mindir/FloorDiv_bprop.mindir +18 -15
- mindspore/ops/bprop_mindir/GatherD_bprop.mindir +26 -0
- mindspore/ops/bprop_mindir/GatherNd_bprop.mindir +57 -0
- mindspore/ops/bprop_mindir/Gather_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/GreaterEqual_bprop.mindir +17 -18
- mindspore/ops/bprop_mindir/Greater_bprop.mindir +18 -19
- mindspore/ops/bprop_mindir/HSigmoid_bprop.mindir +16 -0
- mindspore/ops/bprop_mindir/HSwish_bprop.mindir +16 -0
- mindspore/ops/bprop_mindir/IOU_bprop.mindir +18 -19
- mindspore/ops/bprop_mindir/InstanceNorm_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/IsFinite_bprop.mindir +13 -12
- mindspore/ops/bprop_mindir/IsInf_bprop.mindir +13 -10
- mindspore/ops/bprop_mindir/IsNan_bprop.mindir +14 -11
- mindspore/ops/bprop_mindir/KLDivLoss_bprop.mindir +126 -0
- mindspore/ops/bprop_mindir/L2Loss_bprop.mindir +15 -0
- mindspore/ops/bprop_mindir/L2Normalize_bprop.mindir +30 -0
- mindspore/ops/bprop_mindir/LRN_bprop.mindir +43 -0
- mindspore/ops/bprop_mindir/LayerNormGrad_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/LessEqual_bprop.mindir +18 -19
- mindspore/ops/bprop_mindir/Less_bprop.mindir +17 -18
- mindspore/ops/bprop_mindir/LinSpace_bprop.mindir +22 -19
- mindspore/ops/bprop_mindir/Load_bprop.mindir +12 -13
- mindspore/ops/bprop_mindir/LogSoftmax_bprop.mindir +23 -0
- mindspore/ops/bprop_mindir/LogicalAnd_bprop.mindir +17 -18
- mindspore/ops/bprop_mindir/LogicalNot_bprop.mindir +14 -13
- mindspore/ops/bprop_mindir/MaskedSelect_bprop.mindir +21 -0
- mindspore/ops/bprop_mindir/MaxPool3DGradGrad_bprop.mindir +74 -0
- mindspore/ops/bprop_mindir/MaxPool3DGrad_bprop.mindir +74 -0
- mindspore/ops/bprop_mindir/MaxPool3D_bprop.mindir +75 -0
- mindspore/ops/bprop_mindir/MaxPoolGradGrad_bprop.mindir +65 -0
- mindspore/ops/bprop_mindir/MaxPoolWithArgmax_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Maximum_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Minimum_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/MirrorPad_bprop.mindir +27 -0
- mindspore/ops/bprop_mindir/Mish_bprop.mindir +35 -0
- mindspore/ops/bprop_mindir/MulNoNan_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/NLLLoss_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/NonZero_bprop.mindir +14 -0
- mindspore/ops/bprop_mindir/NotEqual_bprop.mindir +18 -19
- mindspore/ops/bprop_mindir/OneHot_bprop.mindir +25 -23
- mindspore/ops/bprop_mindir/OnesLike_bprop.mindir +13 -13
- mindspore/ops/bprop_mindir/PReLU_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Pad_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Padding_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/RNNTLoss_bprop.mindir +29 -0
- mindspore/ops/bprop_mindir/ROIAlign_bprop.mindir +82 -0
- mindspore/ops/bprop_mindir/Range_bprop.mindir +21 -19
- mindspore/ops/bprop_mindir/Rank_bprop.mindir +11 -11
- mindspore/ops/bprop_mindir/ReLU6_bprop.mindir +16 -0
- mindspore/ops/bprop_mindir/ReLUV2_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/ReduceAll_bprop.mindir +18 -17
- mindspore/ops/bprop_mindir/ReduceAny_bprop.mindir +18 -17
- mindspore/ops/bprop_mindir/ReluGrad_bprop.mindir +19 -23
- mindspore/ops/bprop_mindir/Reshape_bprop.mindir +60 -0
- mindspore/ops/bprop_mindir/ResizeBilinear_bprop.mindir +29 -0
- mindspore/ops/bprop_mindir/ResizeNearestNeighbor_bprop.mindir +89 -0
- mindspore/ops/bprop_mindir/ReverseSequence_bprop.mindir +52 -0
- mindspore/ops/bprop_mindir/ReverseV2_bprop.mindir +22 -0
- mindspore/ops/bprop_mindir/Round_bprop.mindir +14 -13
- mindspore/ops/bprop_mindir/ScatterMax_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/ScatterMin_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/ScatterNdUpdate_bprop.mindir +22 -0
- mindspore/ops/bprop_mindir/ScatterNd_bprop.mindir +24 -0
- mindspore/ops/bprop_mindir/ScatterNonAliasingAdd_bprop.mindir +22 -0
- mindspore/ops/bprop_mindir/ScatterUpdate_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/SeLU_bprop.mindir +21 -0
- mindspore/ops/bprop_mindir/Select_bprop.mindir +30 -34
- mindspore/ops/bprop_mindir/Shape_bprop.mindir +12 -12
- mindspore/ops/bprop_mindir/SigmoidCrossEntropyWithLogits_bprop.mindir +21 -0
- mindspore/ops/bprop_mindir/SigmoidGrad_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Sigmoid_bprop.mindir +16 -0
- mindspore/ops/bprop_mindir/Sign_bprop.mindir +13 -12
- mindspore/ops/bprop_mindir/Slice_bprop.mindir +26 -0
- mindspore/ops/bprop_mindir/SmoothL1Loss_bprop.mindir +36 -0
- mindspore/ops/bprop_mindir/SoftmaxCrossEntropyWithLogits_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Softplus_bprop.mindir +16 -0
- mindspore/ops/bprop_mindir/Softsign_bprop.mindir +33 -0
- mindspore/ops/bprop_mindir/Sort_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/SpaceToBatchND_bprop.mindir +28 -0
- mindspore/ops/bprop_mindir/SpaceToDepth_bprop.mindir +23 -0
- mindspore/ops/bprop_mindir/SparseGatherV2_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/SparseSoftmaxCrossEntropyWithLogits_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Split_bprop.mindir +22 -0
- mindspore/ops/bprop_mindir/Squeeze_bprop.mindir +54 -0
- mindspore/ops/bprop_mindir/StridedSliceGrad_bprop.mindir +95 -0
- mindspore/ops/bprop_mindir/StridedSlice_bprop.mindir +98 -0
- mindspore/ops/bprop_mindir/Switch_bprop.mindir +28 -32
- mindspore/ops/bprop_mindir/TanhGrad_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Tanh_bprop.mindir +66 -0
- mindspore/ops/bprop_mindir/TensorScatterAdd_bprop.mindir +22 -0
- mindspore/ops/bprop_mindir/TensorScatterUpdate_bprop.mindir +29 -0
- mindspore/ops/bprop_mindir/TensorShape_bprop.mindir +14 -0
- mindspore/ops/bprop_mindir/Tile_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/TopK_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/TransShape_bprop.mindir +23 -0
- mindspore/ops/bprop_mindir/TruncateDiv_bprop.mindir +18 -15
- mindspore/ops/bprop_mindir/TupleGetItem_bprop.mindir +11 -13
- mindspore/ops/bprop_mindir/Unique_bprop.mindir +16 -0
- mindspore/ops/bprop_mindir/Unstack_bprop.mindir +22 -0
- mindspore/ops/bprop_mindir/UpsampleNearest3D_bprop.mindir +32 -0
- mindspore/ops/bprop_mindir/UpsampleTrilinear3D_bprop.mindir +38 -0
- mindspore/ops/bprop_mindir/ZerosLike_bprop.mindir +13 -12
- mindspore/ops/bprop_mindir/__init__.py +1 -4
- mindspore/ops/bprop_mindir/generate_mindir.py +32 -20
- mindspore/ops/composite/__init__.py +12 -13
- mindspore/ops/composite/base.py +261 -254
- mindspore/ops/composite/env_ops.py +41 -0
- mindspore/ops/composite/math_ops.py +197 -156
- mindspore/ops/composite/multitype_ops/_compile_utils.py +428 -176
- mindspore/ops/composite/multitype_ops/_constexpr_utils.py +188 -87
- mindspore/ops/composite/multitype_ops/add_impl.py +23 -1
- mindspore/ops/composite/multitype_ops/div_impl.py +3 -3
- mindspore/ops/composite/multitype_ops/equal_impl.py +1 -0
- mindspore/ops/composite/multitype_ops/floordiv_impl.py +1 -1
- mindspore/ops/composite/multitype_ops/getitem_impl.py +52 -5
- mindspore/ops/composite/multitype_ops/greater_equal_impl.py +31 -0
- mindspore/ops/composite/multitype_ops/greater_impl.py +31 -0
- mindspore/ops/composite/multitype_ops/in_impl.py +15 -3
- mindspore/ops/composite/multitype_ops/less_equal_impl.py +33 -2
- mindspore/ops/composite/multitype_ops/less_impl.py +33 -0
- mindspore/ops/composite/multitype_ops/logical_and_impl.py +2 -2
- mindspore/ops/composite/multitype_ops/logical_or_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/mod_impl.py +1 -1
- mindspore/ops/composite/multitype_ops/mul_impl.py +21 -7
- mindspore/ops/composite/multitype_ops/not_in_impl.py +15 -3
- mindspore/ops/composite/multitype_ops/ones_like_impl.py +2 -4
- mindspore/ops/composite/multitype_ops/pow_impl.py +1 -0
- mindspore/ops/composite/multitype_ops/setitem_impl.py +62 -70
- mindspore/ops/composite/multitype_ops/sub_impl.py +3 -3
- mindspore/ops/composite/multitype_ops/zeros_like_impl.py +41 -4
- mindspore/ops/function/__init__.py +323 -8
- mindspore/ops/function/array_func.py +3511 -780
- mindspore/ops/function/clip_func.py +329 -0
- mindspore/ops/function/debug_func.py +6 -6
- mindspore/ops/function/grad/__init__.py +5 -1
- mindspore/ops/function/grad/grad_func.py +736 -65
- mindspore/ops/function/image_func.py +270 -0
- mindspore/ops/function/linalg_func.py +268 -8
- mindspore/ops/function/math_func.py +8032 -3164
- mindspore/ops/function/nn_func.py +5619 -1855
- mindspore/ops/function/other_func.py +115 -0
- mindspore/ops/function/parameter_func.py +11 -10
- mindspore/ops/function/random_func.py +939 -77
- mindspore/ops/function/sparse_func.py +249 -84
- mindspore/ops/function/sparse_unary_func.py +2303 -0
- mindspore/ops/function/spectral_func.py +146 -0
- mindspore/ops/function/vmap_func.py +114 -0
- mindspore/ops/functional.py +182 -254
- mindspore/ops/op_info_register.py +79 -34
- mindspore/ops/operations/__init__.py +210 -118
- mindspore/ops/operations/_csr_ops.py +7 -7
- mindspore/ops/operations/_embedding_cache_ops.py +25 -15
- mindspore/ops/operations/_grad_ops.py +447 -322
- mindspore/ops/operations/_inner_ops.py +547 -176
- mindspore/ops/operations/_map_tensor_ops.py +112 -0
- mindspore/ops/operations/_ms_kernel.py +29 -27
- mindspore/ops/operations/_ocr_ops.py +11 -11
- mindspore/ops/operations/_opaque_predicate_registry.py +41 -0
- mindspore/ops/operations/_quant_ops.py +186 -101
- mindspore/ops/operations/_rl_inner_ops.py +122 -61
- mindspore/ops/operations/_scalar_ops.py +466 -0
- mindspore/ops/operations/_sequence_ops.py +1047 -0
- mindspore/ops/operations/_tensor_array.py +10 -11
- mindspore/ops/operations/_thor_ops.py +4 -4
- mindspore/ops/operations/array_ops.py +1428 -1226
- mindspore/ops/operations/comm_ops.py +180 -117
- mindspore/ops/operations/control_ops.py +4 -2
- mindspore/ops/operations/custom_ops.py +185 -98
- mindspore/ops/operations/debug_ops.py +92 -54
- mindspore/ops/operations/image_ops.py +406 -211
- mindspore/ops/operations/inner_ops.py +42 -53
- mindspore/ops/operations/linalg_ops.py +32 -29
- mindspore/ops/operations/math_ops.py +2076 -897
- mindspore/ops/operations/nn_ops.py +1282 -1252
- mindspore/ops/operations/other_ops.py +124 -278
- mindspore/ops/operations/random_ops.py +345 -178
- mindspore/ops/operations/rl_ops.py +8 -9
- mindspore/ops/operations/sparse_ops.py +502 -157
- mindspore/ops/operations/spectral_ops.py +107 -0
- mindspore/ops/primitive.py +192 -15
- mindspore/ops/vm_impl_registry.py +23 -2
- mindspore/parallel/__init__.py +6 -1
- mindspore/parallel/_auto_parallel_context.py +199 -92
- mindspore/parallel/_cell_wrapper.py +4 -2
- mindspore/parallel/_cost_model_context.py +3 -0
- mindspore/parallel/_dp_allreduce_fusion.py +2 -1
- mindspore/parallel/_offload_context.py +185 -0
- mindspore/parallel/_parallel_serialization.py +167 -28
- mindspore/parallel/_ps_context.py +9 -5
- mindspore/parallel/_recovery_context.py +1 -1
- mindspore/parallel/_tensor.py +9 -1
- mindspore/{nn/transformer → parallel/_transformer}/__init__.py +6 -6
- mindspore/{nn/transformer → parallel/_transformer}/layers.py +59 -37
- mindspore/{nn/transformer → parallel/_transformer}/loss.py +4 -7
- mindspore/{nn/transformer → parallel/_transformer}/moe.py +160 -35
- mindspore/{nn/transformer → parallel/_transformer}/op_parallel_config.py +3 -3
- mindspore/{nn/transformer → parallel/_transformer}/transformer.py +235 -196
- mindspore/parallel/_utils.py +47 -7
- mindspore/parallel/algo_parameter_config.py +5 -1
- mindspore/parallel/checkpoint_transform.py +329 -0
- mindspore/parallel/shard.py +229 -0
- mindspore/perf_msvcbuildinsights.dll +0 -0
- mindspore/pgodb140.dll +0 -0
- mindspore/pgort140.dll +0 -0
- mindspore/profiler/__init__.py +2 -1
- mindspore/profiler/common/util.py +4 -3
- mindspore/profiler/common/validator/validate_path.py +2 -2
- mindspore/profiler/envprofiling.py +249 -0
- mindspore/profiler/parser/aicpu_data_parser.py +38 -39
- mindspore/profiler/parser/ascend_timeline_generator.py +497 -0
- mindspore/profiler/parser/base_timeline_generator.py +471 -0
- mindspore/profiler/parser/cpu_gpu_timeline_generator.py +684 -0
- mindspore/profiler/parser/framework_parser.py +42 -16
- mindspore/profiler/parser/hccl_parser.py +158 -158
- mindspore/profiler/parser/hwts_log_parser.py +7 -6
- mindspore/profiler/parser/integrator.py +18 -1579
- mindspore/profiler/parser/minddata_analyzer.py +8 -8
- mindspore/profiler/parser/msadvisor_analyzer.py +14 -27
- mindspore/profiler/parser/msadvisor_parser.py +2 -4
- mindspore/profiler/parser/optime_parser.py +17 -18
- mindspore/profiler/parser/profiler_info.py +108 -0
- mindspore/profiler/parser/step_trace_parser.py +1 -1
- mindspore/profiler/profiling.py +396 -194
- mindspore/rewrite/__init__.py +6 -2
- mindspore/rewrite/api/node.py +51 -110
- mindspore/rewrite/api/node_type.py +10 -6
- mindspore/rewrite/api/pattern_engine.py +51 -7
- mindspore/rewrite/api/scoped_value.py +64 -53
- mindspore/rewrite/api/symbol_tree.py +108 -61
- mindspore/rewrite/api/tree_node_helper.py +2 -3
- mindspore/{compression/quant/__init__.py → rewrite/ast_creator_register.py} +20 -11
- mindspore/rewrite/ast_helpers/__init__.py +6 -3
- mindspore/rewrite/ast_helpers/ast_creator.py +115 -0
- mindspore/rewrite/ast_helpers/ast_finder.py +99 -1
- mindspore/rewrite/ast_helpers/ast_modifier.py +17 -4
- mindspore/rewrite/ast_helpers/ast_replacer.py +1 -1
- mindspore/rewrite/ast_transformers/__init__.py +0 -1
- mindspore/rewrite/ast_transformers/flatten_recursive_stmt.py +46 -5
- mindspore/rewrite/ast_transformers/remove_return_out_of_if.py +6 -3
- mindspore/rewrite/common/__init__.py +2 -0
- mindspore/rewrite/common/event.py +1 -1
- mindspore/rewrite/common/observable.py +1 -1
- mindspore/rewrite/common/observer.py +1 -1
- mindspore/rewrite/common/rewrite_elog.py +35 -0
- mindspore/rewrite/namer.py +2 -2
- mindspore/rewrite/namespace.py +14 -4
- mindspore/rewrite/node.py +161 -13
- mindspore/rewrite/parser.py +0 -1
- mindspore/rewrite/parser_register.py +0 -1
- mindspore/rewrite/parsers/arguments_parser.py +3 -2
- mindspore/rewrite/parsers/assign_parser.py +267 -67
- mindspore/rewrite/parsers/attribute_parser.py +56 -0
- mindspore/rewrite/parsers/class_def_parser.py +191 -108
- mindspore/rewrite/parsers/constant_parser.py +101 -0
- mindspore/rewrite/parsers/container_parser.py +88 -0
- mindspore/rewrite/parsers/for_parser.py +28 -15
- mindspore/rewrite/parsers/function_def_parser.py +21 -5
- mindspore/rewrite/parsers/if_parser.py +11 -28
- mindspore/rewrite/parsers/module_parser.py +9 -6
- mindspore/rewrite/parsers/return_parser.py +3 -2
- mindspore/rewrite/sparsify/__init__.py +0 -0
- mindspore/rewrite/sparsify/sparse_transformer.py +448 -0
- mindspore/rewrite/sparsify/sparsify.py +109 -0
- mindspore/rewrite/sparsify/utils.py +173 -0
- mindspore/rewrite/symbol_tree.py +322 -109
- mindspore/rewrite/symbol_tree_builder.py +45 -8
- mindspore/rewrite/symbol_tree_dumper.py +0 -1
- mindspore/rewrite/topological_manager.py +1 -2
- mindspore/run_check/_check_version.py +209 -112
- mindspore/run_check/run_check.py +2 -1
- mindspore/tbbmalloc.dll +0 -0
- mindspore/tinyxml2.dll +0 -0
- mindspore/train/__init__.py +6 -4
- mindspore/train/_utils.py +28 -5
- mindspore/train/amp.py +321 -50
- mindspore/train/callback/__init__.py +3 -1
- mindspore/train/callback/_backup_and_restore.py +120 -0
- mindspore/train/callback/_callback.py +8 -8
- mindspore/train/callback/_checkpoint.py +12 -9
- mindspore/train/callback/_early_stop.py +13 -7
- mindspore/train/callback/_history.py +8 -8
- mindspore/train/callback/_lambda_callback.py +6 -6
- mindspore/train/callback/_landscape.py +36 -38
- mindspore/train/callback/_loss_monitor.py +12 -6
- mindspore/train/callback/_lr_scheduler_callback.py +2 -4
- mindspore/train/callback/_on_request_exit.py +212 -0
- mindspore/train/callback/_reduce_lr_on_plateau.py +13 -7
- mindspore/train/callback/_summary_collector.py +27 -19
- mindspore/train/callback/_time_monitor.py +13 -7
- mindspore/train/checkpoint_pb2.py +68 -8
- mindspore/train/data_sink.py +122 -33
- mindspore/train/dataset_helper.py +28 -87
- mindspore/train/loss_scale_manager.py +4 -7
- mindspore/{nn → train}/metrics/__init__.py +20 -20
- mindspore/{nn → train}/metrics/accuracy.py +12 -10
- mindspore/{nn → train}/metrics/auc.py +4 -4
- mindspore/{nn → train}/metrics/bleu_score.py +4 -4
- mindspore/{nn → train}/metrics/confusion_matrix.py +10 -8
- mindspore/{nn → train}/metrics/cosine_similarity.py +4 -4
- mindspore/{nn → train}/metrics/dice.py +6 -5
- mindspore/{nn → train}/metrics/error.py +7 -5
- mindspore/{nn → train}/metrics/fbeta.py +9 -7
- mindspore/{nn → train}/metrics/hausdorff_distance.py +8 -6
- mindspore/{nn → train}/metrics/loss.py +4 -3
- mindspore/{nn → train}/metrics/mean_surface_distance.py +6 -5
- mindspore/{nn → train}/metrics/metric.py +6 -5
- mindspore/{nn → train}/metrics/occlusion_sensitivity.py +4 -3
- mindspore/{nn → train}/metrics/perplexity.py +5 -4
- mindspore/{nn → train}/metrics/precision.py +5 -4
- mindspore/{nn → train}/metrics/recall.py +5 -4
- mindspore/{nn → train}/metrics/roc.py +7 -6
- mindspore/{nn → train}/metrics/root_mean_square_surface_distance.py +6 -5
- mindspore/{nn → train}/metrics/topk.py +7 -5
- mindspore/train/mind_ir_pb2.py +339 -32
- mindspore/train/model.py +113 -84
- mindspore/train/serialization.py +547 -167
- mindspore/train/summary/_summary_adapter.py +1 -1
- mindspore/train/summary/summary_record.py +43 -12
- mindspore/train/train_thor/convert_utils.py +7 -1
- mindspore/train/train_thor/dataset_helper.py +3 -3
- mindspore/train/train_thor/model_thor.py +0 -4
- mindspore/turbojpeg.dll +0 -0
- mindspore/vcmeta.dll +0 -0
- mindspore/vcruntime140.dll +0 -0
- mindspore/vcruntime140_1.dll +0 -0
- mindspore/version.py +1 -1
- {mindspore-1.10.0.dist-info → mindspore-2.0.0rc1.dist-info}/METADATA +4 -3
- {mindspore-1.10.0.dist-info → mindspore-2.0.0rc1.dist-info}/RECORD +901 -660
- mindspore/compression/common/constant.py +0 -124
- mindspore/compression/export/__init__.py +0 -19
- mindspore/compression/export/quant_export.py +0 -514
- mindspore/compression/quant/qat.py +0 -636
- mindspore/compression/quant/quant_utils.py +0 -462
- mindspore/compression/quant/quantizer.py +0 -68
- mindspore/libatomic-1.dll +0 -0
- mindspore/libgcc_s_seh-1.dll +0 -0
- mindspore/libgfortran-4.dll +0 -0
- mindspore/libgomp-1.dll +0 -0
- mindspore/libjpeg-62.dll +0 -0
- mindspore/libmindspore.dll +0 -0
- mindspore/libmindspore_common.dll +0 -0
- mindspore/libmindspore_core.dll +0 -0
- mindspore/libmindspore_glog.dll +0 -0
- mindspore/libnnacl.dll +0 -0
- mindspore/libopencv_core452.dll +0 -0
- mindspore/libopencv_imgcodecs452.dll +0 -0
- mindspore/libopencv_imgproc452.dll +0 -0
- mindspore/libquadmath-0.dll +0 -0
- mindspore/libsqlite3.dll +0 -0
- mindspore/libssp-0.dll +0 -0
- mindspore/libstdc++-6.dll +0 -0
- mindspore/libtinyxml2.dll +0 -0
- mindspore/libturbojpeg.dll +0 -0
- mindspore/libwinpthread-1.dll +0 -0
- mindspore/nn/layer/quant.py +0 -1868
- mindspore/nn/layer/rnn_utils.py +0 -90
- mindspore/nn/probability/dpn/__init__.py +0 -22
- mindspore/nn/probability/dpn/vae/__init__.py +0 -25
- mindspore/nn/probability/dpn/vae/cvae.py +0 -138
- mindspore/nn/probability/dpn/vae/vae.py +0 -122
- mindspore/nn/probability/infer/__init__.py +0 -22
- mindspore/nn/probability/infer/variational/elbo.py +0 -70
- mindspore/nn/probability/infer/variational/svi.py +0 -84
- mindspore/nn/probability/toolbox/__init__.py +0 -22
- mindspore/nn/probability/toolbox/anomaly_detection.py +0 -99
- mindspore/nn/probability/toolbox/uncertainty_evaluation.py +0 -363
- mindspore/nn/probability/transforms/__init__.py +0 -22
- mindspore/nn/probability/transforms/transform_bnn.py +0 -262
- mindspore/nn/probability/zhusuan/__init__.py +0 -18
- mindspore/nn/probability/zhusuan/framework/__init__.py +0 -18
- mindspore/nn/probability/zhusuan/framework/bn.py +0 -95
- mindspore/nn/probability/zhusuan/variational/__init__.py +0 -18
- mindspore/nn/probability/zhusuan/variational/elbo.py +0 -46
- mindspore/ops/_op_impl/tbe/bias_add_grad_ds.py +0 -52
- mindspore/ops/_op_impl/tbe/scatter_nd_add_ds.py +0 -43
- mindspore/ops/bprop_mindir/AssignAdd_bprop.mindir +0 -20
- mindspore/ops/bprop_mindir/Identity_bprop.mindir +0 -9
- mindspore/ops/bprop_mindir/LogicalOr_bprop.mindir +0 -20
- mindspore/ops/bprop_mindir/ReLU_bprop.mindir +0 -16
- mindspore/ops/bprop_mindir/UpdateState_bprop.mindir +0 -17
- mindspore/ops/bprop_mindir/stop_gradient_bprop.mindir +0 -12
- mindspore/ops/composite/array_ops.py +0 -210
- mindspore/ops/composite/clip_ops.py +0 -238
- mindspore/ops/composite/random_ops.py +0 -426
- mindspore/ops/composite/vmap_ops.py +0 -38
- mindspore/ops/operations/sponge_ops.py +0 -3531
- mindspore/ops/operations/sponge_update_ops.py +0 -2546
- mindspore/parallel/nn/__init__.py +0 -42
- mindspore/parallel/nn/loss.py +0 -22
- mindspore/parallel/nn/moe.py +0 -21
- mindspore/parallel/nn/op_parallel_config.py +0 -22
- mindspore/parallel/nn/transformer.py +0 -31
- mindspore/run_check/_check_deps_version.py +0 -84
- {mindspore-1.10.0.dist-info → mindspore-2.0.0rc1.dist-info}/WHEEL +0 -0
- {mindspore-1.10.0.dist-info → mindspore-2.0.0rc1.dist-info}/entry_points.txt +0 -0
- {mindspore-1.10.0.dist-info → mindspore-2.0.0rc1.dist-info}/top_level.txt +0 -0
|
@@ -1,636 +0,0 @@
|
|
|
1
|
-
# Copyright 2020-2022 Huawei Technologies Co., Ltd
|
|
2
|
-
#
|
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
-
# you may not use this file except in compliance with the License.
|
|
5
|
-
# You may obtain a copy of the License at
|
|
6
|
-
#
|
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
-
#
|
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
-
# See the License for the specific language governing permissions and
|
|
13
|
-
# limitations under the License.
|
|
14
|
-
# ============================================================================
|
|
15
|
-
"""
|
|
16
|
-
Quantization aware training
|
|
17
|
-
|
|
18
|
-
User can use quantization aware to train a model. MindSpore supports quantization aware training,
|
|
19
|
-
which models quantization errors in both the forward and backward passes using fake-quantization
|
|
20
|
-
operations. Note that the entire computation is carried out in floating point. At the end of quantization
|
|
21
|
-
aware training, MindSpore provides conversion functions to convert the trained model into lower precision.
|
|
22
|
-
|
|
23
|
-
Note: This is an experimental interface that is subject to change and/or deletion.
|
|
24
|
-
"""
|
|
25
|
-
|
|
26
|
-
from __future__ import absolute_import
|
|
27
|
-
import re
|
|
28
|
-
import numpy as np
|
|
29
|
-
import mindspore.context as context
|
|
30
|
-
from mindspore import log as logger
|
|
31
|
-
from mindspore import nn, ops
|
|
32
|
-
from mindspore._checkparam import Validator, Rel
|
|
33
|
-
from mindspore.nn.layer import quant
|
|
34
|
-
from mindspore.ops import functional as F
|
|
35
|
-
from ..common import QuantDtype
|
|
36
|
-
from .quantizer import Quantizer, OptimizeOption
|
|
37
|
-
from .quant_utils import compute_kl_threshold
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
__all__ = ["QuantizationAwareTraining", "create_quant_config"]
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
def create_quant_config(quant_observer=(nn.FakeQuantWithMinMaxObserver, nn.FakeQuantWithMinMaxObserver),
|
|
44
|
-
quant_delay=(0, 0),
|
|
45
|
-
quant_dtype=(QuantDtype.INT8, QuantDtype.INT8),
|
|
46
|
-
per_channel=(False, False),
|
|
47
|
-
symmetric=(False, False),
|
|
48
|
-
narrow_range=(False, False),
|
|
49
|
-
mode="DEFAULT"):
|
|
50
|
-
r"""
|
|
51
|
-
Config the observer type of weights and data flow with quant parameters.
|
|
52
|
-
|
|
53
|
-
Args:
|
|
54
|
-
quant_observer (Union[Observer, list, tuple]): The types of observer for quantization. The first element
|
|
55
|
-
applies to weights and the second applies to data flow. Currently, only
|
|
56
|
-
:class:`FakeQuantWithMinMaxObserver` supported.
|
|
57
|
-
Default: (nn.FakeQuantWithMinMaxObserver, nn.FakeQuantWithMinMaxObserver).
|
|
58
|
-
quant_delay (Union[int, list, tuple]): Number of steps after which weights and activations are quantized
|
|
59
|
-
during train and eval. The first element represents weights and the second element represents data flow.
|
|
60
|
-
Default: (0, 0).
|
|
61
|
-
quant_dtype (Union[QuantDtype, list, tuple]): Datatype used to quantize weights and activations. The first
|
|
62
|
-
element represents weights and the second element represents data flow.
|
|
63
|
-
Default: (QuantDtype.INT8, QuantDtype.INT8).
|
|
64
|
-
per_channel (Union[bool, list, tuple]): Quantization granularity based on layer or on channel. If `True`
|
|
65
|
-
then base on per channel, otherwise base on per layer. The first element represents weights
|
|
66
|
-
and the second element represents data flow, and the second element must be `False` now.
|
|
67
|
-
Default: (False, False).
|
|
68
|
-
symmetric (Union[bool, list, tuple]): Whether the quantization algorithm is symmetric or not. If `True` then
|
|
69
|
-
base on symmetric, otherwise base on asymmetric. The first element represents weights and the second
|
|
70
|
-
element represents data flow. Default: (False, False).
|
|
71
|
-
narrow_range (Union[bool, list, tuple]): Whether the quantization algorithm uses narrow range or not.
|
|
72
|
-
The first element represents weights and the second element represents data flow.
|
|
73
|
-
Default: (False, False).
|
|
74
|
-
mode (str): Optional quantization mode, currently only `DEFAULT`(QAT) and `LEARNED_SCALE` are supported.
|
|
75
|
-
Default: "DEFAULT".
|
|
76
|
-
|
|
77
|
-
Returns:
|
|
78
|
-
QuantConfig, contains the observer type of weight and activation.
|
|
79
|
-
|
|
80
|
-
Raises:
|
|
81
|
-
ValueError: If the second element of `per_channel` is not `False`.
|
|
82
|
-
"""
|
|
83
|
-
if per_channel[-1]:
|
|
84
|
-
raise ValueError("Arg 'per_channel' second element must be 'False'.")
|
|
85
|
-
weight_observer = quant_observer[0].partial_init(quant_delay=quant_delay[0], quant_dtype=quant_dtype[0],
|
|
86
|
-
per_channel=per_channel[0], symmetric=symmetric[0],
|
|
87
|
-
narrow_range=narrow_range[0], mode=mode)
|
|
88
|
-
act_observer = quant_observer[-1].partial_init(quant_delay=quant_delay[-1], quant_dtype=quant_dtype[-1],
|
|
89
|
-
per_channel=per_channel[-1], symmetric=symmetric[-1],
|
|
90
|
-
narrow_range=narrow_range[-1], mode=mode)
|
|
91
|
-
return quant.QuantConfig(weight=weight_observer, activation=act_observer)
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
class _AddFakeQuantInput(nn.Cell):
|
|
95
|
-
"""
|
|
96
|
-
Add FakeQuant OP at input of the network. Only support one input case.
|
|
97
|
-
"""
|
|
98
|
-
|
|
99
|
-
def __init__(self, network, quant_delay=0):
|
|
100
|
-
super(_AddFakeQuantInput, self).__init__(auto_prefix=False)
|
|
101
|
-
self.fake_quant_input = quant.FakeQuantWithMinMaxObserver(min_init=-6, max_init=6,
|
|
102
|
-
quant_delay=quant_delay, ema=True)
|
|
103
|
-
self.fake_quant_input.update_parameters_name('fake_quant_input.')
|
|
104
|
-
self.network = network
|
|
105
|
-
|
|
106
|
-
def construct(self, data):
|
|
107
|
-
data = self.fake_quant_input(data)
|
|
108
|
-
output = self.network(data)
|
|
109
|
-
return output
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
class _AddFakeQuantAfterSubCell(nn.Cell):
|
|
113
|
-
"""
|
|
114
|
-
Add FakeQuant OP after of the sub Cell.
|
|
115
|
-
"""
|
|
116
|
-
|
|
117
|
-
def __init__(self, subcell, **kwargs):
|
|
118
|
-
super(_AddFakeQuantAfterSubCell, self).__init__(auto_prefix=False)
|
|
119
|
-
self.subcell = subcell
|
|
120
|
-
self.mode = "DEFAULT"
|
|
121
|
-
self.max_init = 6
|
|
122
|
-
self.min_init = -6
|
|
123
|
-
|
|
124
|
-
if kwargs.get("optimize_option") is not None and OptimizeOption.LEARNED_SCALE in kwargs["optimize_option"]:
|
|
125
|
-
self.mode = "LEARNED_SCALE"
|
|
126
|
-
self.max_init = 16
|
|
127
|
-
self.min_init = -16
|
|
128
|
-
|
|
129
|
-
self.fake_quant_act = quant.FakeQuantWithMinMaxObserver(min_init=self.min_init,
|
|
130
|
-
max_init=self.max_init,
|
|
131
|
-
ema=True,
|
|
132
|
-
quant_dtype=kwargs.get("quant_dtype"),
|
|
133
|
-
quant_delay=kwargs.get("quant_delay"),
|
|
134
|
-
per_channel=kwargs.get("per_channel"),
|
|
135
|
-
symmetric=kwargs.get("symmetric"),
|
|
136
|
-
narrow_range=kwargs.get("narrow_range"),
|
|
137
|
-
mode=self.mode)
|
|
138
|
-
|
|
139
|
-
def construct(self, *data):
|
|
140
|
-
output = self.subcell(*data)
|
|
141
|
-
output = self.fake_quant_act(output)
|
|
142
|
-
return output
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
class QuantizationAwareTraining(Quantizer):
|
|
146
|
-
r"""
|
|
147
|
-
Quantizer for quantization aware training.
|
|
148
|
-
|
|
149
|
-
Args:
|
|
150
|
-
bn_fold (bool): Whether to use bn fold ops for simulation inference operation. Default: True.
|
|
151
|
-
freeze_bn (int): Number of steps after which BatchNorm OP parameters fixed to global mean and variance.
|
|
152
|
-
Default: 1e7.
|
|
153
|
-
quant_delay (Union[int, list, tuple]): Number of steps after which weights and activations are quantized
|
|
154
|
-
during train and eval. The first element represents weights and the second element represents data flow.
|
|
155
|
-
Default: (0, 0).
|
|
156
|
-
quant_dtype (Union[QuantDtype, list, tuple]): Datatype used to quantize weights and activations. The first
|
|
157
|
-
element represents weights and the second element represents data flow. It is necessary to consider the
|
|
158
|
-
precision support of hardware devices in the practical quantization infer scenario.
|
|
159
|
-
Default: (QuantDtype.INT8, QuantDtype.INT8).
|
|
160
|
-
per_channel (Union[bool, list, tuple]): Quantization granularity based on layer or on channel. If `True`
|
|
161
|
-
then base on per channel, otherwise base on per layer. The first element represents weights and the
|
|
162
|
-
second element represents data flow, and the second element must be `False` now. Default: (False, False).
|
|
163
|
-
symmetric (Union[bool, list, tuple]): Whether the quantization algorithm is symmetric or not. If `True` then
|
|
164
|
-
base on symmetric, otherwise base on asymmetric. The first element represents weights and the second
|
|
165
|
-
element represents data flow. Default: (False, False).
|
|
166
|
-
narrow_range (Union[bool, list, tuple]): Whether the quantization algorithm uses narrow range or not.
|
|
167
|
-
The first element represents weights and the second element represents data flow.
|
|
168
|
-
Default: (False, False).
|
|
169
|
-
optimize_option (Union[OptimizeOption, list, tuple]): Specifies the quant algorithm and options, currently
|
|
170
|
-
only support `QAT` and `LEARNED_SCALE` (Note that, if both `QAT` and `LEARNED_SCALE` are configured,
|
|
171
|
-
`LEARNED_SCALE` has a higher priority. `LEARNED_SCALE` currently only work under some constraints, which
|
|
172
|
-
includes: freeze_bn=0, quant_delay=0, symmetric=True, narrow_range=True, More specifically, for operators
|
|
173
|
-
such as Relu and Relu6, which only have positive values, we add a negative truncation to optimize this
|
|
174
|
-
scenario, and narrow_range will automatically match to False). Default: OptimizeOption.QAT.
|
|
175
|
-
one_conv_fold (bool): Whether to use one conv bn fold ops for simulation inference operation. Default: True.
|
|
176
|
-
|
|
177
|
-
Supported Platforms:
|
|
178
|
-
``Ascend`` ``GPU``
|
|
179
|
-
|
|
180
|
-
Raises:
|
|
181
|
-
TypeError: If the element of `quant_delay` or `freeze_bn` is not int.
|
|
182
|
-
TypeError: If `bn_fold`, `one_conv_fold` or the element of `per_channel`, `symmetric`, `narrow_range`
|
|
183
|
-
is not bool.
|
|
184
|
-
TypeError: If the element of `quant_dtype` is not `QuantDtype`.
|
|
185
|
-
ValueError: If the length of `quant_delay`, `quant_dtype`, `per_channel`, `symmetric` or `narrow_range` is
|
|
186
|
-
not less than 2.
|
|
187
|
-
ValueError: If the `optimize_option` is `LEARNED_SCALE` and `freeze_bn` is not equal to 0.
|
|
188
|
-
ValueError: If the `optimize_option` is `LEARNED_SCALE` and `symmetric` is not (True, True).
|
|
189
|
-
ValueError: If the `optimize_option` is `LEARNED_SCALE` and `narrow_range` is not (True, True).
|
|
190
|
-
ValueError: If the `optimize_option` is `LEARNED_SCALE` and `quant_delay` is not (0, 0).
|
|
191
|
-
|
|
192
|
-
Examples:
|
|
193
|
-
>>> from mindspore.compression.quant import QuantizationAwareTraining
|
|
194
|
-
>>> from mindspore import nn
|
|
195
|
-
>>> class LeNet5(nn.Cell):
|
|
196
|
-
... def __init__(self, num_class=10, channel=1):
|
|
197
|
-
... super(LeNet5, self).__init__()
|
|
198
|
-
... self.type = "fusion"
|
|
199
|
-
... self.num_class = num_class
|
|
200
|
-
...
|
|
201
|
-
... # change `nn.Conv2d` to `nn.Conv2dBnAct`
|
|
202
|
-
... self.conv1 = nn.Conv2dBnAct(channel, 6, 5, pad_mode='valid', activation='relu')
|
|
203
|
-
... self.conv2 = nn.Conv2dBnAct(6, 16, 5, pad_mode='valid', activation='relu')
|
|
204
|
-
... # change `nn.Dense` to `nn.DenseBnAct`
|
|
205
|
-
... self.fc1 = nn.DenseBnAct(16 * 5 * 5, 120, activation='relu')
|
|
206
|
-
... self.fc2 = nn.DenseBnAct(120, 84, activation='relu')
|
|
207
|
-
... self.fc3 = nn.DenseBnAct(84, self.num_class)
|
|
208
|
-
...
|
|
209
|
-
... self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
|
|
210
|
-
... self.flatten = nn.Flatten()
|
|
211
|
-
...
|
|
212
|
-
... def construct(self, x):
|
|
213
|
-
... x = self.conv1(x)
|
|
214
|
-
... x = self.max_pool2d(x)
|
|
215
|
-
... x = self.conv2(x)
|
|
216
|
-
... x = self.max_pool2d(x)
|
|
217
|
-
... x = self.flatten(x)
|
|
218
|
-
... x = self.fc1(x)
|
|
219
|
-
... x = self.fc2(x)
|
|
220
|
-
... x = self.fc3(x)
|
|
221
|
-
... return x
|
|
222
|
-
...
|
|
223
|
-
>>> net = LeNet5()
|
|
224
|
-
>>> quantizer = QuantizationAwareTraining(bn_fold=False, per_channel=[True, False], symmetric=[True, False])
|
|
225
|
-
>>> net_qat = quantizer.quantize(net)
|
|
226
|
-
"""
|
|
227
|
-
__quant_op_name__ = ["Add", "Sub", "Mul", "RealDiv", "ReduceMean"]
|
|
228
|
-
|
|
229
|
-
def __init__(self,
|
|
230
|
-
bn_fold=True,
|
|
231
|
-
freeze_bn=10000000,
|
|
232
|
-
quant_delay=(0, 0),
|
|
233
|
-
quant_dtype=(QuantDtype.INT8, QuantDtype.INT8),
|
|
234
|
-
per_channel=(False, False),
|
|
235
|
-
symmetric=(False, False),
|
|
236
|
-
narrow_range=(False, False),
|
|
237
|
-
optimize_option=OptimizeOption.QAT,
|
|
238
|
-
one_conv_fold=True):
|
|
239
|
-
"""Init for QuantizationAwareTraining quantizer"""
|
|
240
|
-
super(QuantizationAwareTraining, self).__init__(optimize_option=optimize_option)
|
|
241
|
-
|
|
242
|
-
def convert2list(name, value):
|
|
243
|
-
if not isinstance(value, list) and not isinstance(value, tuple):
|
|
244
|
-
value = [value]
|
|
245
|
-
elif len(value) > 2:
|
|
246
|
-
raise ValueError("input `{}` len should less then 2".format(name))
|
|
247
|
-
return value
|
|
248
|
-
|
|
249
|
-
quant_delay_list = convert2list("quant delay", quant_delay)
|
|
250
|
-
quant_dtype_list = convert2list("quant dtype", quant_dtype)
|
|
251
|
-
per_channel_list = convert2list("per channel", per_channel)
|
|
252
|
-
symmetric_list = convert2list("symmetric", symmetric)
|
|
253
|
-
narrow_range_list = convert2list("narrow range", narrow_range)
|
|
254
|
-
|
|
255
|
-
self.weight_qdelay = Validator.check_non_negative_int(quant_delay_list[0], "quant delay")
|
|
256
|
-
self.act_qdelay = Validator.check_int(quant_delay_list[-1], 0, Rel.GE, "quant delay")
|
|
257
|
-
self.bn_fold = Validator.check_bool(bn_fold, "bn fold")
|
|
258
|
-
self.freeze_bn = Validator.check_non_negative_int(freeze_bn, "freeze bn")
|
|
259
|
-
self.weight_dtype = Validator.check_isinstance("weights dtype", quant_dtype_list[0], QuantDtype)
|
|
260
|
-
self.act_dtype = Validator.check_isinstance("activations dtype", quant_dtype_list[-1], QuantDtype)
|
|
261
|
-
self.weight_channel = Validator.check_bool(per_channel_list[0], "per channel")
|
|
262
|
-
self.act_channel = Validator.check_bool(per_channel_list[-1], "per channel")
|
|
263
|
-
self.weight_symmetric = Validator.check_bool(symmetric_list[0], "symmetric")
|
|
264
|
-
self.act_symmetric = Validator.check_bool(symmetric_list[-1], "symmetric")
|
|
265
|
-
self.weight_range = Validator.check_bool(narrow_range_list[0], "narrow range")
|
|
266
|
-
self.act_range = Validator.check_bool(narrow_range_list[-1], "narrow range")
|
|
267
|
-
self.one_conv_fold = Validator.check_bool(one_conv_fold, "one conv fold")
|
|
268
|
-
self._convert_method_map = {nn.Conv2dBnAct: self._convert_conv,
|
|
269
|
-
nn.DenseBnAct: self._convert_dense}
|
|
270
|
-
self.mode = "DEFAULT"
|
|
271
|
-
if OptimizeOption.LEARNED_SCALE in self.optimize_option:
|
|
272
|
-
self.mode = "LEARNED_SCALE"
|
|
273
|
-
if not self.weight_symmetric or not self.act_symmetric:
|
|
274
|
-
raise ValueError("OptimizeOption.LEARNED_SCALE currently only support "
|
|
275
|
-
"symmetric=(True, True) for quant")
|
|
276
|
-
if not self.weight_range or not self.act_range:
|
|
277
|
-
raise ValueError("OptimizeOption.LEARNED_SCALE currently only support narrow_range=(True, True) "
|
|
278
|
-
"for quant")
|
|
279
|
-
if self.freeze_bn != 0:
|
|
280
|
-
raise ValueError("OptimizeOption.LEARNED_SCALE currently only support freeze_bn equal to 0, "
|
|
281
|
-
"but get freeze_bn={}".format(self.freeze_bn))
|
|
282
|
-
if self.weight_qdelay != 0 or self.act_qdelay != 0:
|
|
283
|
-
raise ValueError("OptimizeOption.LEARNED_SCALE currently only support quant_delay=(0, 0)")
|
|
284
|
-
self.quant_config = create_quant_config(quant_delay=quant_delay_list,
|
|
285
|
-
quant_dtype=quant_dtype_list,
|
|
286
|
-
per_channel=per_channel_list,
|
|
287
|
-
symmetric=symmetric_list,
|
|
288
|
-
narrow_range=narrow_range_list,
|
|
289
|
-
mode=self.mode)
|
|
290
|
-
self.eps = 1e-5
|
|
291
|
-
|
|
292
|
-
@staticmethod
|
|
293
|
-
def _convert_op_name(name):
|
|
294
|
-
pattern = re.compile(r'([A-Z]{1})')
|
|
295
|
-
name_new = re.sub(pattern, r'_\1', name).lower()
|
|
296
|
-
if name_new[0] == '_':
|
|
297
|
-
name_new = name_new[1:]
|
|
298
|
-
return name_new
|
|
299
|
-
|
|
300
|
-
def quantize(self, network):
|
|
301
|
-
"""
|
|
302
|
-
Quant API to convert input network to a quantization aware training network.
|
|
303
|
-
|
|
304
|
-
Note:
|
|
305
|
-
Please refer to the Examples of class: `mindspore.compression.quant.QuantizationAwareTraining`.
|
|
306
|
-
|
|
307
|
-
Args:
|
|
308
|
-
network (Cell): network to be quantized.
|
|
309
|
-
|
|
310
|
-
Returns:
|
|
311
|
-
Cell, a quantization aware training network.
|
|
312
|
-
|
|
313
|
-
Raises:
|
|
314
|
-
KeyError: If the `device_target` set in context is not in `support_device`.
|
|
315
|
-
"""
|
|
316
|
-
|
|
317
|
-
logger.warning("The compression module is deprecated and may not be supported in later version, please use "
|
|
318
|
-
"MindSpore Golden Stick(https://gitee.com/mindspore/golden-stick) instead.")
|
|
319
|
-
support_device = ["Ascend", "GPU"]
|
|
320
|
-
if context.get_context('device_target') not in support_device:
|
|
321
|
-
raise KeyError("Unsupported {} device target.".format(context.get_context('device_target')))
|
|
322
|
-
|
|
323
|
-
if OptimizeOption.QAT in self.optimize_option or OptimizeOption.LEARNED_SCALE in self.optimize_option:
|
|
324
|
-
network.update_cell_prefix()
|
|
325
|
-
network = self._convert_subcells2quant(network)
|
|
326
|
-
network.update_cell_type("quant")
|
|
327
|
-
return network
|
|
328
|
-
|
|
329
|
-
def _convert_subcells2quant(self, network):
|
|
330
|
-
"""
|
|
331
|
-
convert sub cell like `Conv2dBnAct` and `DenseBnAct` to quant cell
|
|
332
|
-
"""
|
|
333
|
-
cells = network.name_cells()
|
|
334
|
-
change = False
|
|
335
|
-
for name in cells:
|
|
336
|
-
subcell = cells[name]
|
|
337
|
-
if subcell == network:
|
|
338
|
-
continue
|
|
339
|
-
if isinstance(subcell, (nn.Conv2dBnAct, nn.DenseBnAct)):
|
|
340
|
-
prefix = subcell.param_prefix
|
|
341
|
-
new_subcell = self._convert_method_map[type(subcell)](subcell)
|
|
342
|
-
new_subcell.update_parameters_name(prefix + '.')
|
|
343
|
-
network.insert_child_to_cell(name, new_subcell)
|
|
344
|
-
change = True
|
|
345
|
-
else:
|
|
346
|
-
self._convert_subcells2quant(subcell)
|
|
347
|
-
if isinstance(network, nn.SequentialCell) and change:
|
|
348
|
-
network.cell_list = list(network.cells())
|
|
349
|
-
|
|
350
|
-
# add FakeQuant OP after OP in white list, but not including those wrapped in the below quantization cell.
|
|
351
|
-
if isinstance(network, (nn.FakeQuantWithMinMaxObserver,
|
|
352
|
-
nn.Conv2dBnFoldQuantOneConv,
|
|
353
|
-
nn.Conv2dBnFoldQuant,
|
|
354
|
-
nn.Conv2dBnWithoutFoldQuant,
|
|
355
|
-
nn.Conv2dQuant,
|
|
356
|
-
nn.DenseQuant,
|
|
357
|
-
nn.ActQuant,
|
|
358
|
-
nn.TensorAddQuant,
|
|
359
|
-
nn.MulQuant)):
|
|
360
|
-
return network
|
|
361
|
-
|
|
362
|
-
add_list = []
|
|
363
|
-
for name in network.__dict__:
|
|
364
|
-
if name[0] == '_':
|
|
365
|
-
continue
|
|
366
|
-
attr = network.__dict__[name]
|
|
367
|
-
if isinstance(attr, ops.Primitive) and attr.name in self.__quant_op_name__:
|
|
368
|
-
add_list.append((name, attr))
|
|
369
|
-
for name, prim_op in add_list:
|
|
370
|
-
prefix = name
|
|
371
|
-
add_quant = _AddFakeQuantAfterSubCell(prim_op,
|
|
372
|
-
quant_dtype=self.act_dtype,
|
|
373
|
-
quant_delay=self.act_qdelay,
|
|
374
|
-
per_channel=self.act_channel,
|
|
375
|
-
symmetric=self.act_symmetric,
|
|
376
|
-
narrow_range=self.act_range,
|
|
377
|
-
optimize_option=self.optimize_option)
|
|
378
|
-
if network.param_prefix:
|
|
379
|
-
prefix = '.'.join([network.param_prefix, prefix])
|
|
380
|
-
add_quant.update_parameters_name(prefix + '.')
|
|
381
|
-
del network.__dict__[name]
|
|
382
|
-
network.insert_child_to_cell(name, add_quant)
|
|
383
|
-
return network
|
|
384
|
-
|
|
385
|
-
def _convert_conv(self, subcell):
|
|
386
|
-
"""
|
|
387
|
-
convert Conv2d cell to quant cell
|
|
388
|
-
"""
|
|
389
|
-
min_init = -6
|
|
390
|
-
max_init = 6
|
|
391
|
-
if self.eps == 0:
|
|
392
|
-
raise ValueError("`epsilon` is zero may lead to divide zero error")
|
|
393
|
-
if OptimizeOption.LEARNED_SCALE in self.optimize_option:
|
|
394
|
-
subcell_weight_para = subcell.conv.weight.data.asnumpy()
|
|
395
|
-
if subcell.has_bn:
|
|
396
|
-
scale_factor = (subcell.batchnorm.gamma.data.asnumpy() /
|
|
397
|
-
np.sqrt(subcell.batchnorm.moving_variance.data.asnumpy() + self.eps))
|
|
398
|
-
subcell_weight_para = subcell_weight_para * scale_factor.reshape(-1, 1, 1, 1)
|
|
399
|
-
min_init, max_init = self._kl_init(subcell_weight_para, self.weight_dtype)
|
|
400
|
-
self.quant_config = self.quant_config._replace(
|
|
401
|
-
weight=self.quant_config.weight.partial_init(min_init=min_init, max_init=max_init))
|
|
402
|
-
|
|
403
|
-
conv_inner = subcell.conv
|
|
404
|
-
if subcell.has_bn:
|
|
405
|
-
bn_inner = subcell.batchnorm
|
|
406
|
-
if self.bn_fold:
|
|
407
|
-
if self.one_conv_fold:
|
|
408
|
-
conv_inner = quant.Conv2dBnFoldQuantOneConv(conv_inner.in_channels,
|
|
409
|
-
conv_inner.out_channels,
|
|
410
|
-
kernel_size=conv_inner.kernel_size,
|
|
411
|
-
stride=conv_inner.stride,
|
|
412
|
-
pad_mode=conv_inner.pad_mode,
|
|
413
|
-
padding=conv_inner.padding,
|
|
414
|
-
dilation=conv_inner.dilation,
|
|
415
|
-
group=conv_inner.group,
|
|
416
|
-
eps=bn_inner.eps,
|
|
417
|
-
momentum=1 - bn_inner.momentum,
|
|
418
|
-
has_bias=conv_inner.has_bias,
|
|
419
|
-
bias_init=conv_inner.bias_init,
|
|
420
|
-
quant_config=self.quant_config,
|
|
421
|
-
quant_dtype=self.weight_dtype,
|
|
422
|
-
fake=True)
|
|
423
|
-
else:
|
|
424
|
-
conv_inner = quant.Conv2dBnFoldQuant(conv_inner.in_channels,
|
|
425
|
-
conv_inner.out_channels,
|
|
426
|
-
kernel_size=conv_inner.kernel_size,
|
|
427
|
-
stride=conv_inner.stride,
|
|
428
|
-
pad_mode=conv_inner.pad_mode,
|
|
429
|
-
padding=conv_inner.padding,
|
|
430
|
-
dilation=conv_inner.dilation,
|
|
431
|
-
group=conv_inner.group,
|
|
432
|
-
eps=bn_inner.eps,
|
|
433
|
-
momentum=1 - bn_inner.momentum,
|
|
434
|
-
has_bias=conv_inner.has_bias,
|
|
435
|
-
bias_init=conv_inner.bias_init,
|
|
436
|
-
freeze_bn=self.freeze_bn,
|
|
437
|
-
quant_config=self.quant_config,
|
|
438
|
-
quant_dtype=self.weight_dtype,
|
|
439
|
-
fake=True)
|
|
440
|
-
# change original network Batch Normalization OP parameters to quant network
|
|
441
|
-
conv_inner.gamma = subcell.batchnorm.gamma
|
|
442
|
-
conv_inner.beta = subcell.batchnorm.beta
|
|
443
|
-
conv_inner.moving_mean = subcell.batchnorm.moving_mean
|
|
444
|
-
conv_inner.moving_variance = subcell.batchnorm.moving_variance
|
|
445
|
-
else:
|
|
446
|
-
conv_inner = quant.Conv2dBnWithoutFoldQuant(conv_inner.in_channels,
|
|
447
|
-
conv_inner.out_channels,
|
|
448
|
-
kernel_size=conv_inner.kernel_size,
|
|
449
|
-
stride=conv_inner.stride,
|
|
450
|
-
pad_mode=conv_inner.pad_mode,
|
|
451
|
-
padding=conv_inner.padding,
|
|
452
|
-
dilation=conv_inner.dilation,
|
|
453
|
-
group=conv_inner.group,
|
|
454
|
-
eps=bn_inner.eps,
|
|
455
|
-
momentum=1 - bn_inner.momentum,
|
|
456
|
-
has_bias=conv_inner.has_bias,
|
|
457
|
-
bias_init=conv_inner.bias_init,
|
|
458
|
-
quant_config=self.quant_config)
|
|
459
|
-
# change original network Batch Normalization OP parameters to quant network
|
|
460
|
-
conv_inner.batchnorm.gamma = subcell.batchnorm.gamma
|
|
461
|
-
conv_inner.batchnorm.beta = subcell.batchnorm.beta
|
|
462
|
-
conv_inner.batchnorm.moving_mean = subcell.batchnorm.moving_mean
|
|
463
|
-
conv_inner.batchnorm.moving_variance = subcell.batchnorm.moving_variance
|
|
464
|
-
del subcell.batchnorm
|
|
465
|
-
subcell.batchnorm = None
|
|
466
|
-
subcell.has_bn = False
|
|
467
|
-
else:
|
|
468
|
-
conv_inner = quant.Conv2dQuant(conv_inner.in_channels, conv_inner.out_channels,
|
|
469
|
-
kernel_size=conv_inner.kernel_size, stride=conv_inner.stride,
|
|
470
|
-
pad_mode=conv_inner.pad_mode, padding=conv_inner.padding,
|
|
471
|
-
dilation=conv_inner.dilation, group=conv_inner.group,
|
|
472
|
-
has_bias=conv_inner.has_bias, quant_config=self.quant_config,
|
|
473
|
-
quant_dtype=self.weight_dtype)
|
|
474
|
-
# change original network Conv2D OP parameters to quant network
|
|
475
|
-
conv_inner.weight = subcell.conv.weight
|
|
476
|
-
if subcell.conv.has_bias:
|
|
477
|
-
conv_inner.bias = subcell.conv.bias
|
|
478
|
-
subcell.conv = conv_inner
|
|
479
|
-
if subcell.has_act and subcell.activation is not None:
|
|
480
|
-
subcell.activation = self._convert_activation(subcell.activation)
|
|
481
|
-
elif subcell.after_fake:
|
|
482
|
-
subcell.has_act = True
|
|
483
|
-
subcell.activation = _AddFakeQuantAfterSubCell(F.identity, quant_dtype=self.act_dtype,
|
|
484
|
-
quant_delay=self.act_qdelay, per_channel=self.act_channel,
|
|
485
|
-
symmetric=self.act_symmetric, narrow_range=self.act_range,
|
|
486
|
-
optimize_option=self.optimize_option)
|
|
487
|
-
return subcell
|
|
488
|
-
|
|
489
|
-
def _convert_dense(self, subcell):
|
|
490
|
-
"""
|
|
491
|
-
convert dense cell to quant cell
|
|
492
|
-
"""
|
|
493
|
-
min_init = -6
|
|
494
|
-
max_init = 6
|
|
495
|
-
if self.eps == 0:
|
|
496
|
-
raise ValueError("`epsilon` is zero may lead to divide zero error")
|
|
497
|
-
if OptimizeOption.LEARNED_SCALE in self.optimize_option:
|
|
498
|
-
subcell_weight_para = subcell.dense.weight.data.asnumpy()
|
|
499
|
-
if subcell.has_bn:
|
|
500
|
-
scale_factor = (subcell.batchnorm.gamma.data.asnumpy() /
|
|
501
|
-
np.sqrt(subcell.batchnorm.moving_variance.data.asnumpy() + self.eps))
|
|
502
|
-
subcell_weight_para = subcell_weight_para * scale_factor.reshape(-1, 1, 1, 1)
|
|
503
|
-
min_init, max_init = self._kl_init(subcell_weight_para, self.weight_dtype)
|
|
504
|
-
self.quant_config = self.quant_config._replace(
|
|
505
|
-
weight=self.quant_config.weight.partial_init(min_init=min_init, max_init=max_init))
|
|
506
|
-
|
|
507
|
-
dense_inner = subcell.dense
|
|
508
|
-
dense_inner = quant.DenseQuant(dense_inner.in_channels,
|
|
509
|
-
dense_inner.out_channels,
|
|
510
|
-
has_bias=dense_inner.has_bias,
|
|
511
|
-
quant_config=self.quant_config,
|
|
512
|
-
quant_dtype=self.weight_dtype)
|
|
513
|
-
# change original network Dense OP parameters to quant network
|
|
514
|
-
dense_inner.weight = subcell.dense.weight
|
|
515
|
-
if subcell.dense.has_bias:
|
|
516
|
-
dense_inner.bias = subcell.dense.bias
|
|
517
|
-
subcell.dense = dense_inner
|
|
518
|
-
if subcell.has_act and subcell.activation is not None:
|
|
519
|
-
subcell.activation = self._convert_activation(subcell.activation)
|
|
520
|
-
elif subcell.after_fake:
|
|
521
|
-
subcell.has_act = True
|
|
522
|
-
subcell.activation = _AddFakeQuantAfterSubCell(F.identity,
|
|
523
|
-
quant_dtype=self.act_dtype,
|
|
524
|
-
quant_delay=self.act_qdelay,
|
|
525
|
-
per_channel=self.act_channel,
|
|
526
|
-
symmetric=self.act_symmetric,
|
|
527
|
-
narrow_range=self.act_range,
|
|
528
|
-
optimize_option=self.optimize_option)
|
|
529
|
-
return subcell
|
|
530
|
-
|
|
531
|
-
def _convert_activation(self, activation):
|
|
532
|
-
"""
|
|
533
|
-
convert activation cell to quant cell
|
|
534
|
-
"""
|
|
535
|
-
act_class = activation.__class__
|
|
536
|
-
act_list = [nn.ReLU, nn.ReLU6, nn.Sigmoid]
|
|
537
|
-
act_list_with_fake_before = [nn.LeakyReLU, nn.HSigmoid, nn.HSwish]
|
|
538
|
-
|
|
539
|
-
if act_class in act_list:
|
|
540
|
-
return quant.ActQuant(activation=activation,
|
|
541
|
-
quant_config=self.quant_config,
|
|
542
|
-
quant_dtype=self.act_dtype)
|
|
543
|
-
if act_class in act_list_with_fake_before:
|
|
544
|
-
return quant.ActQuant(activation=activation,
|
|
545
|
-
ema=True,
|
|
546
|
-
fake_before=True,
|
|
547
|
-
quant_config=self.quant_config,
|
|
548
|
-
quant_dtype=self.act_dtype)
|
|
549
|
-
raise ValueError("Unsupported activation in auto quant: ", act_class)
|
|
550
|
-
|
|
551
|
-
def _kl_init(self, subcell_weight_para, weight_dtype):
|
|
552
|
-
"""
|
|
553
|
-
Calculate the value of max_init and min_init with compute_kl_threshold.
|
|
554
|
-
"""
|
|
555
|
-
if self.weight_channel:
|
|
556
|
-
max_init = [compute_kl_threshold(weight_para_each, weight_dtype)
|
|
557
|
-
for weight_para_each in subcell_weight_para]
|
|
558
|
-
min_init = [-x for x in max_init]
|
|
559
|
-
else:
|
|
560
|
-
max_init = [compute_kl_threshold(subcell_weight_para, weight_dtype)]
|
|
561
|
-
min_init = [-x for x in max_init]
|
|
562
|
-
return min_init, max_init
|
|
563
|
-
|
|
564
|
-
def _set_mixed_bits(self, network, strategy):
|
|
565
|
-
r"""
|
|
566
|
-
Set network's quantization strategy, this function is currently only valid for `LEARNED_SCALE`
|
|
567
|
-
optimize_option.
|
|
568
|
-
|
|
569
|
-
Args:
|
|
570
|
-
network (Cell): Input network.
|
|
571
|
-
strategy (list): The quantization strategy for layers that need to be quantified (eg. [[8], [8],
|
|
572
|
-
..., [6], [4], [8]]), currently only the quant_dtype for weights of the dense layer and the
|
|
573
|
-
convolution layer is supported.
|
|
574
|
-
|
|
575
|
-
Returns:
|
|
576
|
-
Cell, a network with mixed bit strategy configured.
|
|
577
|
-
|
|
578
|
-
Raises:
|
|
579
|
-
ValueError: If `OptimizeOption.LEARNED_SCALE` is not in `self.optimize_option`.
|
|
580
|
-
"""
|
|
581
|
-
if OptimizeOption.LEARNED_SCALE not in self.optimize_option:
|
|
582
|
-
raise ValueError("The `_set_mixed_bits` function is currently only valid for `LEARNED_SCALE` "
|
|
583
|
-
"optimize_option.")
|
|
584
|
-
|
|
585
|
-
quantizable_idx = []
|
|
586
|
-
pass_cell = None
|
|
587
|
-
for i, cell_and_name in enumerate(network.cells_and_names()):
|
|
588
|
-
cell = cell_and_name[1]
|
|
589
|
-
if isinstance(cell, (nn.Conv2dBnAct, nn.DenseBnAct)) and cell is not pass_cell:
|
|
590
|
-
quantizable_idx.append(i)
|
|
591
|
-
|
|
592
|
-
if len(quantizable_idx) != len(strategy):
|
|
593
|
-
raise ValueError("The dimension of quantifiable layers is not consistent with that of strategy.")
|
|
594
|
-
|
|
595
|
-
quantizable_layer_bit_dict = {idx: bit for idx, bit in zip(quantizable_idx, strategy)}
|
|
596
|
-
type_map = {
|
|
597
|
-
QuantDtype.INT2.num_bits: QuantDtype.INT2,
|
|
598
|
-
QuantDtype.INT3.num_bits: QuantDtype.INT3,
|
|
599
|
-
QuantDtype.INT4.num_bits: QuantDtype.INT4,
|
|
600
|
-
QuantDtype.INT5.num_bits: QuantDtype.INT5,
|
|
601
|
-
QuantDtype.INT6.num_bits: QuantDtype.INT6,
|
|
602
|
-
QuantDtype.INT7.num_bits: QuantDtype.INT7,
|
|
603
|
-
QuantDtype.INT8.num_bits: QuantDtype.INT8
|
|
604
|
-
}
|
|
605
|
-
if self.eps == 0:
|
|
606
|
-
raise ValueError("`epsilon` is zero may lead to divide zero error")
|
|
607
|
-
for i, cell_and_name in enumerate(network.cells_and_names()):
|
|
608
|
-
cell = cell_and_name[1]
|
|
609
|
-
if i not in quantizable_idx:
|
|
610
|
-
continue
|
|
611
|
-
else:
|
|
612
|
-
if isinstance(cell, (nn.Conv2dBnAct, nn.DenseBnAct)):
|
|
613
|
-
cell.weight_dtype = type_map.get(quantizable_layer_bit_dict[i][0])
|
|
614
|
-
if cell.weight_dtype is None:
|
|
615
|
-
raise ValueError("Input strategy is invalid: ", quantizable_layer_bit_dict[i][0])
|
|
616
|
-
if isinstance(cell, nn.Conv2dBnAct):
|
|
617
|
-
subcell_weight_para = cell.conv.weight.data.asnumpy()
|
|
618
|
-
if hasattr(cell.conv, 'gamma'):
|
|
619
|
-
scale_factor = (cell.conv.gamma.data.asnumpy() /
|
|
620
|
-
np.sqrt(cell.conv.moving_variance.data.asnumpy() + self.eps))
|
|
621
|
-
subcell_weight_para = subcell_weight_para * scale_factor.reshape(-1, 1, 1, 1)
|
|
622
|
-
min_init, max_init = self._kl_init(subcell_weight_para, cell.weight_dtype)
|
|
623
|
-
cell.conv.fake_quant_weight.reset(quant_dtype=cell.weight_dtype,
|
|
624
|
-
min_init=min_init,
|
|
625
|
-
max_init=max_init)
|
|
626
|
-
elif isinstance(cell, nn.DenseBnAct):
|
|
627
|
-
subcell_weight_para = cell.dense.weight.data.asnumpy()
|
|
628
|
-
if hasattr(cell.dense, 'gamma'):
|
|
629
|
-
scale_factor = (cell.dense.gamma.data.asnumpy() /
|
|
630
|
-
np.sqrt(cell.dense.moving_variance.data.asnumpy() + self.eps))
|
|
631
|
-
subcell_weight_para = subcell_weight_para * scale_factor.reshape(-1, 1, 1, 1)
|
|
632
|
-
min_init, max_init = self._kl_init(subcell_weight_para, cell.weight_dtype)
|
|
633
|
-
cell.dense.fake_quant_weight.reset(quant_dtype=cell.weight_dtype,
|
|
634
|
-
min_init=min_init,
|
|
635
|
-
max_init=max_init)
|
|
636
|
-
return network
|