mindspore 1.10.0__cp38-cp38-win_amd64.whl → 2.0.0rc1__cp38-cp38-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mindspore might be problematic. Click here for more details.
- mindspore/.commit_id +1 -1
- mindspore/ConcurrencyCheck.dll +0 -0
- mindspore/CppBuildInsights.dll +0 -0
- mindspore/CppCoreCheck.dll +0 -0
- mindspore/EnumIndex.dll +0 -0
- mindspore/EspXEngine.dll +0 -0
- mindspore/HResultCheck.dll +0 -0
- mindspore/KernelTraceControl.dll +0 -0
- mindspore/LocalESPC.dll +0 -0
- mindspore/Microsoft.Diagnostics.Tracing.EventSource.dll +0 -0
- mindspore/Microsoft.VisualStudio.RemoteControl.dll +0 -0
- mindspore/Microsoft.VisualStudio.Telemetry.dll +0 -0
- mindspore/Microsoft.VisualStudio.Utilities.Internal.dll +0 -0
- mindspore/Newtonsoft.Json.dll +0 -0
- mindspore/System.Runtime.CompilerServices.Unsafe.dll +0 -0
- mindspore/VariantClear.dll +0 -0
- mindspore/__init__.py +9 -4
- mindspore/_c_dataengine.cp38-win_amd64.pyd +0 -0
- mindspore/_c_expression.cp38-win_amd64.pyd +0 -0
- mindspore/_c_mindrecord.cp38-win_amd64.pyd +0 -0
- mindspore/_check_jit_forbidden_api.py +102 -0
- mindspore/_checkparam.py +1066 -1001
- mindspore/_extends/builtin_operations.py +32 -4
- mindspore/_extends/graph_kernel/model/graph_split.py +66 -222
- mindspore/_extends/parallel_compile/akg_compiler/akg_process.py +12 -9
- mindspore/_extends/parallel_compile/akg_compiler/build_tbe_kernel.py +119 -26
- mindspore/_extends/parallel_compile/akg_compiler/tbe_topi.py +50 -50
- mindspore/_extends/parallel_compile/akg_compiler/util.py +9 -6
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_adapter.py +4 -25
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_helper.py +9 -4
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_job_manager.py +1 -27
- mindspore/_extends/parse/__init__.py +5 -3
- mindspore/_extends/parse/namespace.py +17 -2
- mindspore/_extends/parse/parser.py +193 -34
- mindspore/_extends/parse/resources.py +7 -8
- mindspore/_extends/parse/standard_method.py +1780 -435
- mindspore/_extends/parse/trope.py +3 -1
- mindspore/amp.py +53 -58
- mindspore/atlprov.dll +0 -0
- mindspore/boost/adasum.py +3 -2
- mindspore/boost/boost.py +2 -2
- mindspore/boost/boost_cell_wrapper.py +46 -26
- mindspore/boost/dim_reduce.py +6 -5
- mindspore/boost/grad_accumulation.py +2 -1
- mindspore/boost/group_loss_scale_manager.py +1 -1
- mindspore/c1.dll +0 -0
- mindspore/c1xx.dll +0 -0
- mindspore/c2.dll +0 -0
- mindspore/cfgpersist.dll +0 -0
- mindspore/clang_rt.asan_dbg_dynamic-x86_64.dll +0 -0
- mindspore/clang_rt.asan_dynamic-x86_64.dll +0 -0
- mindspore/common/__init__.py +11 -10
- mindspore/common/_decorator.py +2 -0
- mindspore/common/_register_for_adapter.py +55 -0
- mindspore/common/_stub_tensor.py +201 -0
- mindspore/common/_utils.py +57 -0
- mindspore/common/api.py +582 -297
- mindspore/common/dtype.py +66 -18
- mindspore/common/dump.py +2 -2
- mindspore/common/initializer.py +38 -1
- mindspore/common/jit_config.py +25 -13
- mindspore/common/mutable.py +53 -24
- mindspore/common/parameter.py +60 -37
- mindspore/common/seed.py +8 -24
- mindspore/common/sparse_tensor.py +927 -0
- mindspore/common/tensor.py +1627 -3900
- mindspore/communication/__init__.py +10 -5
- mindspore/communication/_comm_helper.py +78 -214
- mindspore/communication/_hccl_management.py +2 -1
- mindspore/communication/management.py +136 -47
- mindspore/config/op_info.config +501 -1008
- mindspore/context.py +291 -56
- mindspore/d3dcompiler_47.dll +0 -0
- mindspore/dataset/__init__.py +12 -8
- mindspore/dataset/audio/__init__.py +9 -9
- mindspore/dataset/audio/transforms.py +1090 -228
- mindspore/dataset/audio/utils.py +87 -39
- mindspore/dataset/audio/validators.py +223 -1
- mindspore/dataset/callback/ds_callback.py +17 -15
- mindspore/dataset/core/config.py +246 -17
- mindspore/dataset/core/py_util_helpers.py +4 -3
- mindspore/dataset/core/validator_helpers.py +10 -10
- mindspore/{parallel/nn/layers.py → dataset/debug/__init__.py} +7 -8
- mindspore/dataset/debug/debug_hook.py +65 -0
- mindspore/dataset/debug/pre_defined_hook.py +67 -0
- mindspore/dataset/engine/__init__.py +7 -3
- mindspore/dataset/engine/cache_client.py +9 -9
- mindspore/dataset/engine/datasets.py +648 -477
- mindspore/dataset/engine/datasets_audio.py +165 -167
- mindspore/dataset/engine/datasets_standard_format.py +93 -67
- mindspore/dataset/engine/datasets_text.py +492 -342
- mindspore/dataset/engine/datasets_user_defined.py +85 -50
- mindspore/dataset/engine/datasets_vision.py +1224 -699
- mindspore/dataset/engine/graphdata.py +134 -69
- mindspore/dataset/engine/iterators.py +50 -9
- mindspore/dataset/engine/offload.py +52 -31
- mindspore/dataset/engine/samplers.py +27 -24
- mindspore/dataset/engine/serializer_deserializer.py +14 -15
- mindspore/dataset/engine/validators.py +213 -52
- mindspore/dataset/text/__init__.py +10 -8
- mindspore/dataset/text/transforms.py +152 -57
- mindspore/dataset/text/utils.py +98 -49
- mindspore/dataset/text/validators.py +25 -0
- mindspore/dataset/transforms/__init__.py +4 -2
- mindspore/dataset/transforms/c_transforms.py +11 -13
- mindspore/dataset/transforms/py_transforms.py +2 -2
- mindspore/dataset/transforms/py_transforms_util.py +10 -0
- mindspore/dataset/transforms/transforms.py +13 -15
- mindspore/dataset/transforms/validators.py +7 -7
- mindspore/dataset/utils/__init__.py +2 -1
- mindspore/dataset/utils/browse_dataset.py +13 -13
- mindspore/dataset/utils/line_reader.py +121 -0
- mindspore/dataset/vision/__init__.py +8 -7
- mindspore/dataset/vision/c_transforms.py +125 -126
- mindspore/dataset/vision/py_transforms.py +37 -37
- mindspore/dataset/vision/py_transforms_util.py +23 -20
- mindspore/dataset/vision/transforms.py +316 -315
- mindspore/dataset/vision/utils.py +313 -17
- mindspore/dataset/vision/validators.py +6 -6
- mindspore/default_config.py +0 -1
- mindspore/dpcmi.dll +0 -0
- mindspore/{compression → experimental}/__init__.py +6 -5
- mindspore/experimental/map_parameter.py +275 -0
- mindspore/include/OWNERS +0 -1
- mindspore/include/api/callback/callback.h +9 -13
- mindspore/include/api/callback/ckpt_saver.h +2 -2
- mindspore/include/api/callback/loss_monitor.h +2 -2
- mindspore/include/api/callback/lr_scheduler.h +5 -5
- mindspore/include/api/callback/time_monitor.h +2 -2
- mindspore/include/api/callback/train_accuracy.h +4 -6
- mindspore/include/api/cfg.h +19 -6
- mindspore/include/api/context.h +70 -9
- mindspore/include/api/delegate.h +8 -1
- mindspore/include/api/dual_abi_helper.h +8 -24
- mindspore/include/api/metrics/accuracy.h +2 -2
- mindspore/include/api/metrics/metrics.h +4 -3
- mindspore/include/api/model.h +9 -4
- mindspore/include/api/model_group.h +68 -0
- mindspore/include/api/model_parallel_runner.h +17 -17
- mindspore/include/api/net.h +12 -11
- mindspore/include/api/serialization.h +20 -4
- mindspore/include/api/status.h +7 -1
- mindspore/include/api/types.h +25 -21
- mindspore/include/api/visible.h +4 -0
- mindspore/include/c_api/model_c.h +5 -0
- mindspore/include/c_api/status_c.h +1 -1
- mindspore/include/dataset/config.h +1 -1
- mindspore/include/dataset/constants.h +14 -0
- mindspore/include/dataset/text.h +59 -0
- mindspore/include/dataset/vision.h +56 -117
- mindspore/include/dataset/vision_lite.h +102 -0
- mindspore/jpeg62.dll +0 -0
- mindspore/log.py +28 -28
- mindspore/mindrecord/common/exceptions.py +2 -4
- mindspore/mindrecord/filereader.py +19 -1
- mindspore/mindrecord/filewriter.py +250 -88
- mindspore/mindrecord/mindpage.py +13 -13
- mindspore/mindrecord/shardheader.py +15 -15
- mindspore/mindrecord/shardreader.py +9 -0
- mindspore/mindrecord/shardwriter.py +29 -29
- mindspore/mindrecord/tools/cifar100_to_mr.py +9 -9
- mindspore/mindrecord/tools/cifar10_to_mr.py +9 -9
- mindspore/mindrecord/tools/csv_to_mr.py +4 -4
- mindspore/mindrecord/tools/imagenet_to_mr.py +70 -65
- mindspore/mindrecord/tools/mnist_to_mr.py +41 -41
- mindspore/mindrecord/tools/tfrecord_to_mr.py +6 -6
- mindspore/{libmindspore_backend.dll → mindspore_backend.dll} +0 -0
- mindspore/mindspore_common.dll +0 -0
- mindspore/mindspore_core.dll +0 -0
- mindspore/mindspore_glog.dll +0 -0
- mindspore/mindspore_shared_lib.dll +0 -0
- mindspore/msobj140.dll +0 -0
- mindspore/mspdb140.dll +0 -0
- mindspore/mspdbcore.dll +0 -0
- mindspore/mspdbst.dll +0 -0
- mindspore/mspft140.dll +0 -0
- mindspore/msvcdis140.dll +0 -0
- mindspore/msvcp140_1.dll +0 -0
- mindspore/msvcp140_2.dll +0 -0
- mindspore/msvcp140_atomic_wait.dll +0 -0
- mindspore/msvcp140_codecvt_ids.dll +0 -0
- mindspore/nn/__init__.py +1 -5
- mindspore/nn/cell.py +297 -234
- mindspore/nn/dynamic_lr.py +1 -1
- mindspore/nn/grad/cell_grad.py +17 -42
- mindspore/nn/layer/__init__.py +7 -4
- mindspore/nn/layer/activation.py +131 -88
- mindspore/nn/layer/basic.py +313 -613
- mindspore/nn/layer/channel_shuffle.py +103 -0
- mindspore/nn/layer/combined.py +1 -1
- mindspore/nn/layer/container.py +52 -6
- mindspore/nn/layer/conv.py +112 -43
- mindspore/nn/layer/dense.py +10 -9
- mindspore/nn/layer/embedding.py +36 -34
- mindspore/nn/layer/image.py +123 -27
- mindspore/nn/layer/math.py +108 -107
- mindspore/nn/layer/normalization.py +212 -366
- mindspore/nn/layer/padding.py +370 -42
- mindspore/nn/layer/pooling.py +1443 -219
- mindspore/nn/layer/rnn_cells.py +11 -16
- mindspore/nn/layer/rnns.py +38 -39
- mindspore/nn/layer/thor_layer.py +24 -25
- mindspore/nn/layer/timedistributed.py +5 -5
- mindspore/nn/layer/transformer.py +701 -0
- mindspore/nn/learning_rate_schedule.py +8 -8
- mindspore/nn/loss/__init__.py +9 -6
- mindspore/nn/loss/loss.py +678 -142
- mindspore/nn/metrics.py +53 -0
- mindspore/nn/optim/_dist_optimizer_registry.py +2 -2
- mindspore/nn/optim/ada_grad.py +8 -8
- mindspore/nn/optim/adadelta.py +2 -3
- mindspore/nn/optim/adafactor.py +18 -14
- mindspore/nn/optim/adam.py +429 -87
- mindspore/nn/optim/adamax.py +5 -6
- mindspore/nn/optim/adasum.py +10 -8
- mindspore/nn/optim/asgd.py +7 -7
- mindspore/nn/optim/ftrl.py +81 -11
- mindspore/nn/optim/lamb.py +7 -8
- mindspore/nn/optim/lars.py +4 -4
- mindspore/nn/optim/lazyadam.py +82 -7
- mindspore/nn/optim/momentum.py +8 -7
- mindspore/nn/optim/optimizer.py +19 -10
- mindspore/nn/optim/proximal_ada_grad.py +6 -5
- mindspore/nn/optim/rmsprop.py +3 -3
- mindspore/nn/optim/rprop.py +20 -16
- mindspore/nn/optim/sgd.py +21 -15
- mindspore/nn/optim/thor.py +23 -21
- mindspore/nn/probability/__init__.py +0 -2
- mindspore/nn/probability/bijector/bijector.py +7 -6
- mindspore/nn/probability/bijector/invert.py +4 -2
- mindspore/nn/probability/bijector/softplus.py +2 -2
- mindspore/nn/probability/bnn_layers/dense_variational.py +1 -1
- mindspore/nn/probability/bnn_layers/layer_distribution.py +2 -2
- mindspore/nn/probability/distribution/__init__.py +6 -0
- mindspore/nn/probability/distribution/_utils/custom_ops.py +3 -2
- mindspore/nn/probability/distribution/_utils/utils.py +11 -17
- mindspore/nn/probability/distribution/bernoulli.py +6 -6
- mindspore/nn/probability/distribution/beta.py +1 -1
- mindspore/nn/probability/distribution/categorical.py +9 -9
- mindspore/nn/probability/distribution/cauchy.py +8 -8
- mindspore/nn/probability/distribution/distribution.py +12 -6
- mindspore/nn/probability/distribution/exponential.py +5 -5
- mindspore/nn/probability/distribution/gamma.py +3 -3
- mindspore/nn/probability/distribution/geometric.py +6 -5
- mindspore/nn/probability/distribution/gumbel.py +5 -5
- mindspore/nn/probability/distribution/half_normal.py +133 -0
- mindspore/nn/probability/distribution/laplace.py +128 -0
- mindspore/nn/probability/distribution/log_normal.py +0 -1
- mindspore/nn/probability/distribution/logistic.py +4 -5
- mindspore/nn/probability/distribution/normal.py +11 -15
- mindspore/nn/probability/distribution/poisson.py +6 -2
- mindspore/nn/probability/distribution/student_t.py +150 -0
- mindspore/nn/probability/distribution/transformed_distribution.py +4 -4
- mindspore/nn/probability/distribution/uniform.py +5 -5
- mindspore/nn/reinforcement/_tensors_queue.py +3 -3
- mindspore/nn/reinforcement/tensor_array.py +2 -2
- mindspore/nn/sparse/sparse.py +8 -1
- mindspore/nn/wrap/cell_wrapper.py +55 -27
- mindspore/nn/wrap/grad_reducer.py +20 -11
- mindspore/nn/wrap/loss_scale.py +47 -30
- mindspore/numpy/array_creations.py +33 -22
- mindspore/numpy/array_ops.py +46 -42
- mindspore/numpy/logic_ops.py +6 -27
- mindspore/numpy/math_ops.py +26 -19
- mindspore/numpy/utils.py +1 -8
- mindspore/numpy/utils_const.py +112 -62
- mindspore/opencv_core452.dll +0 -0
- mindspore/opencv_imgcodecs452.dll +0 -0
- mindspore/opencv_imgproc452.dll +0 -0
- mindspore/ops/__init__.py +6 -3
- mindspore/ops/_constants.py +0 -6
- mindspore/ops/_grad/__init__.py +2 -1
- mindspore/ops/_grad/grad_array_ops.py +209 -152
- mindspore/ops/_grad/grad_base.py +55 -17
- mindspore/ops/_grad/grad_clip_ops.py +11 -3
- mindspore/ops/_grad/grad_comm_ops.py +58 -47
- mindspore/ops/_grad/grad_implementations.py +21 -61
- mindspore/ops/_grad/grad_inner_ops.py +48 -6
- mindspore/ops/_grad/grad_math_ops.py +306 -161
- mindspore/ops/_grad/grad_nn_ops.py +192 -181
- mindspore/ops/_grad/grad_other_ops.py +1 -1
- mindspore/ops/_grad/grad_quant_ops.py +5 -5
- mindspore/ops/_grad/grad_sequence_ops.py +296 -0
- mindspore/ops/_grad/grad_sparse.py +15 -9
- mindspore/ops/_grad_experimental/__init__.py +1 -0
- mindspore/ops/_grad_experimental/grad_array_ops.py +441 -55
- mindspore/ops/_grad_experimental/grad_image_ops.py +25 -7
- mindspore/ops/_grad_experimental/grad_inner_ops.py +3 -44
- mindspore/ops/_grad_experimental/grad_linalg_ops.py +16 -21
- mindspore/ops/_grad_experimental/grad_math_ops.py +979 -49
- mindspore/ops/_grad_experimental/grad_nn_ops.py +78 -8
- mindspore/ops/_grad_experimental/grad_scalar_ops.py +112 -0
- mindspore/ops/_grad_experimental/grad_sparse_ops.py +197 -13
- mindspore/ops/_op_impl/__init__.py +3 -3
- mindspore/ops/_op_impl/_custom_op/__init__.py +0 -1
- mindspore/ops/_op_impl/_custom_op/_basic.py +0 -1
- mindspore/ops/_op_impl/_custom_op/batch_matmul_impl.py +1 -1
- mindspore/ops/_op_impl/_custom_op/batchnorm_fold.py +4 -2
- mindspore/ops/_op_impl/_custom_op/batchnorm_fold2.py +2 -2
- mindspore/ops/_op_impl/_custom_op/batchnorm_fold2_grad.py +2 -2
- mindspore/ops/_op_impl/_custom_op/batchnorm_fold2_grad_reduce.py +5 -5
- mindspore/ops/_op_impl/_custom_op/batchnorm_fold_grad.py +3 -3
- mindspore/ops/_op_impl/_custom_op/cholesky_trsm_impl.py +1 -1
- mindspore/ops/_op_impl/_custom_op/correction_mul.py +3 -3
- mindspore/ops/_op_impl/_custom_op/correction_mul_grad.py +2 -2
- mindspore/ops/_op_impl/_custom_op/dsd_back_impl.py +4 -8
- mindspore/ops/_op_impl/_custom_op/dsd_impl.py +1 -1
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel.py +2 -2
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel_grad.py +2 -2
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel_grad_reduce.py +2 -2
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer.py +2 -2
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer_grad.py +2 -2
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer_grad_reduce.py +2 -2
- mindspore/ops/_op_impl/_custom_op/fake_quant_perchannel.py +2 -2
- mindspore/ops/_op_impl/_custom_op/fake_quant_perchannel_grad.py +2 -2
- mindspore/ops/_op_impl/_custom_op/fake_quant_perlayer.py +2 -2
- mindspore/ops/_op_impl/_custom_op/fake_quant_perlayer_grad.py +2 -2
- mindspore/ops/_op_impl/_custom_op/fused_abs_max1_impl.py +1 -1
- mindspore/ops/_op_impl/_custom_op/img2col_impl.py +1 -1
- mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_left_impl.py +2 -2
- mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_right_impl.py +1 -1
- mindspore/ops/_op_impl/_custom_op/matmul_cube_fracz_left_cast_impl.py +1 -1
- mindspore/ops/_op_impl/_custom_op/matmul_cube_fracz_right_mul_impl.py +1 -1
- mindspore/ops/_op_impl/_custom_op/matmul_cube_impl.py +2 -2
- mindspore/ops/_op_impl/_custom_op/matmul_dds_grad_impl.py +0 -1
- mindspore/ops/_op_impl/_custom_op/matmul_dds_impl.py +0 -1
- mindspore/ops/_op_impl/_custom_op/matrix_combine_impl.py +1 -1
- mindspore/ops/_op_impl/_custom_op/minmax_update_perchannel.py +2 -2
- mindspore/ops/_op_impl/_custom_op/minmax_update_perlayer.py +2 -2
- mindspore/ops/_op_impl/_custom_op/transpose02314_impl.py +1 -1
- mindspore/ops/_op_impl/aicpu/__init__.py +238 -3
- mindspore/ops/_op_impl/aicpu/abs.py +36 -0
- mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_2d.py +34 -0
- mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_2d_grad.py +34 -0
- mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_3d.py +39 -0
- mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_3d_grad.py +39 -0
- mindspore/ops/_op_impl/aicpu/adaptive_max_pool_2d_grad.py +37 -0
- mindspore/ops/_op_impl/aicpu/adaptive_max_pool_3d.py +42 -0
- mindspore/ops/_op_impl/aicpu/adaptive_max_pool_3d_grad.py +152 -0
- mindspore/ops/_op_impl/aicpu/add.py +43 -0
- mindspore/ops/_op_impl/aicpu/addcdiv.py +0 -32
- mindspore/ops/_op_impl/aicpu/addcmul.py +0 -84
- mindspore/ops/_op_impl/aicpu/affine_grid_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/arg_max.py +75 -0
- mindspore/ops/_op_impl/aicpu/arg_min.py +75 -0
- mindspore/ops/_op_impl/aicpu/argmin_with_value.py +43 -0
- mindspore/ops/_op_impl/aicpu/batch_matmul.py +43 -0
- mindspore/ops/_op_impl/aicpu/batch_norm_grad_grad.py +49 -0
- mindspore/ops/_op_impl/aicpu/bernoulli.py +48 -0
- mindspore/ops/_op_impl/aicpu/bessel_i0.py +31 -0
- mindspore/ops/_op_impl/aicpu/bias_add.py +44 -0
- mindspore/ops/_op_impl/aicpu/bias_add_grad.py +43 -0
- mindspore/ops/_op_impl/aicpu/bincount.py +33 -0
- mindspore/{nn/probability/infer/variational/__init__.py → ops/_op_impl/aicpu/cauchy.py} +17 -10
- mindspore/ops/_op_impl/aicpu/channel_shuffle.py +40 -0
- mindspore/ops/_op_impl/aicpu/cholesky.py +1 -1
- mindspore/ops/_op_impl/{cpu/bias_add.py → aicpu/choleskygrad.py} +9 -7
- mindspore/ops/_op_impl/aicpu/combined_non_max_suppression.py +42 -0
- mindspore/ops/_op_impl/aicpu/concat_offset.py +42 -0
- mindspore/ops/_op_impl/aicpu/concat_offset_v1.py +31 -0
- mindspore/ops/_op_impl/aicpu/conj.py +11 -0
- mindspore/ops/_op_impl/aicpu/crop_and_resize_grad_image.py +38 -0
- mindspore/ops/_op_impl/aicpu/cumulative_logsumexp.py +36 -0
- mindspore/ops/_op_impl/aicpu/deformable_offsets.py +38 -0
- mindspore/ops/_op_impl/aicpu/deformable_offsets_grad.py +2 -2
- mindspore/ops/_op_impl/aicpu/dense_to_sparse_set_operation.py +48 -0
- mindspore/ops/_op_impl/aicpu/diag.py +36 -0
- mindspore/ops/_op_impl/aicpu/diag_part.py +36 -0
- mindspore/ops/_op_impl/aicpu/diagonal.py +35 -0
- mindspore/ops/_op_impl/{cpu/bias_add_grad.py → aicpu/digamma.py} +9 -7
- mindspore/ops/_op_impl/aicpu/eig.py +35 -0
- mindspore/ops/_op_impl/aicpu/fft_with_size.py +41 -0
- mindspore/ops/_op_impl/aicpu/flatten.py +1 -0
- mindspore/ops/_op_impl/aicpu/fmax.py +36 -0
- mindspore/ops/_op_impl/aicpu/fmin.py +37 -0
- mindspore/ops/_op_impl/aicpu/fractional_max_pool3d_with_fixed_ksize.py +1 -1
- mindspore/ops/_op_impl/aicpu/fse_decode.py +43 -0
- mindspore/ops/_op_impl/aicpu/glu.py +33 -0
- mindspore/ops/_op_impl/aicpu/glu_grad.py +34 -0
- mindspore/ops/_op_impl/aicpu/greater.py +41 -0
- mindspore/ops/_op_impl/aicpu/greater_equal.py +41 -0
- mindspore/ops/_op_impl/aicpu/index_put.py +50 -0
- mindspore/ops/_op_impl/{tbe/scatter_add_ds.py → aicpu/inplace_index_add.py} +17 -21
- mindspore/ops/_op_impl/aicpu/instance_norm_v2.py +41 -0
- mindspore/ops/_op_impl/aicpu/instance_norm_v2_grad.py +44 -0
- mindspore/ops/_op_impl/aicpu/layer_norm_grad_grad.py +47 -0
- mindspore/ops/_op_impl/aicpu/less.py +41 -0
- mindspore/ops/_op_impl/aicpu/less_equal.py +41 -0
- mindspore/ops/_op_impl/aicpu/lgamma.py +32 -0
- mindspore/ops/_op_impl/aicpu/log_normal_reverse.py +33 -0
- mindspore/ops/_op_impl/aicpu/logit.py +33 -0
- mindspore/ops/_op_impl/aicpu/logit_grad.py +34 -0
- mindspore/ops/_op_impl/aicpu/masked_fill.py +42 -0
- mindspore/ops/_op_impl/aicpu/masked_scatter.py +39 -0
- mindspore/ops/_op_impl/aicpu/matmul.py +39 -0
- mindspore/ops/_op_impl/aicpu/matrix_logarithm.py +31 -0
- mindspore/ops/_op_impl/aicpu/matrix_power.py +32 -0
- mindspore/ops/_op_impl/aicpu/matrix_solve_ls.py +36 -0
- mindspore/ops/_op_impl/aicpu/matrix_triangular_solve.py +36 -0
- mindspore/ops/_op_impl/aicpu/mirror_pad.py +2 -0
- mindspore/ops/_op_impl/aicpu/mirror_pad_grad.py +0 -4
- mindspore/ops/_op_impl/aicpu/mul.py +3 -1
- mindspore/ops/_op_impl/aicpu/multinomial.py +14 -6
- mindspore/ops/_op_impl/aicpu/multinomial_with_replacement.py +35 -0
- mindspore/ops/_op_impl/aicpu/nan_to_num.py +34 -0
- mindspore/ops/_op_impl/aicpu/nllloss.py +38 -0
- mindspore/ops/_op_impl/aicpu/nllloss_grad.py +39 -0
- mindspore/ops/_op_impl/aicpu/ones_like.py +0 -2
- mindspore/ops/_op_impl/aicpu/polar.py +32 -0
- mindspore/ops/_op_impl/aicpu/polygamma.py +34 -0
- mindspore/ops/_op_impl/aicpu/qr.py +36 -0
- mindspore/ops/_op_impl/aicpu/quant_dtype_cast.py +40 -0
- mindspore/ops/_op_impl/aicpu/quantile.py +35 -0
- mindspore/ops/_op_impl/aicpu/ragged_tensor_to_sparse.py +73 -0
- mindspore/ops/_op_impl/aicpu/ragged_tensor_to_tensor.py +74 -0
- mindspore/ops/_op_impl/aicpu/random_shuffle.py +3 -0
- mindspore/ops/_op_impl/aicpu/randperm_v2.py +41 -0
- mindspore/ops/_op_impl/aicpu/range.py +36 -0
- mindspore/ops/_op_impl/aicpu/reciprocal.py +34 -0
- mindspore/ops/_op_impl/aicpu/reciprocal_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/reduce_sum.py +57 -0
- mindspore/ops/_op_impl/aicpu/resize_bicubic.py +2 -8
- mindspore/ops/_op_impl/aicpu/resize_bicubic_grad.py +1 -1
- mindspore/ops/_op_impl/aicpu/resize_v2.py +68 -0
- mindspore/ops/_op_impl/aicpu/resize_v2_grad.py +68 -0
- mindspore/ops/_op_impl/aicpu/scatter_elements.py +4 -0
- mindspore/ops/_op_impl/aicpu/scatter_nd_update.py +2 -0
- mindspore/ops/_op_impl/aicpu/search_sorted.py +12 -6
- mindspore/ops/_op_impl/aicpu/self_adjoint_eig.py +34 -0
- mindspore/ops/_op_impl/aicpu/sequence_add.py +34 -0
- mindspore/ops/_op_impl/aicpu/sequence_add_offset.py +34 -0
- mindspore/ops/_op_impl/aicpu/sequence_addn.py +38 -0
- mindspore/ops/_op_impl/aicpu/slice_grad.py +76 -0
- mindspore/ops/_op_impl/aicpu/smooth_l1_loss.py +35 -0
- mindspore/ops/_op_impl/aicpu/smooth_l1_loss_grad.py +37 -0
- mindspore/ops/_op_impl/aicpu/sort.py +39 -0
- mindspore/ops/_op_impl/aicpu/sparse_apply_adagrad_da.py +0 -24
- mindspore/ops/_op_impl/aicpu/sparse_cross.py +42 -0
- mindspore/ops/_op_impl/aicpu/sparse_fill_empty_rows.py +63 -0
- mindspore/ops/_op_impl/aicpu/sparse_fill_empty_rows_grad.py +45 -0
- mindspore/ops/_op_impl/aicpu/sparse_matrix_mat_mul.py +56 -0
- mindspore/ops/_op_impl/{tbe/slice_ds.py → aicpu/sparse_segment_sum.py} +16 -24
- mindspore/ops/_op_impl/aicpu/sparse_segment_sum_with_num_segments.py +68 -0
- mindspore/ops/_op_impl/aicpu/sparse_slice.py +63 -0
- mindspore/ops/_op_impl/aicpu/sparse_slice_grad.py +61 -0
- mindspore/ops/_op_impl/aicpu/squared_difference.py +2 -0
- mindspore/ops/_op_impl/aicpu/strided_slice_v2.py +93 -0
- mindspore/ops/_op_impl/aicpu/strided_slice_v2_grad.py +66 -0
- mindspore/ops/_op_impl/aicpu/tensor_scatter_update.py +59 -0
- mindspore/ops/_op_impl/{tbe/gather_v2.py → aicpu/tile.py} +24 -24
- mindspore/ops/_op_impl/aicpu/tridiagonal_solve.py +35 -0
- mindspore/ops/_op_impl/aicpu/tril_indices.py +34 -0
- mindspore/ops/_op_impl/aicpu/triu_indices.py +34 -0
- mindspore/ops/_op_impl/aicpu/uniform.py +34 -0
- mindspore/ops/_op_impl/aicpu/uniform_candidate_sampler.py +1 -0
- mindspore/ops/_op_impl/aicpu/unique_consecutive.py +10 -2
- mindspore/ops/_op_impl/cpu/__init__.py +1 -2
- mindspore/ops/_op_impl/cpu/dynamic_shape.py +5 -1
- mindspore/ops/_op_impl/cpu/maximum_grad.py +2 -0
- mindspore/{compression/common/__init__.py → ops/_op_impl/cpu/pyexecute.py} +13 -8
- mindspore/ops/_op_impl/cpu/reduce_sum.py +8 -0
- mindspore/ops/_op_impl/cpu/sparse_slice.py +62 -0
- mindspore/ops/_op_impl/cpu/sparse_slice_grad.py +60 -0
- mindspore/ops/_op_impl/cpu/tensor_shape.py +5 -1
- mindspore/ops/_op_impl/tbe/__init__.py +27 -608
- mindspore/ops/_op_impl/tbe/addcdiv_ds.py +42 -0
- mindspore/ops/_op_impl/tbe/addcmul_ds.py +44 -0
- mindspore/ops/_op_impl/tbe/assign_add_ds.py +1 -0
- mindspore/ops/_op_impl/tbe/atomic_addr_clean.py +1 -1
- mindspore/ops/_op_impl/tbe/avg_pool_3d_grad.py +1 -1
- mindspore/ops/_op_impl/tbe/basic_lstm_cell_c_state_grad_v2.py +0 -1
- mindspore/ops/_op_impl/tbe/batch_to_space.py +1 -1
- mindspore/ops/_op_impl/tbe/batch_to_space_nd.py +1 -1
- mindspore/ops/_op_impl/tbe/batch_to_space_nd_v2.py +41 -0
- mindspore/ops/_op_impl/tbe/bce_with_logits_loss.py +1 -0
- mindspore/ops/_op_impl/tbe/bias_add_grad.py +2 -0
- mindspore/ops/_op_impl/tbe/bn_infer_grad.py +4 -2
- mindspore/ops/_op_impl/tbe/bn_infer_grad_ds.py +40 -0
- mindspore/ops/_op_impl/tbe/bn_training_update.py +0 -1
- mindspore/ops/_op_impl/tbe/bn_training_update_ds.py +0 -1
- mindspore/ops/_op_impl/tbe/broadcast_to_ds.py +6 -4
- mindspore/ops/_op_impl/tbe/cast.py +0 -2
- mindspore/ops/_op_impl/tbe/cast_ds.py +3 -3
- mindspore/ops/_op_impl/tbe/ctc_loss_v2.py +0 -2
- mindspore/ops/_op_impl/tbe/ctc_loss_v2_grad.py +0 -2
- mindspore/ops/_op_impl/tbe/data_format_dim_map_ds.py +1 -0
- mindspore/ops/_op_impl/tbe/deformable_offsets.py +1 -0
- mindspore/ops/_op_impl/tbe/depthwise_conv2d.py +1 -1
- mindspore/ops/_op_impl/tbe/dynamic_atomic_addr_clean.py +1 -1
- mindspore/ops/_op_impl/tbe/gather_nd.py +1 -0
- mindspore/ops/_op_impl/tbe/greater.py +2 -0
- mindspore/ops/_op_impl/tbe/{index_add.py → inplace_index_add.py} +3 -6
- mindspore/ops/_op_impl/tbe/layer_norm_beta_gamma_backprop_v2.py +0 -1
- mindspore/ops/_op_impl/tbe/npu_clear_float_status_v2.py +35 -0
- mindspore/ops/_op_impl/tbe/npu_get_float_status_v2.py +35 -0
- mindspore/ops/_op_impl/tbe/one_hot_ds.py +0 -6
- mindspore/ops/_op_impl/tbe/{greater_ds.py → reduce_all_ds.py} +13 -16
- mindspore/ops/_op_impl/tbe/reduce_any_ds.py +39 -0
- mindspore/ops/_op_impl/tbe/roi_align_ds.py +44 -0
- mindspore/ops/_op_impl/tbe/roi_align_grad_ds.py +44 -0
- mindspore/ops/_op_impl/tbe/scatter_add.py +2 -0
- mindspore/ops/_op_impl/tbe/scatter_nd_add.py +2 -2
- mindspore/ops/_op_impl/tbe/slice.py +26 -15
- mindspore/ops/_op_impl/tbe/space_to_batch.py +1 -1
- mindspore/ops/_op_impl/tbe/space_to_batch_nd.py +1 -1
- mindspore/ops/_op_impl/tbe/strided_slice_grad_d.py +1 -0
- mindspore/ops/_op_impl/tbe/trans_data_ds.py +15 -5
- mindspore/ops/_op_impl/tbe/unsorted_segment_sum.py +1 -1
- mindspore/ops/_op_impl/tbe/unsorted_segment_sum_ds.py +2 -0
- mindspore/ops/_primitive_cache.py +3 -2
- mindspore/ops/_register_for_op.py +11 -0
- mindspore/ops/_utils/__init__.py +1 -1
- mindspore/ops/_utils/utils.py +20 -41
- mindspore/ops/_vmap/__init__.py +2 -2
- mindspore/ops/_vmap/vmap_array_ops.py +170 -78
- mindspore/ops/_vmap/vmap_base.py +24 -10
- mindspore/ops/_vmap/vmap_convolution_ops.py +7 -10
- mindspore/ops/_vmap/vmap_grad_math_ops.py +4 -4
- mindspore/ops/_vmap/vmap_grad_nn_ops.py +41 -9
- mindspore/ops/_vmap/vmap_image_ops.py +52 -0
- mindspore/ops/_vmap/vmap_math_ops.py +77 -6
- mindspore/ops/_vmap/vmap_nn_ops.py +78 -29
- mindspore/ops/_vmap/vmap_other_ops.py +3 -1
- mindspore/ops/_vmap/vmap_random_ops.py +55 -3
- mindspore/ops/_vmap/vmap_sparse_ops.py +1 -0
- mindspore/ops/bprop_mindir/AdaptiveAvgPool2D_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/AdaptiveMaxPool2D_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/ApproximateEqual_bprop.mindir +18 -19
- mindspore/ops/bprop_mindir/Argmax_bprop.mindir +13 -12
- mindspore/ops/bprop_mindir/Argmin_bprop.mindir +14 -13
- mindspore/ops/bprop_mindir/AssignSub_bprop.mindir +17 -18
- mindspore/ops/bprop_mindir/Assign_bprop.mindir +16 -16
- mindspore/ops/bprop_mindir/AvgPool3D_bprop.mindir +150 -0
- mindspore/ops/bprop_mindir/AvgPool_bprop.mindir +66 -0
- mindspore/ops/bprop_mindir/BCEWithLogitsLoss_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/BNTrainingReduce_bprop.mindir +13 -12
- mindspore/ops/bprop_mindir/BatchNormGrad_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/BatchToSpaceND_bprop.mindir +28 -0
- mindspore/ops/bprop_mindir/BiasAddGrad_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/BinaryCrossEntropy_bprop.mindir +33 -0
- mindspore/ops/bprop_mindir/BroadcastTo_bprop.mindir +306 -0
- mindspore/ops/bprop_mindir/Broadcast_bprop.mindir +12 -8
- mindspore/ops/bprop_mindir/CTCLoss_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Concat_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Conv2DBackpropFilter_bprop.mindir +240 -0
- mindspore/ops/bprop_mindir/Conv2DBackpropInput_bprop.mindir +247 -0
- mindspore/ops/bprop_mindir/Conv2DTranspose_bprop.mindir +247 -0
- mindspore/ops/bprop_mindir/Conv3DTranspose_bprop.mindir +315 -0
- mindspore/ops/bprop_mindir/Conv3D_bprop.mindir +278 -0
- mindspore/ops/bprop_mindir/DType_bprop.mindir +12 -12
- mindspore/ops/bprop_mindir/DeformableOffsets_bprop.mindir +58 -0
- mindspore/ops/bprop_mindir/Depend_bprop.mindir +12 -13
- mindspore/ops/bprop_mindir/DepthToSpace_bprop.mindir +23 -0
- mindspore/ops/bprop_mindir/DepthwiseConv2dNative_bprop.mindir +138 -0
- mindspore/ops/bprop_mindir/DiagPart_bprop.mindir +15 -0
- mindspore/ops/bprop_mindir/Dropout2D_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Dropout3D_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/DropoutDoMask_bprop.mindir +22 -24
- mindspore/ops/bprop_mindir/DropoutGenMask_bprop.mindir +16 -14
- mindspore/ops/bprop_mindir/DropoutGrad_bprop.mindir +27 -0
- mindspore/ops/bprop_mindir/Dropout_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/DynamicGRUV2_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/DynamicRNN_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/DynamicShape_bprop.mindir +12 -12
- mindspore/ops/bprop_mindir/Elu_bprop.mindir +16 -0
- mindspore/ops/bprop_mindir/EmbeddingLookup_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Equal_bprop.mindir +18 -19
- mindspore/ops/bprop_mindir/ExpandDims_bprop.mindir +58 -0
- mindspore/ops/bprop_mindir/FastGeLU_bprop.mindir +16 -0
- mindspore/ops/bprop_mindir/Flatten_bprop.mindir +54 -0
- mindspore/ops/bprop_mindir/FloorDiv_bprop.mindir +18 -15
- mindspore/ops/bprop_mindir/GatherD_bprop.mindir +26 -0
- mindspore/ops/bprop_mindir/GatherNd_bprop.mindir +57 -0
- mindspore/ops/bprop_mindir/Gather_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/GreaterEqual_bprop.mindir +17 -18
- mindspore/ops/bprop_mindir/Greater_bprop.mindir +18 -19
- mindspore/ops/bprop_mindir/HSigmoid_bprop.mindir +16 -0
- mindspore/ops/bprop_mindir/HSwish_bprop.mindir +16 -0
- mindspore/ops/bprop_mindir/IOU_bprop.mindir +18 -19
- mindspore/ops/bprop_mindir/InstanceNorm_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/IsFinite_bprop.mindir +13 -12
- mindspore/ops/bprop_mindir/IsInf_bprop.mindir +13 -10
- mindspore/ops/bprop_mindir/IsNan_bprop.mindir +14 -11
- mindspore/ops/bprop_mindir/KLDivLoss_bprop.mindir +126 -0
- mindspore/ops/bprop_mindir/L2Loss_bprop.mindir +15 -0
- mindspore/ops/bprop_mindir/L2Normalize_bprop.mindir +30 -0
- mindspore/ops/bprop_mindir/LRN_bprop.mindir +43 -0
- mindspore/ops/bprop_mindir/LayerNormGrad_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/LessEqual_bprop.mindir +18 -19
- mindspore/ops/bprop_mindir/Less_bprop.mindir +17 -18
- mindspore/ops/bprop_mindir/LinSpace_bprop.mindir +22 -19
- mindspore/ops/bprop_mindir/Load_bprop.mindir +12 -13
- mindspore/ops/bprop_mindir/LogSoftmax_bprop.mindir +23 -0
- mindspore/ops/bprop_mindir/LogicalAnd_bprop.mindir +17 -18
- mindspore/ops/bprop_mindir/LogicalNot_bprop.mindir +14 -13
- mindspore/ops/bprop_mindir/MaskedSelect_bprop.mindir +21 -0
- mindspore/ops/bprop_mindir/MaxPool3DGradGrad_bprop.mindir +74 -0
- mindspore/ops/bprop_mindir/MaxPool3DGrad_bprop.mindir +74 -0
- mindspore/ops/bprop_mindir/MaxPool3D_bprop.mindir +75 -0
- mindspore/ops/bprop_mindir/MaxPoolGradGrad_bprop.mindir +65 -0
- mindspore/ops/bprop_mindir/MaxPoolWithArgmax_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Maximum_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Minimum_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/MirrorPad_bprop.mindir +27 -0
- mindspore/ops/bprop_mindir/Mish_bprop.mindir +35 -0
- mindspore/ops/bprop_mindir/MulNoNan_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/NLLLoss_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/NonZero_bprop.mindir +14 -0
- mindspore/ops/bprop_mindir/NotEqual_bprop.mindir +18 -19
- mindspore/ops/bprop_mindir/OneHot_bprop.mindir +25 -23
- mindspore/ops/bprop_mindir/OnesLike_bprop.mindir +13 -13
- mindspore/ops/bprop_mindir/PReLU_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Pad_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Padding_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/RNNTLoss_bprop.mindir +29 -0
- mindspore/ops/bprop_mindir/ROIAlign_bprop.mindir +82 -0
- mindspore/ops/bprop_mindir/Range_bprop.mindir +21 -19
- mindspore/ops/bprop_mindir/Rank_bprop.mindir +11 -11
- mindspore/ops/bprop_mindir/ReLU6_bprop.mindir +16 -0
- mindspore/ops/bprop_mindir/ReLUV2_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/ReduceAll_bprop.mindir +18 -17
- mindspore/ops/bprop_mindir/ReduceAny_bprop.mindir +18 -17
- mindspore/ops/bprop_mindir/ReluGrad_bprop.mindir +19 -23
- mindspore/ops/bprop_mindir/Reshape_bprop.mindir +60 -0
- mindspore/ops/bprop_mindir/ResizeBilinear_bprop.mindir +29 -0
- mindspore/ops/bprop_mindir/ResizeNearestNeighbor_bprop.mindir +89 -0
- mindspore/ops/bprop_mindir/ReverseSequence_bprop.mindir +52 -0
- mindspore/ops/bprop_mindir/ReverseV2_bprop.mindir +22 -0
- mindspore/ops/bprop_mindir/Round_bprop.mindir +14 -13
- mindspore/ops/bprop_mindir/ScatterMax_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/ScatterMin_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/ScatterNdUpdate_bprop.mindir +22 -0
- mindspore/ops/bprop_mindir/ScatterNd_bprop.mindir +24 -0
- mindspore/ops/bprop_mindir/ScatterNonAliasingAdd_bprop.mindir +22 -0
- mindspore/ops/bprop_mindir/ScatterUpdate_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/SeLU_bprop.mindir +21 -0
- mindspore/ops/bprop_mindir/Select_bprop.mindir +30 -34
- mindspore/ops/bprop_mindir/Shape_bprop.mindir +12 -12
- mindspore/ops/bprop_mindir/SigmoidCrossEntropyWithLogits_bprop.mindir +21 -0
- mindspore/ops/bprop_mindir/SigmoidGrad_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Sigmoid_bprop.mindir +16 -0
- mindspore/ops/bprop_mindir/Sign_bprop.mindir +13 -12
- mindspore/ops/bprop_mindir/Slice_bprop.mindir +26 -0
- mindspore/ops/bprop_mindir/SmoothL1Loss_bprop.mindir +36 -0
- mindspore/ops/bprop_mindir/SoftmaxCrossEntropyWithLogits_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Softplus_bprop.mindir +16 -0
- mindspore/ops/bprop_mindir/Softsign_bprop.mindir +33 -0
- mindspore/ops/bprop_mindir/Sort_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/SpaceToBatchND_bprop.mindir +28 -0
- mindspore/ops/bprop_mindir/SpaceToDepth_bprop.mindir +23 -0
- mindspore/ops/bprop_mindir/SparseGatherV2_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/SparseSoftmaxCrossEntropyWithLogits_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Split_bprop.mindir +22 -0
- mindspore/ops/bprop_mindir/Squeeze_bprop.mindir +54 -0
- mindspore/ops/bprop_mindir/StridedSliceGrad_bprop.mindir +95 -0
- mindspore/ops/bprop_mindir/StridedSlice_bprop.mindir +98 -0
- mindspore/ops/bprop_mindir/Switch_bprop.mindir +28 -32
- mindspore/ops/bprop_mindir/TanhGrad_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Tanh_bprop.mindir +66 -0
- mindspore/ops/bprop_mindir/TensorScatterAdd_bprop.mindir +22 -0
- mindspore/ops/bprop_mindir/TensorScatterUpdate_bprop.mindir +29 -0
- mindspore/ops/bprop_mindir/TensorShape_bprop.mindir +14 -0
- mindspore/ops/bprop_mindir/Tile_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/TopK_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/TransShape_bprop.mindir +23 -0
- mindspore/ops/bprop_mindir/TruncateDiv_bprop.mindir +18 -15
- mindspore/ops/bprop_mindir/TupleGetItem_bprop.mindir +11 -13
- mindspore/ops/bprop_mindir/Unique_bprop.mindir +16 -0
- mindspore/ops/bprop_mindir/Unstack_bprop.mindir +22 -0
- mindspore/ops/bprop_mindir/UpsampleNearest3D_bprop.mindir +32 -0
- mindspore/ops/bprop_mindir/UpsampleTrilinear3D_bprop.mindir +38 -0
- mindspore/ops/bprop_mindir/ZerosLike_bprop.mindir +13 -12
- mindspore/ops/bprop_mindir/__init__.py +1 -4
- mindspore/ops/bprop_mindir/generate_mindir.py +32 -20
- mindspore/ops/composite/__init__.py +12 -13
- mindspore/ops/composite/base.py +261 -254
- mindspore/ops/composite/env_ops.py +41 -0
- mindspore/ops/composite/math_ops.py +197 -156
- mindspore/ops/composite/multitype_ops/_compile_utils.py +428 -176
- mindspore/ops/composite/multitype_ops/_constexpr_utils.py +188 -87
- mindspore/ops/composite/multitype_ops/add_impl.py +23 -1
- mindspore/ops/composite/multitype_ops/div_impl.py +3 -3
- mindspore/ops/composite/multitype_ops/equal_impl.py +1 -0
- mindspore/ops/composite/multitype_ops/floordiv_impl.py +1 -1
- mindspore/ops/composite/multitype_ops/getitem_impl.py +52 -5
- mindspore/ops/composite/multitype_ops/greater_equal_impl.py +31 -0
- mindspore/ops/composite/multitype_ops/greater_impl.py +31 -0
- mindspore/ops/composite/multitype_ops/in_impl.py +15 -3
- mindspore/ops/composite/multitype_ops/less_equal_impl.py +33 -2
- mindspore/ops/composite/multitype_ops/less_impl.py +33 -0
- mindspore/ops/composite/multitype_ops/logical_and_impl.py +2 -2
- mindspore/ops/composite/multitype_ops/logical_or_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/mod_impl.py +1 -1
- mindspore/ops/composite/multitype_ops/mul_impl.py +21 -7
- mindspore/ops/composite/multitype_ops/not_in_impl.py +15 -3
- mindspore/ops/composite/multitype_ops/ones_like_impl.py +2 -4
- mindspore/ops/composite/multitype_ops/pow_impl.py +1 -0
- mindspore/ops/composite/multitype_ops/setitem_impl.py +62 -70
- mindspore/ops/composite/multitype_ops/sub_impl.py +3 -3
- mindspore/ops/composite/multitype_ops/zeros_like_impl.py +41 -4
- mindspore/ops/function/__init__.py +323 -8
- mindspore/ops/function/array_func.py +3511 -780
- mindspore/ops/function/clip_func.py +329 -0
- mindspore/ops/function/debug_func.py +6 -6
- mindspore/ops/function/grad/__init__.py +5 -1
- mindspore/ops/function/grad/grad_func.py +736 -65
- mindspore/ops/function/image_func.py +270 -0
- mindspore/ops/function/linalg_func.py +268 -8
- mindspore/ops/function/math_func.py +8032 -3164
- mindspore/ops/function/nn_func.py +5619 -1855
- mindspore/ops/function/other_func.py +115 -0
- mindspore/ops/function/parameter_func.py +11 -10
- mindspore/ops/function/random_func.py +939 -77
- mindspore/ops/function/sparse_func.py +249 -84
- mindspore/ops/function/sparse_unary_func.py +2303 -0
- mindspore/ops/function/spectral_func.py +146 -0
- mindspore/ops/function/vmap_func.py +114 -0
- mindspore/ops/functional.py +182 -254
- mindspore/ops/op_info_register.py +79 -34
- mindspore/ops/operations/__init__.py +210 -118
- mindspore/ops/operations/_csr_ops.py +7 -7
- mindspore/ops/operations/_embedding_cache_ops.py +25 -15
- mindspore/ops/operations/_grad_ops.py +447 -322
- mindspore/ops/operations/_inner_ops.py +547 -176
- mindspore/ops/operations/_map_tensor_ops.py +112 -0
- mindspore/ops/operations/_ms_kernel.py +29 -27
- mindspore/ops/operations/_ocr_ops.py +11 -11
- mindspore/ops/operations/_opaque_predicate_registry.py +41 -0
- mindspore/ops/operations/_quant_ops.py +186 -101
- mindspore/ops/operations/_rl_inner_ops.py +122 -61
- mindspore/ops/operations/_scalar_ops.py +466 -0
- mindspore/ops/operations/_sequence_ops.py +1047 -0
- mindspore/ops/operations/_tensor_array.py +10 -11
- mindspore/ops/operations/_thor_ops.py +4 -4
- mindspore/ops/operations/array_ops.py +1428 -1226
- mindspore/ops/operations/comm_ops.py +180 -117
- mindspore/ops/operations/control_ops.py +4 -2
- mindspore/ops/operations/custom_ops.py +185 -98
- mindspore/ops/operations/debug_ops.py +92 -54
- mindspore/ops/operations/image_ops.py +406 -211
- mindspore/ops/operations/inner_ops.py +42 -53
- mindspore/ops/operations/linalg_ops.py +32 -29
- mindspore/ops/operations/math_ops.py +2076 -897
- mindspore/ops/operations/nn_ops.py +1282 -1252
- mindspore/ops/operations/other_ops.py +124 -278
- mindspore/ops/operations/random_ops.py +345 -178
- mindspore/ops/operations/rl_ops.py +8 -9
- mindspore/ops/operations/sparse_ops.py +502 -157
- mindspore/ops/operations/spectral_ops.py +107 -0
- mindspore/ops/primitive.py +192 -15
- mindspore/ops/vm_impl_registry.py +23 -2
- mindspore/parallel/__init__.py +6 -1
- mindspore/parallel/_auto_parallel_context.py +199 -92
- mindspore/parallel/_cell_wrapper.py +4 -2
- mindspore/parallel/_cost_model_context.py +3 -0
- mindspore/parallel/_dp_allreduce_fusion.py +2 -1
- mindspore/parallel/_offload_context.py +185 -0
- mindspore/parallel/_parallel_serialization.py +167 -28
- mindspore/parallel/_ps_context.py +9 -5
- mindspore/parallel/_recovery_context.py +1 -1
- mindspore/parallel/_tensor.py +9 -1
- mindspore/{nn/transformer → parallel/_transformer}/__init__.py +6 -6
- mindspore/{nn/transformer → parallel/_transformer}/layers.py +59 -37
- mindspore/{nn/transformer → parallel/_transformer}/loss.py +4 -7
- mindspore/{nn/transformer → parallel/_transformer}/moe.py +160 -35
- mindspore/{nn/transformer → parallel/_transformer}/op_parallel_config.py +3 -3
- mindspore/{nn/transformer → parallel/_transformer}/transformer.py +235 -196
- mindspore/parallel/_utils.py +47 -7
- mindspore/parallel/algo_parameter_config.py +5 -1
- mindspore/parallel/checkpoint_transform.py +329 -0
- mindspore/parallel/shard.py +229 -0
- mindspore/perf_msvcbuildinsights.dll +0 -0
- mindspore/pgodb140.dll +0 -0
- mindspore/pgort140.dll +0 -0
- mindspore/profiler/__init__.py +2 -1
- mindspore/profiler/common/util.py +4 -3
- mindspore/profiler/common/validator/validate_path.py +2 -2
- mindspore/profiler/envprofiling.py +249 -0
- mindspore/profiler/parser/aicpu_data_parser.py +38 -39
- mindspore/profiler/parser/ascend_timeline_generator.py +497 -0
- mindspore/profiler/parser/base_timeline_generator.py +471 -0
- mindspore/profiler/parser/cpu_gpu_timeline_generator.py +684 -0
- mindspore/profiler/parser/framework_parser.py +42 -16
- mindspore/profiler/parser/hccl_parser.py +158 -158
- mindspore/profiler/parser/hwts_log_parser.py +7 -6
- mindspore/profiler/parser/integrator.py +18 -1579
- mindspore/profiler/parser/minddata_analyzer.py +8 -8
- mindspore/profiler/parser/msadvisor_analyzer.py +14 -27
- mindspore/profiler/parser/msadvisor_parser.py +2 -4
- mindspore/profiler/parser/optime_parser.py +17 -18
- mindspore/profiler/parser/profiler_info.py +108 -0
- mindspore/profiler/parser/step_trace_parser.py +1 -1
- mindspore/profiler/profiling.py +396 -194
- mindspore/rewrite/__init__.py +6 -2
- mindspore/rewrite/api/node.py +51 -110
- mindspore/rewrite/api/node_type.py +10 -6
- mindspore/rewrite/api/pattern_engine.py +51 -7
- mindspore/rewrite/api/scoped_value.py +64 -53
- mindspore/rewrite/api/symbol_tree.py +108 -61
- mindspore/rewrite/api/tree_node_helper.py +2 -3
- mindspore/{compression/quant/__init__.py → rewrite/ast_creator_register.py} +20 -11
- mindspore/rewrite/ast_helpers/__init__.py +6 -3
- mindspore/rewrite/ast_helpers/ast_creator.py +115 -0
- mindspore/rewrite/ast_helpers/ast_finder.py +99 -1
- mindspore/rewrite/ast_helpers/ast_modifier.py +17 -4
- mindspore/rewrite/ast_helpers/ast_replacer.py +1 -1
- mindspore/rewrite/ast_transformers/__init__.py +0 -1
- mindspore/rewrite/ast_transformers/flatten_recursive_stmt.py +46 -5
- mindspore/rewrite/ast_transformers/remove_return_out_of_if.py +6 -3
- mindspore/rewrite/common/__init__.py +2 -0
- mindspore/rewrite/common/event.py +1 -1
- mindspore/rewrite/common/observable.py +1 -1
- mindspore/rewrite/common/observer.py +1 -1
- mindspore/rewrite/common/rewrite_elog.py +35 -0
- mindspore/rewrite/namer.py +2 -2
- mindspore/rewrite/namespace.py +14 -4
- mindspore/rewrite/node.py +161 -13
- mindspore/rewrite/parser.py +0 -1
- mindspore/rewrite/parser_register.py +0 -1
- mindspore/rewrite/parsers/arguments_parser.py +3 -2
- mindspore/rewrite/parsers/assign_parser.py +267 -67
- mindspore/rewrite/parsers/attribute_parser.py +56 -0
- mindspore/rewrite/parsers/class_def_parser.py +191 -108
- mindspore/rewrite/parsers/constant_parser.py +101 -0
- mindspore/rewrite/parsers/container_parser.py +88 -0
- mindspore/rewrite/parsers/for_parser.py +28 -15
- mindspore/rewrite/parsers/function_def_parser.py +21 -5
- mindspore/rewrite/parsers/if_parser.py +11 -28
- mindspore/rewrite/parsers/module_parser.py +9 -6
- mindspore/rewrite/parsers/return_parser.py +3 -2
- mindspore/rewrite/sparsify/__init__.py +0 -0
- mindspore/rewrite/sparsify/sparse_transformer.py +448 -0
- mindspore/rewrite/sparsify/sparsify.py +109 -0
- mindspore/rewrite/sparsify/utils.py +173 -0
- mindspore/rewrite/symbol_tree.py +322 -109
- mindspore/rewrite/symbol_tree_builder.py +45 -8
- mindspore/rewrite/symbol_tree_dumper.py +0 -1
- mindspore/rewrite/topological_manager.py +1 -2
- mindspore/run_check/_check_version.py +209 -112
- mindspore/run_check/run_check.py +2 -1
- mindspore/tbbmalloc.dll +0 -0
- mindspore/tinyxml2.dll +0 -0
- mindspore/train/__init__.py +6 -4
- mindspore/train/_utils.py +28 -5
- mindspore/train/amp.py +321 -50
- mindspore/train/callback/__init__.py +3 -1
- mindspore/train/callback/_backup_and_restore.py +120 -0
- mindspore/train/callback/_callback.py +8 -8
- mindspore/train/callback/_checkpoint.py +12 -9
- mindspore/train/callback/_early_stop.py +13 -7
- mindspore/train/callback/_history.py +8 -8
- mindspore/train/callback/_lambda_callback.py +6 -6
- mindspore/train/callback/_landscape.py +36 -38
- mindspore/train/callback/_loss_monitor.py +12 -6
- mindspore/train/callback/_lr_scheduler_callback.py +2 -4
- mindspore/train/callback/_on_request_exit.py +212 -0
- mindspore/train/callback/_reduce_lr_on_plateau.py +13 -7
- mindspore/train/callback/_summary_collector.py +27 -19
- mindspore/train/callback/_time_monitor.py +13 -7
- mindspore/train/checkpoint_pb2.py +68 -8
- mindspore/train/data_sink.py +122 -33
- mindspore/train/dataset_helper.py +28 -87
- mindspore/train/loss_scale_manager.py +4 -7
- mindspore/{nn → train}/metrics/__init__.py +20 -20
- mindspore/{nn → train}/metrics/accuracy.py +12 -10
- mindspore/{nn → train}/metrics/auc.py +4 -4
- mindspore/{nn → train}/metrics/bleu_score.py +4 -4
- mindspore/{nn → train}/metrics/confusion_matrix.py +10 -8
- mindspore/{nn → train}/metrics/cosine_similarity.py +4 -4
- mindspore/{nn → train}/metrics/dice.py +6 -5
- mindspore/{nn → train}/metrics/error.py +7 -5
- mindspore/{nn → train}/metrics/fbeta.py +9 -7
- mindspore/{nn → train}/metrics/hausdorff_distance.py +8 -6
- mindspore/{nn → train}/metrics/loss.py +4 -3
- mindspore/{nn → train}/metrics/mean_surface_distance.py +6 -5
- mindspore/{nn → train}/metrics/metric.py +6 -5
- mindspore/{nn → train}/metrics/occlusion_sensitivity.py +4 -3
- mindspore/{nn → train}/metrics/perplexity.py +5 -4
- mindspore/{nn → train}/metrics/precision.py +5 -4
- mindspore/{nn → train}/metrics/recall.py +5 -4
- mindspore/{nn → train}/metrics/roc.py +7 -6
- mindspore/{nn → train}/metrics/root_mean_square_surface_distance.py +6 -5
- mindspore/{nn → train}/metrics/topk.py +7 -5
- mindspore/train/mind_ir_pb2.py +339 -32
- mindspore/train/model.py +113 -84
- mindspore/train/serialization.py +547 -167
- mindspore/train/summary/_summary_adapter.py +1 -1
- mindspore/train/summary/summary_record.py +43 -12
- mindspore/train/train_thor/convert_utils.py +7 -1
- mindspore/train/train_thor/dataset_helper.py +3 -3
- mindspore/train/train_thor/model_thor.py +0 -4
- mindspore/turbojpeg.dll +0 -0
- mindspore/vcmeta.dll +0 -0
- mindspore/vcruntime140.dll +0 -0
- mindspore/vcruntime140_1.dll +0 -0
- mindspore/version.py +1 -1
- {mindspore-1.10.0.dist-info → mindspore-2.0.0rc1.dist-info}/METADATA +4 -3
- {mindspore-1.10.0.dist-info → mindspore-2.0.0rc1.dist-info}/RECORD +901 -660
- mindspore/compression/common/constant.py +0 -124
- mindspore/compression/export/__init__.py +0 -19
- mindspore/compression/export/quant_export.py +0 -514
- mindspore/compression/quant/qat.py +0 -636
- mindspore/compression/quant/quant_utils.py +0 -462
- mindspore/compression/quant/quantizer.py +0 -68
- mindspore/libatomic-1.dll +0 -0
- mindspore/libgcc_s_seh-1.dll +0 -0
- mindspore/libgfortran-4.dll +0 -0
- mindspore/libgomp-1.dll +0 -0
- mindspore/libjpeg-62.dll +0 -0
- mindspore/libmindspore.dll +0 -0
- mindspore/libmindspore_common.dll +0 -0
- mindspore/libmindspore_core.dll +0 -0
- mindspore/libmindspore_glog.dll +0 -0
- mindspore/libnnacl.dll +0 -0
- mindspore/libopencv_core452.dll +0 -0
- mindspore/libopencv_imgcodecs452.dll +0 -0
- mindspore/libopencv_imgproc452.dll +0 -0
- mindspore/libquadmath-0.dll +0 -0
- mindspore/libsqlite3.dll +0 -0
- mindspore/libssp-0.dll +0 -0
- mindspore/libstdc++-6.dll +0 -0
- mindspore/libtinyxml2.dll +0 -0
- mindspore/libturbojpeg.dll +0 -0
- mindspore/libwinpthread-1.dll +0 -0
- mindspore/nn/layer/quant.py +0 -1868
- mindspore/nn/layer/rnn_utils.py +0 -90
- mindspore/nn/probability/dpn/__init__.py +0 -22
- mindspore/nn/probability/dpn/vae/__init__.py +0 -25
- mindspore/nn/probability/dpn/vae/cvae.py +0 -138
- mindspore/nn/probability/dpn/vae/vae.py +0 -122
- mindspore/nn/probability/infer/__init__.py +0 -22
- mindspore/nn/probability/infer/variational/elbo.py +0 -70
- mindspore/nn/probability/infer/variational/svi.py +0 -84
- mindspore/nn/probability/toolbox/__init__.py +0 -22
- mindspore/nn/probability/toolbox/anomaly_detection.py +0 -99
- mindspore/nn/probability/toolbox/uncertainty_evaluation.py +0 -363
- mindspore/nn/probability/transforms/__init__.py +0 -22
- mindspore/nn/probability/transforms/transform_bnn.py +0 -262
- mindspore/nn/probability/zhusuan/__init__.py +0 -18
- mindspore/nn/probability/zhusuan/framework/__init__.py +0 -18
- mindspore/nn/probability/zhusuan/framework/bn.py +0 -95
- mindspore/nn/probability/zhusuan/variational/__init__.py +0 -18
- mindspore/nn/probability/zhusuan/variational/elbo.py +0 -46
- mindspore/ops/_op_impl/tbe/bias_add_grad_ds.py +0 -52
- mindspore/ops/_op_impl/tbe/scatter_nd_add_ds.py +0 -43
- mindspore/ops/bprop_mindir/AssignAdd_bprop.mindir +0 -20
- mindspore/ops/bprop_mindir/Identity_bprop.mindir +0 -9
- mindspore/ops/bprop_mindir/LogicalOr_bprop.mindir +0 -20
- mindspore/ops/bprop_mindir/ReLU_bprop.mindir +0 -16
- mindspore/ops/bprop_mindir/UpdateState_bprop.mindir +0 -17
- mindspore/ops/bprop_mindir/stop_gradient_bprop.mindir +0 -12
- mindspore/ops/composite/array_ops.py +0 -210
- mindspore/ops/composite/clip_ops.py +0 -238
- mindspore/ops/composite/random_ops.py +0 -426
- mindspore/ops/composite/vmap_ops.py +0 -38
- mindspore/ops/operations/sponge_ops.py +0 -3531
- mindspore/ops/operations/sponge_update_ops.py +0 -2546
- mindspore/parallel/nn/__init__.py +0 -42
- mindspore/parallel/nn/loss.py +0 -22
- mindspore/parallel/nn/moe.py +0 -21
- mindspore/parallel/nn/op_parallel_config.py +0 -22
- mindspore/parallel/nn/transformer.py +0 -31
- mindspore/run_check/_check_deps_version.py +0 -84
- {mindspore-1.10.0.dist-info → mindspore-2.0.0rc1.dist-info}/WHEEL +0 -0
- {mindspore-1.10.0.dist-info → mindspore-2.0.0rc1.dist-info}/entry_points.txt +0 -0
- {mindspore-1.10.0.dist-info → mindspore-2.0.0rc1.dist-info}/top_level.txt +0 -0
|
@@ -16,7 +16,7 @@
|
|
|
16
16
|
from __future__ import absolute_import
|
|
17
17
|
|
|
18
18
|
from mindspore.common._decorator import deprecated
|
|
19
|
-
from mindspore
|
|
19
|
+
from mindspore import _checkparam as Validator
|
|
20
20
|
from mindspore.common import dtype as mstype
|
|
21
21
|
from mindspore.ops.primitive import PrimitiveWithInfer, prim_attr_register, Primitive
|
|
22
22
|
from mindspore.ops._utils import get_broadcast_shape
|
|
@@ -30,37 +30,37 @@ class NonDeterministicInts(Primitive):
|
|
|
30
30
|
that a given type can represent.
|
|
31
31
|
|
|
32
32
|
.. warning::
|
|
33
|
-
The value of
|
|
33
|
+
The value of `shape` must be greater than zero.
|
|
34
|
+
The number of elements of output can not exceed 1000000.
|
|
34
35
|
|
|
35
36
|
Args:
|
|
36
|
-
dtype (mindspore.dtype): The type of output.
|
|
37
|
-
and
|
|
37
|
+
dtype (mindspore.dtype, optional): The date type of output. The supported values are: mstype.int32
|
|
38
|
+
and mstype.int64. Default: mstype.int64.
|
|
38
39
|
|
|
39
40
|
Inputs:
|
|
40
|
-
- **shape** (Tensor) - The shape of random tensor to be generated.
|
|
41
|
-
|
|
41
|
+
- **shape** (Tensor) - The shape of random tensor to be generated. The supported values are:
|
|
42
|
+
int32 and int64.
|
|
42
43
|
|
|
43
44
|
Outputs:
|
|
44
|
-
Tensor. Its shape is
|
|
45
|
+
Tensor. Its shape is specified by the input `shape`. Its type is specified by `dtype`.
|
|
45
46
|
|
|
46
47
|
Raises:
|
|
47
48
|
TypeError: If `shape` is not a Tensor.
|
|
48
|
-
TypeError: If `dtype`
|
|
49
|
+
TypeError: If `dtype` is not mstype.int32 or mstype.int64.
|
|
49
50
|
ValueError: If `shape` has negative elements.
|
|
50
51
|
ValueError: If `shape` has less than 2 elements.
|
|
51
52
|
ValueError: If `shape` is not a 1-D tensor.
|
|
52
53
|
ValueError: If the number of elements of output is more than 1000000.
|
|
53
54
|
|
|
54
55
|
Supported Platforms:
|
|
55
|
-
``Ascend`` ``CPU``
|
|
56
|
+
``Ascend`` ``GPU`` ``CPU``
|
|
56
57
|
|
|
57
58
|
Examples:
|
|
58
|
-
>>> shape = Tensor(
|
|
59
|
+
>>> shape = Tensor((3,4), mstype.int32)
|
|
59
60
|
>>> ndints = ops.NonDeterministicInts(dtype=mstype.int32)
|
|
60
61
|
>>> output = ndints(shape)
|
|
61
|
-
>>> print(output)
|
|
62
|
-
|
|
63
|
-
[ 140364228 290834494 ]]
|
|
62
|
+
>>> print(output.shape)
|
|
63
|
+
(3, 4)
|
|
64
64
|
"""
|
|
65
65
|
|
|
66
66
|
@prim_attr_register
|
|
@@ -69,38 +69,40 @@ class NonDeterministicInts(Primitive):
|
|
|
69
69
|
self.dtype = dtype
|
|
70
70
|
self.add_prim_attr("max_length", 1000000)
|
|
71
71
|
self.init_prim_io_names(inputs=["shape"], outputs=["output"])
|
|
72
|
-
|
|
72
|
+
self.add_prim_attr("side_effect_hidden", True)
|
|
73
|
+
valid_values = (mstype.int32, mstype.int64, mstype.uint32, mstype.uint64)
|
|
73
74
|
Validator.check_type_name("dtype", dtype, valid_values, self.name)
|
|
74
75
|
|
|
75
76
|
|
|
76
77
|
class TruncatedNormal(Primitive):
|
|
77
78
|
"""
|
|
78
|
-
Returns a
|
|
79
|
+
Returns a Tensor of the specified shape filled with truncated normal values.
|
|
79
80
|
|
|
80
|
-
The generated values
|
|
81
|
+
The generated values conform to a Gaussian distribution.
|
|
81
82
|
|
|
82
|
-
|
|
83
|
-
The value of
|
|
83
|
+
Note:
|
|
84
|
+
- The value of `shape` must be greater than zero. The output length can not exceed 1000000.
|
|
85
|
+
- When `seed` or `seed2` is assigned a non-zero value, that value will be used as the seed.
|
|
86
|
+
Otherwise, a random seed will be used instead.
|
|
84
87
|
|
|
85
88
|
Args:
|
|
86
|
-
seed (int):
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
mindspore.float64. Default: mindspore.float32.
|
|
89
|
+
seed (int, optional): Random number seed. Default: 0.
|
|
90
|
+
seed2 (int, optional): The second seed to avoid seed collision. Default: 0.
|
|
91
|
+
dtype (mindspore.dtype, optional): Specified output data type. Must be one of the following types:
|
|
92
|
+
mindspore.float16, mindspore.float32 and mindspore.float64. Default: mindspore.float32.
|
|
91
93
|
|
|
92
94
|
Inputs:
|
|
93
95
|
- **shape** (Tensor) - The shape of random tensor to be generated. Its type must be one of the following types:
|
|
94
96
|
mindspore.int32 and mindspore.int64.
|
|
95
97
|
|
|
96
98
|
Outputs:
|
|
97
|
-
Tensor. Its shape is
|
|
99
|
+
Tensor. Its shape is specified by the input `shape`. Its type is specified by `dtype`.
|
|
98
100
|
Its values are in [-2,2].
|
|
99
101
|
|
|
100
102
|
Raises:
|
|
101
103
|
TypeError: If `shape` is not a Tensor.
|
|
102
|
-
TypeError: If `dtype` and
|
|
103
|
-
TypeError: If `
|
|
104
|
+
TypeError: If data type of `dtype` and `shape` are not allowed.
|
|
105
|
+
TypeError: If `seed` is not an integer.
|
|
104
106
|
ValueError: If `shape` elements are not positive.
|
|
105
107
|
ValueError: If `shape` is not a 1-D tensor.
|
|
106
108
|
ValueError: If the number of elements of output is more than 1000000.
|
|
@@ -124,6 +126,7 @@ class TruncatedNormal(Primitive):
|
|
|
124
126
|
"""Initialize TruncatedNormal"""
|
|
125
127
|
self.dtype = dtype
|
|
126
128
|
self.add_prim_attr("max_length", 1000000)
|
|
129
|
+
self.add_prim_attr("side_effect_hidden", True)
|
|
127
130
|
self.init_prim_io_names(inputs=["shape"], outputs=["output"])
|
|
128
131
|
Validator.check_value_type('seed', seed, [int], self.name)
|
|
129
132
|
Validator.check_value_type('seed2', seed2, [int], self.name)
|
|
@@ -135,7 +138,17 @@ class StandardNormal(Primitive):
|
|
|
135
138
|
r"""
|
|
136
139
|
Generates random numbers according to the standard Normal (or Gaussian) random number distribution.
|
|
137
140
|
|
|
138
|
-
Refer to :func:`mindspore.ops.standard_normal` for more
|
|
141
|
+
Refer to :func:`mindspore.ops.standard_normal` for more details.
|
|
142
|
+
|
|
143
|
+
Args:
|
|
144
|
+
seed (int): Random seed, must be non-negative. Default: 0.
|
|
145
|
+
seed2 (int): Random seed2, must be non-negative. A second seed to avoid seed collision. Default: 0.
|
|
146
|
+
|
|
147
|
+
Inputs:
|
|
148
|
+
- **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed.
|
|
149
|
+
|
|
150
|
+
Outputs:
|
|
151
|
+
Tensor. The shape is the same as the input `shape`. The dtype is float32.
|
|
139
152
|
|
|
140
153
|
Supported Platforms:
|
|
141
154
|
``Ascend`` ``GPU`` ``CPU``
|
|
@@ -160,14 +173,13 @@ class StandardNormal(Primitive):
|
|
|
160
173
|
Validator.check_non_negative_int(seed2, "seed2", self.name)
|
|
161
174
|
|
|
162
175
|
|
|
163
|
-
|
|
164
176
|
class StandardLaplace(Primitive):
|
|
165
177
|
r"""
|
|
166
178
|
Generates random numbers according to the Laplace random number distribution (mean=0, lambda=1).
|
|
167
179
|
It is defined as:
|
|
168
180
|
|
|
169
181
|
.. math::
|
|
170
|
-
\text{f}(x) = \frac{1}{2}\exp(-|x|)
|
|
182
|
+
\text{f}(x) = \frac{1}{2}\exp(-|x|)
|
|
171
183
|
|
|
172
184
|
Args:
|
|
173
185
|
seed (int): Random seed. Default: 0.
|
|
@@ -185,6 +197,7 @@ class StandardLaplace(Primitive):
|
|
|
185
197
|
TypeError: If shape is neither a tuple nor a Tensor.
|
|
186
198
|
ValueError: If seed or seed2 is not a non-negative int.
|
|
187
199
|
ValueError: If shape is a tuple containing non-positive items.
|
|
200
|
+
ValueError: If shape is a Tensor, and the rank of the Tensor is not equal to 1.
|
|
188
201
|
|
|
189
202
|
Supported Platforms:
|
|
190
203
|
``Ascend`` ``GPU`` ``CPU``
|
|
@@ -224,15 +237,15 @@ class RandomGamma(Primitive):
|
|
|
224
237
|
operator-level random seed.
|
|
225
238
|
|
|
226
239
|
Args:
|
|
227
|
-
seed (int): The operator-level random seed, used to generate random numbers,
|
|
228
|
-
|
|
229
|
-
|
|
240
|
+
seed (int, optional): The operator-level random seed, used to generate random numbers,
|
|
241
|
+
must be non-negative. Default: 0.
|
|
242
|
+
seed2 (int, optional): The global random seed, which combines with the operator-level
|
|
243
|
+
random seed to determine the final generated random number, must be non-negative. Default: 0.
|
|
230
244
|
|
|
231
245
|
Inputs:
|
|
232
|
-
- **shape** (Tensor) - The shape of random tensor to be generated.
|
|
233
|
-
|
|
234
|
-
|
|
235
|
-
It must be greater than 0. Must be one of the following types: half, float32, float64.
|
|
246
|
+
- **shape** (Tensor) - The shape of random tensor to be generated. It must be constant value.
|
|
247
|
+
- **alpha** (Tensor) - α is the shape parameter of RandomGamma distribution, it mainly determines the
|
|
248
|
+
shape of the graph curve. It must be greater than 0 and have date type float32.
|
|
236
249
|
|
|
237
250
|
Outputs:
|
|
238
251
|
Tensor. The shape should be equal to the concat shape between the input `shape` and `alpha`.
|
|
@@ -266,6 +279,55 @@ class RandomGamma(Primitive):
|
|
|
266
279
|
Validator.check_non_negative_int(seed2, "seed2", self.name)
|
|
267
280
|
|
|
268
281
|
|
|
282
|
+
class LogNormalReverse(Primitive):
|
|
283
|
+
r"""
|
|
284
|
+
Fills the elements of the input tensor with log normal values initialized by
|
|
285
|
+
given mean and std:
|
|
286
|
+
|
|
287
|
+
.. math::
|
|
288
|
+
\text{f}(x;1.0,2.0)=\frac{1}{x\delta \sqrt[]{2\pi} }e^{-\frac{(\ln x-\mu )^2}{2\delta ^2} }
|
|
289
|
+
|
|
290
|
+
where \mu, \delta is mean and standard deviation of lognormal distribution respectively.
|
|
291
|
+
|
|
292
|
+
Args:
|
|
293
|
+
mean (float, optional): the mean of normal distribution. With float data type.
|
|
294
|
+
Default: 1.0.
|
|
295
|
+
std (float, optional): the std of normal distribution. With float data type.
|
|
296
|
+
Default: 2.0.
|
|
297
|
+
|
|
298
|
+
Inputs:
|
|
299
|
+
- **input** (Tensor) - The tensor to be generated with log-normal distribution.
|
|
300
|
+
Must be one of the following types: float16, float32, float64.
|
|
301
|
+
|
|
302
|
+
Outputs:
|
|
303
|
+
Tensor. A Tensor with the same type and shape of input.
|
|
304
|
+
|
|
305
|
+
Raises:
|
|
306
|
+
TypeError: If `input` is not Tensor.
|
|
307
|
+
ValueError: If `input` is NULL.
|
|
308
|
+
|
|
309
|
+
Supported Platforms:
|
|
310
|
+
``Ascend`` ``GPU`` ``CPU``
|
|
311
|
+
|
|
312
|
+
Examples:
|
|
313
|
+
>>> x = Tensor(np.random.randn(3,4),mstype.float64)
|
|
314
|
+
>>> mean = 2.0
|
|
315
|
+
>>> std = 1.0
|
|
316
|
+
>>> lognormalreverse = ops.LogNormalReverse(mean, std)
|
|
317
|
+
>>> output = lognormalreverse(x)
|
|
318
|
+
>>> result = output.shape
|
|
319
|
+
>>> print(result)
|
|
320
|
+
(3, 4)
|
|
321
|
+
"""
|
|
322
|
+
|
|
323
|
+
@prim_attr_register
|
|
324
|
+
def __init__(self, mean=1.0, std=2.0):
|
|
325
|
+
"""Initialize LogNormalReverse"""
|
|
326
|
+
self.add_prim_attr("side_effect_hidden", True)
|
|
327
|
+
Validator.check_value_type("mean", mean, [float], self.name)
|
|
328
|
+
Validator.check_value_type("std", std, [float], self.name)
|
|
329
|
+
|
|
330
|
+
|
|
269
331
|
class Gamma(PrimitiveWithInfer):
|
|
270
332
|
r"""
|
|
271
333
|
Produces random positive floating-point values x, distributed according to probability density function:
|
|
@@ -324,7 +386,8 @@ class Gamma(PrimitiveWithInfer):
|
|
|
324
386
|
@prim_attr_register
|
|
325
387
|
def __init__(self, seed=0, seed2=0):
|
|
326
388
|
"""Initialize RandomGamma"""
|
|
327
|
-
self.init_prim_io_names(
|
|
389
|
+
self.init_prim_io_names(
|
|
390
|
+
inputs=['shape', 'alpha', 'beta'], outputs=['output'])
|
|
328
391
|
self.add_prim_attr("side_effect_hidden", True)
|
|
329
392
|
Validator.check_non_negative_int(seed, "seed", self.name)
|
|
330
393
|
Validator.check_non_negative_int(seed2, "seed2", self.name)
|
|
@@ -350,54 +413,59 @@ class Gamma(PrimitiveWithInfer):
|
|
|
350
413
|
|
|
351
414
|
|
|
352
415
|
class ParameterizedTruncatedNormal(Primitive):
|
|
353
|
-
"""
|
|
416
|
+
r"""
|
|
354
417
|
Returns a tensor of the specified shape filled with truncated normal values.
|
|
355
|
-
|
|
356
|
-
|
|
418
|
+
When `shape` is :math:`(batch\_size, *)`, the shape of `mean`, `stdevs`,
|
|
419
|
+
`min` and `max` should be :math:`()` or :math:`(batch\_size, )`.
|
|
357
420
|
|
|
358
421
|
Note:
|
|
359
|
-
The
|
|
422
|
+
- The value in tensor `min` must be strictly less than `max` at any position after broadcasting.
|
|
423
|
+
- When `seed` or `seed2` is assigned a non-zero value, that value will be used as the seed.
|
|
424
|
+
Otherwise, a random seed will be used instead.
|
|
360
425
|
|
|
361
426
|
Args:
|
|
362
|
-
seed (int):
|
|
363
|
-
|
|
364
|
-
seed2 (int): An optional int. Defaults to 0. A second seed to avoid seed collision.
|
|
427
|
+
seed (int, optional): Random number seed. Default: 0.
|
|
428
|
+
seed2 (int, optional): The second seed to avoid seed collision. Default: 0.
|
|
365
429
|
|
|
366
430
|
Inputs:
|
|
367
|
-
- **shape** (Tensor) - The shape of random tensor to be generated.
|
|
368
|
-
|
|
369
|
-
|
|
431
|
+
- **shape** (Tensor) - The shape of random tensor to be generated.
|
|
432
|
+
It has shape :math:`(batch\_size, *)` where :math:`*` is an additional
|
|
433
|
+
dimension with a length of no less than 1.
|
|
434
|
+
Its type must be one of the following types: int32 and int64.
|
|
435
|
+
- **mean** (Tensor) - The parameter defines the mean of truncated normal distribution.
|
|
436
|
+
It has shape :math:`()` or :math:`(batch\_size, )`.
|
|
370
437
|
Its type must be one of the following types:float16, float32, float64.
|
|
371
|
-
- **stdevs** (Tensor) -
|
|
372
|
-
the normal distribution.
|
|
373
|
-
|
|
374
|
-
|
|
375
|
-
|
|
376
|
-
|
|
438
|
+
- **stdevs** (Tensor) - The parameter defines the standard deviation for truncation of
|
|
439
|
+
the normal distribution.
|
|
440
|
+
It must be greater than 0 and have the same shape and type as means.
|
|
441
|
+
- **min** (Tensor) - The parameter defines the minimum of
|
|
442
|
+
truncated normal distribution. It must have the same shape and type as means.
|
|
443
|
+
- **max** (Tensor) - The parameter defines the maximum of
|
|
444
|
+
truncated normal distribution. It must have the same shape and type as means.
|
|
377
445
|
|
|
378
446
|
Outputs:
|
|
379
|
-
Tensor. Its shape is
|
|
447
|
+
Tensor. Its shape is specified by the input `shape` and it must have the same type as means.
|
|
380
448
|
|
|
381
449
|
Raises:
|
|
382
|
-
TypeError: If `shape`, `mean`, `stdevs`, `min
|
|
450
|
+
TypeError: If data type of `shape`, `mean`, `stdevs`, `min` and `max` are not allowed.
|
|
383
451
|
TypeError: If `mean`, `stdevs`, `min`, `max` don't have the same type.
|
|
384
|
-
TypeError: If `mean
|
|
385
|
-
ValueError: When
|
|
386
|
-
is not () or (
|
|
452
|
+
TypeError: If any of `shape`, `mean`, `stdevs`, `min` and `max` is not Tensor.
|
|
453
|
+
ValueError: When `shape` is :math:`(batch\_size, *)`, if the shape of `mean`, `stdevs`, `min` or `max`
|
|
454
|
+
is not :math:`()` or :math:`(batch\_size, )`.
|
|
387
455
|
ValueError: If `shape` elements are not positive.
|
|
388
456
|
ValueError: If `stdevs` elements are not positive.
|
|
389
457
|
ValueError: If `shape` has less than 2 elements.
|
|
390
458
|
ValueError: If `shape` is not a 1-D tensor.
|
|
391
459
|
|
|
392
460
|
Supported Platforms:
|
|
393
|
-
``Ascend`` ``CPU``
|
|
461
|
+
``Ascend`` ``GPU`` ``CPU``
|
|
394
462
|
|
|
395
463
|
Examples:
|
|
396
464
|
>>> shape = Tensor(np.array([2, 3]), mstype.int32)
|
|
397
|
-
>>> mean = Tensor(np.array([0], mstype.float32)
|
|
398
|
-
>>> stdevs = Tensor(np.array([1], mstype.float32)
|
|
399
|
-
>>> min = Tensor(np.array([-100], mstype.float32)
|
|
400
|
-
>>> max = Tensor(np.array([100], mstype.float32)
|
|
465
|
+
>>> mean = Tensor(np.array([0]), mstype.float32)
|
|
466
|
+
>>> stdevs = Tensor(np.array([1]), mstype.float32)
|
|
467
|
+
>>> min = Tensor(np.array([-100]), mstype.float32)
|
|
468
|
+
>>> max = Tensor(np.array([100]), mstype.float32)
|
|
401
469
|
>>> seed = 1
|
|
402
470
|
>>> seed2 = 2
|
|
403
471
|
>>> parameterized_truncated_normal = ops.ParameterizedTruncatedNormal(seed=seed, seed2=seed2)
|
|
@@ -410,17 +478,19 @@ class ParameterizedTruncatedNormal(Primitive):
|
|
|
410
478
|
@prim_attr_register
|
|
411
479
|
def __init__(self, seed=0, seed2=0):
|
|
412
480
|
"""Initialize ParameterizedTruncatedNormal"""
|
|
413
|
-
self.init_prim_io_names(
|
|
481
|
+
self.init_prim_io_names(
|
|
482
|
+
inputs=['shape', 'mean', 'stdevs', 'min', 'max'], outputs=['y'])
|
|
483
|
+
self.add_prim_attr("side_effect_hidden", True)
|
|
414
484
|
Validator.check_value_type('seed', seed, [int], self.name)
|
|
415
485
|
Validator.check_value_type('seed2', seed2, [int], self.name)
|
|
416
486
|
|
|
417
487
|
|
|
418
488
|
class Poisson(PrimitiveWithInfer):
|
|
419
489
|
r"""
|
|
420
|
-
Produces random non-negative integer values i
|
|
490
|
+
Produces random non-negative integer values i. Distributed according to discrete probability function:
|
|
421
491
|
|
|
422
492
|
.. math::
|
|
423
|
-
\text{P}(i|μ) = \frac{\exp(-μ)μ^{i}}{i!}
|
|
493
|
+
\text{P}(i|μ) = \frac{\exp(-μ)μ^{i}}{i!}
|
|
424
494
|
|
|
425
495
|
Args:
|
|
426
496
|
seed (int): Random seed, must be non-negative. Default: 0.
|
|
@@ -469,8 +539,10 @@ class Poisson(PrimitiveWithInfer):
|
|
|
469
539
|
Validator.check_value_type("shape", shape_v, [tuple], self.name)
|
|
470
540
|
for i, shape_i in enumerate(shape_v):
|
|
471
541
|
Validator.check_positive_int(shape_i, f'shape[{i}]', self.name)
|
|
472
|
-
Validator.check_tensor_dtype_valid(
|
|
473
|
-
|
|
542
|
+
Validator.check_tensor_dtype_valid(
|
|
543
|
+
"mean", mean["dtype"], [mstype.float32], self.name)
|
|
544
|
+
broadcast_shape = get_broadcast_shape(
|
|
545
|
+
mean['shape'], shape_v, self.name, arg_name1="mean", arg_name2="shape")
|
|
474
546
|
out = {
|
|
475
547
|
'shape': broadcast_shape,
|
|
476
548
|
'dtype': mstype.int32,
|
|
@@ -480,25 +552,26 @@ class Poisson(PrimitiveWithInfer):
|
|
|
480
552
|
|
|
481
553
|
class RandomPoisson(Primitive):
|
|
482
554
|
r"""
|
|
483
|
-
Produces random non-negative
|
|
555
|
+
Produces random non-negative values i, distributed according to discrete probability function:
|
|
484
556
|
|
|
485
557
|
.. math::
|
|
486
|
-
\text{P}(i|μ) = \frac{\exp(-μ)μ^{i}}{i!}
|
|
558
|
+
\text{P}(i|μ) = \frac{\exp(-μ)μ^{i}}{i!}
|
|
487
559
|
|
|
488
560
|
Args:
|
|
489
|
-
|
|
490
|
-
the seed is set by the given seed. Otherwise, it is seeded by a random seed.
|
|
491
|
-
|
|
492
|
-
|
|
561
|
+
seed (int, optional): Random number seed. If either `seed` or `seed2` are set to be non-zero,
|
|
562
|
+
the seed is set by the given seed. Otherwise, it is seeded by a random seed. Default: 0.
|
|
563
|
+
seed2 (int, optional): A second seed to avoid seed collision. Default: 0.
|
|
564
|
+
|
|
565
|
+
dtype (mindspore.dtype, optional): The type of output. Default: mstype.int64.
|
|
493
566
|
|
|
494
567
|
Inputs:
|
|
495
568
|
- **shape** (Tensor) - The shape of random tensor to be generated, 1-D Tensor, whose dtype must be in
|
|
496
|
-
|
|
569
|
+
[int32, int64].
|
|
497
570
|
- **rate** (Tensor) - μ parameter the distribution was constructed with. The parameter defines mean number
|
|
498
|
-
of occurrences of the event. Its type must be in [float16, float32, float64, int32, int64]
|
|
571
|
+
of occurrences of the event. Its type must be in [float16, float32, float64, int32, int64].
|
|
499
572
|
|
|
500
573
|
Outputs:
|
|
501
|
-
Tensor. Its shape is (*shape, *rate.shape)
|
|
574
|
+
Tensor. Its shape is :math:`(*shape, *rate.shape)`. Its type is specified by `dtype`.
|
|
502
575
|
|
|
503
576
|
Raises:
|
|
504
577
|
TypeError: If `shape` is not a Tensor or its dtype is not int32 or int64.
|
|
@@ -507,7 +580,7 @@ class RandomPoisson(Primitive):
|
|
|
507
580
|
ValueError: If `shape` elements are negative.
|
|
508
581
|
|
|
509
582
|
Supported Platforms:
|
|
510
|
-
``
|
|
583
|
+
``GPU`` ``CPU``
|
|
511
584
|
|
|
512
585
|
Examples:
|
|
513
586
|
>>> shape = Tensor(np.array([2, 3]), mstype.int32)
|
|
@@ -526,7 +599,9 @@ class RandomPoisson(Primitive):
|
|
|
526
599
|
self.init_prim_io_names(inputs=['shape', 'rate'], outputs=['output'])
|
|
527
600
|
Validator.check_value_type('seed', seed, [int], self.name)
|
|
528
601
|
Validator.check_value_type('seed2', seed2, [int], self.name)
|
|
529
|
-
|
|
602
|
+
self.add_prim_attr("side_effect_hidden", True)
|
|
603
|
+
valid_values = (mstype.int64, mstype.int32,
|
|
604
|
+
mstype.float16, mstype.float32, mstype.float64)
|
|
530
605
|
Validator.check_type_name("dtype", dtype, valid_values, self.name)
|
|
531
606
|
|
|
532
607
|
|
|
@@ -542,17 +617,18 @@ class UniformInt(Primitive):
|
|
|
542
617
|
the :math:`b` indicates the max distribution parameter.
|
|
543
618
|
|
|
544
619
|
Note:
|
|
545
|
-
The number in tensor minval must be strictly less than maxval at any position after broadcasting.
|
|
620
|
+
- The number in tensor minval must be strictly less than maxval at any position after broadcasting.
|
|
621
|
+
- If neither `seed` nor `seed2` is assigned a non-zero value, a randomly generated seed is used instead.
|
|
546
622
|
|
|
547
623
|
Args:
|
|
548
624
|
seed (int): Random seed, must be non-negative. Default: 0.
|
|
549
625
|
seed2 (int): Random seed2, must be non-negative. A second seed to avoid seed collision. Default: 0.
|
|
550
626
|
|
|
551
627
|
Inputs:
|
|
552
|
-
- **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed.
|
|
553
|
-
- **minval** (Tensor) - The distribution parameter, a
|
|
628
|
+
- **shape** (Union[tuple, Tensor]) - The shape of random tensor to be generated. Only constant value is allowed.
|
|
629
|
+
- **minval** (Tensor) - The distribution parameter, :math:`a`.
|
|
554
630
|
It defines the minimum possibly generated value, with int32 data type. Only one number is supported.
|
|
555
|
-
- **maxval** (Tensor) - The distribution parameter, b
|
|
631
|
+
- **maxval** (Tensor) - The distribution parameter, :math:`b`.
|
|
556
632
|
It defines the maximum possibly generated value, with int32 data type. Only one number is supported.
|
|
557
633
|
|
|
558
634
|
Outputs:
|
|
@@ -560,7 +636,7 @@ class UniformInt(Primitive):
|
|
|
560
636
|
|
|
561
637
|
Raises:
|
|
562
638
|
TypeError: If neither `seed` nor `seed2` is an int.
|
|
563
|
-
TypeError: If `shape` is
|
|
639
|
+
TypeError: If `shape` is neither a tuple nor a Tensor.
|
|
564
640
|
TypeError: If neither `minval` nor `maxval` is a Tensor.
|
|
565
641
|
ValueError: If `shape` is not a constant value.
|
|
566
642
|
|
|
@@ -581,7 +657,8 @@ class UniformInt(Primitive):
|
|
|
581
657
|
@prim_attr_register
|
|
582
658
|
def __init__(self, seed=0, seed2=0):
|
|
583
659
|
"""Initialize UniformInt"""
|
|
584
|
-
self.init_prim_io_names(
|
|
660
|
+
self.init_prim_io_names(
|
|
661
|
+
inputs=['shape', 'minval', 'maxval'], outputs=['output'])
|
|
585
662
|
self.add_prim_attr("side_effect_hidden", True)
|
|
586
663
|
Validator.check_non_negative_int(seed, "seed", self.name)
|
|
587
664
|
Validator.check_non_negative_int(seed2, "seed2", self.name)
|
|
@@ -597,7 +674,7 @@ class UniformReal(Primitive):
|
|
|
597
674
|
final generated random number, must be non-negative. Default: 0.
|
|
598
675
|
|
|
599
676
|
.. note::
|
|
600
|
-
- Global random seed and operator-level random seed are not set: Use
|
|
677
|
+
- Global random seed and operator-level random seed are not set: Use a randomly generated seed.
|
|
601
678
|
- Global random seed is set, but operator-level random seed is not set: A global random seed will splice
|
|
602
679
|
with a randomly generated seed.
|
|
603
680
|
- Global random seed is not set, operator-level random seed is set: The default global random seed is used,
|
|
@@ -606,14 +683,14 @@ class UniformReal(Primitive):
|
|
|
606
683
|
operator-level random seed.
|
|
607
684
|
|
|
608
685
|
Inputs:
|
|
609
|
-
- **shape** (tuple) - The shape of tensor to be generated. Only constant value is allowed.
|
|
686
|
+
- **shape** (Union[tuple, Tensor]) - The shape of tensor to be generated. Only constant value is allowed.
|
|
610
687
|
|
|
611
688
|
Outputs:
|
|
612
689
|
Tensor. The shape that the input 'shape' denotes. The dtype is float32.
|
|
613
690
|
|
|
614
691
|
Raises:
|
|
615
692
|
TypeError: If `seed` or `seed2` is not an int.
|
|
616
|
-
TypeError: If `shape` is
|
|
693
|
+
TypeError: If `shape` is neither a tuple nor a Tensor.
|
|
617
694
|
ValueError: If `shape` is not a constant value.
|
|
618
695
|
|
|
619
696
|
Supported Platforms:
|
|
@@ -629,7 +706,7 @@ class UniformReal(Primitive):
|
|
|
629
706
|
"""
|
|
630
707
|
@prim_attr_register
|
|
631
708
|
def __init__(self, seed=0, seed2=0):
|
|
632
|
-
"""Initialize
|
|
709
|
+
"""Initialize UniformReal"""
|
|
633
710
|
self.init_prim_io_names(inputs=['shape'], outputs=['output'])
|
|
634
711
|
self.add_prim_attr("side_effect_hidden", True)
|
|
635
712
|
Validator.check_non_negative_int(seed, "seed", self.name)
|
|
@@ -640,15 +717,13 @@ class RandomChoiceWithMask(Primitive):
|
|
|
640
717
|
"""
|
|
641
718
|
Generates a random sample as index tensor with a mask tensor from a given tensor.
|
|
642
719
|
|
|
643
|
-
|
|
644
|
-
the first dimension specifies the number of samples.
|
|
645
|
-
The index tensor and the mask tensor have the fixed shapes. The index tensor denotes the index of the nonzero
|
|
646
|
-
sample, while the mask tensor denotes which elements in the index tensor are valid.
|
|
720
|
+
Refer to :func:`mindspore.ops.choice_with_mask` for more details.
|
|
647
721
|
|
|
648
722
|
Args:
|
|
649
|
-
count (int): Number of items expected to get and the number must be greater than 0. Default: 256.
|
|
650
|
-
seed (int): Random
|
|
651
|
-
|
|
723
|
+
count (int, optional): Number of items expected to get and the number must be greater than 0. Default: 256.
|
|
724
|
+
seed (int, optional): Seed is used as entropy source for Random number engines generating
|
|
725
|
+
pseudo-random numbers. Default: 0.
|
|
726
|
+
seed2 (int, optional): Second seed to avoid collision. Default: 0.
|
|
652
727
|
|
|
653
728
|
Inputs:
|
|
654
729
|
- **input_x** (Tensor[bool]) - The input tensor.
|
|
@@ -660,11 +735,6 @@ class RandomChoiceWithMask(Primitive):
|
|
|
660
735
|
- **index** (Tensor) - The output shape is 2-D.
|
|
661
736
|
- **mask** (Tensor) - The output shape is 1-D.
|
|
662
737
|
|
|
663
|
-
Raises:
|
|
664
|
-
TypeError: If `count` is not an int.
|
|
665
|
-
TypeError: If neither `seed` nor `seed2` is an int.
|
|
666
|
-
TypeError: If `input_x` is not a Tensor.
|
|
667
|
-
|
|
668
738
|
Supported Platforms:
|
|
669
739
|
``Ascend`` ``GPU`` ``CPU``
|
|
670
740
|
|
|
@@ -691,7 +761,7 @@ class RandomChoiceWithMask(Primitive):
|
|
|
691
761
|
|
|
692
762
|
|
|
693
763
|
class RandomCategorical(PrimitiveWithInfer):
|
|
694
|
-
"""
|
|
764
|
+
r"""
|
|
695
765
|
Generates random samples from a given categorical distribution tensor.
|
|
696
766
|
|
|
697
767
|
Args:
|
|
@@ -699,12 +769,12 @@ class RandomCategorical(PrimitiveWithInfer):
|
|
|
699
769
|
mindspore.int32 and mindspore.int64. Default: mindspore.int64.
|
|
700
770
|
|
|
701
771
|
Inputs:
|
|
702
|
-
- **logits** (Tensor) - The input tensor. 2-D Tensor with shape
|
|
772
|
+
- **logits** (Tensor) - The input tensor. 2-D Tensor with shape :math:`(batch\_size, num\_classes)`.
|
|
703
773
|
- **num_sample** (int) - Number of sample to be drawn. Only constant values is allowed.
|
|
704
774
|
- **seed** (int) - Random seed. Default: 0. Only constant values is allowed.
|
|
705
775
|
|
|
706
776
|
Outputs:
|
|
707
|
-
- **output** (Tensor) - The output Tensor with shape
|
|
777
|
+
- **output** (Tensor) - The output Tensor with shape :math:`(batch_size, num_samples)`.
|
|
708
778
|
|
|
709
779
|
Raises:
|
|
710
780
|
TypeError: If `dtype` is not one of the following: mindspore.int16, mindspore.int32, mindspore.int64.
|
|
@@ -759,8 +829,7 @@ class Multinomial(Primitive):
|
|
|
759
829
|
|
|
760
830
|
Inputs:
|
|
761
831
|
- **x** (Tensor) - the input tensor containing the cumsum of probabilities, must be 1 or 2
|
|
762
|
-
dimensions.
|
|
763
|
-
supports x 1 or 2 dimensions and Ascend only supports 2 dimensions.
|
|
832
|
+
dimensions.
|
|
764
833
|
- **num_samples** (int) - number of samples to draw, must be a nonnegative number.
|
|
765
834
|
|
|
766
835
|
Outputs:
|
|
@@ -768,9 +837,9 @@ class Multinomial(Primitive):
|
|
|
768
837
|
|
|
769
838
|
Raises:
|
|
770
839
|
TypeError: If neither `seed` nor `seed2` is an int.
|
|
771
|
-
TypeError: If `x` is not a Tensor whose dtype is float16, float32, float64.
|
|
772
840
|
TypeError: If dtype of `num_samples` is not int.
|
|
773
|
-
TypeError: If dtype is not int32 or int64.
|
|
841
|
+
TypeError: If `dtype` is not int32 or int64.
|
|
842
|
+
ValueError: If `seed` or `seed2` is less than 0.
|
|
774
843
|
|
|
775
844
|
Supported Platforms:
|
|
776
845
|
``Ascend`` ``GPU`` ``CPU``
|
|
@@ -779,7 +848,7 @@ class Multinomial(Primitive):
|
|
|
779
848
|
>>> x = Tensor([[0., 9., 4., 0.]], mstype.float32)
|
|
780
849
|
>>> multinomial = ops.Multinomial(seed=10)
|
|
781
850
|
>>> output = multinomial(x, 2)
|
|
782
|
-
>>> print(output)
|
|
851
|
+
>>> print(output)
|
|
783
852
|
[[1 1]]
|
|
784
853
|
"""
|
|
785
854
|
|
|
@@ -788,20 +857,72 @@ class Multinomial(Primitive):
|
|
|
788
857
|
"""Initialize Multinomial."""
|
|
789
858
|
Validator.check_non_negative_int(seed, "seed", self.name)
|
|
790
859
|
Validator.check_non_negative_int(seed2, "seed2", self.name)
|
|
791
|
-
self.init_prim_io_names(
|
|
860
|
+
self.init_prim_io_names(
|
|
861
|
+
inputs=['x', 'num_samples'], outputs=['output'])
|
|
792
862
|
Validator.check_value_type("dtype", dtype, [mstype.Type], self.name)
|
|
793
863
|
valid_values = (mstype.int64, mstype.int32)
|
|
794
864
|
Validator.check_type_name("dtype", dtype, valid_values, self.name)
|
|
795
865
|
self.add_prim_attr("side_effect_hidden", True)
|
|
796
866
|
|
|
797
867
|
|
|
798
|
-
class
|
|
868
|
+
class MultinomialWithReplacement(Primitive):
|
|
869
|
+
r"""
|
|
870
|
+
Returns a tensor where each row contains `numsamples` indices sampled from the multinomial distribution
|
|
871
|
+
with replacement. It diffs from `Multinomial` in that it allows the same outcome to be chosen multiple times.
|
|
872
|
+
|
|
873
|
+
.. warning::
|
|
874
|
+
This is an experimental API that is subject to change or deletion.
|
|
875
|
+
|
|
876
|
+
Refer to :func:`mindspore.ops.multinomial_with_replacement` for more details.
|
|
877
|
+
|
|
878
|
+
Note:
|
|
879
|
+
The rows of input do not need to sum to one (in which case we use the values as weights),
|
|
880
|
+
but must be non-negative, finite and have a non-zero sum.
|
|
881
|
+
|
|
882
|
+
Args:
|
|
883
|
+
numsamples (int): number of samples to draw, must be a nonnegative number.
|
|
884
|
+
replacement (bool, optional): Whether to draw with replacement or not. Default: False.
|
|
885
|
+
|
|
886
|
+
Inputs:
|
|
887
|
+
- **x** (Tensor) - the input tensor containing the cumsum of probabilities, must be 1 or 2
|
|
888
|
+
dimensions.
|
|
889
|
+
- **seed** (Tensor) - If `seed` is set to -1, and `offset` is set to 0, the random number
|
|
890
|
+
generator is seeded by a random seed. Otherwise, it is seeded by the given seed.
|
|
891
|
+
Supported dtype: int64.
|
|
892
|
+
- **offset** (Tensor) - Offset used to avoid seed collision. Supported dtype: int64.
|
|
893
|
+
|
|
894
|
+
Outputs:
|
|
895
|
+
Tensor with the same rows as `x`, each row has `numsamples` sampled indices.
|
|
896
|
+
|
|
897
|
+
Supported Platforms:
|
|
898
|
+
``CPU``
|
|
899
|
+
|
|
900
|
+
Examples:
|
|
901
|
+
>>> x = Tensor([[0., 9., 4., 0.]], mstype.float32)
|
|
902
|
+
>>> seed = Tensor(2, mstype.int64)
|
|
903
|
+
>>> offset = Tensor(5, mstype.int64)
|
|
904
|
+
>>> multinomialwithreplacement = ops.MultinomialWithReplacement(numsamples=2,replacement=True)
|
|
905
|
+
>>> output = multinomialwithreplacement(x, seed, offset)
|
|
906
|
+
>>> print(output)
|
|
907
|
+
[[1 1]]
|
|
908
|
+
"""
|
|
909
|
+
|
|
910
|
+
@prim_attr_register
|
|
911
|
+
def __init__(self, numsamples, replacement=False):
|
|
912
|
+
"""Initialize MultinomialWithReplacement."""
|
|
913
|
+
Validator.check_non_negative_int(numsamples, "numsamples", self.name)
|
|
914
|
+
Validator.check_value_type("replacement", replacement, [bool], self.name)
|
|
915
|
+
self.init_prim_io_names(inputs=['x', 'seed', 'offset'], outputs=['y'])
|
|
916
|
+
self.add_prim_attr("side_effect_hidden", True)
|
|
917
|
+
|
|
918
|
+
|
|
919
|
+
class UniformCandidateSampler(Primitive):
|
|
799
920
|
r"""
|
|
800
921
|
Uniform candidate sampler.
|
|
801
922
|
|
|
802
923
|
This function samples a set of classes(sampled_candidates) from [0, range_max-1] based on uniform distribution.
|
|
803
924
|
|
|
804
|
-
Refer to :func:`mindspore.ops.uniform_candidate_sampler` for more
|
|
925
|
+
Refer to :func:`mindspore.ops.uniform_candidate_sampler` for more details.
|
|
805
926
|
|
|
806
927
|
Supported Platforms:
|
|
807
928
|
``Ascend`` ``GPU`` ``CPU``
|
|
@@ -821,66 +942,39 @@ class UniformCandidateSampler(PrimitiveWithInfer):
|
|
|
821
942
|
def __init__(self, num_true, num_sampled, unique, range_max, seed=0, remove_accidental_hits=False):
|
|
822
943
|
"""Initialize UniformCandidateSampler"""
|
|
823
944
|
Validator.check_value_type("num_true", num_true, [int], self.name)
|
|
824
|
-
Validator.check_value_type(
|
|
945
|
+
Validator.check_value_type(
|
|
946
|
+
"num_sampled", num_sampled, [int], self.name)
|
|
825
947
|
Validator.check_value_type("unique", unique, [bool], self.name)
|
|
826
948
|
Validator.check_value_type("range_max", range_max, [int], self.name)
|
|
827
949
|
Validator.check_value_type("seed", seed, [int], self.name)
|
|
828
|
-
Validator.check_value_type(
|
|
829
|
-
|
|
830
|
-
Validator.check("value of
|
|
831
|
-
|
|
950
|
+
Validator.check_value_type(
|
|
951
|
+
"remove_accidental_hits", remove_accidental_hits, [bool], self.name)
|
|
952
|
+
Validator.check("value of num_true", num_true,
|
|
953
|
+
'', 0, Validator.GT, self.name)
|
|
954
|
+
Validator.check("value of num_sampled", num_sampled,
|
|
955
|
+
'', 0, Validator.GT, self.name)
|
|
956
|
+
Validator.check("value of range_max", range_max,
|
|
957
|
+
'', 0, Validator.GT, self.name)
|
|
832
958
|
self.num_true = num_true
|
|
833
959
|
if unique:
|
|
834
|
-
Validator.check('value of num_sampled', num_sampled,
|
|
835
|
-
|
|
960
|
+
Validator.check('value of num_sampled', num_sampled,
|
|
961
|
+
"value of range_max", range_max, Validator.LE, self.name)
|
|
962
|
+
Validator.check("value of seed", seed, '', 0, Validator.GE, self.name)
|
|
836
963
|
self.num_sampled = num_sampled
|
|
964
|
+
self.add_prim_attr("side_effect_hidden", True)
|
|
837
965
|
|
|
838
|
-
def infer_dtype(self, true_classes_type):
|
|
839
|
-
Validator.check_subclass("true_classes_type", true_classes_type, mstype.tensor, self.name)
|
|
840
|
-
Validator.check_tensor_dtype_valid("true_classes_type", true_classes_type,
|
|
841
|
-
(mstype.int32, mstype.int64), self.name)
|
|
842
|
-
return true_classes_type, mstype.float32, mstype.float32
|
|
843
|
-
|
|
844
|
-
def infer_shape(self, true_classes_shape):
|
|
845
|
-
Validator.check("true_class.shape[1]", true_classes_shape[1], "num_true", self.num_true, Rel.EQ, self.name)
|
|
846
|
-
return [self.num_sampled], true_classes_shape, [self.num_sampled]
|
|
847
966
|
|
|
848
967
|
|
|
849
|
-
class LogUniformCandidateSampler(
|
|
968
|
+
class LogUniformCandidateSampler(Primitive):
|
|
850
969
|
r"""
|
|
851
970
|
Generates random labels with a log-uniform distribution for sampled_candidates.
|
|
852
971
|
|
|
853
972
|
Randomly samples a tensor of sampled classes from the range of integers [0, range_max).
|
|
854
973
|
|
|
855
|
-
|
|
856
|
-
num_true (int): The number of target classes per training example. Default: 1.
|
|
857
|
-
num_sampled (int): The number of classes to randomly sample. Default: 5.
|
|
858
|
-
unique (bool): Determines whether sample with rejection. If `unique` is True,
|
|
859
|
-
all sampled classes in a batch are unique. Default: True.
|
|
860
|
-
range_max (int): The number of possible classes. When `unique` is True,
|
|
861
|
-
`range_max` must be greater than or equal to `num_sampled`. Default: 5.
|
|
862
|
-
seed (int): Random seed, must be non-negative. Default: 0.
|
|
863
|
-
|
|
864
|
-
Inputs:
|
|
865
|
-
- **true_classes** (Tensor) - The target classes. With data type of int64 and
|
|
866
|
-
shape :math:`(batch\_size, num\_true)` .
|
|
867
|
-
|
|
868
|
-
Outputs:
|
|
869
|
-
Tuple of 3 Tensors.
|
|
870
|
-
|
|
871
|
-
- **sampled_candidates** (Tensor) - A Tensor with shape :math:`(num\_sampled,)`
|
|
872
|
-
and the same type as `true_classes`.
|
|
873
|
-
- **true_expected_count** (Tensor) - A Tensor with the same shape as `true_classes and` type float32.
|
|
874
|
-
- **sampled_expected_count** (Tensor) - A Tensor with the same shape as `sampled_candidates` and type float32.
|
|
875
|
-
|
|
876
|
-
Raises:
|
|
877
|
-
TypeError: If neither `num_true` nor `num_sampled` is an int.
|
|
878
|
-
TypeError: If `unique` is not a bool.
|
|
879
|
-
TypeError: If neither `range_max` nor `seed` is an int.
|
|
880
|
-
TypeError: If `true_classes` is not a Tensor.
|
|
974
|
+
Refer to :func:`mindspore.ops.log_uniform_candidate_sampler` for more details.
|
|
881
975
|
|
|
882
976
|
Supported Platforms:
|
|
883
|
-
``Ascend``
|
|
977
|
+
``Ascend`` ``CPU``
|
|
884
978
|
|
|
885
979
|
Examples:
|
|
886
980
|
>>> sampler = ops.LogUniformCandidateSampler(2, 5, True, 5)
|
|
@@ -900,30 +994,23 @@ class LogUniformCandidateSampler(PrimitiveWithInfer):
|
|
|
900
994
|
self.init_prim_io_names(inputs=['true_classes'],
|
|
901
995
|
outputs=['sampled_candidates', 'true_expected_count', 'sampled_expected_count'])
|
|
902
996
|
Validator.check_value_type("num_true", num_true, [int], self.name)
|
|
903
|
-
Validator.check_value_type(
|
|
997
|
+
Validator.check_value_type(
|
|
998
|
+
"num_sampled", num_sampled, [int], self.name)
|
|
904
999
|
Validator.check_value_type("unique", unique, [bool], self.name)
|
|
905
1000
|
Validator.check_value_type("range_max", range_max, [int], self.name)
|
|
906
1001
|
Validator.check_value_type("seed", seed, [int], self.name)
|
|
907
|
-
self.num_true = Validator.check_number(
|
|
908
|
-
|
|
909
|
-
Validator.check_number(
|
|
1002
|
+
self.num_true = Validator.check_number(
|
|
1003
|
+
"num_true", num_true, 1, Validator.GE, self.name)
|
|
1004
|
+
self.num_sampled = Validator.check_number(
|
|
1005
|
+
"num_sampled", num_sampled, 1, Validator.GE, self.name)
|
|
1006
|
+
Validator.check_number("range_max", range_max, 1, Validator.GE, self.name)
|
|
910
1007
|
if unique:
|
|
911
|
-
Validator.check("range_max", range_max, "num_sampled",
|
|
1008
|
+
Validator.check("range_max", range_max, "num_sampled",
|
|
1009
|
+
num_sampled, Validator.GE, self.name)
|
|
912
1010
|
self.range_max = range_max
|
|
913
1011
|
self.unique = unique
|
|
914
|
-
self.seed = Validator.check_number("seed", seed, 0,
|
|
915
|
-
|
|
916
|
-
def infer_shape(self, true_classes_shape):
|
|
917
|
-
Validator.check_int(len(true_classes_shape), 2, Rel.EQ, "dim of true_classes", self.name)
|
|
918
|
-
Validator.check("true_classes_shape[1]", true_classes_shape[1], "num_true", self.num_true, Rel.EQ, self.name)
|
|
919
|
-
return (self.num_sampled,), true_classes_shape, (self.num_sampled,)
|
|
920
|
-
|
|
921
|
-
def infer_dtype(self, true_classes_type):
|
|
922
|
-
Validator.check_subclass("true_classes_type", true_classes_type, mstype.tensor, self.name)
|
|
923
|
-
valid_types = (mstype.int64,)
|
|
924
|
-
Validator.check_tensor_dtype_valid("true_classes_type", true_classes_type, valid_types, self.name)
|
|
925
|
-
expected_type = mstype.float32
|
|
926
|
-
return true_classes_type, expected_type, expected_type
|
|
1012
|
+
self.seed = Validator.check_number("seed", seed, 0, Validator.GE, self.name)
|
|
1013
|
+
self.add_prim_attr("side_effect_hidden", True)
|
|
927
1014
|
|
|
928
1015
|
|
|
929
1016
|
class RandomShuffle(Primitive):
|
|
@@ -931,9 +1018,11 @@ class RandomShuffle(Primitive):
|
|
|
931
1018
|
Randomly shuffles a Tensor along its first dimension.
|
|
932
1019
|
|
|
933
1020
|
Args:
|
|
934
|
-
seed (int):
|
|
935
|
-
|
|
936
|
-
|
|
1021
|
+
seed (int, optional): Random seed. If `seed` or `seed2` is set to non-zero, the random number generator
|
|
1022
|
+
will be seeded by the given seed. Otherwise, it will be seeded randomly.
|
|
1023
|
+
The `seed` must be non-negative. Default: 0.
|
|
1024
|
+
seed2 (int, optional): A second seed to avoid seed collision. If `seed` is 0, the `seed2` will be used as
|
|
1025
|
+
the seed of the random generator. It must be non-negative. Default: 0.
|
|
937
1026
|
|
|
938
1027
|
Inputs:
|
|
939
1028
|
- **x** (Tensor) - The Tensor need be shuffled.
|
|
@@ -945,7 +1034,7 @@ class RandomShuffle(Primitive):
|
|
|
945
1034
|
TypeError: If data type of `seed` or `seed2` is not int.
|
|
946
1035
|
|
|
947
1036
|
Supported Platforms:
|
|
948
|
-
``CPU``
|
|
1037
|
+
``Ascend`` ``GPU`` ``CPU``
|
|
949
1038
|
|
|
950
1039
|
Examples:
|
|
951
1040
|
>>> x = Tensor(np.array([1, 2, 3, 4]), mstype.float32)
|
|
@@ -959,5 +1048,83 @@ class RandomShuffle(Primitive):
|
|
|
959
1048
|
def __init__(self, seed=0, seed2=0):
|
|
960
1049
|
"""Initialize RandomShuffle"""
|
|
961
1050
|
self.init_prim_io_names(inputs=['input_x'], outputs=['output'])
|
|
1051
|
+
self.add_prim_attr("side_effect_hidden", True)
|
|
962
1052
|
Validator.check_non_negative_int(seed, "seed", self.name)
|
|
963
1053
|
Validator.check_non_negative_int(seed2, "seed2", self.name)
|
|
1054
|
+
|
|
1055
|
+
|
|
1056
|
+
class Uniform(Primitive):
|
|
1057
|
+
r"""
|
|
1058
|
+
Generates random numbers according to the Uniform random number distribution.
|
|
1059
|
+
|
|
1060
|
+
Args:
|
|
1061
|
+
minval(float):must be non-negative. Default: 0.0.
|
|
1062
|
+
maxval(float):must be non-negative. Default: 1.0.
|
|
1063
|
+
|
|
1064
|
+
Inputs:
|
|
1065
|
+
- **x** (Tensor) - The x of random tensor to be generated.
|
|
1066
|
+
Only constant value is allowed, and the date type is float16, float32, float64.
|
|
1067
|
+
|
|
1068
|
+
Raises:
|
|
1069
|
+
TypeError: If `minval` or `maxval` is not a float.
|
|
1070
|
+
TypeError: If `x`is not a Tensor.
|
|
1071
|
+
ValueError: If `minval` is larger than `maxval`.
|
|
1072
|
+
|
|
1073
|
+
Outputs:
|
|
1074
|
+
- **output** (Tensor) - With the same type and shape as the 'x'.
|
|
1075
|
+
|
|
1076
|
+
Supported Platforms:
|
|
1077
|
+
``GPU`` ``CPU``
|
|
1078
|
+
|
|
1079
|
+
Examples:
|
|
1080
|
+
>>> x = Tensor(np.random.randn(3,4), mstype.float64)
|
|
1081
|
+
>>> uniform = Uniform(minval=1.0, maxval=2.0)
|
|
1082
|
+
>>> y = uniform(x)
|
|
1083
|
+
>>> print(y.shape)
|
|
1084
|
+
(3, 4)
|
|
1085
|
+
"""
|
|
1086
|
+
|
|
1087
|
+
@prim_attr_register
|
|
1088
|
+
def __init__(self, minval=0., maxval=1., seed=0, offset=0):
|
|
1089
|
+
"""Initialize Uniform"""
|
|
1090
|
+
self.init_prim_io_names(inputs=['x'], outputs=['y'])
|
|
1091
|
+
self.add_prim_attr("from", minval)
|
|
1092
|
+
self.add_prim_attr("to", maxval)
|
|
1093
|
+
Validator.check_value_type('seed', seed, [int], self.name)
|
|
1094
|
+
Validator.check_value_type('offset', offset, [int], self.name)
|
|
1095
|
+
Validator.check('minval', minval, 'maxval', maxval, Validator.LE, self.name)
|
|
1096
|
+
Validator.check_non_negative_float(minval, "minval", self.name)
|
|
1097
|
+
Validator.check_non_negative_float(maxval, "maxval", self.name)
|
|
1098
|
+
self.add_prim_attr("side_effect_hidden", True)
|
|
1099
|
+
|
|
1100
|
+
|
|
1101
|
+
class RandpermV2(Primitive):
|
|
1102
|
+
r"""
|
|
1103
|
+
Generates random permutation of integers from 0 to n-1 without repeating.
|
|
1104
|
+
|
|
1105
|
+
Refer to :func:`mindspore.ops.randperm` for more detail.
|
|
1106
|
+
|
|
1107
|
+
Supported Platforms:
|
|
1108
|
+
``CPU``
|
|
1109
|
+
|
|
1110
|
+
Examples:
|
|
1111
|
+
>>> n = Tensor([4], mstype.int64)
|
|
1112
|
+
>>> seed = 0
|
|
1113
|
+
>>> offset = 0
|
|
1114
|
+
>>> randperm = ops.RandpermV2(layout=0, dtype=mstype.int64)
|
|
1115
|
+
>>> output = randperm(n, seed, offset)
|
|
1116
|
+
>>> print(output)
|
|
1117
|
+
[1 0 2 3]
|
|
1118
|
+
"""
|
|
1119
|
+
|
|
1120
|
+
@prim_attr_register
|
|
1121
|
+
def __init__(self, layout=0, dtype=mstype.int64):
|
|
1122
|
+
"""Initialize RandpermV2"""
|
|
1123
|
+
self.dtype = dtype
|
|
1124
|
+
self.layout = layout
|
|
1125
|
+
Validator.check_value_type('layout', layout, [int], self.name)
|
|
1126
|
+
Validator.check_non_negative_int(layout, 'layout', self.name)
|
|
1127
|
+
valid_values = (mstype.int32, mstype.int64, mstype.int16, mstype.int8, mstype.uint8, mstype.float64
|
|
1128
|
+
, mstype.float32, mstype.float16)
|
|
1129
|
+
Validator.check_type_name("dtype", dtype, valid_values, self.name)
|
|
1130
|
+
self.add_prim_attr("side_effect_hidden", True)
|