mindspore 1.10.0__cp37-cp37m-win_amd64.whl → 2.0.0rc1__cp37-cp37m-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mindspore might be problematic. Click here for more details.
- mindspore/.commit_id +1 -1
- mindspore/ConcurrencyCheck.dll +0 -0
- mindspore/CppBuildInsights.dll +0 -0
- mindspore/CppCoreCheck.dll +0 -0
- mindspore/EnumIndex.dll +0 -0
- mindspore/EspXEngine.dll +0 -0
- mindspore/HResultCheck.dll +0 -0
- mindspore/KernelTraceControl.dll +0 -0
- mindspore/LocalESPC.dll +0 -0
- mindspore/Microsoft.Diagnostics.Tracing.EventSource.dll +0 -0
- mindspore/Microsoft.VisualStudio.RemoteControl.dll +0 -0
- mindspore/Microsoft.VisualStudio.Telemetry.dll +0 -0
- mindspore/Microsoft.VisualStudio.Utilities.Internal.dll +0 -0
- mindspore/Newtonsoft.Json.dll +0 -0
- mindspore/System.Runtime.CompilerServices.Unsafe.dll +0 -0
- mindspore/VariantClear.dll +0 -0
- mindspore/__init__.py +9 -4
- mindspore/_c_dataengine.cp37-win_amd64.pyd +0 -0
- mindspore/_c_expression.cp37-win_amd64.pyd +0 -0
- mindspore/_c_mindrecord.cp37-win_amd64.pyd +0 -0
- mindspore/_check_jit_forbidden_api.py +102 -0
- mindspore/_checkparam.py +1066 -1001
- mindspore/_extends/builtin_operations.py +32 -4
- mindspore/_extends/graph_kernel/model/graph_split.py +66 -222
- mindspore/_extends/parallel_compile/akg_compiler/akg_process.py +12 -9
- mindspore/_extends/parallel_compile/akg_compiler/build_tbe_kernel.py +119 -26
- mindspore/_extends/parallel_compile/akg_compiler/tbe_topi.py +50 -50
- mindspore/_extends/parallel_compile/akg_compiler/util.py +9 -6
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_adapter.py +4 -25
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_helper.py +9 -4
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_job_manager.py +1 -27
- mindspore/_extends/parse/__init__.py +5 -3
- mindspore/_extends/parse/namespace.py +17 -2
- mindspore/_extends/parse/parser.py +193 -34
- mindspore/_extends/parse/resources.py +7 -8
- mindspore/_extends/parse/standard_method.py +1780 -435
- mindspore/_extends/parse/trope.py +3 -1
- mindspore/amp.py +53 -58
- mindspore/atlprov.dll +0 -0
- mindspore/boost/adasum.py +3 -2
- mindspore/boost/boost.py +2 -2
- mindspore/boost/boost_cell_wrapper.py +46 -26
- mindspore/boost/dim_reduce.py +6 -5
- mindspore/boost/grad_accumulation.py +2 -1
- mindspore/boost/group_loss_scale_manager.py +1 -1
- mindspore/c1.dll +0 -0
- mindspore/c1xx.dll +0 -0
- mindspore/c2.dll +0 -0
- mindspore/cfgpersist.dll +0 -0
- mindspore/clang_rt.asan_dbg_dynamic-x86_64.dll +0 -0
- mindspore/clang_rt.asan_dynamic-x86_64.dll +0 -0
- mindspore/common/__init__.py +11 -10
- mindspore/common/_decorator.py +2 -0
- mindspore/common/_register_for_adapter.py +55 -0
- mindspore/common/_stub_tensor.py +201 -0
- mindspore/common/_utils.py +57 -0
- mindspore/common/api.py +582 -297
- mindspore/common/dtype.py +66 -18
- mindspore/common/dump.py +2 -2
- mindspore/common/initializer.py +38 -1
- mindspore/common/jit_config.py +25 -13
- mindspore/common/mutable.py +53 -24
- mindspore/common/parameter.py +60 -37
- mindspore/common/seed.py +8 -24
- mindspore/common/sparse_tensor.py +927 -0
- mindspore/common/tensor.py +1627 -3900
- mindspore/communication/__init__.py +10 -5
- mindspore/communication/_comm_helper.py +78 -214
- mindspore/communication/_hccl_management.py +2 -1
- mindspore/communication/management.py +136 -47
- mindspore/config/op_info.config +501 -1008
- mindspore/context.py +291 -56
- mindspore/d3dcompiler_47.dll +0 -0
- mindspore/dataset/__init__.py +12 -8
- mindspore/dataset/audio/__init__.py +9 -9
- mindspore/dataset/audio/transforms.py +1090 -228
- mindspore/dataset/audio/utils.py +87 -39
- mindspore/dataset/audio/validators.py +223 -1
- mindspore/dataset/callback/ds_callback.py +17 -15
- mindspore/dataset/core/config.py +246 -17
- mindspore/dataset/core/py_util_helpers.py +4 -3
- mindspore/dataset/core/validator_helpers.py +10 -10
- mindspore/{parallel/nn/layers.py → dataset/debug/__init__.py} +7 -8
- mindspore/dataset/debug/debug_hook.py +65 -0
- mindspore/dataset/debug/pre_defined_hook.py +67 -0
- mindspore/dataset/engine/__init__.py +7 -3
- mindspore/dataset/engine/cache_client.py +9 -9
- mindspore/dataset/engine/datasets.py +648 -477
- mindspore/dataset/engine/datasets_audio.py +165 -167
- mindspore/dataset/engine/datasets_standard_format.py +93 -67
- mindspore/dataset/engine/datasets_text.py +492 -342
- mindspore/dataset/engine/datasets_user_defined.py +85 -50
- mindspore/dataset/engine/datasets_vision.py +1224 -699
- mindspore/dataset/engine/graphdata.py +134 -69
- mindspore/dataset/engine/iterators.py +50 -9
- mindspore/dataset/engine/offload.py +52 -31
- mindspore/dataset/engine/samplers.py +27 -24
- mindspore/dataset/engine/serializer_deserializer.py +14 -15
- mindspore/dataset/engine/validators.py +213 -52
- mindspore/dataset/text/__init__.py +10 -8
- mindspore/dataset/text/transforms.py +152 -57
- mindspore/dataset/text/utils.py +98 -49
- mindspore/dataset/text/validators.py +25 -0
- mindspore/dataset/transforms/__init__.py +4 -2
- mindspore/dataset/transforms/c_transforms.py +11 -13
- mindspore/dataset/transforms/py_transforms.py +2 -2
- mindspore/dataset/transforms/py_transforms_util.py +10 -0
- mindspore/dataset/transforms/transforms.py +13 -15
- mindspore/dataset/transforms/validators.py +7 -7
- mindspore/dataset/utils/__init__.py +2 -1
- mindspore/dataset/utils/browse_dataset.py +13 -13
- mindspore/dataset/utils/line_reader.py +121 -0
- mindspore/dataset/vision/__init__.py +8 -7
- mindspore/dataset/vision/c_transforms.py +125 -126
- mindspore/dataset/vision/py_transforms.py +37 -37
- mindspore/dataset/vision/py_transforms_util.py +23 -20
- mindspore/dataset/vision/transforms.py +316 -315
- mindspore/dataset/vision/utils.py +313 -17
- mindspore/dataset/vision/validators.py +6 -6
- mindspore/default_config.py +0 -1
- mindspore/dpcmi.dll +0 -0
- mindspore/{compression → experimental}/__init__.py +6 -5
- mindspore/experimental/map_parameter.py +275 -0
- mindspore/include/OWNERS +0 -1
- mindspore/include/api/callback/callback.h +9 -13
- mindspore/include/api/callback/ckpt_saver.h +2 -2
- mindspore/include/api/callback/loss_monitor.h +2 -2
- mindspore/include/api/callback/lr_scheduler.h +5 -5
- mindspore/include/api/callback/time_monitor.h +2 -2
- mindspore/include/api/callback/train_accuracy.h +4 -6
- mindspore/include/api/cfg.h +19 -6
- mindspore/include/api/context.h +70 -9
- mindspore/include/api/delegate.h +8 -1
- mindspore/include/api/dual_abi_helper.h +8 -24
- mindspore/include/api/metrics/accuracy.h +2 -2
- mindspore/include/api/metrics/metrics.h +4 -3
- mindspore/include/api/model.h +9 -4
- mindspore/include/api/model_group.h +68 -0
- mindspore/include/api/model_parallel_runner.h +17 -17
- mindspore/include/api/net.h +12 -11
- mindspore/include/api/serialization.h +20 -4
- mindspore/include/api/status.h +7 -1
- mindspore/include/api/types.h +25 -21
- mindspore/include/api/visible.h +4 -0
- mindspore/include/c_api/model_c.h +5 -0
- mindspore/include/c_api/status_c.h +1 -1
- mindspore/include/dataset/config.h +1 -1
- mindspore/include/dataset/constants.h +14 -0
- mindspore/include/dataset/text.h +59 -0
- mindspore/include/dataset/vision.h +56 -117
- mindspore/include/dataset/vision_lite.h +102 -0
- mindspore/jpeg62.dll +0 -0
- mindspore/log.py +28 -28
- mindspore/mindrecord/common/exceptions.py +2 -4
- mindspore/mindrecord/filereader.py +19 -1
- mindspore/mindrecord/filewriter.py +250 -88
- mindspore/mindrecord/mindpage.py +13 -13
- mindspore/mindrecord/shardheader.py +15 -15
- mindspore/mindrecord/shardreader.py +9 -0
- mindspore/mindrecord/shardwriter.py +29 -29
- mindspore/mindrecord/tools/cifar100_to_mr.py +9 -9
- mindspore/mindrecord/tools/cifar10_to_mr.py +9 -9
- mindspore/mindrecord/tools/csv_to_mr.py +4 -4
- mindspore/mindrecord/tools/imagenet_to_mr.py +70 -65
- mindspore/mindrecord/tools/mnist_to_mr.py +41 -41
- mindspore/mindrecord/tools/tfrecord_to_mr.py +6 -6
- mindspore/{libmindspore_backend.dll → mindspore_backend.dll} +0 -0
- mindspore/mindspore_common.dll +0 -0
- mindspore/mindspore_core.dll +0 -0
- mindspore/mindspore_glog.dll +0 -0
- mindspore/mindspore_shared_lib.dll +0 -0
- mindspore/msobj140.dll +0 -0
- mindspore/mspdb140.dll +0 -0
- mindspore/mspdbcore.dll +0 -0
- mindspore/mspdbst.dll +0 -0
- mindspore/mspft140.dll +0 -0
- mindspore/msvcdis140.dll +0 -0
- mindspore/msvcp140_1.dll +0 -0
- mindspore/msvcp140_2.dll +0 -0
- mindspore/msvcp140_atomic_wait.dll +0 -0
- mindspore/msvcp140_codecvt_ids.dll +0 -0
- mindspore/nn/__init__.py +1 -5
- mindspore/nn/cell.py +297 -234
- mindspore/nn/dynamic_lr.py +1 -1
- mindspore/nn/grad/cell_grad.py +17 -42
- mindspore/nn/layer/__init__.py +7 -4
- mindspore/nn/layer/activation.py +131 -88
- mindspore/nn/layer/basic.py +313 -613
- mindspore/nn/layer/channel_shuffle.py +103 -0
- mindspore/nn/layer/combined.py +1 -1
- mindspore/nn/layer/container.py +52 -6
- mindspore/nn/layer/conv.py +112 -43
- mindspore/nn/layer/dense.py +10 -9
- mindspore/nn/layer/embedding.py +36 -34
- mindspore/nn/layer/image.py +123 -27
- mindspore/nn/layer/math.py +108 -107
- mindspore/nn/layer/normalization.py +212 -366
- mindspore/nn/layer/padding.py +370 -42
- mindspore/nn/layer/pooling.py +1443 -219
- mindspore/nn/layer/rnn_cells.py +11 -16
- mindspore/nn/layer/rnns.py +38 -39
- mindspore/nn/layer/thor_layer.py +24 -25
- mindspore/nn/layer/timedistributed.py +5 -5
- mindspore/nn/layer/transformer.py +701 -0
- mindspore/nn/learning_rate_schedule.py +8 -8
- mindspore/nn/loss/__init__.py +9 -6
- mindspore/nn/loss/loss.py +678 -142
- mindspore/nn/metrics.py +53 -0
- mindspore/nn/optim/_dist_optimizer_registry.py +2 -2
- mindspore/nn/optim/ada_grad.py +8 -8
- mindspore/nn/optim/adadelta.py +2 -3
- mindspore/nn/optim/adafactor.py +18 -14
- mindspore/nn/optim/adam.py +429 -87
- mindspore/nn/optim/adamax.py +5 -6
- mindspore/nn/optim/adasum.py +10 -8
- mindspore/nn/optim/asgd.py +7 -7
- mindspore/nn/optim/ftrl.py +81 -11
- mindspore/nn/optim/lamb.py +7 -8
- mindspore/nn/optim/lars.py +4 -4
- mindspore/nn/optim/lazyadam.py +82 -7
- mindspore/nn/optim/momentum.py +8 -7
- mindspore/nn/optim/optimizer.py +19 -10
- mindspore/nn/optim/proximal_ada_grad.py +6 -5
- mindspore/nn/optim/rmsprop.py +3 -3
- mindspore/nn/optim/rprop.py +20 -16
- mindspore/nn/optim/sgd.py +21 -15
- mindspore/nn/optim/thor.py +23 -21
- mindspore/nn/probability/__init__.py +0 -2
- mindspore/nn/probability/bijector/bijector.py +7 -6
- mindspore/nn/probability/bijector/invert.py +4 -2
- mindspore/nn/probability/bijector/softplus.py +2 -2
- mindspore/nn/probability/bnn_layers/dense_variational.py +1 -1
- mindspore/nn/probability/bnn_layers/layer_distribution.py +2 -2
- mindspore/nn/probability/distribution/__init__.py +6 -0
- mindspore/nn/probability/distribution/_utils/custom_ops.py +3 -2
- mindspore/nn/probability/distribution/_utils/utils.py +11 -17
- mindspore/nn/probability/distribution/bernoulli.py +6 -6
- mindspore/nn/probability/distribution/beta.py +1 -1
- mindspore/nn/probability/distribution/categorical.py +9 -9
- mindspore/nn/probability/distribution/cauchy.py +8 -8
- mindspore/nn/probability/distribution/distribution.py +12 -6
- mindspore/nn/probability/distribution/exponential.py +5 -5
- mindspore/nn/probability/distribution/gamma.py +3 -3
- mindspore/nn/probability/distribution/geometric.py +6 -5
- mindspore/nn/probability/distribution/gumbel.py +5 -5
- mindspore/nn/probability/distribution/half_normal.py +133 -0
- mindspore/nn/probability/distribution/laplace.py +128 -0
- mindspore/nn/probability/distribution/log_normal.py +0 -1
- mindspore/nn/probability/distribution/logistic.py +4 -5
- mindspore/nn/probability/distribution/normal.py +11 -15
- mindspore/nn/probability/distribution/poisson.py +6 -2
- mindspore/nn/probability/distribution/student_t.py +150 -0
- mindspore/nn/probability/distribution/transformed_distribution.py +4 -4
- mindspore/nn/probability/distribution/uniform.py +5 -5
- mindspore/nn/reinforcement/_tensors_queue.py +3 -3
- mindspore/nn/reinforcement/tensor_array.py +2 -2
- mindspore/nn/sparse/sparse.py +8 -1
- mindspore/nn/wrap/cell_wrapper.py +55 -27
- mindspore/nn/wrap/grad_reducer.py +20 -11
- mindspore/nn/wrap/loss_scale.py +47 -30
- mindspore/numpy/array_creations.py +33 -22
- mindspore/numpy/array_ops.py +46 -42
- mindspore/numpy/logic_ops.py +6 -27
- mindspore/numpy/math_ops.py +26 -19
- mindspore/numpy/utils.py +1 -8
- mindspore/numpy/utils_const.py +112 -62
- mindspore/opencv_core452.dll +0 -0
- mindspore/opencv_imgcodecs452.dll +0 -0
- mindspore/opencv_imgproc452.dll +0 -0
- mindspore/ops/__init__.py +6 -3
- mindspore/ops/_constants.py +0 -6
- mindspore/ops/_grad/__init__.py +2 -1
- mindspore/ops/_grad/grad_array_ops.py +209 -152
- mindspore/ops/_grad/grad_base.py +55 -17
- mindspore/ops/_grad/grad_clip_ops.py +11 -3
- mindspore/ops/_grad/grad_comm_ops.py +58 -47
- mindspore/ops/_grad/grad_implementations.py +21 -61
- mindspore/ops/_grad/grad_inner_ops.py +48 -6
- mindspore/ops/_grad/grad_math_ops.py +306 -161
- mindspore/ops/_grad/grad_nn_ops.py +192 -181
- mindspore/ops/_grad/grad_other_ops.py +1 -1
- mindspore/ops/_grad/grad_quant_ops.py +5 -5
- mindspore/ops/_grad/grad_sequence_ops.py +296 -0
- mindspore/ops/_grad/grad_sparse.py +15 -9
- mindspore/ops/_grad_experimental/__init__.py +1 -0
- mindspore/ops/_grad_experimental/grad_array_ops.py +441 -55
- mindspore/ops/_grad_experimental/grad_image_ops.py +25 -7
- mindspore/ops/_grad_experimental/grad_inner_ops.py +3 -44
- mindspore/ops/_grad_experimental/grad_linalg_ops.py +16 -21
- mindspore/ops/_grad_experimental/grad_math_ops.py +979 -49
- mindspore/ops/_grad_experimental/grad_nn_ops.py +78 -8
- mindspore/ops/_grad_experimental/grad_scalar_ops.py +112 -0
- mindspore/ops/_grad_experimental/grad_sparse_ops.py +197 -13
- mindspore/ops/_op_impl/__init__.py +3 -3
- mindspore/ops/_op_impl/_custom_op/__init__.py +0 -1
- mindspore/ops/_op_impl/_custom_op/_basic.py +0 -1
- mindspore/ops/_op_impl/_custom_op/batch_matmul_impl.py +1 -1
- mindspore/ops/_op_impl/_custom_op/batchnorm_fold.py +4 -2
- mindspore/ops/_op_impl/_custom_op/batchnorm_fold2.py +2 -2
- mindspore/ops/_op_impl/_custom_op/batchnorm_fold2_grad.py +2 -2
- mindspore/ops/_op_impl/_custom_op/batchnorm_fold2_grad_reduce.py +5 -5
- mindspore/ops/_op_impl/_custom_op/batchnorm_fold_grad.py +3 -3
- mindspore/ops/_op_impl/_custom_op/cholesky_trsm_impl.py +1 -1
- mindspore/ops/_op_impl/_custom_op/correction_mul.py +3 -3
- mindspore/ops/_op_impl/_custom_op/correction_mul_grad.py +2 -2
- mindspore/ops/_op_impl/_custom_op/dsd_back_impl.py +4 -8
- mindspore/ops/_op_impl/_custom_op/dsd_impl.py +1 -1
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel.py +2 -2
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel_grad.py +2 -2
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel_grad_reduce.py +2 -2
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer.py +2 -2
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer_grad.py +2 -2
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer_grad_reduce.py +2 -2
- mindspore/ops/_op_impl/_custom_op/fake_quant_perchannel.py +2 -2
- mindspore/ops/_op_impl/_custom_op/fake_quant_perchannel_grad.py +2 -2
- mindspore/ops/_op_impl/_custom_op/fake_quant_perlayer.py +2 -2
- mindspore/ops/_op_impl/_custom_op/fake_quant_perlayer_grad.py +2 -2
- mindspore/ops/_op_impl/_custom_op/fused_abs_max1_impl.py +1 -1
- mindspore/ops/_op_impl/_custom_op/img2col_impl.py +1 -1
- mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_left_impl.py +2 -2
- mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_right_impl.py +1 -1
- mindspore/ops/_op_impl/_custom_op/matmul_cube_fracz_left_cast_impl.py +1 -1
- mindspore/ops/_op_impl/_custom_op/matmul_cube_fracz_right_mul_impl.py +1 -1
- mindspore/ops/_op_impl/_custom_op/matmul_cube_impl.py +2 -2
- mindspore/ops/_op_impl/_custom_op/matmul_dds_grad_impl.py +0 -1
- mindspore/ops/_op_impl/_custom_op/matmul_dds_impl.py +0 -1
- mindspore/ops/_op_impl/_custom_op/matrix_combine_impl.py +1 -1
- mindspore/ops/_op_impl/_custom_op/minmax_update_perchannel.py +2 -2
- mindspore/ops/_op_impl/_custom_op/minmax_update_perlayer.py +2 -2
- mindspore/ops/_op_impl/_custom_op/transpose02314_impl.py +1 -1
- mindspore/ops/_op_impl/aicpu/__init__.py +238 -3
- mindspore/ops/_op_impl/aicpu/abs.py +36 -0
- mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_2d.py +34 -0
- mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_2d_grad.py +34 -0
- mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_3d.py +39 -0
- mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_3d_grad.py +39 -0
- mindspore/ops/_op_impl/aicpu/adaptive_max_pool_2d_grad.py +37 -0
- mindspore/ops/_op_impl/aicpu/adaptive_max_pool_3d.py +42 -0
- mindspore/ops/_op_impl/aicpu/adaptive_max_pool_3d_grad.py +152 -0
- mindspore/ops/_op_impl/aicpu/add.py +43 -0
- mindspore/ops/_op_impl/aicpu/addcdiv.py +0 -32
- mindspore/ops/_op_impl/aicpu/addcmul.py +0 -84
- mindspore/ops/_op_impl/aicpu/affine_grid_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/arg_max.py +75 -0
- mindspore/ops/_op_impl/aicpu/arg_min.py +75 -0
- mindspore/ops/_op_impl/aicpu/argmin_with_value.py +43 -0
- mindspore/ops/_op_impl/aicpu/batch_matmul.py +43 -0
- mindspore/ops/_op_impl/aicpu/batch_norm_grad_grad.py +49 -0
- mindspore/ops/_op_impl/aicpu/bernoulli.py +48 -0
- mindspore/ops/_op_impl/aicpu/bessel_i0.py +31 -0
- mindspore/ops/_op_impl/aicpu/bias_add.py +44 -0
- mindspore/ops/_op_impl/aicpu/bias_add_grad.py +43 -0
- mindspore/ops/_op_impl/aicpu/bincount.py +33 -0
- mindspore/{nn/probability/infer/variational/__init__.py → ops/_op_impl/aicpu/cauchy.py} +17 -10
- mindspore/ops/_op_impl/aicpu/channel_shuffle.py +40 -0
- mindspore/ops/_op_impl/aicpu/cholesky.py +1 -1
- mindspore/ops/_op_impl/{cpu/bias_add.py → aicpu/choleskygrad.py} +9 -7
- mindspore/ops/_op_impl/aicpu/combined_non_max_suppression.py +42 -0
- mindspore/ops/_op_impl/aicpu/concat_offset.py +42 -0
- mindspore/ops/_op_impl/aicpu/concat_offset_v1.py +31 -0
- mindspore/ops/_op_impl/aicpu/conj.py +11 -0
- mindspore/ops/_op_impl/aicpu/crop_and_resize_grad_image.py +38 -0
- mindspore/ops/_op_impl/aicpu/cumulative_logsumexp.py +36 -0
- mindspore/ops/_op_impl/aicpu/deformable_offsets.py +38 -0
- mindspore/ops/_op_impl/aicpu/deformable_offsets_grad.py +2 -2
- mindspore/ops/_op_impl/aicpu/dense_to_sparse_set_operation.py +48 -0
- mindspore/ops/_op_impl/aicpu/diag.py +36 -0
- mindspore/ops/_op_impl/aicpu/diag_part.py +36 -0
- mindspore/ops/_op_impl/aicpu/diagonal.py +35 -0
- mindspore/ops/_op_impl/{cpu/bias_add_grad.py → aicpu/digamma.py} +9 -7
- mindspore/ops/_op_impl/aicpu/eig.py +35 -0
- mindspore/ops/_op_impl/aicpu/fft_with_size.py +41 -0
- mindspore/ops/_op_impl/aicpu/flatten.py +1 -0
- mindspore/ops/_op_impl/aicpu/fmax.py +36 -0
- mindspore/ops/_op_impl/aicpu/fmin.py +37 -0
- mindspore/ops/_op_impl/aicpu/fractional_max_pool3d_with_fixed_ksize.py +1 -1
- mindspore/ops/_op_impl/aicpu/fse_decode.py +43 -0
- mindspore/ops/_op_impl/aicpu/glu.py +33 -0
- mindspore/ops/_op_impl/aicpu/glu_grad.py +34 -0
- mindspore/ops/_op_impl/aicpu/greater.py +41 -0
- mindspore/ops/_op_impl/aicpu/greater_equal.py +41 -0
- mindspore/ops/_op_impl/aicpu/index_put.py +50 -0
- mindspore/ops/_op_impl/{tbe/scatter_add_ds.py → aicpu/inplace_index_add.py} +17 -21
- mindspore/ops/_op_impl/aicpu/instance_norm_v2.py +41 -0
- mindspore/ops/_op_impl/aicpu/instance_norm_v2_grad.py +44 -0
- mindspore/ops/_op_impl/aicpu/layer_norm_grad_grad.py +47 -0
- mindspore/ops/_op_impl/aicpu/less.py +41 -0
- mindspore/ops/_op_impl/aicpu/less_equal.py +41 -0
- mindspore/ops/_op_impl/aicpu/lgamma.py +32 -0
- mindspore/ops/_op_impl/aicpu/log_normal_reverse.py +33 -0
- mindspore/ops/_op_impl/aicpu/logit.py +33 -0
- mindspore/ops/_op_impl/aicpu/logit_grad.py +34 -0
- mindspore/ops/_op_impl/aicpu/masked_fill.py +42 -0
- mindspore/ops/_op_impl/aicpu/masked_scatter.py +39 -0
- mindspore/ops/_op_impl/aicpu/matmul.py +39 -0
- mindspore/ops/_op_impl/aicpu/matrix_logarithm.py +31 -0
- mindspore/ops/_op_impl/aicpu/matrix_power.py +32 -0
- mindspore/ops/_op_impl/aicpu/matrix_solve_ls.py +36 -0
- mindspore/ops/_op_impl/aicpu/matrix_triangular_solve.py +36 -0
- mindspore/ops/_op_impl/aicpu/mirror_pad.py +2 -0
- mindspore/ops/_op_impl/aicpu/mirror_pad_grad.py +0 -4
- mindspore/ops/_op_impl/aicpu/mul.py +3 -1
- mindspore/ops/_op_impl/aicpu/multinomial.py +14 -6
- mindspore/ops/_op_impl/aicpu/multinomial_with_replacement.py +35 -0
- mindspore/ops/_op_impl/aicpu/nan_to_num.py +34 -0
- mindspore/ops/_op_impl/aicpu/nllloss.py +38 -0
- mindspore/ops/_op_impl/aicpu/nllloss_grad.py +39 -0
- mindspore/ops/_op_impl/aicpu/ones_like.py +0 -2
- mindspore/ops/_op_impl/aicpu/polar.py +32 -0
- mindspore/ops/_op_impl/aicpu/polygamma.py +34 -0
- mindspore/ops/_op_impl/aicpu/qr.py +36 -0
- mindspore/ops/_op_impl/aicpu/quant_dtype_cast.py +40 -0
- mindspore/ops/_op_impl/aicpu/quantile.py +35 -0
- mindspore/ops/_op_impl/aicpu/ragged_tensor_to_sparse.py +73 -0
- mindspore/ops/_op_impl/aicpu/ragged_tensor_to_tensor.py +74 -0
- mindspore/ops/_op_impl/aicpu/random_shuffle.py +3 -0
- mindspore/ops/_op_impl/aicpu/randperm_v2.py +41 -0
- mindspore/ops/_op_impl/aicpu/range.py +36 -0
- mindspore/ops/_op_impl/aicpu/reciprocal.py +34 -0
- mindspore/ops/_op_impl/aicpu/reciprocal_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/reduce_sum.py +57 -0
- mindspore/ops/_op_impl/aicpu/resize_bicubic.py +2 -8
- mindspore/ops/_op_impl/aicpu/resize_bicubic_grad.py +1 -1
- mindspore/ops/_op_impl/aicpu/resize_v2.py +68 -0
- mindspore/ops/_op_impl/aicpu/resize_v2_grad.py +68 -0
- mindspore/ops/_op_impl/aicpu/scatter_elements.py +4 -0
- mindspore/ops/_op_impl/aicpu/scatter_nd_update.py +2 -0
- mindspore/ops/_op_impl/aicpu/search_sorted.py +12 -6
- mindspore/ops/_op_impl/aicpu/self_adjoint_eig.py +34 -0
- mindspore/ops/_op_impl/aicpu/sequence_add.py +34 -0
- mindspore/ops/_op_impl/aicpu/sequence_add_offset.py +34 -0
- mindspore/ops/_op_impl/aicpu/sequence_addn.py +38 -0
- mindspore/ops/_op_impl/aicpu/slice_grad.py +76 -0
- mindspore/ops/_op_impl/aicpu/smooth_l1_loss.py +35 -0
- mindspore/ops/_op_impl/aicpu/smooth_l1_loss_grad.py +37 -0
- mindspore/ops/_op_impl/aicpu/sort.py +39 -0
- mindspore/ops/_op_impl/aicpu/sparse_apply_adagrad_da.py +0 -24
- mindspore/ops/_op_impl/aicpu/sparse_cross.py +42 -0
- mindspore/ops/_op_impl/aicpu/sparse_fill_empty_rows.py +63 -0
- mindspore/ops/_op_impl/aicpu/sparse_fill_empty_rows_grad.py +45 -0
- mindspore/ops/_op_impl/aicpu/sparse_matrix_mat_mul.py +56 -0
- mindspore/ops/_op_impl/{tbe/slice_ds.py → aicpu/sparse_segment_sum.py} +16 -24
- mindspore/ops/_op_impl/aicpu/sparse_segment_sum_with_num_segments.py +68 -0
- mindspore/ops/_op_impl/aicpu/sparse_slice.py +63 -0
- mindspore/ops/_op_impl/aicpu/sparse_slice_grad.py +61 -0
- mindspore/ops/_op_impl/aicpu/squared_difference.py +2 -0
- mindspore/ops/_op_impl/aicpu/strided_slice_v2.py +93 -0
- mindspore/ops/_op_impl/aicpu/strided_slice_v2_grad.py +66 -0
- mindspore/ops/_op_impl/aicpu/tensor_scatter_update.py +59 -0
- mindspore/ops/_op_impl/{tbe/gather_v2.py → aicpu/tile.py} +24 -24
- mindspore/ops/_op_impl/aicpu/tridiagonal_solve.py +35 -0
- mindspore/ops/_op_impl/aicpu/tril_indices.py +34 -0
- mindspore/ops/_op_impl/aicpu/triu_indices.py +34 -0
- mindspore/ops/_op_impl/aicpu/uniform.py +34 -0
- mindspore/ops/_op_impl/aicpu/uniform_candidate_sampler.py +1 -0
- mindspore/ops/_op_impl/aicpu/unique_consecutive.py +10 -2
- mindspore/ops/_op_impl/cpu/__init__.py +1 -2
- mindspore/ops/_op_impl/cpu/dynamic_shape.py +5 -1
- mindspore/ops/_op_impl/cpu/maximum_grad.py +2 -0
- mindspore/{compression/common/__init__.py → ops/_op_impl/cpu/pyexecute.py} +13 -8
- mindspore/ops/_op_impl/cpu/reduce_sum.py +8 -0
- mindspore/ops/_op_impl/cpu/sparse_slice.py +62 -0
- mindspore/ops/_op_impl/cpu/sparse_slice_grad.py +60 -0
- mindspore/ops/_op_impl/cpu/tensor_shape.py +5 -1
- mindspore/ops/_op_impl/tbe/__init__.py +27 -608
- mindspore/ops/_op_impl/tbe/addcdiv_ds.py +42 -0
- mindspore/ops/_op_impl/tbe/addcmul_ds.py +44 -0
- mindspore/ops/_op_impl/tbe/assign_add_ds.py +1 -0
- mindspore/ops/_op_impl/tbe/atomic_addr_clean.py +1 -1
- mindspore/ops/_op_impl/tbe/avg_pool_3d_grad.py +1 -1
- mindspore/ops/_op_impl/tbe/basic_lstm_cell_c_state_grad_v2.py +0 -1
- mindspore/ops/_op_impl/tbe/batch_to_space.py +1 -1
- mindspore/ops/_op_impl/tbe/batch_to_space_nd.py +1 -1
- mindspore/ops/_op_impl/tbe/batch_to_space_nd_v2.py +41 -0
- mindspore/ops/_op_impl/tbe/bce_with_logits_loss.py +1 -0
- mindspore/ops/_op_impl/tbe/bias_add_grad.py +2 -0
- mindspore/ops/_op_impl/tbe/bn_infer_grad.py +4 -2
- mindspore/ops/_op_impl/tbe/bn_infer_grad_ds.py +40 -0
- mindspore/ops/_op_impl/tbe/bn_training_update.py +0 -1
- mindspore/ops/_op_impl/tbe/bn_training_update_ds.py +0 -1
- mindspore/ops/_op_impl/tbe/broadcast_to_ds.py +6 -4
- mindspore/ops/_op_impl/tbe/cast.py +0 -2
- mindspore/ops/_op_impl/tbe/cast_ds.py +3 -3
- mindspore/ops/_op_impl/tbe/ctc_loss_v2.py +0 -2
- mindspore/ops/_op_impl/tbe/ctc_loss_v2_grad.py +0 -2
- mindspore/ops/_op_impl/tbe/data_format_dim_map_ds.py +1 -0
- mindspore/ops/_op_impl/tbe/deformable_offsets.py +1 -0
- mindspore/ops/_op_impl/tbe/depthwise_conv2d.py +1 -1
- mindspore/ops/_op_impl/tbe/dynamic_atomic_addr_clean.py +1 -1
- mindspore/ops/_op_impl/tbe/gather_nd.py +1 -0
- mindspore/ops/_op_impl/tbe/greater.py +2 -0
- mindspore/ops/_op_impl/tbe/{index_add.py → inplace_index_add.py} +3 -6
- mindspore/ops/_op_impl/tbe/layer_norm_beta_gamma_backprop_v2.py +0 -1
- mindspore/ops/_op_impl/tbe/npu_clear_float_status_v2.py +35 -0
- mindspore/ops/_op_impl/tbe/npu_get_float_status_v2.py +35 -0
- mindspore/ops/_op_impl/tbe/one_hot_ds.py +0 -6
- mindspore/ops/_op_impl/tbe/{greater_ds.py → reduce_all_ds.py} +13 -16
- mindspore/ops/_op_impl/tbe/reduce_any_ds.py +39 -0
- mindspore/ops/_op_impl/tbe/roi_align_ds.py +44 -0
- mindspore/ops/_op_impl/tbe/roi_align_grad_ds.py +44 -0
- mindspore/ops/_op_impl/tbe/scatter_add.py +2 -0
- mindspore/ops/_op_impl/tbe/scatter_nd_add.py +2 -2
- mindspore/ops/_op_impl/tbe/slice.py +26 -15
- mindspore/ops/_op_impl/tbe/space_to_batch.py +1 -1
- mindspore/ops/_op_impl/tbe/space_to_batch_nd.py +1 -1
- mindspore/ops/_op_impl/tbe/strided_slice_grad_d.py +1 -0
- mindspore/ops/_op_impl/tbe/trans_data_ds.py +15 -5
- mindspore/ops/_op_impl/tbe/unsorted_segment_sum.py +1 -1
- mindspore/ops/_op_impl/tbe/unsorted_segment_sum_ds.py +2 -0
- mindspore/ops/_primitive_cache.py +3 -2
- mindspore/ops/_register_for_op.py +11 -0
- mindspore/ops/_utils/__init__.py +1 -1
- mindspore/ops/_utils/utils.py +20 -41
- mindspore/ops/_vmap/__init__.py +2 -2
- mindspore/ops/_vmap/vmap_array_ops.py +170 -78
- mindspore/ops/_vmap/vmap_base.py +24 -10
- mindspore/ops/_vmap/vmap_convolution_ops.py +7 -10
- mindspore/ops/_vmap/vmap_grad_math_ops.py +4 -4
- mindspore/ops/_vmap/vmap_grad_nn_ops.py +41 -9
- mindspore/ops/_vmap/vmap_image_ops.py +52 -0
- mindspore/ops/_vmap/vmap_math_ops.py +77 -6
- mindspore/ops/_vmap/vmap_nn_ops.py +78 -29
- mindspore/ops/_vmap/vmap_other_ops.py +3 -1
- mindspore/ops/_vmap/vmap_random_ops.py +55 -3
- mindspore/ops/_vmap/vmap_sparse_ops.py +1 -0
- mindspore/ops/bprop_mindir/AdaptiveAvgPool2D_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/AdaptiveMaxPool2D_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/ApproximateEqual_bprop.mindir +18 -19
- mindspore/ops/bprop_mindir/Argmax_bprop.mindir +13 -12
- mindspore/ops/bprop_mindir/Argmin_bprop.mindir +14 -13
- mindspore/ops/bprop_mindir/AssignSub_bprop.mindir +17 -18
- mindspore/ops/bprop_mindir/Assign_bprop.mindir +16 -16
- mindspore/ops/bprop_mindir/AvgPool3D_bprop.mindir +150 -0
- mindspore/ops/bprop_mindir/AvgPool_bprop.mindir +66 -0
- mindspore/ops/bprop_mindir/BCEWithLogitsLoss_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/BNTrainingReduce_bprop.mindir +13 -12
- mindspore/ops/bprop_mindir/BatchNormGrad_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/BatchToSpaceND_bprop.mindir +28 -0
- mindspore/ops/bprop_mindir/BiasAddGrad_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/BinaryCrossEntropy_bprop.mindir +33 -0
- mindspore/ops/bprop_mindir/BroadcastTo_bprop.mindir +306 -0
- mindspore/ops/bprop_mindir/Broadcast_bprop.mindir +12 -8
- mindspore/ops/bprop_mindir/CTCLoss_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Concat_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Conv2DBackpropFilter_bprop.mindir +240 -0
- mindspore/ops/bprop_mindir/Conv2DBackpropInput_bprop.mindir +247 -0
- mindspore/ops/bprop_mindir/Conv2DTranspose_bprop.mindir +247 -0
- mindspore/ops/bprop_mindir/Conv3DTranspose_bprop.mindir +315 -0
- mindspore/ops/bprop_mindir/Conv3D_bprop.mindir +278 -0
- mindspore/ops/bprop_mindir/DType_bprop.mindir +12 -12
- mindspore/ops/bprop_mindir/DeformableOffsets_bprop.mindir +58 -0
- mindspore/ops/bprop_mindir/Depend_bprop.mindir +12 -13
- mindspore/ops/bprop_mindir/DepthToSpace_bprop.mindir +23 -0
- mindspore/ops/bprop_mindir/DepthwiseConv2dNative_bprop.mindir +138 -0
- mindspore/ops/bprop_mindir/DiagPart_bprop.mindir +15 -0
- mindspore/ops/bprop_mindir/Dropout2D_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Dropout3D_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/DropoutDoMask_bprop.mindir +22 -24
- mindspore/ops/bprop_mindir/DropoutGenMask_bprop.mindir +16 -14
- mindspore/ops/bprop_mindir/DropoutGrad_bprop.mindir +27 -0
- mindspore/ops/bprop_mindir/Dropout_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/DynamicGRUV2_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/DynamicRNN_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/DynamicShape_bprop.mindir +12 -12
- mindspore/ops/bprop_mindir/Elu_bprop.mindir +16 -0
- mindspore/ops/bprop_mindir/EmbeddingLookup_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Equal_bprop.mindir +18 -19
- mindspore/ops/bprop_mindir/ExpandDims_bprop.mindir +58 -0
- mindspore/ops/bprop_mindir/FastGeLU_bprop.mindir +16 -0
- mindspore/ops/bprop_mindir/Flatten_bprop.mindir +54 -0
- mindspore/ops/bprop_mindir/FloorDiv_bprop.mindir +18 -15
- mindspore/ops/bprop_mindir/GatherD_bprop.mindir +26 -0
- mindspore/ops/bprop_mindir/GatherNd_bprop.mindir +57 -0
- mindspore/ops/bprop_mindir/Gather_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/GreaterEqual_bprop.mindir +17 -18
- mindspore/ops/bprop_mindir/Greater_bprop.mindir +18 -19
- mindspore/ops/bprop_mindir/HSigmoid_bprop.mindir +16 -0
- mindspore/ops/bprop_mindir/HSwish_bprop.mindir +16 -0
- mindspore/ops/bprop_mindir/IOU_bprop.mindir +18 -19
- mindspore/ops/bprop_mindir/InstanceNorm_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/IsFinite_bprop.mindir +13 -12
- mindspore/ops/bprop_mindir/IsInf_bprop.mindir +13 -10
- mindspore/ops/bprop_mindir/IsNan_bprop.mindir +14 -11
- mindspore/ops/bprop_mindir/KLDivLoss_bprop.mindir +126 -0
- mindspore/ops/bprop_mindir/L2Loss_bprop.mindir +15 -0
- mindspore/ops/bprop_mindir/L2Normalize_bprop.mindir +30 -0
- mindspore/ops/bprop_mindir/LRN_bprop.mindir +43 -0
- mindspore/ops/bprop_mindir/LayerNormGrad_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/LessEqual_bprop.mindir +18 -19
- mindspore/ops/bprop_mindir/Less_bprop.mindir +17 -18
- mindspore/ops/bprop_mindir/LinSpace_bprop.mindir +22 -19
- mindspore/ops/bprop_mindir/Load_bprop.mindir +12 -13
- mindspore/ops/bprop_mindir/LogSoftmax_bprop.mindir +23 -0
- mindspore/ops/bprop_mindir/LogicalAnd_bprop.mindir +17 -18
- mindspore/ops/bprop_mindir/LogicalNot_bprop.mindir +14 -13
- mindspore/ops/bprop_mindir/MaskedSelect_bprop.mindir +21 -0
- mindspore/ops/bprop_mindir/MaxPool3DGradGrad_bprop.mindir +74 -0
- mindspore/ops/bprop_mindir/MaxPool3DGrad_bprop.mindir +74 -0
- mindspore/ops/bprop_mindir/MaxPool3D_bprop.mindir +75 -0
- mindspore/ops/bprop_mindir/MaxPoolGradGrad_bprop.mindir +65 -0
- mindspore/ops/bprop_mindir/MaxPoolWithArgmax_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Maximum_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Minimum_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/MirrorPad_bprop.mindir +27 -0
- mindspore/ops/bprop_mindir/Mish_bprop.mindir +35 -0
- mindspore/ops/bprop_mindir/MulNoNan_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/NLLLoss_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/NonZero_bprop.mindir +14 -0
- mindspore/ops/bprop_mindir/NotEqual_bprop.mindir +18 -19
- mindspore/ops/bprop_mindir/OneHot_bprop.mindir +25 -23
- mindspore/ops/bprop_mindir/OnesLike_bprop.mindir +13 -13
- mindspore/ops/bprop_mindir/PReLU_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Pad_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Padding_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/RNNTLoss_bprop.mindir +29 -0
- mindspore/ops/bprop_mindir/ROIAlign_bprop.mindir +82 -0
- mindspore/ops/bprop_mindir/Range_bprop.mindir +21 -19
- mindspore/ops/bprop_mindir/Rank_bprop.mindir +11 -11
- mindspore/ops/bprop_mindir/ReLU6_bprop.mindir +16 -0
- mindspore/ops/bprop_mindir/ReLUV2_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/ReduceAll_bprop.mindir +18 -17
- mindspore/ops/bprop_mindir/ReduceAny_bprop.mindir +18 -17
- mindspore/ops/bprop_mindir/ReluGrad_bprop.mindir +19 -23
- mindspore/ops/bprop_mindir/Reshape_bprop.mindir +60 -0
- mindspore/ops/bprop_mindir/ResizeBilinear_bprop.mindir +29 -0
- mindspore/ops/bprop_mindir/ResizeNearestNeighbor_bprop.mindir +89 -0
- mindspore/ops/bprop_mindir/ReverseSequence_bprop.mindir +52 -0
- mindspore/ops/bprop_mindir/ReverseV2_bprop.mindir +22 -0
- mindspore/ops/bprop_mindir/Round_bprop.mindir +14 -13
- mindspore/ops/bprop_mindir/ScatterMax_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/ScatterMin_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/ScatterNdUpdate_bprop.mindir +22 -0
- mindspore/ops/bprop_mindir/ScatterNd_bprop.mindir +24 -0
- mindspore/ops/bprop_mindir/ScatterNonAliasingAdd_bprop.mindir +22 -0
- mindspore/ops/bprop_mindir/ScatterUpdate_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/SeLU_bprop.mindir +21 -0
- mindspore/ops/bprop_mindir/Select_bprop.mindir +30 -34
- mindspore/ops/bprop_mindir/Shape_bprop.mindir +12 -12
- mindspore/ops/bprop_mindir/SigmoidCrossEntropyWithLogits_bprop.mindir +21 -0
- mindspore/ops/bprop_mindir/SigmoidGrad_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Sigmoid_bprop.mindir +16 -0
- mindspore/ops/bprop_mindir/Sign_bprop.mindir +13 -12
- mindspore/ops/bprop_mindir/Slice_bprop.mindir +26 -0
- mindspore/ops/bprop_mindir/SmoothL1Loss_bprop.mindir +36 -0
- mindspore/ops/bprop_mindir/SoftmaxCrossEntropyWithLogits_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Softplus_bprop.mindir +16 -0
- mindspore/ops/bprop_mindir/Softsign_bprop.mindir +33 -0
- mindspore/ops/bprop_mindir/Sort_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/SpaceToBatchND_bprop.mindir +28 -0
- mindspore/ops/bprop_mindir/SpaceToDepth_bprop.mindir +23 -0
- mindspore/ops/bprop_mindir/SparseGatherV2_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/SparseSoftmaxCrossEntropyWithLogits_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Split_bprop.mindir +22 -0
- mindspore/ops/bprop_mindir/Squeeze_bprop.mindir +54 -0
- mindspore/ops/bprop_mindir/StridedSliceGrad_bprop.mindir +95 -0
- mindspore/ops/bprop_mindir/StridedSlice_bprop.mindir +98 -0
- mindspore/ops/bprop_mindir/Switch_bprop.mindir +28 -32
- mindspore/ops/bprop_mindir/TanhGrad_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Tanh_bprop.mindir +66 -0
- mindspore/ops/bprop_mindir/TensorScatterAdd_bprop.mindir +22 -0
- mindspore/ops/bprop_mindir/TensorScatterUpdate_bprop.mindir +29 -0
- mindspore/ops/bprop_mindir/TensorShape_bprop.mindir +14 -0
- mindspore/ops/bprop_mindir/Tile_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/TopK_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/TransShape_bprop.mindir +23 -0
- mindspore/ops/bprop_mindir/TruncateDiv_bprop.mindir +18 -15
- mindspore/ops/bprop_mindir/TupleGetItem_bprop.mindir +11 -13
- mindspore/ops/bprop_mindir/Unique_bprop.mindir +16 -0
- mindspore/ops/bprop_mindir/Unstack_bprop.mindir +22 -0
- mindspore/ops/bprop_mindir/UpsampleNearest3D_bprop.mindir +32 -0
- mindspore/ops/bprop_mindir/UpsampleTrilinear3D_bprop.mindir +38 -0
- mindspore/ops/bprop_mindir/ZerosLike_bprop.mindir +13 -12
- mindspore/ops/bprop_mindir/__init__.py +1 -4
- mindspore/ops/bprop_mindir/generate_mindir.py +32 -20
- mindspore/ops/composite/__init__.py +12 -13
- mindspore/ops/composite/base.py +261 -254
- mindspore/ops/composite/env_ops.py +41 -0
- mindspore/ops/composite/math_ops.py +197 -156
- mindspore/ops/composite/multitype_ops/_compile_utils.py +428 -176
- mindspore/ops/composite/multitype_ops/_constexpr_utils.py +188 -87
- mindspore/ops/composite/multitype_ops/add_impl.py +23 -1
- mindspore/ops/composite/multitype_ops/div_impl.py +3 -3
- mindspore/ops/composite/multitype_ops/equal_impl.py +1 -0
- mindspore/ops/composite/multitype_ops/floordiv_impl.py +1 -1
- mindspore/ops/composite/multitype_ops/getitem_impl.py +52 -5
- mindspore/ops/composite/multitype_ops/greater_equal_impl.py +31 -0
- mindspore/ops/composite/multitype_ops/greater_impl.py +31 -0
- mindspore/ops/composite/multitype_ops/in_impl.py +15 -3
- mindspore/ops/composite/multitype_ops/less_equal_impl.py +33 -2
- mindspore/ops/composite/multitype_ops/less_impl.py +33 -0
- mindspore/ops/composite/multitype_ops/logical_and_impl.py +2 -2
- mindspore/ops/composite/multitype_ops/logical_or_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/mod_impl.py +1 -1
- mindspore/ops/composite/multitype_ops/mul_impl.py +21 -7
- mindspore/ops/composite/multitype_ops/not_in_impl.py +15 -3
- mindspore/ops/composite/multitype_ops/ones_like_impl.py +2 -4
- mindspore/ops/composite/multitype_ops/pow_impl.py +1 -0
- mindspore/ops/composite/multitype_ops/setitem_impl.py +62 -70
- mindspore/ops/composite/multitype_ops/sub_impl.py +3 -3
- mindspore/ops/composite/multitype_ops/zeros_like_impl.py +41 -4
- mindspore/ops/function/__init__.py +323 -8
- mindspore/ops/function/array_func.py +3511 -780
- mindspore/ops/function/clip_func.py +329 -0
- mindspore/ops/function/debug_func.py +6 -6
- mindspore/ops/function/grad/__init__.py +5 -1
- mindspore/ops/function/grad/grad_func.py +736 -65
- mindspore/ops/function/image_func.py +270 -0
- mindspore/ops/function/linalg_func.py +268 -8
- mindspore/ops/function/math_func.py +8032 -3164
- mindspore/ops/function/nn_func.py +5619 -1855
- mindspore/ops/function/other_func.py +115 -0
- mindspore/ops/function/parameter_func.py +11 -10
- mindspore/ops/function/random_func.py +939 -77
- mindspore/ops/function/sparse_func.py +249 -84
- mindspore/ops/function/sparse_unary_func.py +2303 -0
- mindspore/ops/function/spectral_func.py +146 -0
- mindspore/ops/function/vmap_func.py +114 -0
- mindspore/ops/functional.py +182 -254
- mindspore/ops/op_info_register.py +79 -34
- mindspore/ops/operations/__init__.py +210 -118
- mindspore/ops/operations/_csr_ops.py +7 -7
- mindspore/ops/operations/_embedding_cache_ops.py +25 -15
- mindspore/ops/operations/_grad_ops.py +447 -322
- mindspore/ops/operations/_inner_ops.py +547 -176
- mindspore/ops/operations/_map_tensor_ops.py +112 -0
- mindspore/ops/operations/_ms_kernel.py +29 -27
- mindspore/ops/operations/_ocr_ops.py +11 -11
- mindspore/ops/operations/_opaque_predicate_registry.py +41 -0
- mindspore/ops/operations/_quant_ops.py +186 -101
- mindspore/ops/operations/_rl_inner_ops.py +122 -61
- mindspore/ops/operations/_scalar_ops.py +466 -0
- mindspore/ops/operations/_sequence_ops.py +1047 -0
- mindspore/ops/operations/_tensor_array.py +10 -11
- mindspore/ops/operations/_thor_ops.py +4 -4
- mindspore/ops/operations/array_ops.py +1428 -1226
- mindspore/ops/operations/comm_ops.py +180 -117
- mindspore/ops/operations/control_ops.py +4 -2
- mindspore/ops/operations/custom_ops.py +185 -98
- mindspore/ops/operations/debug_ops.py +92 -54
- mindspore/ops/operations/image_ops.py +406 -211
- mindspore/ops/operations/inner_ops.py +42 -53
- mindspore/ops/operations/linalg_ops.py +32 -29
- mindspore/ops/operations/math_ops.py +2076 -897
- mindspore/ops/operations/nn_ops.py +1282 -1252
- mindspore/ops/operations/other_ops.py +124 -278
- mindspore/ops/operations/random_ops.py +345 -178
- mindspore/ops/operations/rl_ops.py +8 -9
- mindspore/ops/operations/sparse_ops.py +502 -157
- mindspore/ops/operations/spectral_ops.py +107 -0
- mindspore/ops/primitive.py +192 -15
- mindspore/ops/vm_impl_registry.py +23 -2
- mindspore/parallel/__init__.py +6 -1
- mindspore/parallel/_auto_parallel_context.py +199 -92
- mindspore/parallel/_cell_wrapper.py +4 -2
- mindspore/parallel/_cost_model_context.py +3 -0
- mindspore/parallel/_dp_allreduce_fusion.py +2 -1
- mindspore/parallel/_offload_context.py +185 -0
- mindspore/parallel/_parallel_serialization.py +167 -28
- mindspore/parallel/_ps_context.py +9 -5
- mindspore/parallel/_recovery_context.py +1 -1
- mindspore/parallel/_tensor.py +9 -1
- mindspore/{nn/transformer → parallel/_transformer}/__init__.py +6 -6
- mindspore/{nn/transformer → parallel/_transformer}/layers.py +59 -37
- mindspore/{nn/transformer → parallel/_transformer}/loss.py +4 -7
- mindspore/{nn/transformer → parallel/_transformer}/moe.py +160 -35
- mindspore/{nn/transformer → parallel/_transformer}/op_parallel_config.py +3 -3
- mindspore/{nn/transformer → parallel/_transformer}/transformer.py +235 -196
- mindspore/parallel/_utils.py +47 -7
- mindspore/parallel/algo_parameter_config.py +5 -1
- mindspore/parallel/checkpoint_transform.py +329 -0
- mindspore/parallel/shard.py +229 -0
- mindspore/perf_msvcbuildinsights.dll +0 -0
- mindspore/pgodb140.dll +0 -0
- mindspore/pgort140.dll +0 -0
- mindspore/profiler/__init__.py +2 -1
- mindspore/profiler/common/util.py +4 -3
- mindspore/profiler/common/validator/validate_path.py +2 -2
- mindspore/profiler/envprofiling.py +249 -0
- mindspore/profiler/parser/aicpu_data_parser.py +38 -39
- mindspore/profiler/parser/ascend_timeline_generator.py +497 -0
- mindspore/profiler/parser/base_timeline_generator.py +471 -0
- mindspore/profiler/parser/cpu_gpu_timeline_generator.py +684 -0
- mindspore/profiler/parser/framework_parser.py +42 -16
- mindspore/profiler/parser/hccl_parser.py +158 -158
- mindspore/profiler/parser/hwts_log_parser.py +7 -6
- mindspore/profiler/parser/integrator.py +18 -1579
- mindspore/profiler/parser/minddata_analyzer.py +8 -8
- mindspore/profiler/parser/msadvisor_analyzer.py +14 -27
- mindspore/profiler/parser/msadvisor_parser.py +2 -4
- mindspore/profiler/parser/optime_parser.py +17 -18
- mindspore/profiler/parser/profiler_info.py +108 -0
- mindspore/profiler/parser/step_trace_parser.py +1 -1
- mindspore/profiler/profiling.py +396 -194
- mindspore/rewrite/__init__.py +6 -2
- mindspore/rewrite/api/node.py +51 -110
- mindspore/rewrite/api/node_type.py +10 -6
- mindspore/rewrite/api/pattern_engine.py +51 -7
- mindspore/rewrite/api/scoped_value.py +64 -53
- mindspore/rewrite/api/symbol_tree.py +108 -61
- mindspore/rewrite/api/tree_node_helper.py +2 -3
- mindspore/{compression/quant/__init__.py → rewrite/ast_creator_register.py} +20 -11
- mindspore/rewrite/ast_helpers/__init__.py +6 -3
- mindspore/rewrite/ast_helpers/ast_creator.py +115 -0
- mindspore/rewrite/ast_helpers/ast_finder.py +99 -1
- mindspore/rewrite/ast_helpers/ast_modifier.py +17 -4
- mindspore/rewrite/ast_helpers/ast_replacer.py +1 -1
- mindspore/rewrite/ast_transformers/__init__.py +0 -1
- mindspore/rewrite/ast_transformers/flatten_recursive_stmt.py +46 -5
- mindspore/rewrite/ast_transformers/remove_return_out_of_if.py +6 -3
- mindspore/rewrite/common/__init__.py +2 -0
- mindspore/rewrite/common/event.py +1 -1
- mindspore/rewrite/common/observable.py +1 -1
- mindspore/rewrite/common/observer.py +1 -1
- mindspore/rewrite/common/rewrite_elog.py +35 -0
- mindspore/rewrite/namer.py +2 -2
- mindspore/rewrite/namespace.py +14 -4
- mindspore/rewrite/node.py +161 -13
- mindspore/rewrite/parser.py +0 -1
- mindspore/rewrite/parser_register.py +0 -1
- mindspore/rewrite/parsers/arguments_parser.py +3 -2
- mindspore/rewrite/parsers/assign_parser.py +267 -67
- mindspore/rewrite/parsers/attribute_parser.py +56 -0
- mindspore/rewrite/parsers/class_def_parser.py +191 -108
- mindspore/rewrite/parsers/constant_parser.py +101 -0
- mindspore/rewrite/parsers/container_parser.py +88 -0
- mindspore/rewrite/parsers/for_parser.py +28 -15
- mindspore/rewrite/parsers/function_def_parser.py +21 -5
- mindspore/rewrite/parsers/if_parser.py +11 -28
- mindspore/rewrite/parsers/module_parser.py +9 -6
- mindspore/rewrite/parsers/return_parser.py +3 -2
- mindspore/rewrite/sparsify/__init__.py +0 -0
- mindspore/rewrite/sparsify/sparse_transformer.py +448 -0
- mindspore/rewrite/sparsify/sparsify.py +109 -0
- mindspore/rewrite/sparsify/utils.py +173 -0
- mindspore/rewrite/symbol_tree.py +322 -109
- mindspore/rewrite/symbol_tree_builder.py +45 -8
- mindspore/rewrite/symbol_tree_dumper.py +0 -1
- mindspore/rewrite/topological_manager.py +1 -2
- mindspore/run_check/_check_version.py +209 -112
- mindspore/run_check/run_check.py +2 -1
- mindspore/tbbmalloc.dll +0 -0
- mindspore/tinyxml2.dll +0 -0
- mindspore/train/__init__.py +6 -4
- mindspore/train/_utils.py +28 -5
- mindspore/train/amp.py +321 -50
- mindspore/train/callback/__init__.py +3 -1
- mindspore/train/callback/_backup_and_restore.py +120 -0
- mindspore/train/callback/_callback.py +8 -8
- mindspore/train/callback/_checkpoint.py +12 -9
- mindspore/train/callback/_early_stop.py +13 -7
- mindspore/train/callback/_history.py +8 -8
- mindspore/train/callback/_lambda_callback.py +6 -6
- mindspore/train/callback/_landscape.py +36 -38
- mindspore/train/callback/_loss_monitor.py +12 -6
- mindspore/train/callback/_lr_scheduler_callback.py +2 -4
- mindspore/train/callback/_on_request_exit.py +212 -0
- mindspore/train/callback/_reduce_lr_on_plateau.py +13 -7
- mindspore/train/callback/_summary_collector.py +27 -19
- mindspore/train/callback/_time_monitor.py +13 -7
- mindspore/train/checkpoint_pb2.py +68 -8
- mindspore/train/data_sink.py +122 -33
- mindspore/train/dataset_helper.py +28 -87
- mindspore/train/loss_scale_manager.py +4 -7
- mindspore/{nn → train}/metrics/__init__.py +20 -20
- mindspore/{nn → train}/metrics/accuracy.py +12 -10
- mindspore/{nn → train}/metrics/auc.py +4 -4
- mindspore/{nn → train}/metrics/bleu_score.py +4 -4
- mindspore/{nn → train}/metrics/confusion_matrix.py +10 -8
- mindspore/{nn → train}/metrics/cosine_similarity.py +4 -4
- mindspore/{nn → train}/metrics/dice.py +6 -5
- mindspore/{nn → train}/metrics/error.py +7 -5
- mindspore/{nn → train}/metrics/fbeta.py +9 -7
- mindspore/{nn → train}/metrics/hausdorff_distance.py +8 -6
- mindspore/{nn → train}/metrics/loss.py +4 -3
- mindspore/{nn → train}/metrics/mean_surface_distance.py +6 -5
- mindspore/{nn → train}/metrics/metric.py +6 -5
- mindspore/{nn → train}/metrics/occlusion_sensitivity.py +4 -3
- mindspore/{nn → train}/metrics/perplexity.py +5 -4
- mindspore/{nn → train}/metrics/precision.py +5 -4
- mindspore/{nn → train}/metrics/recall.py +5 -4
- mindspore/{nn → train}/metrics/roc.py +7 -6
- mindspore/{nn → train}/metrics/root_mean_square_surface_distance.py +6 -5
- mindspore/{nn → train}/metrics/topk.py +7 -5
- mindspore/train/mind_ir_pb2.py +339 -32
- mindspore/train/model.py +113 -84
- mindspore/train/serialization.py +547 -167
- mindspore/train/summary/_summary_adapter.py +1 -1
- mindspore/train/summary/summary_record.py +43 -12
- mindspore/train/train_thor/convert_utils.py +7 -1
- mindspore/train/train_thor/dataset_helper.py +3 -3
- mindspore/train/train_thor/model_thor.py +0 -4
- mindspore/turbojpeg.dll +0 -0
- mindspore/vcmeta.dll +0 -0
- mindspore/vcruntime140.dll +0 -0
- mindspore/vcruntime140_1.dll +0 -0
- mindspore/version.py +1 -1
- {mindspore-1.10.0.dist-info → mindspore-2.0.0rc1.dist-info}/METADATA +4 -3
- {mindspore-1.10.0.dist-info → mindspore-2.0.0rc1.dist-info}/RECORD +901 -660
- mindspore/compression/common/constant.py +0 -124
- mindspore/compression/export/__init__.py +0 -19
- mindspore/compression/export/quant_export.py +0 -514
- mindspore/compression/quant/qat.py +0 -636
- mindspore/compression/quant/quant_utils.py +0 -462
- mindspore/compression/quant/quantizer.py +0 -68
- mindspore/libatomic-1.dll +0 -0
- mindspore/libgcc_s_seh-1.dll +0 -0
- mindspore/libgfortran-4.dll +0 -0
- mindspore/libgomp-1.dll +0 -0
- mindspore/libjpeg-62.dll +0 -0
- mindspore/libmindspore.dll +0 -0
- mindspore/libmindspore_common.dll +0 -0
- mindspore/libmindspore_core.dll +0 -0
- mindspore/libmindspore_glog.dll +0 -0
- mindspore/libnnacl.dll +0 -0
- mindspore/libopencv_core452.dll +0 -0
- mindspore/libopencv_imgcodecs452.dll +0 -0
- mindspore/libopencv_imgproc452.dll +0 -0
- mindspore/libquadmath-0.dll +0 -0
- mindspore/libsqlite3.dll +0 -0
- mindspore/libssp-0.dll +0 -0
- mindspore/libstdc++-6.dll +0 -0
- mindspore/libtinyxml2.dll +0 -0
- mindspore/libturbojpeg.dll +0 -0
- mindspore/libwinpthread-1.dll +0 -0
- mindspore/nn/layer/quant.py +0 -1868
- mindspore/nn/layer/rnn_utils.py +0 -90
- mindspore/nn/probability/dpn/__init__.py +0 -22
- mindspore/nn/probability/dpn/vae/__init__.py +0 -25
- mindspore/nn/probability/dpn/vae/cvae.py +0 -138
- mindspore/nn/probability/dpn/vae/vae.py +0 -122
- mindspore/nn/probability/infer/__init__.py +0 -22
- mindspore/nn/probability/infer/variational/elbo.py +0 -70
- mindspore/nn/probability/infer/variational/svi.py +0 -84
- mindspore/nn/probability/toolbox/__init__.py +0 -22
- mindspore/nn/probability/toolbox/anomaly_detection.py +0 -99
- mindspore/nn/probability/toolbox/uncertainty_evaluation.py +0 -363
- mindspore/nn/probability/transforms/__init__.py +0 -22
- mindspore/nn/probability/transforms/transform_bnn.py +0 -262
- mindspore/nn/probability/zhusuan/__init__.py +0 -18
- mindspore/nn/probability/zhusuan/framework/__init__.py +0 -18
- mindspore/nn/probability/zhusuan/framework/bn.py +0 -95
- mindspore/nn/probability/zhusuan/variational/__init__.py +0 -18
- mindspore/nn/probability/zhusuan/variational/elbo.py +0 -46
- mindspore/ops/_op_impl/tbe/bias_add_grad_ds.py +0 -52
- mindspore/ops/_op_impl/tbe/scatter_nd_add_ds.py +0 -43
- mindspore/ops/bprop_mindir/AssignAdd_bprop.mindir +0 -20
- mindspore/ops/bprop_mindir/Identity_bprop.mindir +0 -9
- mindspore/ops/bprop_mindir/LogicalOr_bprop.mindir +0 -20
- mindspore/ops/bprop_mindir/ReLU_bprop.mindir +0 -16
- mindspore/ops/bprop_mindir/UpdateState_bprop.mindir +0 -17
- mindspore/ops/bprop_mindir/stop_gradient_bprop.mindir +0 -12
- mindspore/ops/composite/array_ops.py +0 -210
- mindspore/ops/composite/clip_ops.py +0 -238
- mindspore/ops/composite/random_ops.py +0 -426
- mindspore/ops/composite/vmap_ops.py +0 -38
- mindspore/ops/operations/sponge_ops.py +0 -3531
- mindspore/ops/operations/sponge_update_ops.py +0 -2546
- mindspore/parallel/nn/__init__.py +0 -42
- mindspore/parallel/nn/loss.py +0 -22
- mindspore/parallel/nn/moe.py +0 -21
- mindspore/parallel/nn/op_parallel_config.py +0 -22
- mindspore/parallel/nn/transformer.py +0 -31
- mindspore/run_check/_check_deps_version.py +0 -84
- {mindspore-1.10.0.dist-info → mindspore-2.0.0rc1.dist-info}/WHEEL +0 -0
- {mindspore-1.10.0.dist-info → mindspore-2.0.0rc1.dist-info}/entry_points.txt +0 -0
- {mindspore-1.10.0.dist-info → mindspore-2.0.0rc1.dist-info}/top_level.txt +0 -0
|
@@ -98,18 +98,18 @@ class ImageTensorOperation(TensorOperation):
|
|
|
98
98
|
|
|
99
99
|
|
|
100
100
|
class AdjustBrightness(ImageTensorOperation, PyTensorOperation):
|
|
101
|
-
|
|
102
|
-
|
|
101
|
+
"""
|
|
102
|
+
Adjust the brightness of the input image.
|
|
103
103
|
|
|
104
104
|
Args:
|
|
105
|
-
brightness_factor (float): How much to adjust the brightness
|
|
105
|
+
brightness_factor (float): How much to adjust the brightness, must be non negative.
|
|
106
106
|
0 gives a black image, 1 gives the original image,
|
|
107
107
|
while 2 increases the brightness by a factor of 2.
|
|
108
108
|
|
|
109
109
|
Raises:
|
|
110
110
|
TypeError: If `brightness_factor` is not of type float.
|
|
111
111
|
ValueError: If `brightness_factor` is less than 0.
|
|
112
|
-
RuntimeError: If
|
|
112
|
+
RuntimeError: If shape of the input image is not <H, W, C>.
|
|
113
113
|
|
|
114
114
|
Supported Platforms:
|
|
115
115
|
``CPU``
|
|
@@ -142,18 +142,18 @@ class AdjustBrightness(ImageTensorOperation, PyTensorOperation):
|
|
|
142
142
|
|
|
143
143
|
|
|
144
144
|
class AdjustContrast(ImageTensorOperation, PyTensorOperation):
|
|
145
|
-
|
|
146
|
-
Adjust contrast of input image.
|
|
145
|
+
"""
|
|
146
|
+
Adjust the contrast of the input image.
|
|
147
147
|
|
|
148
148
|
Args:
|
|
149
|
-
contrast_factor (float): How much to adjust the contrast
|
|
149
|
+
contrast_factor (float): How much to adjust the contrast, must be non negative.
|
|
150
150
|
0 gives a solid gray image, 1 gives the original image,
|
|
151
151
|
while 2 increases the contrast by a factor of 2.
|
|
152
152
|
|
|
153
153
|
Raises:
|
|
154
154
|
TypeError: If `contrast_factor` is not of type float.
|
|
155
155
|
ValueError: If `contrast_factor` is less than 0.
|
|
156
|
-
RuntimeError: If
|
|
156
|
+
RuntimeError: If shape of the input image is not <H, W, C>.
|
|
157
157
|
|
|
158
158
|
Supported Platforms:
|
|
159
159
|
``CPU``
|
|
@@ -187,7 +187,7 @@ class AdjustContrast(ImageTensorOperation, PyTensorOperation):
|
|
|
187
187
|
|
|
188
188
|
class AdjustGamma(ImageTensorOperation, PyTensorOperation):
|
|
189
189
|
r"""
|
|
190
|
-
Apply gamma correction on input image. Input image is expected to be in
|
|
190
|
+
Apply gamma correction on input image. Input image is expected to be in <..., H, W, C> or <H, W> format.
|
|
191
191
|
|
|
192
192
|
.. math::
|
|
193
193
|
I_{\text{out}} = 255 \times \text{gain} \times \left(\frac{I_{\text{in}}}{255}\right)^{\gamma}
|
|
@@ -201,7 +201,7 @@ class AdjustGamma(ImageTensorOperation, PyTensorOperation):
|
|
|
201
201
|
The output image pixel value is exponentially related to the input image pixel value.
|
|
202
202
|
gamma larger than 1 make the shadows darker,
|
|
203
203
|
while gamma smaller than 1 make dark regions lighter.
|
|
204
|
-
gain (float, optional): The constant multiplier
|
|
204
|
+
gain (float, optional): The constant multiplier. Default: 1.0.
|
|
205
205
|
|
|
206
206
|
Raises:
|
|
207
207
|
TypeError: If `gain` is not of type float.
|
|
@@ -242,17 +242,17 @@ class AdjustGamma(ImageTensorOperation, PyTensorOperation):
|
|
|
242
242
|
|
|
243
243
|
|
|
244
244
|
class AdjustHue(ImageTensorOperation, PyTensorOperation):
|
|
245
|
-
|
|
246
|
-
Adjust hue of input image.
|
|
245
|
+
"""
|
|
246
|
+
Adjust the hue of the input image.
|
|
247
247
|
|
|
248
248
|
Args:
|
|
249
249
|
hue_factor (float): How much to add to the hue channel,
|
|
250
|
-
must be in
|
|
250
|
+
must be in range of [-0.5, 0.5].
|
|
251
251
|
|
|
252
252
|
Raises:
|
|
253
253
|
TypeError: If `hue_factor` is not of type float.
|
|
254
254
|
ValueError: If `hue_factor` is not in the interval [-0.5, 0.5].
|
|
255
|
-
RuntimeError: If
|
|
255
|
+
RuntimeError: If shape of the input image is not <H, W, C>.
|
|
256
256
|
|
|
257
257
|
Supported Platforms:
|
|
258
258
|
``CPU``
|
|
@@ -285,17 +285,18 @@ class AdjustHue(ImageTensorOperation, PyTensorOperation):
|
|
|
285
285
|
|
|
286
286
|
|
|
287
287
|
class AdjustSaturation(ImageTensorOperation, PyTensorOperation):
|
|
288
|
-
|
|
289
|
-
Adjust saturation of input image.
|
|
288
|
+
"""
|
|
289
|
+
Adjust the saturation of the input image.
|
|
290
290
|
|
|
291
291
|
Args:
|
|
292
|
-
saturation_factor (float): How much to adjust the saturation
|
|
292
|
+
saturation_factor (float): How much to adjust the saturation, must be non negative.
|
|
293
293
|
0 gives a black image, 1 gives the original image while 2 increases the saturation by a factor of 2.
|
|
294
294
|
|
|
295
295
|
Raises:
|
|
296
296
|
TypeError: If `saturation_factor` is not of type float.
|
|
297
297
|
ValueError: If `saturation_factor` is less than 0.
|
|
298
|
-
RuntimeError: If
|
|
298
|
+
RuntimeError: If shape of the input image is not <H, W, C>.
|
|
299
|
+
RuntimeError: If channel of the input image is not 3.
|
|
299
300
|
|
|
300
301
|
Supported Platforms:
|
|
301
302
|
``CPU``
|
|
@@ -328,18 +329,18 @@ class AdjustSaturation(ImageTensorOperation, PyTensorOperation):
|
|
|
328
329
|
|
|
329
330
|
|
|
330
331
|
class AdjustSharpness(ImageTensorOperation):
|
|
331
|
-
|
|
332
|
-
Adjust sharpness of input image.
|
|
332
|
+
"""
|
|
333
|
+
Adjust the sharpness of the input image.
|
|
333
334
|
|
|
334
335
|
Args:
|
|
335
|
-
sharpness_factor (float): How much to adjust the sharpness,
|
|
336
|
-
non negative
|
|
337
|
-
original image while 2 increases the
|
|
336
|
+
sharpness_factor (float): How much to adjust the sharpness, must be
|
|
337
|
+
non negative. 0 gives a blurred image, 1 gives the
|
|
338
|
+
original image while 2 increases the sharpness by a factor of 2.
|
|
338
339
|
|
|
339
340
|
Raises:
|
|
340
341
|
TypeError: If `sharpness_factor` is not of type float.
|
|
341
342
|
ValueError: If `sharpness_factor` is less than 0.
|
|
342
|
-
RuntimeError: If
|
|
343
|
+
RuntimeError: If shape of the input image is not <H, W> or <H, W, C>.
|
|
343
344
|
|
|
344
345
|
Supported Platforms:
|
|
345
346
|
``CPU``
|
|
@@ -366,13 +367,11 @@ class Affine(ImageTensorOperation):
|
|
|
366
367
|
|
|
367
368
|
Args:
|
|
368
369
|
degrees (float): Rotation angle in degrees between -180 and 180, clockwise direction.
|
|
369
|
-
translate (Sequence): The horizontal and vertical translations, must be a sequence of size 2.
|
|
370
|
+
translate (Sequence[float, float]): The horizontal and vertical translations, must be a sequence of size 2.
|
|
370
371
|
scale (float): Scaling factor, which must be positive.
|
|
371
|
-
shear (Union[float, Sequence]): Shear angle value in degrees between -180 to 180.
|
|
372
|
-
If
|
|
373
|
-
|
|
374
|
-
If a sequence is provided, a shearing parallel to X axis with a factor selected
|
|
375
|
-
from ( `shear` [0], `shear` [1]) will be applied.
|
|
372
|
+
shear (Union[float, Sequence[float, float]]): Shear angle value in degrees between -180 to 180.
|
|
373
|
+
If float is provided, shear along the x axis with this value, without shearing along the y axis;
|
|
374
|
+
If Sequence[float, float] is provided, shear along the x axis and y axis with these two values separately.
|
|
376
375
|
resample (Inter, optional): An optional resampling filter. Default: Inter.NEAREST.
|
|
377
376
|
It can be any of [Inter.BILINEAR, Inter.NEAREST, Inter.BICUBIC, Inter.AREA].
|
|
378
377
|
|
|
@@ -392,11 +391,11 @@ class Affine(ImageTensorOperation):
|
|
|
392
391
|
TypeError: If `degrees` is not of type float.
|
|
393
392
|
TypeError: If `translate` is not of type Sequence[float, float].
|
|
394
393
|
TypeError: If `scale` is not of type float.
|
|
394
|
+
ValueError: If `scale` is non positive.
|
|
395
395
|
TypeError: If `shear` is not of float or Sequence[float, float].
|
|
396
396
|
TypeError: If `resample` is not of type :class:`mindspore.dataset.vision.Inter` .
|
|
397
397
|
TypeError: If `fill_value` is not of type int or tuple[int, int, int].
|
|
398
|
-
|
|
399
|
-
RuntimeError: If given tensor shape is not <H, W> or <H, W, C>.
|
|
398
|
+
RuntimeError: If shape of the input image is not <H, W> or <H, W, C>.
|
|
400
399
|
|
|
401
400
|
Supported Platforms:
|
|
402
401
|
``CPU``
|
|
@@ -437,12 +436,12 @@ class Affine(ImageTensorOperation):
|
|
|
437
436
|
class AutoAugment(ImageTensorOperation):
|
|
438
437
|
"""
|
|
439
438
|
Apply AutoAugment data augmentation method based on
|
|
440
|
-
`AutoAugment: Learning Augmentation Strategies from Data <https://arxiv.org/pdf/1805.09501.pdf>`_.
|
|
439
|
+
`AutoAugment: Learning Augmentation Strategies from Data <https://arxiv.org/pdf/1805.09501.pdf>`_ .
|
|
441
440
|
This operation works only with 3-channel RGB images.
|
|
442
441
|
|
|
443
442
|
Args:
|
|
444
|
-
policy (AutoAugmentPolicy, optional): AutoAugment policies learned on different datasets
|
|
445
|
-
|
|
443
|
+
policy (AutoAugmentPolicy, optional): AutoAugment policies learned on different datasets.
|
|
444
|
+
Default: AutoAugmentPolicy.IMAGENET.
|
|
446
445
|
It can be any of [AutoAugmentPolicy.IMAGENET, AutoAugmentPolicy.CIFAR10, AutoAugmentPolicy.SVHN].
|
|
447
446
|
Randomly apply 2 operations from a candidate set. See auto augmentation details in AutoAugmentPolicy.
|
|
448
447
|
|
|
@@ -452,7 +451,7 @@ class AutoAugment(ImageTensorOperation):
|
|
|
452
451
|
|
|
453
452
|
- AutoAugmentPolicy.SVHN, means to apply AutoAugment learned on SVHN dataset.
|
|
454
453
|
|
|
455
|
-
interpolation (Inter, optional): Image interpolation mode for Resize
|
|
454
|
+
interpolation (Inter, optional): Image interpolation mode for Resize operation. Default: Inter.NEAREST.
|
|
456
455
|
It can be any of [Inter.NEAREST, Inter.BILINEAR, Inter.BICUBIC, Inter.AREA].
|
|
457
456
|
|
|
458
457
|
- Inter.NEAREST: means interpolation method is nearest-neighbor interpolation.
|
|
@@ -461,16 +460,16 @@ class AutoAugment(ImageTensorOperation):
|
|
|
461
460
|
|
|
462
461
|
- Inter.BICUBIC: means the interpolation method is bicubic interpolation.
|
|
463
462
|
|
|
464
|
-
- Inter.AREA: means the interpolation method is area interpolation.
|
|
463
|
+
- Inter.AREA: means the interpolation method is pixel area interpolation.
|
|
465
464
|
|
|
466
|
-
fill_value (Union[int, tuple], optional): Pixel fill value for the area outside the transformed image.
|
|
465
|
+
fill_value (Union[int, tuple[int]], optional): Pixel fill value for the area outside the transformed image.
|
|
467
466
|
It can be an int or a 3-tuple. If it is a 3-tuple, it is used to fill R, G, B channels respectively.
|
|
468
|
-
If it is an integer, it is used for all RGB channels. The fill_value values must be in range [0, 255]
|
|
469
|
-
|
|
467
|
+
If it is an integer, it is used for all RGB channels. The fill_value values must be in range [0, 255].
|
|
468
|
+
Default: 0.
|
|
470
469
|
|
|
471
470
|
Raises:
|
|
472
|
-
TypeError: If `policy` is not of type AutoAugmentPolicy.
|
|
473
|
-
TypeError: If `interpolation` is not of type Inter.
|
|
471
|
+
TypeError: If `policy` is not of type :class:`mindspore.dataset.vision.AutoAugmentPolicy` .
|
|
472
|
+
TypeError: If `interpolation` is not of type :class:`mindspore.dataset.vision.Inter` .
|
|
474
473
|
TypeError: If `fill_value` is not an integer or a tuple of length 3.
|
|
475
474
|
RuntimeError: If given tensor shape is not <H, W, C>.
|
|
476
475
|
|
|
@@ -504,14 +503,14 @@ class AutoAugment(ImageTensorOperation):
|
|
|
504
503
|
|
|
505
504
|
class AutoContrast(ImageTensorOperation, PyTensorOperation):
|
|
506
505
|
"""
|
|
507
|
-
Apply automatic contrast on input image. This
|
|
506
|
+
Apply automatic contrast on input image. This operation calculates histogram of image, reassign cutoff percent
|
|
508
507
|
of the lightest pixels from histogram to 255, and reassign cutoff percent of the darkest pixels from histogram to 0.
|
|
509
508
|
|
|
510
509
|
Args:
|
|
511
510
|
cutoff (float, optional): Percent of lightest and darkest pixels to cut off from
|
|
512
|
-
the histogram of input image. The value must be in the range [0.0, 50.0
|
|
511
|
+
the histogram of input image. The value must be in the range [0.0, 50.0]. Default: 0.0.
|
|
513
512
|
ignore (Union[int, sequence], optional): The background pixel values to ignore,
|
|
514
|
-
The ignore values must be in range [0, 255]
|
|
513
|
+
The ignore values must be in range [0, 255]. Default: None.
|
|
515
514
|
|
|
516
515
|
Raises:
|
|
517
516
|
TypeError: If `cutoff` is not of type float.
|
|
@@ -564,12 +563,12 @@ class BoundingBoxAugment(ImageTensorOperation):
|
|
|
564
563
|
transform (TensorOperation): Transformation operation to be applied on random selection
|
|
565
564
|
of bounding box regions of a given image.
|
|
566
565
|
ratio (float, optional): Ratio of bounding boxes to apply augmentation on.
|
|
567
|
-
Range: [0, 1]
|
|
566
|
+
Range: [0.0, 1.0]. Default: 0.3.
|
|
568
567
|
|
|
569
568
|
Raises:
|
|
570
|
-
TypeError: If `transform` is an image processing operation in
|
|
569
|
+
TypeError: If `transform` is an image processing operation in `mindspore.dataset.vision` .
|
|
571
570
|
TypeError: If `ratio` is not of type float.
|
|
572
|
-
ValueError: If `ratio` is not in range [0, 1].
|
|
571
|
+
ValueError: If `ratio` is not in range [0.0, 1.0].
|
|
573
572
|
RuntimeError: If given bounding box is invalid.
|
|
574
573
|
|
|
575
574
|
Supported Platforms:
|
|
@@ -581,8 +580,7 @@ class BoundingBoxAugment(ImageTensorOperation):
|
|
|
581
580
|
>>> # map to apply ops
|
|
582
581
|
>>> image_folder_dataset = image_folder_dataset.map(operations=[bbox_aug_op],
|
|
583
582
|
... input_columns=["image", "bbox"],
|
|
584
|
-
... output_columns=["image", "bbox"]
|
|
585
|
-
... column_order=["image", "bbox"])
|
|
583
|
+
... output_columns=["image", "bbox"])
|
|
586
584
|
"""
|
|
587
585
|
|
|
588
586
|
@check_bounding_box_augment_cpp
|
|
@@ -614,7 +612,7 @@ class CenterCrop(ImageTensorOperation, PyTensorOperation):
|
|
|
614
612
|
Raises:
|
|
615
613
|
TypeError: If `size` is not of type integer or sequence.
|
|
616
614
|
ValueError: If `size` is less than or equal to 0.
|
|
617
|
-
RuntimeError: If given tensor shape is not <H, W> or
|
|
615
|
+
RuntimeError: If given tensor shape is not <H, W> or <..., H, W, C>.
|
|
618
616
|
|
|
619
617
|
Supported Platforms:
|
|
620
618
|
``CPU``
|
|
@@ -702,7 +700,7 @@ class ConvertColor(ImageTensorOperation):
|
|
|
702
700
|
- ConvertMode.COLOR_RGBA2GRAY, Convert RGBA image to GRAY image.
|
|
703
701
|
|
|
704
702
|
Raises:
|
|
705
|
-
TypeError: If `convert_mode` is not of type :class:`mindspore.dataset.vision.
|
|
703
|
+
TypeError: If `convert_mode` is not of type :class:`mindspore.dataset.vision.ConvertMode` .
|
|
706
704
|
RuntimeError: If given tensor shape is not <H, W> or <H, W, C>.
|
|
707
705
|
|
|
708
706
|
Supported Platforms:
|
|
@@ -776,20 +774,21 @@ class Crop(ImageTensorOperation):
|
|
|
776
774
|
class CutMixBatch(ImageTensorOperation):
|
|
777
775
|
"""
|
|
778
776
|
Apply CutMix transformation on input batch of images and labels.
|
|
779
|
-
Note that you need to make labels into one-hot format and batched before calling this
|
|
777
|
+
Note that you need to make labels into one-hot format and batched before calling this operation.
|
|
780
778
|
|
|
781
779
|
Args:
|
|
782
780
|
image_batch_format (ImageBatchFormat): The method of padding. Can be any of
|
|
783
781
|
[ImageBatchFormat.NHWC, ImageBatchFormat.NCHW].
|
|
784
|
-
alpha (float, optional): Hyperparameter of beta distribution, must be larger than 0
|
|
785
|
-
prob (float, optional): The probability by which CutMix is applied to each image,
|
|
782
|
+
alpha (float, optional): Hyperparameter of beta distribution, must be larger than 0. Default: 1.0.
|
|
783
|
+
prob (float, optional): The probability by which CutMix is applied to each image,
|
|
784
|
+
which must be in range: [0.0, 1.0]. Default: 1.0.
|
|
786
785
|
|
|
787
786
|
Raises:
|
|
788
|
-
TypeError: If `image_batch_format` is not of type :class:`mindspore.dataset.vision.ImageBatchFormat
|
|
787
|
+
TypeError: If `image_batch_format` is not of type :class:`mindspore.dataset.vision.ImageBatchFormat` .
|
|
789
788
|
TypeError: If `alpha` is not of type float.
|
|
790
789
|
TypeError: If `prob` is not of type float.
|
|
791
790
|
ValueError: If `alpha` is less than or equal 0.
|
|
792
|
-
ValueError: If `prob` is not in range [0, 1].
|
|
791
|
+
ValueError: If `prob` is not in range [0.0, 1.0].
|
|
793
792
|
RuntimeError: If given tensor shape is not <H, W, C>.
|
|
794
793
|
|
|
795
794
|
Supported Platforms:
|
|
@@ -824,7 +823,7 @@ class CutOut(ImageTensorOperation):
|
|
|
824
823
|
|
|
825
824
|
Args:
|
|
826
825
|
length (int): The side length of each square patch, must be larger than 0.
|
|
827
|
-
num_patches (int, optional): Number of patches to be cut out of an image, must be larger than 0.
|
|
826
|
+
num_patches (int, optional): Number of patches to be cut out of an image, must be larger than 0. Default: 1.
|
|
828
827
|
is_hwc (bool, optional): Whether the input image is in HWC format.
|
|
829
828
|
True - HWC format, False - CHW format. Default: True.
|
|
830
829
|
|
|
@@ -861,10 +860,11 @@ class CutOut(ImageTensorOperation):
|
|
|
861
860
|
class Decode(ImageTensorOperation, PyTensorOperation):
|
|
862
861
|
"""
|
|
863
862
|
Decode the input image in RGB mode.
|
|
864
|
-
Supported image formats: JPEG, BMP, PNG, TIFF, GIF(need `to_pil=True`), WEBP(need `to_pil=True`).
|
|
863
|
+
Supported image formats: JPEG, BMP, PNG, TIFF, GIF(need `to_pil=True` ), WEBP(need `to_pil=True` ).
|
|
865
864
|
|
|
866
865
|
Args:
|
|
867
|
-
to_pil (bool, optional): decode to PIL
|
|
866
|
+
to_pil (bool, optional): Whether to decode the image to the PIL data type. If True, the image will be decoded
|
|
867
|
+
to the PIL data type, otherwise it will be decoded to the NumPy data type. Default: False.
|
|
868
868
|
|
|
869
869
|
Raises:
|
|
870
870
|
RuntimeError: If given tensor is not a 1D sequence.
|
|
@@ -972,20 +972,24 @@ class Erase(ImageTensorOperation):
|
|
|
972
972
|
left (int): Horizontal ordinate of the upper left corner of erased region.
|
|
973
973
|
height (int): Height of erased region.
|
|
974
974
|
width (int): Width of erased region.
|
|
975
|
-
value (Union[int, Sequence[int]], optional): Pixel value used to pad the erased area.
|
|
976
|
-
If
|
|
977
|
-
If
|
|
978
|
-
Default: 0.
|
|
975
|
+
value (Union[int, Sequence[int, int, int]], optional): Pixel value used to pad the erased area. Default: 0.
|
|
976
|
+
If int is provided, it will be used for all RGB channels.
|
|
977
|
+
If Sequence[int, int, int] is provided, it will be used for R, G, B channels respectively.
|
|
979
978
|
inplace (bool, optional): Whether to apply erasing inplace. Default: False.
|
|
980
979
|
|
|
981
980
|
Raises:
|
|
982
981
|
TypeError: If `top` is not of type int.
|
|
982
|
+
ValueError: If `top` is negative.
|
|
983
983
|
TypeError: If `left` is not of type int.
|
|
984
|
+
ValueError: If `left` is negative.
|
|
984
985
|
TypeError: If `height` is not of type int.
|
|
986
|
+
ValueError: If `height` is not positive.
|
|
985
987
|
TypeError: If `width` is not of type int.
|
|
986
|
-
|
|
988
|
+
ValueError: If `width` is not positive.
|
|
989
|
+
TypeError: If `value` is not of type int or Sequence[int, int, int].
|
|
990
|
+
ValueError: If `value` is not in range of [0, 255].
|
|
987
991
|
TypeError: If `inplace` is not of type bool.
|
|
988
|
-
RuntimeError: If
|
|
992
|
+
RuntimeError: If shape of the input image is not <H, W, C>.
|
|
989
993
|
|
|
990
994
|
Supported Platforms:
|
|
991
995
|
``CPU``
|
|
@@ -1069,8 +1073,8 @@ class GaussianBlur(ImageTensorOperation):
|
|
|
1069
1073
|
kernel_size (Union[int, Sequence[int]]): Size of the Gaussian kernel to use. The value must be positive and odd.
|
|
1070
1074
|
If only an integer is provided, the kernel size will be (kernel_size, kernel_size). If a sequence of integer
|
|
1071
1075
|
is provided, it must be a sequence of 2 values which represents (width, height).
|
|
1072
|
-
sigma (Union[float, Sequence[float]], optional): Standard deviation of the Gaussian kernel to use
|
|
1073
|
-
|
|
1076
|
+
sigma (Union[float, Sequence[float]], optional): Standard deviation of the Gaussian kernel to use.
|
|
1077
|
+
Default: None. The value must be positive. If only a float is provided, the sigma will be (sigma, sigma).
|
|
1074
1078
|
If a sequence of float is provided, it must be a sequence of 2 values which represents (width, height).
|
|
1075
1079
|
If None is provided, the sigma will be calculated as ((kernel_size - 1) * 0.5 - 1) * 0.3 + 0.8.
|
|
1076
1080
|
|
|
@@ -1158,7 +1162,7 @@ class HorizontalFlip(ImageTensorOperation):
|
|
|
1158
1162
|
Flip the input image horizontally.
|
|
1159
1163
|
|
|
1160
1164
|
Raises:
|
|
1161
|
-
RuntimeError: If given tensor shape is not <H, W> or
|
|
1165
|
+
RuntimeError: If given tensor shape is not <H, W> or <..., H, W, C>.
|
|
1162
1166
|
|
|
1163
1167
|
Supported Platforms:
|
|
1164
1168
|
``CPU``
|
|
@@ -1182,8 +1186,8 @@ class HsvToRgb(PyTensorOperation):
|
|
|
1182
1186
|
Convert the input numpy.ndarray images from HSV to RGB.
|
|
1183
1187
|
|
|
1184
1188
|
Args:
|
|
1185
|
-
is_hwc (bool): If True, means the input image is in shape of
|
|
1186
|
-
Otherwise, it is in shape of
|
|
1189
|
+
is_hwc (bool): If True, means the input image is in shape of <H, W, C> or <N, H, W, C>.
|
|
1190
|
+
Otherwise, it is in shape of <C, H, W> or <N, C, H, W>. Default: False.
|
|
1187
1191
|
|
|
1188
1192
|
Raises:
|
|
1189
1193
|
TypeError: If `is_hwc` is not of type bool.
|
|
@@ -1225,7 +1229,7 @@ class HsvToRgb(PyTensorOperation):
|
|
|
1225
1229
|
|
|
1226
1230
|
class HWC2CHW(ImageTensorOperation):
|
|
1227
1231
|
"""
|
|
1228
|
-
Transpose the input image from shape
|
|
1232
|
+
Transpose the input image from shape <H, W, C> to <C, H, W>.
|
|
1229
1233
|
If the input image is of shape <H, W>, it will remain unchanged.
|
|
1230
1234
|
|
|
1231
1235
|
Note:
|
|
@@ -1257,7 +1261,7 @@ class HWC2CHW(ImageTensorOperation):
|
|
|
1257
1261
|
|
|
1258
1262
|
class Invert(ImageTensorOperation, PyTensorOperation):
|
|
1259
1263
|
"""
|
|
1260
|
-
Apply invert on input image in RGB mode. This
|
|
1264
|
+
Apply invert on input image in RGB mode. This operation will reassign every pixel to (255 - pixel).
|
|
1261
1265
|
|
|
1262
1266
|
Raises:
|
|
1263
1267
|
RuntimeError: If given tensor shape is not <H, W, C>.
|
|
@@ -1301,12 +1305,12 @@ class LinearTransformation(PyTensorOperation):
|
|
|
1301
1305
|
|
|
1302
1306
|
Args:
|
|
1303
1307
|
transformation_matrix (numpy.ndarray): A square transformation matrix in shape of (D, D), where
|
|
1304
|
-
:math:`D = C \times H \times W
|
|
1305
|
-
mean_vector (numpy.ndarray): A mean vector in shape of (D,), where :math:`D = C \times H \times W
|
|
1308
|
+
:math:`D = C \times H \times W` .
|
|
1309
|
+
mean_vector (numpy.ndarray): A mean vector in shape of (D,), where :math:`D = C \times H \times W` .
|
|
1306
1310
|
|
|
1307
1311
|
Raises:
|
|
1308
|
-
TypeError: If `transformation_matrix` is not of type :class:`numpy.ndarray
|
|
1309
|
-
TypeError: If `mean_vector` is not of type :class:`numpy.ndarray
|
|
1312
|
+
TypeError: If `transformation_matrix` is not of type :class:`numpy.ndarray` .
|
|
1313
|
+
TypeError: If `mean_vector` is not of type :class:`numpy.ndarray` .
|
|
1310
1314
|
|
|
1311
1315
|
Supported Platforms:
|
|
1312
1316
|
``CPU``
|
|
@@ -1341,7 +1345,7 @@ class LinearTransformation(PyTensorOperation):
|
|
|
1341
1345
|
Execute method.
|
|
1342
1346
|
|
|
1343
1347
|
Args:
|
|
1344
|
-
np_img (numpy.ndarray): Image in shape of
|
|
1348
|
+
np_img (numpy.ndarray): Image in shape of <C, H, W> to be linearly transformed.
|
|
1345
1349
|
|
|
1346
1350
|
Returns:
|
|
1347
1351
|
numpy.ndarray, linearly transformed image.
|
|
@@ -1353,9 +1357,9 @@ class MixUp(PyTensorOperation):
|
|
|
1353
1357
|
"""
|
|
1354
1358
|
Randomly mix up a batch of numpy.ndarray images together with its labels.
|
|
1355
1359
|
|
|
1356
|
-
Each image will be multiplied by a random weight lambda generated from the Beta distribution and then added
|
|
1357
|
-
to another image multiplied by 1 - lambda
|
|
1358
|
-
same value of lambda
|
|
1360
|
+
Each image will be multiplied by a random weight :math:`lambda` generated from the Beta distribution and then added
|
|
1361
|
+
to another image multiplied by :math:`1 - lambda`. The same transformation will be applied to their labels with the
|
|
1362
|
+
same value of :math:`lambda`. Make sure that the labels are one-hot encoded in advance.
|
|
1359
1363
|
|
|
1360
1364
|
Args:
|
|
1361
1365
|
batch_size (int): The number of images in a batch.
|
|
@@ -1430,10 +1434,10 @@ class MixUpBatch(ImageTensorOperation):
|
|
|
1430
1434
|
The lambda is generated based on the specified alpha value. Two coefficients x1, x2 are randomly generated
|
|
1431
1435
|
in the range [alpha, 1], and lambda = (x1 / (x1 + x2)).
|
|
1432
1436
|
|
|
1433
|
-
Note that you need to make labels into one-hot format and batched before calling this
|
|
1437
|
+
Note that you need to make labels into one-hot format and batched before calling this operation.
|
|
1434
1438
|
|
|
1435
1439
|
Args:
|
|
1436
|
-
alpha (float, optional): Hyperparameter of beta distribution. The value must be positive
|
|
1440
|
+
alpha (float, optional): Hyperparameter of beta distribution. The value must be positive. Default: 1.0.
|
|
1437
1441
|
|
|
1438
1442
|
Raises:
|
|
1439
1443
|
TypeError: If `alpha` is not of type float.
|
|
@@ -1465,7 +1469,7 @@ class MixUpBatch(ImageTensorOperation):
|
|
|
1465
1469
|
|
|
1466
1470
|
class Normalize(ImageTensorOperation):
|
|
1467
1471
|
"""
|
|
1468
|
-
Normalize the input image with respect to mean and standard deviation. This
|
|
1472
|
+
Normalize the input image with respect to mean and standard deviation. This operation will normalize
|
|
1469
1473
|
the input image with: output[channel] = (input[channel] - mean[channel]) / std[channel], where channel >= 1.
|
|
1470
1474
|
|
|
1471
1475
|
Note:
|
|
@@ -1485,7 +1489,7 @@ class Normalize(ImageTensorOperation):
|
|
|
1485
1489
|
TypeError: If `is_hwc` is not of type bool.
|
|
1486
1490
|
ValueError: If `mean` is not in range [0.0, 255.0].
|
|
1487
1491
|
ValueError: If `std` is not in range (0.0, 255.0].
|
|
1488
|
-
RuntimeError: If given tensor format is not <H, W> or <...,H, W, C>.
|
|
1492
|
+
RuntimeError: If given tensor format is not <H, W> or <..., H, W, C>.
|
|
1489
1493
|
|
|
1490
1494
|
Supported Platforms:
|
|
1491
1495
|
``CPU``
|
|
@@ -1520,7 +1524,7 @@ class NormalizePad(ImageTensorOperation):
|
|
|
1520
1524
|
The mean values must be in range (0.0, 255.0].
|
|
1521
1525
|
std (sequence): List or tuple of standard deviations for each channel, with respect to channel order.
|
|
1522
1526
|
The standard deviation values must be in range (0.0, 255.0].
|
|
1523
|
-
dtype (str, optional): Set the output data type of normalized image
|
|
1527
|
+
dtype (str, optional): Set the output data type of normalized image. Default: "float32".
|
|
1524
1528
|
is_hwc (bool, optional): Whether the input image is HWC.
|
|
1525
1529
|
True - HWC format, False - CHW format. Default: True.
|
|
1526
1530
|
|
|
@@ -1568,15 +1572,15 @@ class Pad(ImageTensorOperation, PyTensorOperation):
|
|
|
1568
1572
|
padding (Union[int, Sequence[int, int], Sequence[int, int, int, int]]): The number of pixels
|
|
1569
1573
|
to pad each border of the image.
|
|
1570
1574
|
If a single number is provided, it pads all borders with this value.
|
|
1571
|
-
If a tuple or lists of 2 values are provided, it pads the (left and
|
|
1572
|
-
with the first value and (
|
|
1575
|
+
If a tuple or lists of 2 values are provided, it pads the (left and right)
|
|
1576
|
+
with the first value and (top and bottom) with the second value.
|
|
1573
1577
|
If 4 values are provided as a list or tuple, it pads the left, top, right and bottom respectively.
|
|
1574
1578
|
The pad values must be non-negative.
|
|
1575
1579
|
fill_value (Union[int, tuple[int]], optional): The pixel intensity of the borders, only valid for
|
|
1576
1580
|
padding_mode Border.CONSTANT. If it is a 3-tuple, it is used to fill R, G, B channels respectively.
|
|
1577
1581
|
If it is an integer, it is used for all RGB channels.
|
|
1578
|
-
The fill_value values must be in range [0, 255]
|
|
1579
|
-
padding_mode (Border, optional): The method of padding
|
|
1582
|
+
The fill_value values must be in range [0, 255]. Default: 0.
|
|
1583
|
+
padding_mode (Border, optional): The method of padding. Default: Border.CONSTANT. Can be any of
|
|
1580
1584
|
[Border.CONSTANT, Border.EDGE, Border.REFLECT, Border.SYMMETRIC].
|
|
1581
1585
|
|
|
1582
1586
|
- Border.CONSTANT, means it fills the border with constant values.
|
|
@@ -1589,16 +1593,10 @@ class Pad(ImageTensorOperation, PyTensorOperation):
|
|
|
1589
1593
|
- Border.SYMMETRIC, means it reflects the values on the edge repeating the last
|
|
1590
1594
|
value of edge.
|
|
1591
1595
|
|
|
1592
|
-
Note:
|
|
1593
|
-
The behavior when `padding` is a sequence of length 2 will change from padding left/top with
|
|
1594
|
-
the first value and right/bottom with the second, to padding left/right with the first one
|
|
1595
|
-
and top/bottom with the second in the future. Or you can pass in a 4-element sequence to specify
|
|
1596
|
-
left, top, right and bottom respectively.
|
|
1597
|
-
|
|
1598
1596
|
Raises:
|
|
1599
|
-
TypeError: If `padding` is not of type int or Sequence[int, int], Sequence[int, int, int, int]
|
|
1597
|
+
TypeError: If `padding` is not of type int or Sequence[int, int], Sequence[int, int, int, int].
|
|
1600
1598
|
TypeError: If `fill_value` is not of type int or tuple[int].
|
|
1601
|
-
TypeError: If `padding_mode` is not of type :class:`mindspore.dataset.vision.Border
|
|
1599
|
+
TypeError: If `padding_mode` is not of type :class:`mindspore.dataset.vision.Border` .
|
|
1602
1600
|
ValueError: If `padding` is negative.
|
|
1603
1601
|
ValueError: If `fill_value` is not in range [0, 255].
|
|
1604
1602
|
RuntimeError: If given tensor shape is not <H, W> or <H, W, C>.
|
|
@@ -1656,7 +1654,7 @@ class PadToSize(ImageTensorOperation):
|
|
|
1656
1654
|
If int is provided, it will be used for all RGB channels.
|
|
1657
1655
|
If tuple[int, int, int] is provided, it will be used for R, G, B channels respectively. Default: 0.
|
|
1658
1656
|
padding_mode (Border, optional): Method of padding. It can be Border.CONSTANT, Border.EDGE, Border.REFLECT
|
|
1659
|
-
or Border.SYMMETRIC. Default: Border.CONSTANT.
|
|
1657
|
+
or Border.SYMMETRIC. Default: Border.CONSTANT.
|
|
1660
1658
|
|
|
1661
1659
|
- Border.CONSTANT, pads with a constant value.
|
|
1662
1660
|
- Border.EDGE, pads with the last value at the edge of the image.
|
|
@@ -1667,7 +1665,7 @@ class PadToSize(ImageTensorOperation):
|
|
|
1667
1665
|
TypeError: If `size` is not of type int or Sequence[int, int].
|
|
1668
1666
|
TypeError: If `offset` is not of type int or Sequence[int, int].
|
|
1669
1667
|
TypeError: If `fill_value` is not of type int or tuple[int, int, int].
|
|
1670
|
-
TypeError: If `padding_mode` is not of type :class:`mindspore.dataset.vision.Border
|
|
1668
|
+
TypeError: If `padding_mode` is not of type :class:`mindspore.dataset.vision.Border` .
|
|
1671
1669
|
ValueError: If `size` is not positive.
|
|
1672
1670
|
ValueError: If `offset` is negative.
|
|
1673
1671
|
ValueError: If `fill_value` is not in range of [0, 255].
|
|
@@ -1703,29 +1701,29 @@ class Perspective(ImageTensorOperation, PyTensorOperation):
|
|
|
1703
1701
|
Apply perspective transformation on input image.
|
|
1704
1702
|
|
|
1705
1703
|
Args:
|
|
1706
|
-
start_points (Sequence[Sequence[int, int]]):
|
|
1707
|
-
|
|
1708
|
-
|
|
1709
|
-
|
|
1704
|
+
start_points (Sequence[Sequence[int, int]]): Sequence of the starting point coordinates, containing four
|
|
1705
|
+
two-element subsequences, corresponding to [top-left, top-right, bottom-right, bottom-left] of the
|
|
1706
|
+
quadrilateral in the original image.
|
|
1707
|
+
end_points (Sequence[Sequence[int, int]]): Sequence of the ending point coordinates, containing four
|
|
1708
|
+
two-element subsequences, corresponding to [top-left, top-right, bottom-right, bottom-left] of the
|
|
1709
|
+
quadrilateral in the target image.
|
|
1710
1710
|
interpolation (Inter, optional): Method of interpolation. It can be Inter.BILINEAR, Inter.LINEAR,
|
|
1711
1711
|
Inter.NEAREST, Inter.AREA, Inter.PILCUBIC, Inter.CUBIC or Inter.BICUBIC. Default: Inter.BILINEAR.
|
|
1712
1712
|
|
|
1713
1713
|
- Inter.BILINEAR, bilinear interpolation.
|
|
1714
|
-
- Inter.LINEAR,
|
|
1714
|
+
- Inter.LINEAR, linear interpolation, the same as Inter.BILINEAR.
|
|
1715
1715
|
- Inter.NEAREST, nearest-neighbor interpolation.
|
|
1716
1716
|
- Inter.BICUBIC, bicubic interpolation.
|
|
1717
|
-
- Inter.CUBIC
|
|
1718
|
-
- Inter.PILCUBIC,
|
|
1719
|
-
|
|
1720
|
-
- Inter.AREA, area interpolation.
|
|
1717
|
+
- Inter.CUBIC, cubic interpolation, the same as Inter.BICUBIC.
|
|
1718
|
+
- Inter.PILCUBIC, cubic interpolation based on the implementation of Pillow,
|
|
1719
|
+
only numpy.ndarray input is supported.
|
|
1720
|
+
- Inter.AREA, pixel area interpolation, only numpy.ndarray input is supported.
|
|
1721
1721
|
|
|
1722
1722
|
Raises:
|
|
1723
|
-
TypeError: If `start_points` is not of type Sequence[Sequence[int, int]]
|
|
1724
|
-
TypeError: If
|
|
1725
|
-
TypeError: If `
|
|
1726
|
-
|
|
1727
|
-
TypeError: If `interpolation` is not of type :class:`mindspore.dataset.vision.Inter`.
|
|
1728
|
-
RuntimeError: If given tensor shape is not <H, W> or <H, W, C>.
|
|
1723
|
+
TypeError: If `start_points` is not of type Sequence[Sequence[int, int]].
|
|
1724
|
+
TypeError: If `end_points` is not of type Sequence[Sequence[int, int]].
|
|
1725
|
+
TypeError: If `interpolation` is not of type :class:`mindspore.dataset.vision.Inter` .
|
|
1726
|
+
RuntimeError: If shape of the input image is not <H, W> or <H, W, C>.
|
|
1729
1727
|
|
|
1730
1728
|
Supported Platforms:
|
|
1731
1729
|
``CPU``
|
|
@@ -1760,7 +1758,7 @@ class Perspective(ImageTensorOperation, PyTensorOperation):
|
|
|
1760
1758
|
raise TypeError("Current Interpolation is not supported with NumPy input.")
|
|
1761
1759
|
return cde.PerspectiveOperation(self.start_points, self.end_points, Inter.to_c_type(self.interpolation))
|
|
1762
1760
|
|
|
1763
|
-
def
|
|
1761
|
+
def _execute_py(self, img):
|
|
1764
1762
|
"""
|
|
1765
1763
|
Execute method.
|
|
1766
1764
|
|
|
@@ -1777,7 +1775,8 @@ class Perspective(ImageTensorOperation, PyTensorOperation):
|
|
|
1777
1775
|
|
|
1778
1776
|
class Posterize(ImageTensorOperation):
|
|
1779
1777
|
"""
|
|
1780
|
-
|
|
1778
|
+
Reduce the bit depth of the color channels of image to create a high contrast and vivid color effect,
|
|
1779
|
+
similar to that seen in posters or printed materials.
|
|
1781
1780
|
|
|
1782
1781
|
Args:
|
|
1783
1782
|
bits (int): The number of bits to keep for each channel, should be in range of [0, 8].
|
|
@@ -1785,7 +1784,7 @@ class Posterize(ImageTensorOperation):
|
|
|
1785
1784
|
Raises:
|
|
1786
1785
|
TypeError: If `bits` is not of type int.
|
|
1787
1786
|
ValueError: If `bits` is not in range [0, 8].
|
|
1788
|
-
RuntimeError: If
|
|
1787
|
+
RuntimeError: If shape of the input image is not <H, W> or <H, W, C>.
|
|
1789
1788
|
"""
|
|
1790
1789
|
|
|
1791
1790
|
@check_posterize
|
|
@@ -1800,39 +1799,42 @@ class Posterize(ImageTensorOperation):
|
|
|
1800
1799
|
|
|
1801
1800
|
class RandAugment(ImageTensorOperation):
|
|
1802
1801
|
"""
|
|
1803
|
-
Apply RandAugment data augmentation method
|
|
1804
|
-
`RandAugment: Learning Augmentation Strategies from Data <https://arxiv.org/pdf/1909.13719.pdf>`.
|
|
1805
|
-
This operation works only with 3-channel RGB images.
|
|
1806
|
-
|
|
1807
|
-
Args:
|
|
1808
|
-
num_ops (int, optional): Number of augmentation transformations to apply sequentially. Default: 2.
|
|
1809
|
-
magnitude (int, optional): Magnitude for all the transformations and its value should be smaller than the value
|
|
1810
|
-
of num_magnitude_bins. Default: 9.
|
|
1811
|
-
num_magnitude_bins (int, optional): The number of different magnitude values. The number of different magnitude
|
|
1812
|
-
values, must be greater than or equal to 2. Default: 31.
|
|
1813
|
-
interpolation (Inter, optional): Image interpolation mode for Resize operator.
|
|
1814
|
-
It can be any of [Inter.NEAREST, Inter.BILINEAR, Inter.BICUBIC, Inter.AREA]. Default: Inter.NEAREST.
|
|
1802
|
+
Apply RandAugment data augmentation method on the input image.
|
|
1815
1803
|
|
|
1816
|
-
|
|
1804
|
+
Refer to `RandAugment: Learning Augmentation Strategies from Data <https://arxiv.org/pdf/1909.13719.pdf>`_ .
|
|
1817
1805
|
|
|
1818
|
-
|
|
1806
|
+
Only support 3-channel RGB image.
|
|
1819
1807
|
|
|
1820
|
-
|
|
1808
|
+
Args:
|
|
1809
|
+
num_ops (int, optional): Number of augmentation transformations to apply sequentially. Default: 2.
|
|
1810
|
+
magnitude (int, optional): Magnitude for all the transformations, must be smaller than
|
|
1811
|
+
`num_magnitude_bins`. Default: 9.
|
|
1812
|
+
num_magnitude_bins (int, optional): The number of different magnitude values,
|
|
1813
|
+
must be no less than 2. Default: 31.
|
|
1814
|
+
interpolation (Inter, optional): Image interpolation method. Default: Inter.NEAREST.
|
|
1815
|
+
It can be Inter.NEAREST, Inter.BILINEAR, Inter.BICUBIC or Inter.AREA.
|
|
1821
1816
|
|
|
1822
|
-
- Inter.
|
|
1817
|
+
- Inter.NEAREST, nearest-neighbor interpolation.
|
|
1818
|
+
- Inter.BILINEAR, bilinear interpolation.
|
|
1819
|
+
- Inter.BICUBIC, bicubic interpolation.
|
|
1820
|
+
- Inter.AREA, pixel area interpolation.
|
|
1823
1821
|
|
|
1824
|
-
fill_value (Union[int, tuple[int, int, int]], optional): Pixel fill value for the area outside the
|
|
1825
|
-
image
|
|
1826
|
-
If
|
|
1827
|
-
|
|
1822
|
+
fill_value (Union[int, tuple[int, int, int]], optional): Pixel fill value for the area outside the
|
|
1823
|
+
transformed image, must be in range of [0, 255]. Default: 0.
|
|
1824
|
+
If int is provided, pad all RGB channels with this value.
|
|
1825
|
+
If tuple[int, int, int] is provided, pad R, G, B channels respectively.
|
|
1828
1826
|
|
|
1829
1827
|
Raises:
|
|
1830
1828
|
TypeError: If `num_ops` is not of type int.
|
|
1829
|
+
ValueError: If `num_ops` is negative.
|
|
1831
1830
|
TypeError: If `magnitude` is not of type int.
|
|
1831
|
+
ValueError: If `magnitude` is not positive.
|
|
1832
1832
|
TypeError: If `num_magnitude_bins` is not of type int.
|
|
1833
|
-
|
|
1834
|
-
TypeError: If `
|
|
1835
|
-
|
|
1833
|
+
ValueError: If `num_magnitude_bins` is less than 2.
|
|
1834
|
+
TypeError: If `interpolation` not of type :class:`mindspore.dataset.vision.Inter` .
|
|
1835
|
+
TypeError: If `fill_value` is not of type int or tuple[int, int, int].
|
|
1836
|
+
ValueError: If `fill_value` is not in range of [0, 255].
|
|
1837
|
+
RuntimeError: If shape of the input image is not <H, W, C>.
|
|
1836
1838
|
|
|
1837
1839
|
Supported Platforms:
|
|
1838
1840
|
``CPU``
|
|
@@ -1868,13 +1870,13 @@ class RandomAdjustSharpness(ImageTensorOperation):
|
|
|
1868
1870
|
Degree of 0.0 gives a blurred image, degree of 1.0 gives the original image,
|
|
1869
1871
|
and degree of 2.0 increases the sharpness by a factor of 2.
|
|
1870
1872
|
prob (float, optional): Probability of the image being sharpness adjusted, which
|
|
1871
|
-
must be in range of [0, 1]
|
|
1873
|
+
must be in range of [0.0, 1.0]. Default: 0.5.
|
|
1872
1874
|
|
|
1873
1875
|
Raises:
|
|
1874
1876
|
TypeError: If `degree` is not of type float.
|
|
1875
1877
|
TypeError: If `prob` is not of type float.
|
|
1876
1878
|
ValueError: If `degree` is negative.
|
|
1877
|
-
ValueError: If `prob` is not in range [0, 1].
|
|
1879
|
+
ValueError: If `prob` is not in range [0.0, 1.0].
|
|
1878
1880
|
RuntimeError: If given tensor shape is not <H, W> or <H, W, C>.
|
|
1879
1881
|
|
|
1880
1882
|
Supported Platforms:
|
|
@@ -1906,7 +1908,7 @@ class RandomAffine(ImageTensorOperation, PyTensorOperation):
|
|
|
1906
1908
|
If `degrees` is a number, the range will be (-degrees, degrees).
|
|
1907
1909
|
If `degrees` is a sequence, it should be (min, max).
|
|
1908
1910
|
translate (sequence, optional): Sequence (tx_min, tx_max, ty_min, ty_max) of minimum/maximum translation in
|
|
1909
|
-
x(horizontal) and y(vertical) directions, range [-1.0, 1.0]
|
|
1911
|
+
x(horizontal) and y(vertical) directions, range [-1.0, 1.0]. Default: None.
|
|
1910
1912
|
The horizontal and vertical shift is selected randomly from the range:
|
|
1911
1913
|
(tx_min*width, tx_max*width) and (ty_min*height, ty_max*height), respectively.
|
|
1912
1914
|
If a tuple or list of size 2, then a translate parallel to the X axis in the range of
|
|
@@ -1915,18 +1917,18 @@ class RandomAffine(ImageTensorOperation, PyTensorOperation):
|
|
|
1915
1917
|
(translate[0], translate[1]) and a translate parallel to the Y axis in the range of
|
|
1916
1918
|
(translate[2], translate[3]) are applied.
|
|
1917
1919
|
If None, no translation is applied.
|
|
1918
|
-
scale (sequence, optional): Scaling factor interval, which must be non negative
|
|
1919
|
-
|
|
1920
|
+
scale (sequence, optional): Scaling factor interval, which must be non negative.
|
|
1921
|
+
Default: None, original scale is used.
|
|
1920
1922
|
shear (Union[float, Sequence[float, float], Sequence[float, float, float, float]], optional):
|
|
1921
1923
|
Range of shear factor to select from.
|
|
1922
1924
|
If float is provided, a shearing parallel to X axis with a factor selected from
|
|
1923
|
-
(
|
|
1925
|
+
( `-shear` , `shear` ) will be applied.
|
|
1924
1926
|
If Sequence[float, float] is provided, a shearing parallel to X axis with a factor selected
|
|
1925
1927
|
from ( `shear` [0], `shear` [1]) will be applied.
|
|
1926
1928
|
If Sequence[float, float, float, float] is provided, a shearing parallel to X axis with a factor selected
|
|
1927
1929
|
from ( `shear` [0], `shear` [1]) and a shearing parallel to Y axis with a factor selected from
|
|
1928
1930
|
( `shear` [2], `shear` [3]) will be applied. Default: None, means no shearing.
|
|
1929
|
-
resample (Inter, optional): An optional resampling filter
|
|
1931
|
+
resample (Inter, optional): An optional resampling filter. Default: Inter.NEAREST.
|
|
1930
1932
|
It can be any of [Inter.BILINEAR, Inter.NEAREST, Inter.BICUBIC, Inter.AREA].
|
|
1931
1933
|
|
|
1932
1934
|
- Inter.BILINEAR, means resample method is bilinear interpolation.
|
|
@@ -1939,14 +1941,14 @@ class RandomAffine(ImageTensorOperation, PyTensorOperation):
|
|
|
1939
1941
|
|
|
1940
1942
|
fill_value (Union[int, tuple[int]], optional): Optional fill_value to fill the area outside the transform
|
|
1941
1943
|
in the output image. There must be three elements in tuple and the value of single element is [0, 255].
|
|
1942
|
-
|
|
1944
|
+
Default: 0, filling is performed.
|
|
1943
1945
|
|
|
1944
1946
|
Raises:
|
|
1945
1947
|
TypeError: If `degrees` is not of type int, float or sequence.
|
|
1946
1948
|
TypeError: If `translate` is not of type sequence.
|
|
1947
1949
|
TypeError: If `scale` is not of type sequence.
|
|
1948
1950
|
TypeError: If `shear` is not of type int, float or sequence.
|
|
1949
|
-
TypeError: If `resample` is not of type :class:`mindspore.dataset.vision.Inter
|
|
1951
|
+
TypeError: If `resample` is not of type :class:`mindspore.dataset.vision.Inter` .
|
|
1950
1952
|
TypeError: If `fill_value` is not of type int or tuple[int].
|
|
1951
1953
|
ValueError: If `degrees` is negative.
|
|
1952
1954
|
ValueError: If `translate` is not in range [-1.0, 1.0].
|
|
@@ -2044,11 +2046,11 @@ class RandomAutoContrast(ImageTensorOperation):
|
|
|
2044
2046
|
|
|
2045
2047
|
Args:
|
|
2046
2048
|
cutoff (float, optional): Percent of the lightest and darkest pixels to be cut off from
|
|
2047
|
-
the histogram of the input image. The value must be in range of [0.0, 50.0
|
|
2049
|
+
the histogram of the input image. The value must be in range of [0.0, 50.0]. Default: 0.0.
|
|
2048
2050
|
ignore (Union[int, sequence], optional): The background pixel values to be ignored, each of
|
|
2049
|
-
which must be in range of [0, 255]
|
|
2051
|
+
which must be in range of [0, 255]. Default: None.
|
|
2050
2052
|
prob (float, optional): Probability of the image being automatically contrasted, which
|
|
2051
|
-
must be in range of [0, 1]
|
|
2053
|
+
must be in range of [0.0, 1.0]. Default: 0.5.
|
|
2052
2054
|
|
|
2053
2055
|
Raises:
|
|
2054
2056
|
TypeError: If `cutoff` is not of type float.
|
|
@@ -2056,7 +2058,7 @@ class RandomAutoContrast(ImageTensorOperation):
|
|
|
2056
2058
|
TypeError: If `prob` is not of type float.
|
|
2057
2059
|
ValueError: If `cutoff` is not in range [0.0, 50.0).
|
|
2058
2060
|
ValueError: If `ignore` is not in range [0, 255].
|
|
2059
|
-
ValueError: If `prob` is not in range [0, 1].
|
|
2061
|
+
ValueError: If `prob` is not in range [0.0, 1.0].
|
|
2060
2062
|
RuntimeError: If given tensor shape is not <H, W> or <H, W, C>.
|
|
2061
2063
|
|
|
2062
2064
|
Supported Platforms:
|
|
@@ -2092,7 +2094,7 @@ class RandomColor(ImageTensorOperation, PyTensorOperation):
|
|
|
2092
2094
|
Args:
|
|
2093
2095
|
degrees (Sequence[float], optional): Range of random color adjustment degrees, which must be non-negative.
|
|
2094
2096
|
It should be in (min, max) format. If min=max, then it is a
|
|
2095
|
-
single fixed magnitude operation (
|
|
2097
|
+
single fixed magnitude operation. Default: (0.1, 1.9).
|
|
2096
2098
|
|
|
2097
2099
|
Raises:
|
|
2098
2100
|
TypeError: If `degrees` is not of type Sequence[float].
|
|
@@ -2138,19 +2140,19 @@ class RandomColorAdjust(ImageTensorOperation, PyTensorOperation):
|
|
|
2138
2140
|
This operation supports running on Ascend or GPU platforms by Offload.
|
|
2139
2141
|
|
|
2140
2142
|
Args:
|
|
2141
|
-
brightness (Union[float, Sequence[float]], optional): Brightness adjustment factor (
|
|
2143
|
+
brightness (Union[float, Sequence[float]], optional): Brightness adjustment factor. Default: (1, 1).
|
|
2142
2144
|
Cannot be negative.
|
|
2143
2145
|
If it is a float, the factor is uniformly chosen from the range [max(0, 1-brightness), 1+brightness].
|
|
2144
2146
|
If it is a sequence, it should be [min, max] for the range.
|
|
2145
|
-
contrast (Union[float, Sequence[float]], optional): Contrast adjustment factor (
|
|
2147
|
+
contrast (Union[float, Sequence[float]], optional): Contrast adjustment factor. Default: (1, 1).
|
|
2146
2148
|
Cannot be negative.
|
|
2147
2149
|
If it is a float, the factor is uniformly chosen from the range [max(0, 1-contrast), 1+contrast].
|
|
2148
2150
|
If it is a sequence, it should be [min, max] for the range.
|
|
2149
|
-
saturation (Union[float, Sequence[float]], optional): Saturation adjustment factor (
|
|
2151
|
+
saturation (Union[float, Sequence[float]], optional): Saturation adjustment factor. Default: (1, 1).
|
|
2150
2152
|
Cannot be negative.
|
|
2151
2153
|
If it is a float, the factor is uniformly chosen from the range [max(0, 1-saturation), 1+saturation].
|
|
2152
2154
|
If it is a sequence, it should be [min, max] for the range.
|
|
2153
|
-
hue (Union[float, Sequence[float]], optional): Hue adjustment factor (
|
|
2155
|
+
hue (Union[float, Sequence[float]], optional): Hue adjustment factor. Default: (0, 0).
|
|
2154
2156
|
If it is a float, the range will be [-hue, hue]. Value should be 0 <= hue <= 0.5.
|
|
2155
2157
|
If it is a sequence, it should be [min, max] where -0.5 <= min <= max <= 0.5.
|
|
2156
2158
|
|
|
@@ -2231,20 +2233,20 @@ class RandomCrop(ImageTensorOperation, PyTensorOperation):
|
|
|
2231
2233
|
If size is an integer, a square crop of size (size, size) is returned.
|
|
2232
2234
|
If size is a sequence of length 2, an image of size (height, width) will be cropped.
|
|
2233
2235
|
padding (Union[int, Sequence[int]], optional): The number of pixels to pad each border of the image.
|
|
2234
|
-
The padding value(s) must be non-negative
|
|
2236
|
+
The padding value(s) must be non-negative. Default: None.
|
|
2235
2237
|
If padding is not None, pad image first with padding values.
|
|
2236
2238
|
If a single number is provided, pad all borders with this value.
|
|
2237
|
-
If a tuple or lists of 2 values are provided, pad the (left and
|
|
2238
|
-
with the first value and (
|
|
2239
|
+
If a tuple or lists of 2 values are provided, pad the (left and right)
|
|
2240
|
+
with the first value and (top and bottom) with the second value.
|
|
2239
2241
|
If 4 values are provided as a list or tuple,
|
|
2240
2242
|
pad the left, top, right and bottom respectively.
|
|
2241
2243
|
pad_if_needed (bool, optional): Pad the image if either side is smaller than
|
|
2242
|
-
the given output size
|
|
2244
|
+
the given output size. Default: False.
|
|
2243
2245
|
fill_value (Union[int, tuple[int]], optional): The pixel intensity of the borders, only valid for
|
|
2244
2246
|
padding_mode Border.CONSTANT. If it is a 3-tuple, it is used to fill R, G, B channels respectively.
|
|
2245
2247
|
If it is an integer, it is used for all RGB channels.
|
|
2246
|
-
The fill_value values must be in range [0, 255]
|
|
2247
|
-
padding_mode (Border, optional): The method of padding
|
|
2248
|
+
The fill_value values must be in range [0, 255]. Default: 0.
|
|
2249
|
+
padding_mode (Border, optional): The method of padding. Default: Border.CONSTANT. It can be any of
|
|
2248
2250
|
[Border.CONSTANT, Border.EDGE, Border.REFLECT, Border.SYMMETRIC].
|
|
2249
2251
|
|
|
2250
2252
|
- Border.CONSTANT, means it fills the border with constant values.
|
|
@@ -2257,22 +2259,16 @@ class RandomCrop(ImageTensorOperation, PyTensorOperation):
|
|
|
2257
2259
|
- Border.SYMMETRIC, means it reflects the values on the edge repeating the last
|
|
2258
2260
|
value of edge.
|
|
2259
2261
|
|
|
2260
|
-
Note:
|
|
2261
|
-
The behavior when `padding` is a sequence of length 2 will change from padding left/top with
|
|
2262
|
-
the first value and right/bottom with the second, to padding left/right with the first one
|
|
2263
|
-
and top/bottom with the second in the future. Or you can pass in a 4-element sequence to specify
|
|
2264
|
-
left, top, right and bottom respectively.
|
|
2265
|
-
|
|
2266
2262
|
Raises:
|
|
2267
2263
|
TypeError: If `size` is not of type int or Sequence[int].
|
|
2268
2264
|
TypeError: If `padding` is not of type int or Sequence[int].
|
|
2269
2265
|
TypeError: If `pad_if_needed` is not of type boolean.
|
|
2270
2266
|
TypeError: If `fill_value` is not of type int or tuple[int].
|
|
2271
|
-
TypeError: If `padding_mode` is not of type :class:`mindspore.dataset.vision.Border
|
|
2267
|
+
TypeError: If `padding_mode` is not of type :class:`mindspore.dataset.vision.Border` .
|
|
2272
2268
|
ValueError: If `size` is not positive.
|
|
2273
2269
|
ValueError: If `padding` is negative.
|
|
2274
2270
|
ValueError: If `fill_value` is not in range [0, 255].
|
|
2275
|
-
RuntimeError: If given tensor shape is not <H, W> or
|
|
2271
|
+
RuntimeError: If given tensor shape is not <H, W> or <..., H, W, C>.
|
|
2276
2272
|
|
|
2277
2273
|
Supported Platforms:
|
|
2278
2274
|
``CPU``
|
|
@@ -2324,7 +2320,7 @@ class RandomCrop(ImageTensorOperation, PyTensorOperation):
|
|
|
2324
2320
|
|
|
2325
2321
|
class RandomCropDecodeResize(ImageTensorOperation):
|
|
2326
2322
|
"""
|
|
2327
|
-
A combination of `Crop
|
|
2323
|
+
A combination of `Crop` , `Decode` and `Resize` . It will get better performance for JPEG images. This operation
|
|
2328
2324
|
will crop the input image at a random location, decode the cropped image in RGB mode, and resize the decoded image.
|
|
2329
2325
|
|
|
2330
2326
|
Args:
|
|
@@ -2332,10 +2328,10 @@ class RandomCropDecodeResize(ImageTensorOperation):
|
|
|
2332
2328
|
If size is an integer, a square crop of size (size, size) is returned.
|
|
2333
2329
|
If size is a sequence of length 2, it should be (height, width).
|
|
2334
2330
|
scale (Union[list, tuple], optional): Range [min, max) of respective size of the
|
|
2335
|
-
original size to be cropped, which must be non-negative (
|
|
2331
|
+
original size to be cropped, which must be non-negative. Default: (0.08, 1.0).
|
|
2336
2332
|
ratio (Union[list, tuple], optional): Range [min, max) of aspect ratio to be
|
|
2337
|
-
cropped, which must be non-negative (
|
|
2338
|
-
interpolation (Inter, optional): Image interpolation mode for resize
|
|
2333
|
+
cropped, which must be non-negative. Default: (3. / 4., 4. / 3.).
|
|
2334
|
+
interpolation (Inter, optional): Image interpolation mode for resize operation. Default: Inter.BILINEAR.
|
|
2339
2335
|
It can be any of [Inter.BILINEAR, Inter.NEAREST, Inter.BICUBIC, Inter.AREA, Inter.PILCUBIC].
|
|
2340
2336
|
|
|
2341
2337
|
- Inter.BILINEAR, means interpolation method is bilinear interpolation.
|
|
@@ -2349,14 +2345,14 @@ class RandomCropDecodeResize(ImageTensorOperation):
|
|
|
2349
2345
|
- Inter.PILCUBIC, means interpolation method is bicubic interpolation like implemented in pillow, input
|
|
2350
2346
|
should be in 3 channels format.
|
|
2351
2347
|
|
|
2352
|
-
max_attempts (int, optional): The maximum number of attempts to propose a valid crop_area
|
|
2348
|
+
max_attempts (int, optional): The maximum number of attempts to propose a valid crop_area. Default: 10.
|
|
2353
2349
|
If exceeded, fall back to use center_crop instead. The max_attempts value must be positive.
|
|
2354
2350
|
|
|
2355
2351
|
Raises:
|
|
2356
2352
|
TypeError: If `size` is not of type int or Sequence[int].
|
|
2357
2353
|
TypeError: If `scale` is not of type tuple.
|
|
2358
2354
|
TypeError: If `ratio` is not of type tuple.
|
|
2359
|
-
TypeError: If `interpolation` is not of type :class:`mindspore.dataset.vision.Inter
|
|
2355
|
+
TypeError: If `interpolation` is not of type :class:`mindspore.dataset.vision.Inter` .
|
|
2360
2356
|
TypeError: If `max_attempts` is not of type integer.
|
|
2361
2357
|
ValueError: If `size` is not positive.
|
|
2362
2358
|
ValueError: If `scale` is negative.
|
|
@@ -2415,19 +2411,19 @@ class RandomCropWithBBox(ImageTensorOperation):
|
|
|
2415
2411
|
If size is an integer, a square crop of size (size, size) is returned.
|
|
2416
2412
|
If size is a sequence of length 2, an image of size (height, width) will be cropped.
|
|
2417
2413
|
padding (Union[int, Sequence[int]], optional): The number of pixels to pad the image
|
|
2418
|
-
The padding value(s) must be non-negative
|
|
2414
|
+
The padding value(s) must be non-negative. Default: None.
|
|
2419
2415
|
If padding is not None, first pad image with padding values.
|
|
2420
2416
|
If a single number is provided, pad all borders with this value.
|
|
2421
|
-
If a tuple or lists of 2 values are provided, pad the (left and
|
|
2422
|
-
with the first value and (
|
|
2417
|
+
If a tuple or lists of 2 values are provided, pad the (left and right)
|
|
2418
|
+
with the first value and (top and bottom) with the second value.
|
|
2423
2419
|
If 4 values are provided as a list or tuple, pad the left, top, right and bottom respectively.
|
|
2424
2420
|
pad_if_needed (bool, optional): Pad the image if either side is smaller than
|
|
2425
|
-
the given output size
|
|
2421
|
+
the given output size. Default: False.
|
|
2426
2422
|
fill_value (Union[int, tuple[int]], optional): The pixel intensity of the borders, only valid for
|
|
2427
2423
|
padding_mode Border.CONSTANT. If it is a 3-tuple, it is used to fill R, G, B channels respectively.
|
|
2428
2424
|
If it is an integer, it is used for all RGB channels.
|
|
2429
|
-
The fill_value values must be in range [0, 255]
|
|
2430
|
-
padding_mode (Border, optional): The method of padding
|
|
2425
|
+
The fill_value values must be in range [0, 255]. Default: 0.
|
|
2426
|
+
padding_mode (Border, optional): The method of padding. Default: Border.CONSTANT. It can be any of
|
|
2431
2427
|
[Border.CONSTANT, Border.EDGE, Border.REFLECT, Border.SYMMETRIC].
|
|
2432
2428
|
|
|
2433
2429
|
- Border.CONSTANT, means it fills the border with constant values.
|
|
@@ -2441,18 +2437,12 @@ class RandomCropWithBBox(ImageTensorOperation):
|
|
|
2441
2437
|
|
|
2442
2438
|
value of edge.
|
|
2443
2439
|
|
|
2444
|
-
Note:
|
|
2445
|
-
The behavior when `padding` is a sequence of length 2 will change from padding left/top with
|
|
2446
|
-
the first value and right/bottom with the second, to padding left/right with the first one
|
|
2447
|
-
and top/bottom with the second in the future. Or you can pass in a 4-element sequence to specify
|
|
2448
|
-
left, top, right and bottom respectively.
|
|
2449
|
-
|
|
2450
2440
|
Raises:
|
|
2451
2441
|
TypeError: If `size` is not of type int or Sequence[int].
|
|
2452
2442
|
TypeError: If `padding` is not of type int or Sequence[int].
|
|
2453
2443
|
TypeError: If `pad_if_needed` is not of type boolean.
|
|
2454
2444
|
TypeError: If `fill_value` is not of type int or tuple[int].
|
|
2455
|
-
TypeError: If `padding_mode` is not of type :class:`mindspore.dataset.vision.Border
|
|
2445
|
+
TypeError: If `padding_mode` is not of type :class:`mindspore.dataset.vision.Border` .
|
|
2456
2446
|
ValueError: If `size` is not positive.
|
|
2457
2447
|
ValueError: If `padding` is negative.
|
|
2458
2448
|
ValueError: If `fill_value` is not in range [0, 255].
|
|
@@ -2501,11 +2491,11 @@ class RandomEqualize(ImageTensorOperation):
|
|
|
2501
2491
|
|
|
2502
2492
|
Args:
|
|
2503
2493
|
prob (float, optional): Probability of the image being equalized, which
|
|
2504
|
-
must be in range of [0, 1]
|
|
2494
|
+
must be in range of [0.0, 1.0]. Default: 0.5.
|
|
2505
2495
|
|
|
2506
2496
|
Raises:
|
|
2507
2497
|
TypeError: If `prob` is not of type float.
|
|
2508
|
-
ValueError: If `prob` is not in range [0, 1].
|
|
2498
|
+
ValueError: If `prob` is not in range [0.0, 1.0].
|
|
2509
2499
|
RuntimeError: If given tensor shape is not <H, W> or <H, W, C>.
|
|
2510
2500
|
|
|
2511
2501
|
Supported Platforms:
|
|
@@ -2531,10 +2521,11 @@ class RandomErasing(PyTensorOperation):
|
|
|
2531
2521
|
"""
|
|
2532
2522
|
Randomly erase pixels within a random selected rectangle erea on the input numpy.ndarray image.
|
|
2533
2523
|
|
|
2534
|
-
See `Random Erasing Data Augmentation <https://arxiv.org/pdf/1708.04896.pdf>`_.
|
|
2524
|
+
See `Random Erasing Data Augmentation <https://arxiv.org/pdf/1708.04896.pdf>`_ .
|
|
2535
2525
|
|
|
2536
2526
|
Args:
|
|
2537
|
-
prob (float, optional): Probability of performing erasing
|
|
2527
|
+
prob (float, optional): Probability of performing erasing, which
|
|
2528
|
+
must be in range of [0.0, 1.0]. Default: 0.5.
|
|
2538
2529
|
scale (Sequence[float, float], optional): Range of area scale of the erased area relative
|
|
2539
2530
|
to the original image to select from, arranged in order of (min, max).
|
|
2540
2531
|
Default: (0.02, 0.33).
|
|
@@ -2556,7 +2547,7 @@ class RandomErasing(PyTensorOperation):
|
|
|
2556
2547
|
TypeError: If `value` is not of type integer, string, or sequence.
|
|
2557
2548
|
TypeError: If `inplace` is not of type boolean.
|
|
2558
2549
|
TypeError: If `max_attempts` is not of type integer.
|
|
2559
|
-
ValueError: If `prob` is not in range of [0, 1].
|
|
2550
|
+
ValueError: If `prob` is not in range of [0.0, 1.0].
|
|
2560
2551
|
ValueError: If `scale` is negative.
|
|
2561
2552
|
ValueError: If `ratio` is negative.
|
|
2562
2553
|
ValueError: If `value` is not in range of [0, 255].
|
|
@@ -2592,7 +2583,7 @@ class RandomErasing(PyTensorOperation):
|
|
|
2592
2583
|
Execute method.
|
|
2593
2584
|
|
|
2594
2585
|
Args:
|
|
2595
|
-
np_img (numpy.ndarray): image in shape of
|
|
2586
|
+
np_img (numpy.ndarray): image in shape of <C, H, W> to be randomly erased.
|
|
2596
2587
|
|
|
2597
2588
|
Returns:
|
|
2598
2589
|
numpy.ndarray, erased image.
|
|
@@ -2610,11 +2601,12 @@ class RandomGrayscale(PyTensorOperation):
|
|
|
2610
2601
|
Randomly convert the input PIL Image to grayscale.
|
|
2611
2602
|
|
|
2612
2603
|
Args:
|
|
2613
|
-
prob (float, optional): Probability of performing grayscale conversion
|
|
2604
|
+
prob (float, optional): Probability of performing grayscale conversion,
|
|
2605
|
+
which must be in range of [0.0, 1.0]. Default: 0.1.
|
|
2614
2606
|
|
|
2615
2607
|
Raises:
|
|
2616
2608
|
TypeError: If `prob` is not of type float.
|
|
2617
|
-
ValueError: If `prob` is not in range of [0, 1].
|
|
2609
|
+
ValueError: If `prob` is not in range of [0.0, 1.0].
|
|
2618
2610
|
|
|
2619
2611
|
Supported Platforms:
|
|
2620
2612
|
``CPU``
|
|
@@ -2663,11 +2655,12 @@ class RandomHorizontalFlip(ImageTensorOperation, PyTensorOperation):
|
|
|
2663
2655
|
Randomly flip the input image horizontally with a given probability.
|
|
2664
2656
|
|
|
2665
2657
|
Args:
|
|
2666
|
-
prob (float, optional): Probability of the image being flipped,
|
|
2658
|
+
prob (float, optional): Probability of the image being flipped,
|
|
2659
|
+
which must be in range of [0.0, 1.0]. Default: 0.5.
|
|
2667
2660
|
|
|
2668
2661
|
Raises:
|
|
2669
2662
|
TypeError: If `prob` is not of type float.
|
|
2670
|
-
ValueError: If `prob` is not in range [0, 1].
|
|
2663
|
+
ValueError: If `prob` is not in range [0.0, 1.0].
|
|
2671
2664
|
RuntimeError: If given tensor shape is not <H, W> or <H, W, C>.
|
|
2672
2665
|
|
|
2673
2666
|
Supported Platforms:
|
|
@@ -2705,11 +2698,12 @@ class RandomHorizontalFlipWithBBox(ImageTensorOperation):
|
|
|
2705
2698
|
Flip the input image horizontally randomly with a given probability and adjust bounding boxes accordingly.
|
|
2706
2699
|
|
|
2707
2700
|
Args:
|
|
2708
|
-
prob (float, optional): Probability of the image being flipped,
|
|
2701
|
+
prob (float, optional): Probability of the image being flipped,
|
|
2702
|
+
which must be in range of [0.0, 1.0]. Default: 0.5.
|
|
2709
2703
|
|
|
2710
2704
|
Raises:
|
|
2711
2705
|
TypeError: If `prob` is not of type float.
|
|
2712
|
-
ValueError: If `prob` is not in range [0, 1].
|
|
2706
|
+
ValueError: If `prob` is not in range [0.0, 1.0].
|
|
2713
2707
|
RuntimeError: If given tensor shape is not <H, W> or <H, W, C>.
|
|
2714
2708
|
|
|
2715
2709
|
Supported Platforms:
|
|
@@ -2736,11 +2730,12 @@ class RandomInvert(ImageTensorOperation):
|
|
|
2736
2730
|
Randomly invert the colors of image with a given probability.
|
|
2737
2731
|
|
|
2738
2732
|
Args:
|
|
2739
|
-
prob (float, optional): Probability of the image being inverted,
|
|
2733
|
+
prob (float, optional): Probability of the image being inverted,
|
|
2734
|
+
which must be in range of [0.0, 1.0]. Default: 0.5.
|
|
2740
2735
|
|
|
2741
2736
|
Raises:
|
|
2742
2737
|
TypeError: If `prob` is not of type float.
|
|
2743
|
-
ValueError: If `prob` is not in range [0, 1].
|
|
2738
|
+
ValueError: If `prob` is not in range [0.0, 1.0].
|
|
2744
2739
|
RuntimeError: If given tensor shape is not <H, W, C>.
|
|
2745
2740
|
|
|
2746
2741
|
Supported Platforms:
|
|
@@ -2768,7 +2763,7 @@ class RandomLighting(ImageTensorOperation, PyTensorOperation):
|
|
|
2768
2763
|
calculated from the imagenet dataset.
|
|
2769
2764
|
|
|
2770
2765
|
Args:
|
|
2771
|
-
alpha (float, optional): Intensity of the image, which must be non-negative
|
|
2766
|
+
alpha (float, optional): Intensity of the image, which must be non-negative. Default: 0.05.
|
|
2772
2767
|
|
|
2773
2768
|
Raises:
|
|
2774
2769
|
TypeError: If `alpha` is not of type float.
|
|
@@ -2811,8 +2806,9 @@ class RandomPerspective(PyTensorOperation):
|
|
|
2811
2806
|
Randomly apply perspective transformation to the input PIL Image with a given probability.
|
|
2812
2807
|
|
|
2813
2808
|
Args:
|
|
2814
|
-
distortion_scale (float, optional): Scale of distortion, in range of [0, 1]. Default: 0.5.
|
|
2815
|
-
prob (float, optional): Probability of performing perspective transformation
|
|
2809
|
+
distortion_scale (float, optional): Scale of distortion, in range of [0.0, 1.0]. Default: 0.5.
|
|
2810
|
+
prob (float, optional): Probability of performing perspective transformation, which
|
|
2811
|
+
must be in range of [0.0, 1.0]. Default: 0.5.
|
|
2816
2812
|
interpolation (Inter, optional): Method of interpolation. It can be Inter.BILINEAR,
|
|
2817
2813
|
Inter.NEAREST or Inter.BICUBIC. Default: Inter.BICUBIC.
|
|
2818
2814
|
|
|
@@ -2823,9 +2819,9 @@ class RandomPerspective(PyTensorOperation):
|
|
|
2823
2819
|
Raises:
|
|
2824
2820
|
TypeError: If `distortion_scale` is not of type float.
|
|
2825
2821
|
TypeError: If `prob` is not of type float.
|
|
2826
|
-
TypeError: If `interpolation` is not of type :class:`mindspore.dataset.vision.Inter
|
|
2827
|
-
ValueError: If `distortion_scale` is not in range of [0, 1].
|
|
2828
|
-
ValueError: If `prob` is not in range of [0, 1].
|
|
2822
|
+
TypeError: If `interpolation` is not of type :class:`mindspore.dataset.vision.Inter` .
|
|
2823
|
+
ValueError: If `distortion_scale` is not in range of [0.0, 1.0].
|
|
2824
|
+
ValueError: If `prob` is not in range of [0.0, 1.0].
|
|
2829
2825
|
|
|
2830
2826
|
Supported Platforms:
|
|
2831
2827
|
``CPU``
|
|
@@ -2870,6 +2866,9 @@ class RandomPerspective(PyTensorOperation):
|
|
|
2870
2866
|
|
|
2871
2867
|
class RandomPosterize(ImageTensorOperation):
|
|
2872
2868
|
"""
|
|
2869
|
+
Reduce the bit depth of the color channels of image with a given probability
|
|
2870
|
+
to create a high contrast and vivid color image.
|
|
2871
|
+
|
|
2873
2872
|
Reduce the number of bits for each color channel to posterize the input image randomly with a given probability.
|
|
2874
2873
|
|
|
2875
2874
|
Args:
|
|
@@ -2877,7 +2876,7 @@ class RandomPosterize(ImageTensorOperation):
|
|
|
2877
2876
|
Bits values must be in range of [1,8], and include at
|
|
2878
2877
|
least one integer value in the given range. It must be in
|
|
2879
2878
|
(min, max) or integer format. If min=max, then it is a single fixed
|
|
2880
|
-
magnitude operation (
|
|
2879
|
+
magnitude operation. Default: (8, 8).
|
|
2881
2880
|
|
|
2882
2881
|
Raises:
|
|
2883
2882
|
TypeError: If `bits` is not of type integer or sequence of integer.
|
|
@@ -2908,8 +2907,8 @@ class RandomPosterize(ImageTensorOperation):
|
|
|
2908
2907
|
|
|
2909
2908
|
class RandomResizedCrop(ImageTensorOperation, PyTensorOperation):
|
|
2910
2909
|
"""
|
|
2911
|
-
This
|
|
2912
|
-
and resize the cropped image using a selected interpolation mode :class:`mindspore.dataset.vision.Inter
|
|
2910
|
+
This operation will crop the input image randomly,
|
|
2911
|
+
and resize the cropped image using a selected interpolation mode :class:`mindspore.dataset.vision.Inter` .
|
|
2913
2912
|
|
|
2914
2913
|
Note:
|
|
2915
2914
|
If the input image is more than one, then make sure that the image size is the same.
|
|
@@ -2919,10 +2918,10 @@ class RandomResizedCrop(ImageTensorOperation, PyTensorOperation):
|
|
|
2919
2918
|
If size is an integer, a square of size (size, size) will be cropped with this value.
|
|
2920
2919
|
If size is a sequence of length 2, an image of size (height, width) will be cropped.
|
|
2921
2920
|
scale (Union[list, tuple], optional): Range [min, max) of respective size of the original
|
|
2922
|
-
size to be cropped, which must be non-negative (
|
|
2921
|
+
size to be cropped, which must be non-negative. Default: (0.08, 1.0).
|
|
2923
2922
|
ratio (Union[list, tuple], optional): Range [min, max) of aspect ratio to be
|
|
2924
|
-
cropped, which must be non-negative (
|
|
2925
|
-
interpolation (Inter, optional): Method of interpolation
|
|
2923
|
+
cropped, which must be non-negative. Default: (3. / 4., 4. / 3.).
|
|
2924
|
+
interpolation (Inter, optional): Method of interpolation. Default: Inter.BILINEAR.
|
|
2926
2925
|
It can be any of [Inter.BILINEAR, Inter.NEAREST, Inter.BICUBIC, Inter.AREA, Inter.PILCUBIC].
|
|
2927
2926
|
|
|
2928
2927
|
- Inter.BILINEAR, means interpolation method is bilinear interpolation.
|
|
@@ -2939,19 +2938,18 @@ class RandomResizedCrop(ImageTensorOperation, PyTensorOperation):
|
|
|
2939
2938
|
- Inter.ANTIALIAS, means the interpolation method is antialias interpolation.
|
|
2940
2939
|
|
|
2941
2940
|
max_attempts (int, optional): The maximum number of attempts to propose a valid
|
|
2942
|
-
crop_area
|
|
2941
|
+
crop_area. Default: 10. If exceeded, fall back to use center_crop instead.
|
|
2943
2942
|
|
|
2944
2943
|
Raises:
|
|
2945
2944
|
TypeError: If `size` is not of type int or Sequence[int].
|
|
2946
2945
|
TypeError: If `scale` is not of type tuple or list.
|
|
2947
2946
|
TypeError: If `ratio` is not of type tuple or list.
|
|
2948
|
-
TypeError: If `interpolation` is not of type :class:`mindspore.dataset.vision.Inter
|
|
2947
|
+
TypeError: If `interpolation` is not of type :class:`mindspore.dataset.vision.Inter` .
|
|
2949
2948
|
TypeError: If `max_attempts` is not of type int.
|
|
2950
2949
|
ValueError: If `size` is not positive.
|
|
2951
2950
|
ValueError: If `scale` is negative.
|
|
2952
2951
|
ValueError: If `ratio` is negative.
|
|
2953
2952
|
ValueError: If `max_attempts` is not positive.
|
|
2954
|
-
RuntimeError: If given tensor shape is not <H, W> or <H, W, C>.
|
|
2955
2953
|
|
|
2956
2954
|
Supported Platforms:
|
|
2957
2955
|
``CPU``
|
|
@@ -3013,10 +3011,10 @@ class RandomResizedCropWithBBox(ImageTensorOperation):
|
|
|
3013
3011
|
If size is an integer, a square crop of size (size, size) is returned.
|
|
3014
3012
|
If size is a sequence of length 2, it should be (height, width).
|
|
3015
3013
|
scale (Union[list, tuple], optional): Range (min, max) of respective size of the original
|
|
3016
|
-
size to be cropped, which must be non-negative (
|
|
3014
|
+
size to be cropped, which must be non-negative. Default: (0.08, 1.0).
|
|
3017
3015
|
ratio (Union[list, tuple], optional): Range (min, max) of aspect ratio to be
|
|
3018
|
-
cropped, which must be non-negative (
|
|
3019
|
-
interpolation (Inter, optional): Image interpolation mode
|
|
3016
|
+
cropped, which must be non-negative. Default: (3. / 4., 4. / 3.).
|
|
3017
|
+
interpolation (Inter, optional): Image interpolation mode. Default: Inter.BILINEAR.
|
|
3020
3018
|
It can be any of [Inter.BILINEAR, Inter.NEAREST, Inter.BICUBIC].
|
|
3021
3019
|
|
|
3022
3020
|
- Inter.BILINEAR, means interpolation method is bilinear interpolation.
|
|
@@ -3026,7 +3024,7 @@ class RandomResizedCropWithBBox(ImageTensorOperation):
|
|
|
3026
3024
|
- Inter.BICUBIC, means interpolation method is bicubic interpolation.
|
|
3027
3025
|
|
|
3028
3026
|
max_attempts (int, optional): The maximum number of attempts to propose a valid
|
|
3029
|
-
crop area
|
|
3027
|
+
crop area. Default: 10. If exceeded, fall back to use center crop instead.
|
|
3030
3028
|
|
|
3031
3029
|
Raises:
|
|
3032
3030
|
TypeError: If `size` is not of type int or Sequence[int].
|
|
@@ -3072,7 +3070,7 @@ class RandomResizedCropWithBBox(ImageTensorOperation):
|
|
|
3072
3070
|
|
|
3073
3071
|
class RandomResize(ImageTensorOperation):
|
|
3074
3072
|
"""
|
|
3075
|
-
Resize the input image using :class:`mindspore.dataset.vision.Inter
|
|
3073
|
+
Resize the input image using :class:`mindspore.dataset.vision.Inter` , a randomly selected interpolation mode.
|
|
3076
3074
|
|
|
3077
3075
|
Args:
|
|
3078
3076
|
size (Union[int, Sequence[int]]): The output size of the resized image. The size value(s) must be positive.
|
|
@@ -3164,7 +3162,7 @@ class RandomRotation(ImageTensorOperation, PyTensorOperation):
|
|
|
3164
3162
|
degrees (Union[int, float, sequence]): Range of random rotation degrees.
|
|
3165
3163
|
If `degrees` is a number, the range will be converted to (-degrees, degrees).
|
|
3166
3164
|
If `degrees` is a sequence, it should be (min, max).
|
|
3167
|
-
resample (Inter, optional): An optional resampling filter
|
|
3165
|
+
resample (Inter, optional): An optional resampling filter. Default: Inter.NEAREST.
|
|
3168
3166
|
It can be any of [Inter.BILINEAR, Inter.NEAREST, Inter.BICUBIC, Inter.AREA].
|
|
3169
3167
|
|
|
3170
3168
|
- Inter.BILINEAR, means resample method is bilinear interpolation.
|
|
@@ -3173,18 +3171,18 @@ class RandomRotation(ImageTensorOperation, PyTensorOperation):
|
|
|
3173
3171
|
|
|
3174
3172
|
- Inter.BICUBIC, means resample method is bicubic interpolation.
|
|
3175
3173
|
|
|
3176
|
-
- Inter.AREA, means the interpolation method is area interpolation.
|
|
3174
|
+
- Inter.AREA, means the interpolation method is pixel area interpolation.
|
|
3177
3175
|
|
|
3178
|
-
expand (bool, optional): Optional expansion flag
|
|
3176
|
+
expand (bool, optional): Optional expansion flag. Default: False. If set to True, expand the output
|
|
3179
3177
|
image to make it large enough to hold the entire rotated image.
|
|
3180
3178
|
If set to False or omitted, make the output image the same size as the input.
|
|
3181
3179
|
Note that the expand flag assumes rotation around the center and no translation.
|
|
3182
|
-
center (tuple, optional): Optional center of rotation (a 2-tuple)
|
|
3180
|
+
center (tuple, optional): Optional center of rotation (a 2-tuple). Default: None.
|
|
3183
3181
|
Origin is the top left corner. None sets to the center of the image.
|
|
3184
3182
|
fill_value (Union[int, tuple[int]], optional): Optional fill color for the area outside the rotated image.
|
|
3185
3183
|
If it is a 3-tuple, it is used to fill R, G, B channels respectively.
|
|
3186
3184
|
If it is an integer, it is used for all RGB channels.
|
|
3187
|
-
The fill_value values must be in range [0, 255]
|
|
3185
|
+
The fill_value values must be in range [0, 255]. Default: 0.
|
|
3188
3186
|
|
|
3189
3187
|
Raises:
|
|
3190
3188
|
TypeError: If `degrees` is not of type integer, float or sequence.
|
|
@@ -3265,7 +3263,7 @@ class RandomSelectSubpolicy(ImageTensorOperation):
|
|
|
3265
3263
|
Args:
|
|
3266
3264
|
policy (list[list[tuple[TensorOperation, float]]]): List of sub-policies to choose from.
|
|
3267
3265
|
A sub-policy is a list of tuple[operation, prob], where operation is a data processing operation and prob
|
|
3268
|
-
is the probability that this operation will be applied, and the prob values must be in range [0, 1].
|
|
3266
|
+
is the probability that this operation will be applied, and the prob values must be in range [0.0, 1.0].
|
|
3269
3267
|
Once a sub-policy is selected, each operation within the sub-policy with be applied in sequence according
|
|
3270
3268
|
to its probability.
|
|
3271
3269
|
|
|
@@ -3312,7 +3310,7 @@ class RandomSharpness(ImageTensorOperation, PyTensorOperation):
|
|
|
3312
3310
|
Args:
|
|
3313
3311
|
degrees (Union[list, tuple], optional): Range of random sharpness adjustment degrees,
|
|
3314
3312
|
which must be non-negative. It should be in (min, max) format. If min=max, then
|
|
3315
|
-
it is a single fixed magnitude operation
|
|
3313
|
+
it is a single fixed magnitude operation. Default: (0.1, 1.9).
|
|
3316
3314
|
|
|
3317
3315
|
Raises:
|
|
3318
3316
|
TypeError : If `degrees` is not a list or a tuple.
|
|
@@ -3356,7 +3354,7 @@ class RandomSolarize(ImageTensorOperation):
|
|
|
3356
3354
|
the subrange to (255 - pixel).
|
|
3357
3355
|
|
|
3358
3356
|
Args:
|
|
3359
|
-
threshold (tuple, optional): Range of random solarize threshold (
|
|
3357
|
+
threshold (tuple, optional): Range of random solarize threshold. Default: (0, 255).
|
|
3360
3358
|
Threshold values should always be in (min, max) format,
|
|
3361
3359
|
where min and max are integers in the range [0, 255], and min <= max.
|
|
3362
3360
|
If min=max, then invert all pixel values above min(max).
|
|
@@ -3389,11 +3387,12 @@ class RandomVerticalFlip(ImageTensorOperation, PyTensorOperation):
|
|
|
3389
3387
|
Randomly flip the input image vertically with a given probability.
|
|
3390
3388
|
|
|
3391
3389
|
Args:
|
|
3392
|
-
prob (float, optional): Probability of the image being flipped
|
|
3390
|
+
prob (float, optional): Probability of the image being flipped, which
|
|
3391
|
+
must be in range of [0.0, 1.0]. Default: 0.5.
|
|
3393
3392
|
|
|
3394
3393
|
Raises:
|
|
3395
3394
|
TypeError: If `prob` is not of type float.
|
|
3396
|
-
ValueError: If `prob` is not in range [0, 1].
|
|
3395
|
+
ValueError: If `prob` is not in range [0.0, 1.0].
|
|
3397
3396
|
RuntimeError: If given tensor shape is not <H, W> or <H, W, C>.
|
|
3398
3397
|
|
|
3399
3398
|
Supported Platforms:
|
|
@@ -3431,11 +3430,12 @@ class RandomVerticalFlipWithBBox(ImageTensorOperation):
|
|
|
3431
3430
|
Flip the input image vertically, randomly with a given probability and adjust bounding boxes accordingly.
|
|
3432
3431
|
|
|
3433
3432
|
Args:
|
|
3434
|
-
prob (float, optional): Probability of the image being flipped
|
|
3433
|
+
prob (float, optional): Probability of the image being flipped,
|
|
3434
|
+
which must be in range of [0.0, 1.0]. Default: 0.5.
|
|
3435
3435
|
|
|
3436
3436
|
Raises:
|
|
3437
3437
|
TypeError: If `prob` is not of type float.
|
|
3438
|
-
ValueError: If `prob` is not in range [0, 1].
|
|
3438
|
+
ValueError: If `prob` is not in range [0.0, 1.0].
|
|
3439
3439
|
RuntimeError: If given tensor shape is not <H, W> or <H, W, C>.
|
|
3440
3440
|
|
|
3441
3441
|
Supported Platforms:
|
|
@@ -3459,7 +3459,7 @@ class RandomVerticalFlipWithBBox(ImageTensorOperation):
|
|
|
3459
3459
|
|
|
3460
3460
|
class Rescale(ImageTensorOperation):
|
|
3461
3461
|
"""
|
|
3462
|
-
Rescale the input image with the given rescale and shift. This
|
|
3462
|
+
Rescale the input image with the given rescale and shift. This operation will rescale the input image
|
|
3463
3463
|
with: output = image * rescale + shift.
|
|
3464
3464
|
|
|
3465
3465
|
Note:
|
|
@@ -3474,7 +3474,7 @@ class Rescale(ImageTensorOperation):
|
|
|
3474
3474
|
TypeError: If `shift` is not of type float.
|
|
3475
3475
|
|
|
3476
3476
|
Supported Platforms:
|
|
3477
|
-
``
|
|
3477
|
+
``Ascend`` ``GPU`` ``CPU``
|
|
3478
3478
|
|
|
3479
3479
|
Examples:
|
|
3480
3480
|
>>> transforms_list = [vision.Decode(), vision.Rescale(1.0 / 255.0, -1.0)]
|
|
@@ -3495,14 +3495,14 @@ class Rescale(ImageTensorOperation):
|
|
|
3495
3495
|
|
|
3496
3496
|
class Resize(ImageTensorOperation, PyTensorOperation):
|
|
3497
3497
|
"""
|
|
3498
|
-
Resize the input image to the given size with a given interpolation mode :class:`mindspore.dataset.vision.Inter
|
|
3498
|
+
Resize the input image to the given size with a given interpolation mode :class:`mindspore.dataset.vision.Inter` .
|
|
3499
3499
|
|
|
3500
3500
|
Args:
|
|
3501
3501
|
size (Union[int, Sequence[int]]): The output size of the resized image. The size value(s) must be positive.
|
|
3502
3502
|
If size is an integer, the smaller edge of the image will be resized to this value with
|
|
3503
3503
|
the same image aspect ratio.
|
|
3504
3504
|
If size is a sequence of length 2, it should be (height, width).
|
|
3505
|
-
interpolation (Inter, optional): Image interpolation mode
|
|
3505
|
+
interpolation (Inter, optional): Image interpolation mode. Default: Inter.BILINEAR.
|
|
3506
3506
|
It can be any of [Inter.BILINEAR, Inter.LINEAR, Inter.NEAREST, Inter.BICUBIC, Inter.AREA, Inter.PILCUBIC,
|
|
3507
3507
|
Inter.ANTIALIAS].
|
|
3508
3508
|
|
|
@@ -3517,7 +3517,7 @@ class Resize(ImageTensorOperation, PyTensorOperation):
|
|
|
3517
3517
|
|
|
3518
3518
|
Raises:
|
|
3519
3519
|
TypeError: If `size` is not of type int or Sequence[int].
|
|
3520
|
-
TypeError: If `interpolation` is not of type Inter.
|
|
3520
|
+
TypeError: If `interpolation` is not of type :class:`mindspore.dataset.vision.Inter` .
|
|
3521
3521
|
ValueError: If `size` is not positive.
|
|
3522
3522
|
RuntimeError: If given tensor shape is not <H, W> or <H, W, C>.
|
|
3523
3523
|
|
|
@@ -3569,38 +3569,39 @@ class Resize(ImageTensorOperation, PyTensorOperation):
|
|
|
3569
3569
|
|
|
3570
3570
|
class ResizedCrop(ImageTensorOperation):
|
|
3571
3571
|
"""
|
|
3572
|
-
Crop the input image at a specific
|
|
3572
|
+
Crop the input image at a specific region and resize it to desired size.
|
|
3573
3573
|
|
|
3574
3574
|
Args:
|
|
3575
|
-
top (int): Horizontal ordinate of the upper left corner of the crop
|
|
3576
|
-
left (int): Vertical ordinate of the upper left corner of the crop
|
|
3577
|
-
height (int): Height of
|
|
3578
|
-
width (int): Width of
|
|
3579
|
-
size (Union[int, Sequence[int]]): The
|
|
3580
|
-
If
|
|
3581
|
-
|
|
3582
|
-
|
|
3583
|
-
|
|
3584
|
-
|
|
3585
|
-
|
|
3586
|
-
|
|
3587
|
-
- Inter.NEAREST,
|
|
3588
|
-
|
|
3589
|
-
- Inter.
|
|
3590
|
-
|
|
3591
|
-
- Inter.AREA, means interpolation method is pixel area interpolation.
|
|
3592
|
-
|
|
3593
|
-
- Inter.PILCUBIC, means interpolation method is bicubic interpolation like implemented in pillow, input
|
|
3594
|
-
should be in 3 channels format.
|
|
3575
|
+
top (int): Horizontal ordinate of the upper left corner of the crop region.
|
|
3576
|
+
left (int): Vertical ordinate of the upper left corner of the crop region.
|
|
3577
|
+
height (int): Height of the crop region.
|
|
3578
|
+
width (int): Width of the cropp region.
|
|
3579
|
+
size (Union[int, Sequence[int, int]]): The size of the output image.
|
|
3580
|
+
If int is provided, the smaller edge of the image will be resized to this value,
|
|
3581
|
+
keeping the image aspect ratio the same.
|
|
3582
|
+
If Sequence[int, int] is provided, it should be (height, width).
|
|
3583
|
+
interpolation (Inter, optional): Image interpolation method. Default: Inter.BILINEAR.
|
|
3584
|
+
It can be Inter.LINEAR, Inter.NEAREST, Inter.BICUBIC, Inter.AREA or Inter.PILCUBIC.
|
|
3585
|
+
|
|
3586
|
+
- Inter.LINEAR, bilinear interpolation.
|
|
3587
|
+
- Inter.NEAREST, nearest-neighbor interpolation.
|
|
3588
|
+
- Inter.BICUBIC, bicubic interpolation.
|
|
3589
|
+
- Inter.AREA, pixel area interpolation.
|
|
3590
|
+
- Inter.PILCUBIC, cubic interpolation based on the implementation of Pillow
|
|
3595
3591
|
|
|
3596
3592
|
Raises:
|
|
3597
3593
|
TypeError: If `top` is not of type int.
|
|
3594
|
+
ValueError: If `top` is negative.
|
|
3598
3595
|
TypeError: If `left` is not of type int.
|
|
3596
|
+
ValueError: If `left` is negative.
|
|
3599
3597
|
TypeError: If `height` is not of type int.
|
|
3598
|
+
ValueError: If `height` is not positive.
|
|
3600
3599
|
TypeError: If `width` is not of type int.
|
|
3601
|
-
|
|
3602
|
-
TypeError: If `
|
|
3603
|
-
|
|
3600
|
+
ValueError: If `width` is not positive.
|
|
3601
|
+
TypeError: If `size` is not of type int or Sequence[int, int].
|
|
3602
|
+
ValueError: If `size` is not posotive.
|
|
3603
|
+
TypeError: If `interpolation` is not of type :class:`mindspore.dataset.vision.Inter` .
|
|
3604
|
+
RuntimeError: If shape of the input image is not <H, W> or <H, W, C>.
|
|
3604
3605
|
|
|
3605
3606
|
Supported Platforms:
|
|
3606
3607
|
``CPU``
|
|
@@ -3640,7 +3641,7 @@ class ResizeWithBBox(ImageTensorOperation):
|
|
|
3640
3641
|
If size is an integer, smaller edge of the image will be resized to this value with
|
|
3641
3642
|
the same image aspect ratio.
|
|
3642
3643
|
If size is a sequence of length 2, it should be (height, width).
|
|
3643
|
-
interpolation (Inter, optional): Image interpolation mode
|
|
3644
|
+
interpolation (Inter, optional): Image interpolation mode. Default: Inter.LINEAR.
|
|
3644
3645
|
It can be any of [Inter.LINEAR, Inter.NEAREST, Inter.BICUBIC].
|
|
3645
3646
|
|
|
3646
3647
|
- Inter.LINEAR, means interpolation method is bilinear interpolation.
|
|
@@ -3651,7 +3652,7 @@ class ResizeWithBBox(ImageTensorOperation):
|
|
|
3651
3652
|
|
|
3652
3653
|
Raises:
|
|
3653
3654
|
TypeError: If `size` is not of type int or Sequence[int].
|
|
3654
|
-
TypeError: If `interpolation` is not of type Inter.
|
|
3655
|
+
TypeError: If `interpolation` is not of type :class:`mindspore.dataset.vision.Inter` .
|
|
3655
3656
|
ValueError: If `size` is not positive.
|
|
3656
3657
|
RuntimeError: If given tensor shape is not <H, W> or <H, W, C>.
|
|
3657
3658
|
|
|
@@ -3686,8 +3687,8 @@ class RgbToHsv(PyTensorOperation):
|
|
|
3686
3687
|
Convert the input numpy.ndarray images from RGB to HSV.
|
|
3687
3688
|
|
|
3688
3689
|
Args:
|
|
3689
|
-
is_hwc (bool): If True, means the input image is in shape of
|
|
3690
|
-
Otherwise, it is in shape of
|
|
3690
|
+
is_hwc (bool): If True, means the input image is in shape of <H, W, C> or <N, H, W, C>.
|
|
3691
|
+
Otherwise, it is in shape of <C, H, W> or <N, C, H, W>. Default: False.
|
|
3691
3692
|
|
|
3692
3693
|
Raises:
|
|
3693
3694
|
TypeError: If `is_hwc` is not of type bool.
|
|
@@ -3734,32 +3735,32 @@ class Rotate(ImageTensorOperation):
|
|
|
3734
3735
|
Args:
|
|
3735
3736
|
degrees (Union[int, float]): Rotation degrees.
|
|
3736
3737
|
|
|
3737
|
-
resample (Inter, optional): An optional resampling filter
|
|
3738
|
+
resample (Inter, optional): An optional resampling filter. Default: Inter.NEAREST.
|
|
3738
3739
|
It can be any of [Inter.BILINEAR, Inter.NEAREST, Inter.BICUBIC].
|
|
3739
3740
|
|
|
3740
3741
|
- Inter.BILINEAR, means resample method is bilinear interpolation.
|
|
3741
3742
|
- Inter.NEAREST, means resample method is nearest-neighbor interpolation.
|
|
3742
3743
|
- Inter.BICUBIC, means resample method is bicubic interpolation.
|
|
3743
3744
|
|
|
3744
|
-
expand (bool, optional): Optional expansion flag
|
|
3745
|
+
expand (bool, optional): Optional expansion flag. Default: False. If set to True, expand the output
|
|
3745
3746
|
image to make it large enough to hold the entire rotated image.
|
|
3746
3747
|
If set to False or omitted, make the output image the same size as the input.
|
|
3747
3748
|
Note that the expand flag assumes rotation around the center and no translation.
|
|
3748
|
-
center (tuple, optional): Optional center of rotation (a 2-tuple)
|
|
3749
|
+
center (tuple, optional): Optional center of rotation (a 2-tuple). Default: None.
|
|
3749
3750
|
Origin is the top left corner. None sets to the center of the image.
|
|
3750
3751
|
fill_value (Union[int, tuple[int]], optional): Optional fill color for the area outside the rotated image.
|
|
3751
3752
|
If it is a 3-tuple, it is used to fill R, G, B channels respectively.
|
|
3752
3753
|
If it is an integer, it is used for all RGB channels.
|
|
3753
|
-
The fill_value values must be in range [0, 255]
|
|
3754
|
+
The fill_value values must be in range [0, 255]. Default: 0.
|
|
3754
3755
|
|
|
3755
3756
|
Raises:
|
|
3756
3757
|
TypeError: If `degrees` is not of type integer, float or sequence.
|
|
3757
|
-
TypeError: If `resample` is not of type Inter.
|
|
3758
|
+
TypeError: If `resample` is not of type :class:`mindspore.dataset.vision.Inter` .
|
|
3758
3759
|
TypeError: If `expand` is not of type bool.
|
|
3759
3760
|
TypeError: If `center` is not of type tuple.
|
|
3760
3761
|
TypeError: If `fill_value` is not of type int or tuple[int].
|
|
3761
3762
|
ValueError: If `fill_value` is not in range [0, 255].
|
|
3762
|
-
RuntimeError: If given tensor shape is not <H, W> or
|
|
3763
|
+
RuntimeError: If given tensor shape is not <H, W> or <..., H, W, C>.
|
|
3763
3764
|
|
|
3764
3765
|
Supported Platforms:
|
|
3765
3766
|
``CPU``
|
|
@@ -3804,13 +3805,13 @@ class SlicePatches(ImageTensorOperation):
|
|
|
3804
3805
|
number of output tensors is equal to num_height*num_width.
|
|
3805
3806
|
|
|
3806
3807
|
Args:
|
|
3807
|
-
num_height (int, optional): The number of patches in vertical direction, which must be positive
|
|
3808
|
-
num_width (int, optional): The number of patches in horizontal direction, which must be positive
|
|
3809
|
-
slice_mode (
|
|
3808
|
+
num_height (int, optional): The number of patches in vertical direction, which must be positive. Default: 1.
|
|
3809
|
+
num_width (int, optional): The number of patches in horizontal direction, which must be positive. Default: 1.
|
|
3810
|
+
slice_mode (SliceMode, optional): A mode represents pad or drop. Default: SliceMode.PAD.
|
|
3810
3811
|
It can be any of [SliceMode.PAD, SliceMode.DROP].
|
|
3811
3812
|
fill_value (int, optional): The border width in number of pixels in
|
|
3812
3813
|
right and bottom direction if slice_mode is set to be SliceMode.PAD.
|
|
3813
|
-
The fill_value must be in range [0, 255]
|
|
3814
|
+
The `fill_value` must be in range [0, 255]. Default: 0.
|
|
3814
3815
|
|
|
3815
3816
|
Raises:
|
|
3816
3817
|
TypeError: If `num_height` is not of type integer.
|
|
@@ -3834,7 +3835,7 @@ class SlicePatches(ImageTensorOperation):
|
|
|
3834
3835
|
>>> cols = ['img' + str(x) for x in range(num_h*num_w)]
|
|
3835
3836
|
>>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list,
|
|
3836
3837
|
... input_columns=["image"],
|
|
3837
|
-
... output_columns=cols
|
|
3838
|
+
... output_columns=cols)
|
|
3838
3839
|
"""
|
|
3839
3840
|
|
|
3840
3841
|
@check_slice_patches
|
|
@@ -3856,12 +3857,12 @@ class Solarize(ImageTensorOperation):
|
|
|
3856
3857
|
Solarize the image by inverting all pixel values within the threshold.
|
|
3857
3858
|
|
|
3858
3859
|
Args:
|
|
3859
|
-
threshold (Union[float,
|
|
3860
|
+
threshold (Union[float, Sequence[float, float]]): Range of solarize threshold, should always
|
|
3860
3861
|
be in (min, max) format, where min and max are integers in range of [0, 255], and min <= max.
|
|
3861
|
-
If min=max, then invert all pixel values above min(max).
|
|
3862
|
+
If a single value is provided or min=max, then invert all pixel values above min(max).
|
|
3862
3863
|
|
|
3863
3864
|
Raises:
|
|
3864
|
-
TypeError: If `threshold` is not of type float or
|
|
3865
|
+
TypeError: If `threshold` is not of type float or Sequence[float, float].
|
|
3865
3866
|
ValueError: If `threshold` is not in range of [0, 255].
|
|
3866
3867
|
|
|
3867
3868
|
Supported Platforms:
|
|
@@ -3985,10 +3986,10 @@ class ToPIL(PyTensorOperation):
|
|
|
3985
3986
|
Convert the input decoded numpy.ndarray image to PIL Image.
|
|
3986
3987
|
|
|
3987
3988
|
Note:
|
|
3988
|
-
The conversion mode will be determined by the data type using
|
|
3989
|
+
The conversion mode will be determined by the data type using `PIL.Image.fromarray` .
|
|
3989
3990
|
|
|
3990
3991
|
Raises:
|
|
3991
|
-
TypeError: If the input image is not of type :class:`numpy.ndarray` or
|
|
3992
|
+
TypeError: If the input image is not of type :class:`numpy.ndarray` or `PIL.Image.Image` .
|
|
3992
3993
|
|
|
3993
3994
|
Supported Platforms:
|
|
3994
3995
|
``CPU``
|
|
@@ -4026,14 +4027,14 @@ class ToPIL(PyTensorOperation):
|
|
|
4026
4027
|
class ToTensor(ImageTensorOperation):
|
|
4027
4028
|
"""
|
|
4028
4029
|
Convert the input PIL Image or numpy.ndarray to numpy.ndarray of the desired dtype, rescale the pixel value
|
|
4029
|
-
range from [0, 255] to [0.0, 1.0] and change the shape from
|
|
4030
|
+
range from [0, 255] to [0.0, 1.0] and change the shape from <H, W, C> to <C, H, W>.
|
|
4030
4031
|
|
|
4031
4032
|
Args:
|
|
4032
4033
|
output_type (Union[mindspore.dtype, numpy.dtype], optional): The desired dtype of the output image.
|
|
4033
|
-
Default:
|
|
4034
|
+
Default: `numpy.float32` .
|
|
4034
4035
|
|
|
4035
4036
|
Raises:
|
|
4036
|
-
TypeError: If the input image is not of type
|
|
4037
|
+
TypeError: If the input image is not of type `PIL.Image.Image` or :class:`numpy.ndarray` .
|
|
4037
4038
|
TypeError: If dimension of the input image is not 2 or 3.
|
|
4038
4039
|
|
|
4039
4040
|
Supported Platforms:
|
|
@@ -4070,20 +4071,20 @@ class ToType(TypeCast):
|
|
|
4070
4071
|
"""
|
|
4071
4072
|
Cast the input to a given MindSpore data type or NumPy data type.
|
|
4072
4073
|
|
|
4073
|
-
It is the same as that of :class:`mindspore.dataset.transforms.TypeCast
|
|
4074
|
+
It is the same as that of :class:`mindspore.dataset.transforms.TypeCast` .
|
|
4074
4075
|
|
|
4075
4076
|
Note:
|
|
4076
4077
|
This operation supports running on Ascend or GPU platforms by Offload.
|
|
4077
4078
|
|
|
4078
4079
|
Args:
|
|
4079
4080
|
data_type (Union[mindspore.dtype, numpy.dtype]): The desired data type of the output image,
|
|
4080
|
-
such as
|
|
4081
|
+
such as `numpy.float32` .
|
|
4081
4082
|
|
|
4082
4083
|
Raises:
|
|
4083
|
-
TypeError: If `data_type` is not of type :class:`mindspore.dtype` or :class:`numpy.dtype
|
|
4084
|
+
TypeError: If `data_type` is not of type :class:`mindspore.dtype` or :class:`numpy.dtype` .
|
|
4084
4085
|
|
|
4085
4086
|
Supported Platforms:
|
|
4086
|
-
``
|
|
4087
|
+
``Ascend`` ``GPU`` ``CPU``
|
|
4087
4088
|
|
|
4088
4089
|
Examples:
|
|
4089
4090
|
>>> import numpy as np
|
|
@@ -4101,36 +4102,36 @@ class ToType(TypeCast):
|
|
|
4101
4102
|
|
|
4102
4103
|
class TrivialAugmentWide(ImageTensorOperation):
|
|
4103
4104
|
"""
|
|
4104
|
-
Apply TrivialAugmentWide data augmentation method
|
|
4105
|
-
|
|
4106
|
-
|
|
4105
|
+
Apply TrivialAugmentWide data augmentation method on the input image.
|
|
4106
|
+
|
|
4107
|
+
Refer to
|
|
4108
|
+
`TrivialAugmentWide: Tuning-free Yet State-of-the-Art Data Augmentation <https://arxiv.org/abs/2103.10158>`_ .
|
|
4109
|
+
|
|
4110
|
+
Only support 3-channel RGB image.
|
|
4107
4111
|
|
|
4108
4112
|
Args:
|
|
4109
4113
|
num_magnitude_bins (int, optional): The number of different magnitude values,
|
|
4110
4114
|
must be greater than or equal to 2. Default: 31.
|
|
4111
|
-
interpolation (Inter, optional): Image interpolation
|
|
4112
|
-
It can be
|
|
4113
|
-
|
|
4114
|
-
- Inter.NEAREST: means interpolation method is nearest-neighbor interpolation.
|
|
4115
|
-
|
|
4116
|
-
- Inter.BILINEAR: means interpolation method is bilinear interpolation.
|
|
4115
|
+
interpolation (Inter, optional): Image interpolation method. Default: Inter.NEAREST.
|
|
4116
|
+
It can be Inter.NEAREST, Inter.BILINEAR, Inter.BICUBIC or Inter.AREA.
|
|
4117
4117
|
|
|
4118
|
-
- Inter.
|
|
4119
|
-
|
|
4120
|
-
- Inter.
|
|
4118
|
+
- Inter.NEAREST, nearest-neighbor interpolation.
|
|
4119
|
+
- Inter.BILINEAR, bilinear interpolation.
|
|
4120
|
+
- Inter.BICUBIC, bicubic interpolation.
|
|
4121
|
+
- Inter.AREA, pixel area interpolation.
|
|
4121
4122
|
|
|
4122
|
-
fill_value (Union[int, tuple[int, int, int]], optional): Pixel fill value for the area outside
|
|
4123
|
-
|
|
4124
|
-
|
|
4125
|
-
If
|
|
4126
|
-
Default: 0.
|
|
4123
|
+
fill_value (Union[int, tuple[int, int, int]], optional): Pixel fill value for the area outside the
|
|
4124
|
+
transformed image, must be in range of [0, 255]. Default: 0.
|
|
4125
|
+
If int is provided, pad all RGB channels with this value.
|
|
4126
|
+
If tuple[int, int, int] is provided, pad R, G, B channels respectively.
|
|
4127
4127
|
|
|
4128
4128
|
Raises:
|
|
4129
4129
|
TypeError: If `num_magnitude_bins` is not of type int.
|
|
4130
4130
|
ValueError: If `num_magnitude_bins` is less than 2.
|
|
4131
|
-
TypeError: If `interpolation`
|
|
4132
|
-
TypeError: If `fill_value` is not
|
|
4133
|
-
|
|
4131
|
+
TypeError: If `interpolation` not of type :class:`mindspore.dataset.vision.Inter` .
|
|
4132
|
+
TypeError: If `fill_value` is not of type int or tuple[int, int, int].
|
|
4133
|
+
ValueError: If `fill_value` is not in range of [0, 255].
|
|
4134
|
+
RuntimeError: If shape of the input image is not <H, W, C>.
|
|
4134
4135
|
|
|
4135
4136
|
Supported Platforms:
|
|
4136
4137
|
``CPU``
|
|
@@ -4225,7 +4226,7 @@ class VerticalFlip(ImageTensorOperation):
|
|
|
4225
4226
|
Flip the input image vertically.
|
|
4226
4227
|
|
|
4227
4228
|
Raises:
|
|
4228
|
-
RuntimeError: If given tensor shape is not <H, W> or
|
|
4229
|
+
RuntimeError: If given tensor shape is not <H, W> or <..., H, W, C>.
|
|
4229
4230
|
|
|
4230
4231
|
Supported Platforms:
|
|
4231
4232
|
``CPU``
|