mindspore 1.10.0__cp37-cp37m-win_amd64.whl → 2.0.0rc1__cp37-cp37m-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (966) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/ConcurrencyCheck.dll +0 -0
  3. mindspore/CppBuildInsights.dll +0 -0
  4. mindspore/CppCoreCheck.dll +0 -0
  5. mindspore/EnumIndex.dll +0 -0
  6. mindspore/EspXEngine.dll +0 -0
  7. mindspore/HResultCheck.dll +0 -0
  8. mindspore/KernelTraceControl.dll +0 -0
  9. mindspore/LocalESPC.dll +0 -0
  10. mindspore/Microsoft.Diagnostics.Tracing.EventSource.dll +0 -0
  11. mindspore/Microsoft.VisualStudio.RemoteControl.dll +0 -0
  12. mindspore/Microsoft.VisualStudio.Telemetry.dll +0 -0
  13. mindspore/Microsoft.VisualStudio.Utilities.Internal.dll +0 -0
  14. mindspore/Newtonsoft.Json.dll +0 -0
  15. mindspore/System.Runtime.CompilerServices.Unsafe.dll +0 -0
  16. mindspore/VariantClear.dll +0 -0
  17. mindspore/__init__.py +9 -4
  18. mindspore/_c_dataengine.cp37-win_amd64.pyd +0 -0
  19. mindspore/_c_expression.cp37-win_amd64.pyd +0 -0
  20. mindspore/_c_mindrecord.cp37-win_amd64.pyd +0 -0
  21. mindspore/_check_jit_forbidden_api.py +102 -0
  22. mindspore/_checkparam.py +1066 -1001
  23. mindspore/_extends/builtin_operations.py +32 -4
  24. mindspore/_extends/graph_kernel/model/graph_split.py +66 -222
  25. mindspore/_extends/parallel_compile/akg_compiler/akg_process.py +12 -9
  26. mindspore/_extends/parallel_compile/akg_compiler/build_tbe_kernel.py +119 -26
  27. mindspore/_extends/parallel_compile/akg_compiler/tbe_topi.py +50 -50
  28. mindspore/_extends/parallel_compile/akg_compiler/util.py +9 -6
  29. mindspore/_extends/parallel_compile/tbe_compiler/tbe_adapter.py +4 -25
  30. mindspore/_extends/parallel_compile/tbe_compiler/tbe_helper.py +9 -4
  31. mindspore/_extends/parallel_compile/tbe_compiler/tbe_job_manager.py +1 -27
  32. mindspore/_extends/parse/__init__.py +5 -3
  33. mindspore/_extends/parse/namespace.py +17 -2
  34. mindspore/_extends/parse/parser.py +193 -34
  35. mindspore/_extends/parse/resources.py +7 -8
  36. mindspore/_extends/parse/standard_method.py +1780 -435
  37. mindspore/_extends/parse/trope.py +3 -1
  38. mindspore/amp.py +53 -58
  39. mindspore/atlprov.dll +0 -0
  40. mindspore/boost/adasum.py +3 -2
  41. mindspore/boost/boost.py +2 -2
  42. mindspore/boost/boost_cell_wrapper.py +46 -26
  43. mindspore/boost/dim_reduce.py +6 -5
  44. mindspore/boost/grad_accumulation.py +2 -1
  45. mindspore/boost/group_loss_scale_manager.py +1 -1
  46. mindspore/c1.dll +0 -0
  47. mindspore/c1xx.dll +0 -0
  48. mindspore/c2.dll +0 -0
  49. mindspore/cfgpersist.dll +0 -0
  50. mindspore/clang_rt.asan_dbg_dynamic-x86_64.dll +0 -0
  51. mindspore/clang_rt.asan_dynamic-x86_64.dll +0 -0
  52. mindspore/common/__init__.py +11 -10
  53. mindspore/common/_decorator.py +2 -0
  54. mindspore/common/_register_for_adapter.py +55 -0
  55. mindspore/common/_stub_tensor.py +201 -0
  56. mindspore/common/_utils.py +57 -0
  57. mindspore/common/api.py +582 -297
  58. mindspore/common/dtype.py +66 -18
  59. mindspore/common/dump.py +2 -2
  60. mindspore/common/initializer.py +38 -1
  61. mindspore/common/jit_config.py +25 -13
  62. mindspore/common/mutable.py +53 -24
  63. mindspore/common/parameter.py +60 -37
  64. mindspore/common/seed.py +8 -24
  65. mindspore/common/sparse_tensor.py +927 -0
  66. mindspore/common/tensor.py +1627 -3900
  67. mindspore/communication/__init__.py +10 -5
  68. mindspore/communication/_comm_helper.py +78 -214
  69. mindspore/communication/_hccl_management.py +2 -1
  70. mindspore/communication/management.py +136 -47
  71. mindspore/config/op_info.config +501 -1008
  72. mindspore/context.py +291 -56
  73. mindspore/d3dcompiler_47.dll +0 -0
  74. mindspore/dataset/__init__.py +12 -8
  75. mindspore/dataset/audio/__init__.py +9 -9
  76. mindspore/dataset/audio/transforms.py +1090 -228
  77. mindspore/dataset/audio/utils.py +87 -39
  78. mindspore/dataset/audio/validators.py +223 -1
  79. mindspore/dataset/callback/ds_callback.py +17 -15
  80. mindspore/dataset/core/config.py +246 -17
  81. mindspore/dataset/core/py_util_helpers.py +4 -3
  82. mindspore/dataset/core/validator_helpers.py +10 -10
  83. mindspore/{parallel/nn/layers.py → dataset/debug/__init__.py} +7 -8
  84. mindspore/dataset/debug/debug_hook.py +65 -0
  85. mindspore/dataset/debug/pre_defined_hook.py +67 -0
  86. mindspore/dataset/engine/__init__.py +7 -3
  87. mindspore/dataset/engine/cache_client.py +9 -9
  88. mindspore/dataset/engine/datasets.py +648 -477
  89. mindspore/dataset/engine/datasets_audio.py +165 -167
  90. mindspore/dataset/engine/datasets_standard_format.py +93 -67
  91. mindspore/dataset/engine/datasets_text.py +492 -342
  92. mindspore/dataset/engine/datasets_user_defined.py +85 -50
  93. mindspore/dataset/engine/datasets_vision.py +1224 -699
  94. mindspore/dataset/engine/graphdata.py +134 -69
  95. mindspore/dataset/engine/iterators.py +50 -9
  96. mindspore/dataset/engine/offload.py +52 -31
  97. mindspore/dataset/engine/samplers.py +27 -24
  98. mindspore/dataset/engine/serializer_deserializer.py +14 -15
  99. mindspore/dataset/engine/validators.py +213 -52
  100. mindspore/dataset/text/__init__.py +10 -8
  101. mindspore/dataset/text/transforms.py +152 -57
  102. mindspore/dataset/text/utils.py +98 -49
  103. mindspore/dataset/text/validators.py +25 -0
  104. mindspore/dataset/transforms/__init__.py +4 -2
  105. mindspore/dataset/transforms/c_transforms.py +11 -13
  106. mindspore/dataset/transforms/py_transforms.py +2 -2
  107. mindspore/dataset/transforms/py_transforms_util.py +10 -0
  108. mindspore/dataset/transforms/transforms.py +13 -15
  109. mindspore/dataset/transforms/validators.py +7 -7
  110. mindspore/dataset/utils/__init__.py +2 -1
  111. mindspore/dataset/utils/browse_dataset.py +13 -13
  112. mindspore/dataset/utils/line_reader.py +121 -0
  113. mindspore/dataset/vision/__init__.py +8 -7
  114. mindspore/dataset/vision/c_transforms.py +125 -126
  115. mindspore/dataset/vision/py_transforms.py +37 -37
  116. mindspore/dataset/vision/py_transforms_util.py +23 -20
  117. mindspore/dataset/vision/transforms.py +316 -315
  118. mindspore/dataset/vision/utils.py +313 -17
  119. mindspore/dataset/vision/validators.py +6 -6
  120. mindspore/default_config.py +0 -1
  121. mindspore/dpcmi.dll +0 -0
  122. mindspore/{compression → experimental}/__init__.py +6 -5
  123. mindspore/experimental/map_parameter.py +275 -0
  124. mindspore/include/OWNERS +0 -1
  125. mindspore/include/api/callback/callback.h +9 -13
  126. mindspore/include/api/callback/ckpt_saver.h +2 -2
  127. mindspore/include/api/callback/loss_monitor.h +2 -2
  128. mindspore/include/api/callback/lr_scheduler.h +5 -5
  129. mindspore/include/api/callback/time_monitor.h +2 -2
  130. mindspore/include/api/callback/train_accuracy.h +4 -6
  131. mindspore/include/api/cfg.h +19 -6
  132. mindspore/include/api/context.h +70 -9
  133. mindspore/include/api/delegate.h +8 -1
  134. mindspore/include/api/dual_abi_helper.h +8 -24
  135. mindspore/include/api/metrics/accuracy.h +2 -2
  136. mindspore/include/api/metrics/metrics.h +4 -3
  137. mindspore/include/api/model.h +9 -4
  138. mindspore/include/api/model_group.h +68 -0
  139. mindspore/include/api/model_parallel_runner.h +17 -17
  140. mindspore/include/api/net.h +12 -11
  141. mindspore/include/api/serialization.h +20 -4
  142. mindspore/include/api/status.h +7 -1
  143. mindspore/include/api/types.h +25 -21
  144. mindspore/include/api/visible.h +4 -0
  145. mindspore/include/c_api/model_c.h +5 -0
  146. mindspore/include/c_api/status_c.h +1 -1
  147. mindspore/include/dataset/config.h +1 -1
  148. mindspore/include/dataset/constants.h +14 -0
  149. mindspore/include/dataset/text.h +59 -0
  150. mindspore/include/dataset/vision.h +56 -117
  151. mindspore/include/dataset/vision_lite.h +102 -0
  152. mindspore/jpeg62.dll +0 -0
  153. mindspore/log.py +28 -28
  154. mindspore/mindrecord/common/exceptions.py +2 -4
  155. mindspore/mindrecord/filereader.py +19 -1
  156. mindspore/mindrecord/filewriter.py +250 -88
  157. mindspore/mindrecord/mindpage.py +13 -13
  158. mindspore/mindrecord/shardheader.py +15 -15
  159. mindspore/mindrecord/shardreader.py +9 -0
  160. mindspore/mindrecord/shardwriter.py +29 -29
  161. mindspore/mindrecord/tools/cifar100_to_mr.py +9 -9
  162. mindspore/mindrecord/tools/cifar10_to_mr.py +9 -9
  163. mindspore/mindrecord/tools/csv_to_mr.py +4 -4
  164. mindspore/mindrecord/tools/imagenet_to_mr.py +70 -65
  165. mindspore/mindrecord/tools/mnist_to_mr.py +41 -41
  166. mindspore/mindrecord/tools/tfrecord_to_mr.py +6 -6
  167. mindspore/{libmindspore_backend.dll → mindspore_backend.dll} +0 -0
  168. mindspore/mindspore_common.dll +0 -0
  169. mindspore/mindspore_core.dll +0 -0
  170. mindspore/mindspore_glog.dll +0 -0
  171. mindspore/mindspore_shared_lib.dll +0 -0
  172. mindspore/msobj140.dll +0 -0
  173. mindspore/mspdb140.dll +0 -0
  174. mindspore/mspdbcore.dll +0 -0
  175. mindspore/mspdbst.dll +0 -0
  176. mindspore/mspft140.dll +0 -0
  177. mindspore/msvcdis140.dll +0 -0
  178. mindspore/msvcp140_1.dll +0 -0
  179. mindspore/msvcp140_2.dll +0 -0
  180. mindspore/msvcp140_atomic_wait.dll +0 -0
  181. mindspore/msvcp140_codecvt_ids.dll +0 -0
  182. mindspore/nn/__init__.py +1 -5
  183. mindspore/nn/cell.py +297 -234
  184. mindspore/nn/dynamic_lr.py +1 -1
  185. mindspore/nn/grad/cell_grad.py +17 -42
  186. mindspore/nn/layer/__init__.py +7 -4
  187. mindspore/nn/layer/activation.py +131 -88
  188. mindspore/nn/layer/basic.py +313 -613
  189. mindspore/nn/layer/channel_shuffle.py +103 -0
  190. mindspore/nn/layer/combined.py +1 -1
  191. mindspore/nn/layer/container.py +52 -6
  192. mindspore/nn/layer/conv.py +112 -43
  193. mindspore/nn/layer/dense.py +10 -9
  194. mindspore/nn/layer/embedding.py +36 -34
  195. mindspore/nn/layer/image.py +123 -27
  196. mindspore/nn/layer/math.py +108 -107
  197. mindspore/nn/layer/normalization.py +212 -366
  198. mindspore/nn/layer/padding.py +370 -42
  199. mindspore/nn/layer/pooling.py +1443 -219
  200. mindspore/nn/layer/rnn_cells.py +11 -16
  201. mindspore/nn/layer/rnns.py +38 -39
  202. mindspore/nn/layer/thor_layer.py +24 -25
  203. mindspore/nn/layer/timedistributed.py +5 -5
  204. mindspore/nn/layer/transformer.py +701 -0
  205. mindspore/nn/learning_rate_schedule.py +8 -8
  206. mindspore/nn/loss/__init__.py +9 -6
  207. mindspore/nn/loss/loss.py +678 -142
  208. mindspore/nn/metrics.py +53 -0
  209. mindspore/nn/optim/_dist_optimizer_registry.py +2 -2
  210. mindspore/nn/optim/ada_grad.py +8 -8
  211. mindspore/nn/optim/adadelta.py +2 -3
  212. mindspore/nn/optim/adafactor.py +18 -14
  213. mindspore/nn/optim/adam.py +429 -87
  214. mindspore/nn/optim/adamax.py +5 -6
  215. mindspore/nn/optim/adasum.py +10 -8
  216. mindspore/nn/optim/asgd.py +7 -7
  217. mindspore/nn/optim/ftrl.py +81 -11
  218. mindspore/nn/optim/lamb.py +7 -8
  219. mindspore/nn/optim/lars.py +4 -4
  220. mindspore/nn/optim/lazyadam.py +82 -7
  221. mindspore/nn/optim/momentum.py +8 -7
  222. mindspore/nn/optim/optimizer.py +19 -10
  223. mindspore/nn/optim/proximal_ada_grad.py +6 -5
  224. mindspore/nn/optim/rmsprop.py +3 -3
  225. mindspore/nn/optim/rprop.py +20 -16
  226. mindspore/nn/optim/sgd.py +21 -15
  227. mindspore/nn/optim/thor.py +23 -21
  228. mindspore/nn/probability/__init__.py +0 -2
  229. mindspore/nn/probability/bijector/bijector.py +7 -6
  230. mindspore/nn/probability/bijector/invert.py +4 -2
  231. mindspore/nn/probability/bijector/softplus.py +2 -2
  232. mindspore/nn/probability/bnn_layers/dense_variational.py +1 -1
  233. mindspore/nn/probability/bnn_layers/layer_distribution.py +2 -2
  234. mindspore/nn/probability/distribution/__init__.py +6 -0
  235. mindspore/nn/probability/distribution/_utils/custom_ops.py +3 -2
  236. mindspore/nn/probability/distribution/_utils/utils.py +11 -17
  237. mindspore/nn/probability/distribution/bernoulli.py +6 -6
  238. mindspore/nn/probability/distribution/beta.py +1 -1
  239. mindspore/nn/probability/distribution/categorical.py +9 -9
  240. mindspore/nn/probability/distribution/cauchy.py +8 -8
  241. mindspore/nn/probability/distribution/distribution.py +12 -6
  242. mindspore/nn/probability/distribution/exponential.py +5 -5
  243. mindspore/nn/probability/distribution/gamma.py +3 -3
  244. mindspore/nn/probability/distribution/geometric.py +6 -5
  245. mindspore/nn/probability/distribution/gumbel.py +5 -5
  246. mindspore/nn/probability/distribution/half_normal.py +133 -0
  247. mindspore/nn/probability/distribution/laplace.py +128 -0
  248. mindspore/nn/probability/distribution/log_normal.py +0 -1
  249. mindspore/nn/probability/distribution/logistic.py +4 -5
  250. mindspore/nn/probability/distribution/normal.py +11 -15
  251. mindspore/nn/probability/distribution/poisson.py +6 -2
  252. mindspore/nn/probability/distribution/student_t.py +150 -0
  253. mindspore/nn/probability/distribution/transformed_distribution.py +4 -4
  254. mindspore/nn/probability/distribution/uniform.py +5 -5
  255. mindspore/nn/reinforcement/_tensors_queue.py +3 -3
  256. mindspore/nn/reinforcement/tensor_array.py +2 -2
  257. mindspore/nn/sparse/sparse.py +8 -1
  258. mindspore/nn/wrap/cell_wrapper.py +55 -27
  259. mindspore/nn/wrap/grad_reducer.py +20 -11
  260. mindspore/nn/wrap/loss_scale.py +47 -30
  261. mindspore/numpy/array_creations.py +33 -22
  262. mindspore/numpy/array_ops.py +46 -42
  263. mindspore/numpy/logic_ops.py +6 -27
  264. mindspore/numpy/math_ops.py +26 -19
  265. mindspore/numpy/utils.py +1 -8
  266. mindspore/numpy/utils_const.py +112 -62
  267. mindspore/opencv_core452.dll +0 -0
  268. mindspore/opencv_imgcodecs452.dll +0 -0
  269. mindspore/opencv_imgproc452.dll +0 -0
  270. mindspore/ops/__init__.py +6 -3
  271. mindspore/ops/_constants.py +0 -6
  272. mindspore/ops/_grad/__init__.py +2 -1
  273. mindspore/ops/_grad/grad_array_ops.py +209 -152
  274. mindspore/ops/_grad/grad_base.py +55 -17
  275. mindspore/ops/_grad/grad_clip_ops.py +11 -3
  276. mindspore/ops/_grad/grad_comm_ops.py +58 -47
  277. mindspore/ops/_grad/grad_implementations.py +21 -61
  278. mindspore/ops/_grad/grad_inner_ops.py +48 -6
  279. mindspore/ops/_grad/grad_math_ops.py +306 -161
  280. mindspore/ops/_grad/grad_nn_ops.py +192 -181
  281. mindspore/ops/_grad/grad_other_ops.py +1 -1
  282. mindspore/ops/_grad/grad_quant_ops.py +5 -5
  283. mindspore/ops/_grad/grad_sequence_ops.py +296 -0
  284. mindspore/ops/_grad/grad_sparse.py +15 -9
  285. mindspore/ops/_grad_experimental/__init__.py +1 -0
  286. mindspore/ops/_grad_experimental/grad_array_ops.py +441 -55
  287. mindspore/ops/_grad_experimental/grad_image_ops.py +25 -7
  288. mindspore/ops/_grad_experimental/grad_inner_ops.py +3 -44
  289. mindspore/ops/_grad_experimental/grad_linalg_ops.py +16 -21
  290. mindspore/ops/_grad_experimental/grad_math_ops.py +979 -49
  291. mindspore/ops/_grad_experimental/grad_nn_ops.py +78 -8
  292. mindspore/ops/_grad_experimental/grad_scalar_ops.py +112 -0
  293. mindspore/ops/_grad_experimental/grad_sparse_ops.py +197 -13
  294. mindspore/ops/_op_impl/__init__.py +3 -3
  295. mindspore/ops/_op_impl/_custom_op/__init__.py +0 -1
  296. mindspore/ops/_op_impl/_custom_op/_basic.py +0 -1
  297. mindspore/ops/_op_impl/_custom_op/batch_matmul_impl.py +1 -1
  298. mindspore/ops/_op_impl/_custom_op/batchnorm_fold.py +4 -2
  299. mindspore/ops/_op_impl/_custom_op/batchnorm_fold2.py +2 -2
  300. mindspore/ops/_op_impl/_custom_op/batchnorm_fold2_grad.py +2 -2
  301. mindspore/ops/_op_impl/_custom_op/batchnorm_fold2_grad_reduce.py +5 -5
  302. mindspore/ops/_op_impl/_custom_op/batchnorm_fold_grad.py +3 -3
  303. mindspore/ops/_op_impl/_custom_op/cholesky_trsm_impl.py +1 -1
  304. mindspore/ops/_op_impl/_custom_op/correction_mul.py +3 -3
  305. mindspore/ops/_op_impl/_custom_op/correction_mul_grad.py +2 -2
  306. mindspore/ops/_op_impl/_custom_op/dsd_back_impl.py +4 -8
  307. mindspore/ops/_op_impl/_custom_op/dsd_impl.py +1 -1
  308. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel.py +2 -2
  309. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel_grad.py +2 -2
  310. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel_grad_reduce.py +2 -2
  311. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer.py +2 -2
  312. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer_grad.py +2 -2
  313. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer_grad_reduce.py +2 -2
  314. mindspore/ops/_op_impl/_custom_op/fake_quant_perchannel.py +2 -2
  315. mindspore/ops/_op_impl/_custom_op/fake_quant_perchannel_grad.py +2 -2
  316. mindspore/ops/_op_impl/_custom_op/fake_quant_perlayer.py +2 -2
  317. mindspore/ops/_op_impl/_custom_op/fake_quant_perlayer_grad.py +2 -2
  318. mindspore/ops/_op_impl/_custom_op/fused_abs_max1_impl.py +1 -1
  319. mindspore/ops/_op_impl/_custom_op/img2col_impl.py +1 -1
  320. mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_left_impl.py +2 -2
  321. mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_right_impl.py +1 -1
  322. mindspore/ops/_op_impl/_custom_op/matmul_cube_fracz_left_cast_impl.py +1 -1
  323. mindspore/ops/_op_impl/_custom_op/matmul_cube_fracz_right_mul_impl.py +1 -1
  324. mindspore/ops/_op_impl/_custom_op/matmul_cube_impl.py +2 -2
  325. mindspore/ops/_op_impl/_custom_op/matmul_dds_grad_impl.py +0 -1
  326. mindspore/ops/_op_impl/_custom_op/matmul_dds_impl.py +0 -1
  327. mindspore/ops/_op_impl/_custom_op/matrix_combine_impl.py +1 -1
  328. mindspore/ops/_op_impl/_custom_op/minmax_update_perchannel.py +2 -2
  329. mindspore/ops/_op_impl/_custom_op/minmax_update_perlayer.py +2 -2
  330. mindspore/ops/_op_impl/_custom_op/transpose02314_impl.py +1 -1
  331. mindspore/ops/_op_impl/aicpu/__init__.py +238 -3
  332. mindspore/ops/_op_impl/aicpu/abs.py +36 -0
  333. mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_2d.py +34 -0
  334. mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_2d_grad.py +34 -0
  335. mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_3d.py +39 -0
  336. mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_3d_grad.py +39 -0
  337. mindspore/ops/_op_impl/aicpu/adaptive_max_pool_2d_grad.py +37 -0
  338. mindspore/ops/_op_impl/aicpu/adaptive_max_pool_3d.py +42 -0
  339. mindspore/ops/_op_impl/aicpu/adaptive_max_pool_3d_grad.py +152 -0
  340. mindspore/ops/_op_impl/aicpu/add.py +43 -0
  341. mindspore/ops/_op_impl/aicpu/addcdiv.py +0 -32
  342. mindspore/ops/_op_impl/aicpu/addcmul.py +0 -84
  343. mindspore/ops/_op_impl/aicpu/affine_grid_grad.py +35 -0
  344. mindspore/ops/_op_impl/aicpu/arg_max.py +75 -0
  345. mindspore/ops/_op_impl/aicpu/arg_min.py +75 -0
  346. mindspore/ops/_op_impl/aicpu/argmin_with_value.py +43 -0
  347. mindspore/ops/_op_impl/aicpu/batch_matmul.py +43 -0
  348. mindspore/ops/_op_impl/aicpu/batch_norm_grad_grad.py +49 -0
  349. mindspore/ops/_op_impl/aicpu/bernoulli.py +48 -0
  350. mindspore/ops/_op_impl/aicpu/bessel_i0.py +31 -0
  351. mindspore/ops/_op_impl/aicpu/bias_add.py +44 -0
  352. mindspore/ops/_op_impl/aicpu/bias_add_grad.py +43 -0
  353. mindspore/ops/_op_impl/aicpu/bincount.py +33 -0
  354. mindspore/{nn/probability/infer/variational/__init__.py → ops/_op_impl/aicpu/cauchy.py} +17 -10
  355. mindspore/ops/_op_impl/aicpu/channel_shuffle.py +40 -0
  356. mindspore/ops/_op_impl/aicpu/cholesky.py +1 -1
  357. mindspore/ops/_op_impl/{cpu/bias_add.py → aicpu/choleskygrad.py} +9 -7
  358. mindspore/ops/_op_impl/aicpu/combined_non_max_suppression.py +42 -0
  359. mindspore/ops/_op_impl/aicpu/concat_offset.py +42 -0
  360. mindspore/ops/_op_impl/aicpu/concat_offset_v1.py +31 -0
  361. mindspore/ops/_op_impl/aicpu/conj.py +11 -0
  362. mindspore/ops/_op_impl/aicpu/crop_and_resize_grad_image.py +38 -0
  363. mindspore/ops/_op_impl/aicpu/cumulative_logsumexp.py +36 -0
  364. mindspore/ops/_op_impl/aicpu/deformable_offsets.py +38 -0
  365. mindspore/ops/_op_impl/aicpu/deformable_offsets_grad.py +2 -2
  366. mindspore/ops/_op_impl/aicpu/dense_to_sparse_set_operation.py +48 -0
  367. mindspore/ops/_op_impl/aicpu/diag.py +36 -0
  368. mindspore/ops/_op_impl/aicpu/diag_part.py +36 -0
  369. mindspore/ops/_op_impl/aicpu/diagonal.py +35 -0
  370. mindspore/ops/_op_impl/{cpu/bias_add_grad.py → aicpu/digamma.py} +9 -7
  371. mindspore/ops/_op_impl/aicpu/eig.py +35 -0
  372. mindspore/ops/_op_impl/aicpu/fft_with_size.py +41 -0
  373. mindspore/ops/_op_impl/aicpu/flatten.py +1 -0
  374. mindspore/ops/_op_impl/aicpu/fmax.py +36 -0
  375. mindspore/ops/_op_impl/aicpu/fmin.py +37 -0
  376. mindspore/ops/_op_impl/aicpu/fractional_max_pool3d_with_fixed_ksize.py +1 -1
  377. mindspore/ops/_op_impl/aicpu/fse_decode.py +43 -0
  378. mindspore/ops/_op_impl/aicpu/glu.py +33 -0
  379. mindspore/ops/_op_impl/aicpu/glu_grad.py +34 -0
  380. mindspore/ops/_op_impl/aicpu/greater.py +41 -0
  381. mindspore/ops/_op_impl/aicpu/greater_equal.py +41 -0
  382. mindspore/ops/_op_impl/aicpu/index_put.py +50 -0
  383. mindspore/ops/_op_impl/{tbe/scatter_add_ds.py → aicpu/inplace_index_add.py} +17 -21
  384. mindspore/ops/_op_impl/aicpu/instance_norm_v2.py +41 -0
  385. mindspore/ops/_op_impl/aicpu/instance_norm_v2_grad.py +44 -0
  386. mindspore/ops/_op_impl/aicpu/layer_norm_grad_grad.py +47 -0
  387. mindspore/ops/_op_impl/aicpu/less.py +41 -0
  388. mindspore/ops/_op_impl/aicpu/less_equal.py +41 -0
  389. mindspore/ops/_op_impl/aicpu/lgamma.py +32 -0
  390. mindspore/ops/_op_impl/aicpu/log_normal_reverse.py +33 -0
  391. mindspore/ops/_op_impl/aicpu/logit.py +33 -0
  392. mindspore/ops/_op_impl/aicpu/logit_grad.py +34 -0
  393. mindspore/ops/_op_impl/aicpu/masked_fill.py +42 -0
  394. mindspore/ops/_op_impl/aicpu/masked_scatter.py +39 -0
  395. mindspore/ops/_op_impl/aicpu/matmul.py +39 -0
  396. mindspore/ops/_op_impl/aicpu/matrix_logarithm.py +31 -0
  397. mindspore/ops/_op_impl/aicpu/matrix_power.py +32 -0
  398. mindspore/ops/_op_impl/aicpu/matrix_solve_ls.py +36 -0
  399. mindspore/ops/_op_impl/aicpu/matrix_triangular_solve.py +36 -0
  400. mindspore/ops/_op_impl/aicpu/mirror_pad.py +2 -0
  401. mindspore/ops/_op_impl/aicpu/mirror_pad_grad.py +0 -4
  402. mindspore/ops/_op_impl/aicpu/mul.py +3 -1
  403. mindspore/ops/_op_impl/aicpu/multinomial.py +14 -6
  404. mindspore/ops/_op_impl/aicpu/multinomial_with_replacement.py +35 -0
  405. mindspore/ops/_op_impl/aicpu/nan_to_num.py +34 -0
  406. mindspore/ops/_op_impl/aicpu/nllloss.py +38 -0
  407. mindspore/ops/_op_impl/aicpu/nllloss_grad.py +39 -0
  408. mindspore/ops/_op_impl/aicpu/ones_like.py +0 -2
  409. mindspore/ops/_op_impl/aicpu/polar.py +32 -0
  410. mindspore/ops/_op_impl/aicpu/polygamma.py +34 -0
  411. mindspore/ops/_op_impl/aicpu/qr.py +36 -0
  412. mindspore/ops/_op_impl/aicpu/quant_dtype_cast.py +40 -0
  413. mindspore/ops/_op_impl/aicpu/quantile.py +35 -0
  414. mindspore/ops/_op_impl/aicpu/ragged_tensor_to_sparse.py +73 -0
  415. mindspore/ops/_op_impl/aicpu/ragged_tensor_to_tensor.py +74 -0
  416. mindspore/ops/_op_impl/aicpu/random_shuffle.py +3 -0
  417. mindspore/ops/_op_impl/aicpu/randperm_v2.py +41 -0
  418. mindspore/ops/_op_impl/aicpu/range.py +36 -0
  419. mindspore/ops/_op_impl/aicpu/reciprocal.py +34 -0
  420. mindspore/ops/_op_impl/aicpu/reciprocal_grad.py +35 -0
  421. mindspore/ops/_op_impl/aicpu/reduce_sum.py +57 -0
  422. mindspore/ops/_op_impl/aicpu/resize_bicubic.py +2 -8
  423. mindspore/ops/_op_impl/aicpu/resize_bicubic_grad.py +1 -1
  424. mindspore/ops/_op_impl/aicpu/resize_v2.py +68 -0
  425. mindspore/ops/_op_impl/aicpu/resize_v2_grad.py +68 -0
  426. mindspore/ops/_op_impl/aicpu/scatter_elements.py +4 -0
  427. mindspore/ops/_op_impl/aicpu/scatter_nd_update.py +2 -0
  428. mindspore/ops/_op_impl/aicpu/search_sorted.py +12 -6
  429. mindspore/ops/_op_impl/aicpu/self_adjoint_eig.py +34 -0
  430. mindspore/ops/_op_impl/aicpu/sequence_add.py +34 -0
  431. mindspore/ops/_op_impl/aicpu/sequence_add_offset.py +34 -0
  432. mindspore/ops/_op_impl/aicpu/sequence_addn.py +38 -0
  433. mindspore/ops/_op_impl/aicpu/slice_grad.py +76 -0
  434. mindspore/ops/_op_impl/aicpu/smooth_l1_loss.py +35 -0
  435. mindspore/ops/_op_impl/aicpu/smooth_l1_loss_grad.py +37 -0
  436. mindspore/ops/_op_impl/aicpu/sort.py +39 -0
  437. mindspore/ops/_op_impl/aicpu/sparse_apply_adagrad_da.py +0 -24
  438. mindspore/ops/_op_impl/aicpu/sparse_cross.py +42 -0
  439. mindspore/ops/_op_impl/aicpu/sparse_fill_empty_rows.py +63 -0
  440. mindspore/ops/_op_impl/aicpu/sparse_fill_empty_rows_grad.py +45 -0
  441. mindspore/ops/_op_impl/aicpu/sparse_matrix_mat_mul.py +56 -0
  442. mindspore/ops/_op_impl/{tbe/slice_ds.py → aicpu/sparse_segment_sum.py} +16 -24
  443. mindspore/ops/_op_impl/aicpu/sparse_segment_sum_with_num_segments.py +68 -0
  444. mindspore/ops/_op_impl/aicpu/sparse_slice.py +63 -0
  445. mindspore/ops/_op_impl/aicpu/sparse_slice_grad.py +61 -0
  446. mindspore/ops/_op_impl/aicpu/squared_difference.py +2 -0
  447. mindspore/ops/_op_impl/aicpu/strided_slice_v2.py +93 -0
  448. mindspore/ops/_op_impl/aicpu/strided_slice_v2_grad.py +66 -0
  449. mindspore/ops/_op_impl/aicpu/tensor_scatter_update.py +59 -0
  450. mindspore/ops/_op_impl/{tbe/gather_v2.py → aicpu/tile.py} +24 -24
  451. mindspore/ops/_op_impl/aicpu/tridiagonal_solve.py +35 -0
  452. mindspore/ops/_op_impl/aicpu/tril_indices.py +34 -0
  453. mindspore/ops/_op_impl/aicpu/triu_indices.py +34 -0
  454. mindspore/ops/_op_impl/aicpu/uniform.py +34 -0
  455. mindspore/ops/_op_impl/aicpu/uniform_candidate_sampler.py +1 -0
  456. mindspore/ops/_op_impl/aicpu/unique_consecutive.py +10 -2
  457. mindspore/ops/_op_impl/cpu/__init__.py +1 -2
  458. mindspore/ops/_op_impl/cpu/dynamic_shape.py +5 -1
  459. mindspore/ops/_op_impl/cpu/maximum_grad.py +2 -0
  460. mindspore/{compression/common/__init__.py → ops/_op_impl/cpu/pyexecute.py} +13 -8
  461. mindspore/ops/_op_impl/cpu/reduce_sum.py +8 -0
  462. mindspore/ops/_op_impl/cpu/sparse_slice.py +62 -0
  463. mindspore/ops/_op_impl/cpu/sparse_slice_grad.py +60 -0
  464. mindspore/ops/_op_impl/cpu/tensor_shape.py +5 -1
  465. mindspore/ops/_op_impl/tbe/__init__.py +27 -608
  466. mindspore/ops/_op_impl/tbe/addcdiv_ds.py +42 -0
  467. mindspore/ops/_op_impl/tbe/addcmul_ds.py +44 -0
  468. mindspore/ops/_op_impl/tbe/assign_add_ds.py +1 -0
  469. mindspore/ops/_op_impl/tbe/atomic_addr_clean.py +1 -1
  470. mindspore/ops/_op_impl/tbe/avg_pool_3d_grad.py +1 -1
  471. mindspore/ops/_op_impl/tbe/basic_lstm_cell_c_state_grad_v2.py +0 -1
  472. mindspore/ops/_op_impl/tbe/batch_to_space.py +1 -1
  473. mindspore/ops/_op_impl/tbe/batch_to_space_nd.py +1 -1
  474. mindspore/ops/_op_impl/tbe/batch_to_space_nd_v2.py +41 -0
  475. mindspore/ops/_op_impl/tbe/bce_with_logits_loss.py +1 -0
  476. mindspore/ops/_op_impl/tbe/bias_add_grad.py +2 -0
  477. mindspore/ops/_op_impl/tbe/bn_infer_grad.py +4 -2
  478. mindspore/ops/_op_impl/tbe/bn_infer_grad_ds.py +40 -0
  479. mindspore/ops/_op_impl/tbe/bn_training_update.py +0 -1
  480. mindspore/ops/_op_impl/tbe/bn_training_update_ds.py +0 -1
  481. mindspore/ops/_op_impl/tbe/broadcast_to_ds.py +6 -4
  482. mindspore/ops/_op_impl/tbe/cast.py +0 -2
  483. mindspore/ops/_op_impl/tbe/cast_ds.py +3 -3
  484. mindspore/ops/_op_impl/tbe/ctc_loss_v2.py +0 -2
  485. mindspore/ops/_op_impl/tbe/ctc_loss_v2_grad.py +0 -2
  486. mindspore/ops/_op_impl/tbe/data_format_dim_map_ds.py +1 -0
  487. mindspore/ops/_op_impl/tbe/deformable_offsets.py +1 -0
  488. mindspore/ops/_op_impl/tbe/depthwise_conv2d.py +1 -1
  489. mindspore/ops/_op_impl/tbe/dynamic_atomic_addr_clean.py +1 -1
  490. mindspore/ops/_op_impl/tbe/gather_nd.py +1 -0
  491. mindspore/ops/_op_impl/tbe/greater.py +2 -0
  492. mindspore/ops/_op_impl/tbe/{index_add.py → inplace_index_add.py} +3 -6
  493. mindspore/ops/_op_impl/tbe/layer_norm_beta_gamma_backprop_v2.py +0 -1
  494. mindspore/ops/_op_impl/tbe/npu_clear_float_status_v2.py +35 -0
  495. mindspore/ops/_op_impl/tbe/npu_get_float_status_v2.py +35 -0
  496. mindspore/ops/_op_impl/tbe/one_hot_ds.py +0 -6
  497. mindspore/ops/_op_impl/tbe/{greater_ds.py → reduce_all_ds.py} +13 -16
  498. mindspore/ops/_op_impl/tbe/reduce_any_ds.py +39 -0
  499. mindspore/ops/_op_impl/tbe/roi_align_ds.py +44 -0
  500. mindspore/ops/_op_impl/tbe/roi_align_grad_ds.py +44 -0
  501. mindspore/ops/_op_impl/tbe/scatter_add.py +2 -0
  502. mindspore/ops/_op_impl/tbe/scatter_nd_add.py +2 -2
  503. mindspore/ops/_op_impl/tbe/slice.py +26 -15
  504. mindspore/ops/_op_impl/tbe/space_to_batch.py +1 -1
  505. mindspore/ops/_op_impl/tbe/space_to_batch_nd.py +1 -1
  506. mindspore/ops/_op_impl/tbe/strided_slice_grad_d.py +1 -0
  507. mindspore/ops/_op_impl/tbe/trans_data_ds.py +15 -5
  508. mindspore/ops/_op_impl/tbe/unsorted_segment_sum.py +1 -1
  509. mindspore/ops/_op_impl/tbe/unsorted_segment_sum_ds.py +2 -0
  510. mindspore/ops/_primitive_cache.py +3 -2
  511. mindspore/ops/_register_for_op.py +11 -0
  512. mindspore/ops/_utils/__init__.py +1 -1
  513. mindspore/ops/_utils/utils.py +20 -41
  514. mindspore/ops/_vmap/__init__.py +2 -2
  515. mindspore/ops/_vmap/vmap_array_ops.py +170 -78
  516. mindspore/ops/_vmap/vmap_base.py +24 -10
  517. mindspore/ops/_vmap/vmap_convolution_ops.py +7 -10
  518. mindspore/ops/_vmap/vmap_grad_math_ops.py +4 -4
  519. mindspore/ops/_vmap/vmap_grad_nn_ops.py +41 -9
  520. mindspore/ops/_vmap/vmap_image_ops.py +52 -0
  521. mindspore/ops/_vmap/vmap_math_ops.py +77 -6
  522. mindspore/ops/_vmap/vmap_nn_ops.py +78 -29
  523. mindspore/ops/_vmap/vmap_other_ops.py +3 -1
  524. mindspore/ops/_vmap/vmap_random_ops.py +55 -3
  525. mindspore/ops/_vmap/vmap_sparse_ops.py +1 -0
  526. mindspore/ops/bprop_mindir/AdaptiveAvgPool2D_bprop.mindir +0 -0
  527. mindspore/ops/bprop_mindir/AdaptiveMaxPool2D_bprop.mindir +0 -0
  528. mindspore/ops/bprop_mindir/ApproximateEqual_bprop.mindir +18 -19
  529. mindspore/ops/bprop_mindir/Argmax_bprop.mindir +13 -12
  530. mindspore/ops/bprop_mindir/Argmin_bprop.mindir +14 -13
  531. mindspore/ops/bprop_mindir/AssignSub_bprop.mindir +17 -18
  532. mindspore/ops/bprop_mindir/Assign_bprop.mindir +16 -16
  533. mindspore/ops/bprop_mindir/AvgPool3D_bprop.mindir +150 -0
  534. mindspore/ops/bprop_mindir/AvgPool_bprop.mindir +66 -0
  535. mindspore/ops/bprop_mindir/BCEWithLogitsLoss_bprop.mindir +0 -0
  536. mindspore/ops/bprop_mindir/BNTrainingReduce_bprop.mindir +13 -12
  537. mindspore/ops/bprop_mindir/BatchNormGrad_bprop.mindir +0 -0
  538. mindspore/ops/bprop_mindir/BatchToSpaceND_bprop.mindir +28 -0
  539. mindspore/ops/bprop_mindir/BiasAddGrad_bprop.mindir +0 -0
  540. mindspore/ops/bprop_mindir/BinaryCrossEntropy_bprop.mindir +33 -0
  541. mindspore/ops/bprop_mindir/BroadcastTo_bprop.mindir +306 -0
  542. mindspore/ops/bprop_mindir/Broadcast_bprop.mindir +12 -8
  543. mindspore/ops/bprop_mindir/CTCLoss_bprop.mindir +0 -0
  544. mindspore/ops/bprop_mindir/Concat_bprop.mindir +0 -0
  545. mindspore/ops/bprop_mindir/Conv2DBackpropFilter_bprop.mindir +240 -0
  546. mindspore/ops/bprop_mindir/Conv2DBackpropInput_bprop.mindir +247 -0
  547. mindspore/ops/bprop_mindir/Conv2DTranspose_bprop.mindir +247 -0
  548. mindspore/ops/bprop_mindir/Conv3DTranspose_bprop.mindir +315 -0
  549. mindspore/ops/bprop_mindir/Conv3D_bprop.mindir +278 -0
  550. mindspore/ops/bprop_mindir/DType_bprop.mindir +12 -12
  551. mindspore/ops/bprop_mindir/DeformableOffsets_bprop.mindir +58 -0
  552. mindspore/ops/bprop_mindir/Depend_bprop.mindir +12 -13
  553. mindspore/ops/bprop_mindir/DepthToSpace_bprop.mindir +23 -0
  554. mindspore/ops/bprop_mindir/DepthwiseConv2dNative_bprop.mindir +138 -0
  555. mindspore/ops/bprop_mindir/DiagPart_bprop.mindir +15 -0
  556. mindspore/ops/bprop_mindir/Dropout2D_bprop.mindir +0 -0
  557. mindspore/ops/bprop_mindir/Dropout3D_bprop.mindir +0 -0
  558. mindspore/ops/bprop_mindir/DropoutDoMask_bprop.mindir +22 -24
  559. mindspore/ops/bprop_mindir/DropoutGenMask_bprop.mindir +16 -14
  560. mindspore/ops/bprop_mindir/DropoutGrad_bprop.mindir +27 -0
  561. mindspore/ops/bprop_mindir/Dropout_bprop.mindir +0 -0
  562. mindspore/ops/bprop_mindir/DynamicGRUV2_bprop.mindir +0 -0
  563. mindspore/ops/bprop_mindir/DynamicRNN_bprop.mindir +0 -0
  564. mindspore/ops/bprop_mindir/DynamicShape_bprop.mindir +12 -12
  565. mindspore/ops/bprop_mindir/Elu_bprop.mindir +16 -0
  566. mindspore/ops/bprop_mindir/EmbeddingLookup_bprop.mindir +0 -0
  567. mindspore/ops/bprop_mindir/Equal_bprop.mindir +18 -19
  568. mindspore/ops/bprop_mindir/ExpandDims_bprop.mindir +58 -0
  569. mindspore/ops/bprop_mindir/FastGeLU_bprop.mindir +16 -0
  570. mindspore/ops/bprop_mindir/Flatten_bprop.mindir +54 -0
  571. mindspore/ops/bprop_mindir/FloorDiv_bprop.mindir +18 -15
  572. mindspore/ops/bprop_mindir/GatherD_bprop.mindir +26 -0
  573. mindspore/ops/bprop_mindir/GatherNd_bprop.mindir +57 -0
  574. mindspore/ops/bprop_mindir/Gather_bprop.mindir +0 -0
  575. mindspore/ops/bprop_mindir/GreaterEqual_bprop.mindir +17 -18
  576. mindspore/ops/bprop_mindir/Greater_bprop.mindir +18 -19
  577. mindspore/ops/bprop_mindir/HSigmoid_bprop.mindir +16 -0
  578. mindspore/ops/bprop_mindir/HSwish_bprop.mindir +16 -0
  579. mindspore/ops/bprop_mindir/IOU_bprop.mindir +18 -19
  580. mindspore/ops/bprop_mindir/InstanceNorm_bprop.mindir +0 -0
  581. mindspore/ops/bprop_mindir/IsFinite_bprop.mindir +13 -12
  582. mindspore/ops/bprop_mindir/IsInf_bprop.mindir +13 -10
  583. mindspore/ops/bprop_mindir/IsNan_bprop.mindir +14 -11
  584. mindspore/ops/bprop_mindir/KLDivLoss_bprop.mindir +126 -0
  585. mindspore/ops/bprop_mindir/L2Loss_bprop.mindir +15 -0
  586. mindspore/ops/bprop_mindir/L2Normalize_bprop.mindir +30 -0
  587. mindspore/ops/bprop_mindir/LRN_bprop.mindir +43 -0
  588. mindspore/ops/bprop_mindir/LayerNormGrad_bprop.mindir +0 -0
  589. mindspore/ops/bprop_mindir/LessEqual_bprop.mindir +18 -19
  590. mindspore/ops/bprop_mindir/Less_bprop.mindir +17 -18
  591. mindspore/ops/bprop_mindir/LinSpace_bprop.mindir +22 -19
  592. mindspore/ops/bprop_mindir/Load_bprop.mindir +12 -13
  593. mindspore/ops/bprop_mindir/LogSoftmax_bprop.mindir +23 -0
  594. mindspore/ops/bprop_mindir/LogicalAnd_bprop.mindir +17 -18
  595. mindspore/ops/bprop_mindir/LogicalNot_bprop.mindir +14 -13
  596. mindspore/ops/bprop_mindir/MaskedSelect_bprop.mindir +21 -0
  597. mindspore/ops/bprop_mindir/MaxPool3DGradGrad_bprop.mindir +74 -0
  598. mindspore/ops/bprop_mindir/MaxPool3DGrad_bprop.mindir +74 -0
  599. mindspore/ops/bprop_mindir/MaxPool3D_bprop.mindir +75 -0
  600. mindspore/ops/bprop_mindir/MaxPoolGradGrad_bprop.mindir +65 -0
  601. mindspore/ops/bprop_mindir/MaxPoolWithArgmax_bprop.mindir +0 -0
  602. mindspore/ops/bprop_mindir/Maximum_bprop.mindir +0 -0
  603. mindspore/ops/bprop_mindir/Minimum_bprop.mindir +0 -0
  604. mindspore/ops/bprop_mindir/MirrorPad_bprop.mindir +27 -0
  605. mindspore/ops/bprop_mindir/Mish_bprop.mindir +35 -0
  606. mindspore/ops/bprop_mindir/MulNoNan_bprop.mindir +0 -0
  607. mindspore/ops/bprop_mindir/NLLLoss_bprop.mindir +0 -0
  608. mindspore/ops/bprop_mindir/NonZero_bprop.mindir +14 -0
  609. mindspore/ops/bprop_mindir/NotEqual_bprop.mindir +18 -19
  610. mindspore/ops/bprop_mindir/OneHot_bprop.mindir +25 -23
  611. mindspore/ops/bprop_mindir/OnesLike_bprop.mindir +13 -13
  612. mindspore/ops/bprop_mindir/PReLU_bprop.mindir +0 -0
  613. mindspore/ops/bprop_mindir/Pad_bprop.mindir +0 -0
  614. mindspore/ops/bprop_mindir/Padding_bprop.mindir +0 -0
  615. mindspore/ops/bprop_mindir/RNNTLoss_bprop.mindir +29 -0
  616. mindspore/ops/bprop_mindir/ROIAlign_bprop.mindir +82 -0
  617. mindspore/ops/bprop_mindir/Range_bprop.mindir +21 -19
  618. mindspore/ops/bprop_mindir/Rank_bprop.mindir +11 -11
  619. mindspore/ops/bprop_mindir/ReLU6_bprop.mindir +16 -0
  620. mindspore/ops/bprop_mindir/ReLUV2_bprop.mindir +0 -0
  621. mindspore/ops/bprop_mindir/ReduceAll_bprop.mindir +18 -17
  622. mindspore/ops/bprop_mindir/ReduceAny_bprop.mindir +18 -17
  623. mindspore/ops/bprop_mindir/ReluGrad_bprop.mindir +19 -23
  624. mindspore/ops/bprop_mindir/Reshape_bprop.mindir +60 -0
  625. mindspore/ops/bprop_mindir/ResizeBilinear_bprop.mindir +29 -0
  626. mindspore/ops/bprop_mindir/ResizeNearestNeighbor_bprop.mindir +89 -0
  627. mindspore/ops/bprop_mindir/ReverseSequence_bprop.mindir +52 -0
  628. mindspore/ops/bprop_mindir/ReverseV2_bprop.mindir +22 -0
  629. mindspore/ops/bprop_mindir/Round_bprop.mindir +14 -13
  630. mindspore/ops/bprop_mindir/ScatterMax_bprop.mindir +0 -0
  631. mindspore/ops/bprop_mindir/ScatterMin_bprop.mindir +0 -0
  632. mindspore/ops/bprop_mindir/ScatterNdUpdate_bprop.mindir +22 -0
  633. mindspore/ops/bprop_mindir/ScatterNd_bprop.mindir +24 -0
  634. mindspore/ops/bprop_mindir/ScatterNonAliasingAdd_bprop.mindir +22 -0
  635. mindspore/ops/bprop_mindir/ScatterUpdate_bprop.mindir +0 -0
  636. mindspore/ops/bprop_mindir/SeLU_bprop.mindir +21 -0
  637. mindspore/ops/bprop_mindir/Select_bprop.mindir +30 -34
  638. mindspore/ops/bprop_mindir/Shape_bprop.mindir +12 -12
  639. mindspore/ops/bprop_mindir/SigmoidCrossEntropyWithLogits_bprop.mindir +21 -0
  640. mindspore/ops/bprop_mindir/SigmoidGrad_bprop.mindir +0 -0
  641. mindspore/ops/bprop_mindir/Sigmoid_bprop.mindir +16 -0
  642. mindspore/ops/bprop_mindir/Sign_bprop.mindir +13 -12
  643. mindspore/ops/bprop_mindir/Slice_bprop.mindir +26 -0
  644. mindspore/ops/bprop_mindir/SmoothL1Loss_bprop.mindir +36 -0
  645. mindspore/ops/bprop_mindir/SoftmaxCrossEntropyWithLogits_bprop.mindir +0 -0
  646. mindspore/ops/bprop_mindir/Softplus_bprop.mindir +16 -0
  647. mindspore/ops/bprop_mindir/Softsign_bprop.mindir +33 -0
  648. mindspore/ops/bprop_mindir/Sort_bprop.mindir +0 -0
  649. mindspore/ops/bprop_mindir/SpaceToBatchND_bprop.mindir +28 -0
  650. mindspore/ops/bprop_mindir/SpaceToDepth_bprop.mindir +23 -0
  651. mindspore/ops/bprop_mindir/SparseGatherV2_bprop.mindir +0 -0
  652. mindspore/ops/bprop_mindir/SparseSoftmaxCrossEntropyWithLogits_bprop.mindir +0 -0
  653. mindspore/ops/bprop_mindir/Split_bprop.mindir +22 -0
  654. mindspore/ops/bprop_mindir/Squeeze_bprop.mindir +54 -0
  655. mindspore/ops/bprop_mindir/StridedSliceGrad_bprop.mindir +95 -0
  656. mindspore/ops/bprop_mindir/StridedSlice_bprop.mindir +98 -0
  657. mindspore/ops/bprop_mindir/Switch_bprop.mindir +28 -32
  658. mindspore/ops/bprop_mindir/TanhGrad_bprop.mindir +0 -0
  659. mindspore/ops/bprop_mindir/Tanh_bprop.mindir +66 -0
  660. mindspore/ops/bprop_mindir/TensorScatterAdd_bprop.mindir +22 -0
  661. mindspore/ops/bprop_mindir/TensorScatterUpdate_bprop.mindir +29 -0
  662. mindspore/ops/bprop_mindir/TensorShape_bprop.mindir +14 -0
  663. mindspore/ops/bprop_mindir/Tile_bprop.mindir +0 -0
  664. mindspore/ops/bprop_mindir/TopK_bprop.mindir +0 -0
  665. mindspore/ops/bprop_mindir/TransShape_bprop.mindir +23 -0
  666. mindspore/ops/bprop_mindir/TruncateDiv_bprop.mindir +18 -15
  667. mindspore/ops/bprop_mindir/TupleGetItem_bprop.mindir +11 -13
  668. mindspore/ops/bprop_mindir/Unique_bprop.mindir +16 -0
  669. mindspore/ops/bprop_mindir/Unstack_bprop.mindir +22 -0
  670. mindspore/ops/bprop_mindir/UpsampleNearest3D_bprop.mindir +32 -0
  671. mindspore/ops/bprop_mindir/UpsampleTrilinear3D_bprop.mindir +38 -0
  672. mindspore/ops/bprop_mindir/ZerosLike_bprop.mindir +13 -12
  673. mindspore/ops/bprop_mindir/__init__.py +1 -4
  674. mindspore/ops/bprop_mindir/generate_mindir.py +32 -20
  675. mindspore/ops/composite/__init__.py +12 -13
  676. mindspore/ops/composite/base.py +261 -254
  677. mindspore/ops/composite/env_ops.py +41 -0
  678. mindspore/ops/composite/math_ops.py +197 -156
  679. mindspore/ops/composite/multitype_ops/_compile_utils.py +428 -176
  680. mindspore/ops/composite/multitype_ops/_constexpr_utils.py +188 -87
  681. mindspore/ops/composite/multitype_ops/add_impl.py +23 -1
  682. mindspore/ops/composite/multitype_ops/div_impl.py +3 -3
  683. mindspore/ops/composite/multitype_ops/equal_impl.py +1 -0
  684. mindspore/ops/composite/multitype_ops/floordiv_impl.py +1 -1
  685. mindspore/ops/composite/multitype_ops/getitem_impl.py +52 -5
  686. mindspore/ops/composite/multitype_ops/greater_equal_impl.py +31 -0
  687. mindspore/ops/composite/multitype_ops/greater_impl.py +31 -0
  688. mindspore/ops/composite/multitype_ops/in_impl.py +15 -3
  689. mindspore/ops/composite/multitype_ops/less_equal_impl.py +33 -2
  690. mindspore/ops/composite/multitype_ops/less_impl.py +33 -0
  691. mindspore/ops/composite/multitype_ops/logical_and_impl.py +2 -2
  692. mindspore/ops/composite/multitype_ops/logical_or_impl.py +2 -1
  693. mindspore/ops/composite/multitype_ops/mod_impl.py +1 -1
  694. mindspore/ops/composite/multitype_ops/mul_impl.py +21 -7
  695. mindspore/ops/composite/multitype_ops/not_in_impl.py +15 -3
  696. mindspore/ops/composite/multitype_ops/ones_like_impl.py +2 -4
  697. mindspore/ops/composite/multitype_ops/pow_impl.py +1 -0
  698. mindspore/ops/composite/multitype_ops/setitem_impl.py +62 -70
  699. mindspore/ops/composite/multitype_ops/sub_impl.py +3 -3
  700. mindspore/ops/composite/multitype_ops/zeros_like_impl.py +41 -4
  701. mindspore/ops/function/__init__.py +323 -8
  702. mindspore/ops/function/array_func.py +3511 -780
  703. mindspore/ops/function/clip_func.py +329 -0
  704. mindspore/ops/function/debug_func.py +6 -6
  705. mindspore/ops/function/grad/__init__.py +5 -1
  706. mindspore/ops/function/grad/grad_func.py +736 -65
  707. mindspore/ops/function/image_func.py +270 -0
  708. mindspore/ops/function/linalg_func.py +268 -8
  709. mindspore/ops/function/math_func.py +8032 -3164
  710. mindspore/ops/function/nn_func.py +5619 -1855
  711. mindspore/ops/function/other_func.py +115 -0
  712. mindspore/ops/function/parameter_func.py +11 -10
  713. mindspore/ops/function/random_func.py +939 -77
  714. mindspore/ops/function/sparse_func.py +249 -84
  715. mindspore/ops/function/sparse_unary_func.py +2303 -0
  716. mindspore/ops/function/spectral_func.py +146 -0
  717. mindspore/ops/function/vmap_func.py +114 -0
  718. mindspore/ops/functional.py +182 -254
  719. mindspore/ops/op_info_register.py +79 -34
  720. mindspore/ops/operations/__init__.py +210 -118
  721. mindspore/ops/operations/_csr_ops.py +7 -7
  722. mindspore/ops/operations/_embedding_cache_ops.py +25 -15
  723. mindspore/ops/operations/_grad_ops.py +447 -322
  724. mindspore/ops/operations/_inner_ops.py +547 -176
  725. mindspore/ops/operations/_map_tensor_ops.py +112 -0
  726. mindspore/ops/operations/_ms_kernel.py +29 -27
  727. mindspore/ops/operations/_ocr_ops.py +11 -11
  728. mindspore/ops/operations/_opaque_predicate_registry.py +41 -0
  729. mindspore/ops/operations/_quant_ops.py +186 -101
  730. mindspore/ops/operations/_rl_inner_ops.py +122 -61
  731. mindspore/ops/operations/_scalar_ops.py +466 -0
  732. mindspore/ops/operations/_sequence_ops.py +1047 -0
  733. mindspore/ops/operations/_tensor_array.py +10 -11
  734. mindspore/ops/operations/_thor_ops.py +4 -4
  735. mindspore/ops/operations/array_ops.py +1428 -1226
  736. mindspore/ops/operations/comm_ops.py +180 -117
  737. mindspore/ops/operations/control_ops.py +4 -2
  738. mindspore/ops/operations/custom_ops.py +185 -98
  739. mindspore/ops/operations/debug_ops.py +92 -54
  740. mindspore/ops/operations/image_ops.py +406 -211
  741. mindspore/ops/operations/inner_ops.py +42 -53
  742. mindspore/ops/operations/linalg_ops.py +32 -29
  743. mindspore/ops/operations/math_ops.py +2076 -897
  744. mindspore/ops/operations/nn_ops.py +1282 -1252
  745. mindspore/ops/operations/other_ops.py +124 -278
  746. mindspore/ops/operations/random_ops.py +345 -178
  747. mindspore/ops/operations/rl_ops.py +8 -9
  748. mindspore/ops/operations/sparse_ops.py +502 -157
  749. mindspore/ops/operations/spectral_ops.py +107 -0
  750. mindspore/ops/primitive.py +192 -15
  751. mindspore/ops/vm_impl_registry.py +23 -2
  752. mindspore/parallel/__init__.py +6 -1
  753. mindspore/parallel/_auto_parallel_context.py +199 -92
  754. mindspore/parallel/_cell_wrapper.py +4 -2
  755. mindspore/parallel/_cost_model_context.py +3 -0
  756. mindspore/parallel/_dp_allreduce_fusion.py +2 -1
  757. mindspore/parallel/_offload_context.py +185 -0
  758. mindspore/parallel/_parallel_serialization.py +167 -28
  759. mindspore/parallel/_ps_context.py +9 -5
  760. mindspore/parallel/_recovery_context.py +1 -1
  761. mindspore/parallel/_tensor.py +9 -1
  762. mindspore/{nn/transformer → parallel/_transformer}/__init__.py +6 -6
  763. mindspore/{nn/transformer → parallel/_transformer}/layers.py +59 -37
  764. mindspore/{nn/transformer → parallel/_transformer}/loss.py +4 -7
  765. mindspore/{nn/transformer → parallel/_transformer}/moe.py +160 -35
  766. mindspore/{nn/transformer → parallel/_transformer}/op_parallel_config.py +3 -3
  767. mindspore/{nn/transformer → parallel/_transformer}/transformer.py +235 -196
  768. mindspore/parallel/_utils.py +47 -7
  769. mindspore/parallel/algo_parameter_config.py +5 -1
  770. mindspore/parallel/checkpoint_transform.py +329 -0
  771. mindspore/parallel/shard.py +229 -0
  772. mindspore/perf_msvcbuildinsights.dll +0 -0
  773. mindspore/pgodb140.dll +0 -0
  774. mindspore/pgort140.dll +0 -0
  775. mindspore/profiler/__init__.py +2 -1
  776. mindspore/profiler/common/util.py +4 -3
  777. mindspore/profiler/common/validator/validate_path.py +2 -2
  778. mindspore/profiler/envprofiling.py +249 -0
  779. mindspore/profiler/parser/aicpu_data_parser.py +38 -39
  780. mindspore/profiler/parser/ascend_timeline_generator.py +497 -0
  781. mindspore/profiler/parser/base_timeline_generator.py +471 -0
  782. mindspore/profiler/parser/cpu_gpu_timeline_generator.py +684 -0
  783. mindspore/profiler/parser/framework_parser.py +42 -16
  784. mindspore/profiler/parser/hccl_parser.py +158 -158
  785. mindspore/profiler/parser/hwts_log_parser.py +7 -6
  786. mindspore/profiler/parser/integrator.py +18 -1579
  787. mindspore/profiler/parser/minddata_analyzer.py +8 -8
  788. mindspore/profiler/parser/msadvisor_analyzer.py +14 -27
  789. mindspore/profiler/parser/msadvisor_parser.py +2 -4
  790. mindspore/profiler/parser/optime_parser.py +17 -18
  791. mindspore/profiler/parser/profiler_info.py +108 -0
  792. mindspore/profiler/parser/step_trace_parser.py +1 -1
  793. mindspore/profiler/profiling.py +396 -194
  794. mindspore/rewrite/__init__.py +6 -2
  795. mindspore/rewrite/api/node.py +51 -110
  796. mindspore/rewrite/api/node_type.py +10 -6
  797. mindspore/rewrite/api/pattern_engine.py +51 -7
  798. mindspore/rewrite/api/scoped_value.py +64 -53
  799. mindspore/rewrite/api/symbol_tree.py +108 -61
  800. mindspore/rewrite/api/tree_node_helper.py +2 -3
  801. mindspore/{compression/quant/__init__.py → rewrite/ast_creator_register.py} +20 -11
  802. mindspore/rewrite/ast_helpers/__init__.py +6 -3
  803. mindspore/rewrite/ast_helpers/ast_creator.py +115 -0
  804. mindspore/rewrite/ast_helpers/ast_finder.py +99 -1
  805. mindspore/rewrite/ast_helpers/ast_modifier.py +17 -4
  806. mindspore/rewrite/ast_helpers/ast_replacer.py +1 -1
  807. mindspore/rewrite/ast_transformers/__init__.py +0 -1
  808. mindspore/rewrite/ast_transformers/flatten_recursive_stmt.py +46 -5
  809. mindspore/rewrite/ast_transformers/remove_return_out_of_if.py +6 -3
  810. mindspore/rewrite/common/__init__.py +2 -0
  811. mindspore/rewrite/common/event.py +1 -1
  812. mindspore/rewrite/common/observable.py +1 -1
  813. mindspore/rewrite/common/observer.py +1 -1
  814. mindspore/rewrite/common/rewrite_elog.py +35 -0
  815. mindspore/rewrite/namer.py +2 -2
  816. mindspore/rewrite/namespace.py +14 -4
  817. mindspore/rewrite/node.py +161 -13
  818. mindspore/rewrite/parser.py +0 -1
  819. mindspore/rewrite/parser_register.py +0 -1
  820. mindspore/rewrite/parsers/arguments_parser.py +3 -2
  821. mindspore/rewrite/parsers/assign_parser.py +267 -67
  822. mindspore/rewrite/parsers/attribute_parser.py +56 -0
  823. mindspore/rewrite/parsers/class_def_parser.py +191 -108
  824. mindspore/rewrite/parsers/constant_parser.py +101 -0
  825. mindspore/rewrite/parsers/container_parser.py +88 -0
  826. mindspore/rewrite/parsers/for_parser.py +28 -15
  827. mindspore/rewrite/parsers/function_def_parser.py +21 -5
  828. mindspore/rewrite/parsers/if_parser.py +11 -28
  829. mindspore/rewrite/parsers/module_parser.py +9 -6
  830. mindspore/rewrite/parsers/return_parser.py +3 -2
  831. mindspore/rewrite/sparsify/__init__.py +0 -0
  832. mindspore/rewrite/sparsify/sparse_transformer.py +448 -0
  833. mindspore/rewrite/sparsify/sparsify.py +109 -0
  834. mindspore/rewrite/sparsify/utils.py +173 -0
  835. mindspore/rewrite/symbol_tree.py +322 -109
  836. mindspore/rewrite/symbol_tree_builder.py +45 -8
  837. mindspore/rewrite/symbol_tree_dumper.py +0 -1
  838. mindspore/rewrite/topological_manager.py +1 -2
  839. mindspore/run_check/_check_version.py +209 -112
  840. mindspore/run_check/run_check.py +2 -1
  841. mindspore/tbbmalloc.dll +0 -0
  842. mindspore/tinyxml2.dll +0 -0
  843. mindspore/train/__init__.py +6 -4
  844. mindspore/train/_utils.py +28 -5
  845. mindspore/train/amp.py +321 -50
  846. mindspore/train/callback/__init__.py +3 -1
  847. mindspore/train/callback/_backup_and_restore.py +120 -0
  848. mindspore/train/callback/_callback.py +8 -8
  849. mindspore/train/callback/_checkpoint.py +12 -9
  850. mindspore/train/callback/_early_stop.py +13 -7
  851. mindspore/train/callback/_history.py +8 -8
  852. mindspore/train/callback/_lambda_callback.py +6 -6
  853. mindspore/train/callback/_landscape.py +36 -38
  854. mindspore/train/callback/_loss_monitor.py +12 -6
  855. mindspore/train/callback/_lr_scheduler_callback.py +2 -4
  856. mindspore/train/callback/_on_request_exit.py +212 -0
  857. mindspore/train/callback/_reduce_lr_on_plateau.py +13 -7
  858. mindspore/train/callback/_summary_collector.py +27 -19
  859. mindspore/train/callback/_time_monitor.py +13 -7
  860. mindspore/train/checkpoint_pb2.py +68 -8
  861. mindspore/train/data_sink.py +122 -33
  862. mindspore/train/dataset_helper.py +28 -87
  863. mindspore/train/loss_scale_manager.py +4 -7
  864. mindspore/{nn → train}/metrics/__init__.py +20 -20
  865. mindspore/{nn → train}/metrics/accuracy.py +12 -10
  866. mindspore/{nn → train}/metrics/auc.py +4 -4
  867. mindspore/{nn → train}/metrics/bleu_score.py +4 -4
  868. mindspore/{nn → train}/metrics/confusion_matrix.py +10 -8
  869. mindspore/{nn → train}/metrics/cosine_similarity.py +4 -4
  870. mindspore/{nn → train}/metrics/dice.py +6 -5
  871. mindspore/{nn → train}/metrics/error.py +7 -5
  872. mindspore/{nn → train}/metrics/fbeta.py +9 -7
  873. mindspore/{nn → train}/metrics/hausdorff_distance.py +8 -6
  874. mindspore/{nn → train}/metrics/loss.py +4 -3
  875. mindspore/{nn → train}/metrics/mean_surface_distance.py +6 -5
  876. mindspore/{nn → train}/metrics/metric.py +6 -5
  877. mindspore/{nn → train}/metrics/occlusion_sensitivity.py +4 -3
  878. mindspore/{nn → train}/metrics/perplexity.py +5 -4
  879. mindspore/{nn → train}/metrics/precision.py +5 -4
  880. mindspore/{nn → train}/metrics/recall.py +5 -4
  881. mindspore/{nn → train}/metrics/roc.py +7 -6
  882. mindspore/{nn → train}/metrics/root_mean_square_surface_distance.py +6 -5
  883. mindspore/{nn → train}/metrics/topk.py +7 -5
  884. mindspore/train/mind_ir_pb2.py +339 -32
  885. mindspore/train/model.py +113 -84
  886. mindspore/train/serialization.py +547 -167
  887. mindspore/train/summary/_summary_adapter.py +1 -1
  888. mindspore/train/summary/summary_record.py +43 -12
  889. mindspore/train/train_thor/convert_utils.py +7 -1
  890. mindspore/train/train_thor/dataset_helper.py +3 -3
  891. mindspore/train/train_thor/model_thor.py +0 -4
  892. mindspore/turbojpeg.dll +0 -0
  893. mindspore/vcmeta.dll +0 -0
  894. mindspore/vcruntime140.dll +0 -0
  895. mindspore/vcruntime140_1.dll +0 -0
  896. mindspore/version.py +1 -1
  897. {mindspore-1.10.0.dist-info → mindspore-2.0.0rc1.dist-info}/METADATA +4 -3
  898. {mindspore-1.10.0.dist-info → mindspore-2.0.0rc1.dist-info}/RECORD +901 -660
  899. mindspore/compression/common/constant.py +0 -124
  900. mindspore/compression/export/__init__.py +0 -19
  901. mindspore/compression/export/quant_export.py +0 -514
  902. mindspore/compression/quant/qat.py +0 -636
  903. mindspore/compression/quant/quant_utils.py +0 -462
  904. mindspore/compression/quant/quantizer.py +0 -68
  905. mindspore/libatomic-1.dll +0 -0
  906. mindspore/libgcc_s_seh-1.dll +0 -0
  907. mindspore/libgfortran-4.dll +0 -0
  908. mindspore/libgomp-1.dll +0 -0
  909. mindspore/libjpeg-62.dll +0 -0
  910. mindspore/libmindspore.dll +0 -0
  911. mindspore/libmindspore_common.dll +0 -0
  912. mindspore/libmindspore_core.dll +0 -0
  913. mindspore/libmindspore_glog.dll +0 -0
  914. mindspore/libnnacl.dll +0 -0
  915. mindspore/libopencv_core452.dll +0 -0
  916. mindspore/libopencv_imgcodecs452.dll +0 -0
  917. mindspore/libopencv_imgproc452.dll +0 -0
  918. mindspore/libquadmath-0.dll +0 -0
  919. mindspore/libsqlite3.dll +0 -0
  920. mindspore/libssp-0.dll +0 -0
  921. mindspore/libstdc++-6.dll +0 -0
  922. mindspore/libtinyxml2.dll +0 -0
  923. mindspore/libturbojpeg.dll +0 -0
  924. mindspore/libwinpthread-1.dll +0 -0
  925. mindspore/nn/layer/quant.py +0 -1868
  926. mindspore/nn/layer/rnn_utils.py +0 -90
  927. mindspore/nn/probability/dpn/__init__.py +0 -22
  928. mindspore/nn/probability/dpn/vae/__init__.py +0 -25
  929. mindspore/nn/probability/dpn/vae/cvae.py +0 -138
  930. mindspore/nn/probability/dpn/vae/vae.py +0 -122
  931. mindspore/nn/probability/infer/__init__.py +0 -22
  932. mindspore/nn/probability/infer/variational/elbo.py +0 -70
  933. mindspore/nn/probability/infer/variational/svi.py +0 -84
  934. mindspore/nn/probability/toolbox/__init__.py +0 -22
  935. mindspore/nn/probability/toolbox/anomaly_detection.py +0 -99
  936. mindspore/nn/probability/toolbox/uncertainty_evaluation.py +0 -363
  937. mindspore/nn/probability/transforms/__init__.py +0 -22
  938. mindspore/nn/probability/transforms/transform_bnn.py +0 -262
  939. mindspore/nn/probability/zhusuan/__init__.py +0 -18
  940. mindspore/nn/probability/zhusuan/framework/__init__.py +0 -18
  941. mindspore/nn/probability/zhusuan/framework/bn.py +0 -95
  942. mindspore/nn/probability/zhusuan/variational/__init__.py +0 -18
  943. mindspore/nn/probability/zhusuan/variational/elbo.py +0 -46
  944. mindspore/ops/_op_impl/tbe/bias_add_grad_ds.py +0 -52
  945. mindspore/ops/_op_impl/tbe/scatter_nd_add_ds.py +0 -43
  946. mindspore/ops/bprop_mindir/AssignAdd_bprop.mindir +0 -20
  947. mindspore/ops/bprop_mindir/Identity_bprop.mindir +0 -9
  948. mindspore/ops/bprop_mindir/LogicalOr_bprop.mindir +0 -20
  949. mindspore/ops/bprop_mindir/ReLU_bprop.mindir +0 -16
  950. mindspore/ops/bprop_mindir/UpdateState_bprop.mindir +0 -17
  951. mindspore/ops/bprop_mindir/stop_gradient_bprop.mindir +0 -12
  952. mindspore/ops/composite/array_ops.py +0 -210
  953. mindspore/ops/composite/clip_ops.py +0 -238
  954. mindspore/ops/composite/random_ops.py +0 -426
  955. mindspore/ops/composite/vmap_ops.py +0 -38
  956. mindspore/ops/operations/sponge_ops.py +0 -3531
  957. mindspore/ops/operations/sponge_update_ops.py +0 -2546
  958. mindspore/parallel/nn/__init__.py +0 -42
  959. mindspore/parallel/nn/loss.py +0 -22
  960. mindspore/parallel/nn/moe.py +0 -21
  961. mindspore/parallel/nn/op_parallel_config.py +0 -22
  962. mindspore/parallel/nn/transformer.py +0 -31
  963. mindspore/run_check/_check_deps_version.py +0 -84
  964. {mindspore-1.10.0.dist-info → mindspore-2.0.0rc1.dist-info}/WHEEL +0 -0
  965. {mindspore-1.10.0.dist-info → mindspore-2.0.0rc1.dist-info}/entry_points.txt +0 -0
  966. {mindspore-1.10.0.dist-info → mindspore-2.0.0rc1.dist-info}/top_level.txt +0 -0
@@ -12,23 +12,25 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
  # ============================================================================
15
-
16
15
  """Defines parameter operators with functional form."""
17
16
 
18
- import numpy as np
17
+ from __future__ import absolute_import
18
+
19
+ from mindspore import context
19
20
  from mindspore.ops import operations as P
20
21
  from mindspore.ops import functional as F
21
- from mindspore.ops.primitive import constexpr
22
+ from mindspore.ops.primitive import constexpr, _primexpr
22
23
  from mindspore.ops.composite.multitype_ops import _constexpr_utils as const_utils
23
24
  from mindspore.common import dtype as mstype
24
25
  from mindspore.common.seed import _get_graph_seed
25
26
  from mindspore.common.tensor import Tensor
26
- from mindspore.ops.operations.random_ops import RandomShuffle
27
+ from mindspore.ops.operations.random_ops import RandomShuffle, RandomChoiceWithMask, RandpermV2
27
28
  from mindspore.ops._primitive_cache import _get_cache_prim
28
- from mindspore.ops._utils import get_broadcast_shape
29
+ from mindspore.common.api import _function_forbid_reuse
29
30
 
30
31
 
31
- def random_gamma(shape, alpha, seed=0, seed2=0):
32
+ @_function_forbid_reuse
33
+ def random_gamma(shape, alpha, seed=None):
32
34
  r"""
33
35
  Outputs random values from the Gamma distribution(s) described by alpha.
34
36
 
@@ -36,12 +38,10 @@ def random_gamma(shape, alpha, seed=0, seed2=0):
36
38
  Args:
37
39
  shape (Tensor): The shape of random tensor to be generated.
38
40
  Must be one of the following types: int32, int64. 1-D integer tensor.
39
- alpha (Tensor): The alpha α distribution parameter.
41
+ alpha (Tensor): The :math:`\alpha` distribution parameter.
40
42
  A Tensor. Must be one of the following types: half, float32, float64.
41
- seed (int): Seed is used as entropy source for the random number engines to generate
42
- pseudo-random numbers, must be non-negative. Default: None, which will be treated as 0.
43
- seed2 (int): Seed2 is used as entropy source for the random number engines to generate
44
- pseudo-random numbers, must be non-negative. Default: None, which will be treated as 0.
43
+ seed (int, optional): Seed is used as entropy source for Random number engines generating pseudo-random numbers.
44
+ Default: None, which will be treated as 0.
45
45
 
46
46
  Returns:
47
47
  Tensor. The shape should be equal to the concat shape between the input `shape` and the broadcast
@@ -68,50 +68,40 @@ def random_gamma(shape, alpha, seed=0, seed2=0):
68
68
  >>> print(result)
69
69
  (7, 5, 2)
70
70
  """
71
-
72
- alpha_type = P.DType()(alpha)
73
- beta = Tensor(np.array([1.0]), alpha_type)
74
- alpha_shape = P.Shape()(alpha)
75
- beta_shape = P.Shape()(beta)
76
- broadcast_shape = get_broadcast_shape(alpha_shape, beta_shape, "random_gamma",
77
- arg_name1="alpha", arg_name2="beta")
78
- broadcast_shape_t = tuple(broadcast_shape)
79
- broadcast_to = P.BroadcastTo(broadcast_shape_t)
80
- alpha_broadcast = broadcast_to(alpha)
81
- random_gamma_op = _get_cache_prim(P.RandomGamma)(seed=seed, seed2=seed2)
82
- output = random_gamma_op(shape, alpha_broadcast)
83
-
71
+ seed1, seed2 = _get_seed(seed, "random_gamma")
72
+ random_gamma_op = _get_cache_prim(P.RandomGamma)(seed1, seed2)
73
+ output = random_gamma_op(shape, alpha)
84
74
  return output
85
75
 
86
76
 
87
77
  @constexpr(reuse_result=False)
88
78
  def _get_seed(op_seed, kernel_name):
89
- "Get the graph-level seed."
79
+ """Get the graph-level seed."""
90
80
  return _get_graph_seed(op_seed, kernel_name)
91
81
 
92
82
 
93
- def standard_laplace(shape, seed=0, seed2=0):
83
+ @_function_forbid_reuse
84
+ def standard_laplace(shape, seed=None):
94
85
  r"""
95
86
  Generates random numbers according to the Laplace random number distribution (mean=0, lambda=1).
96
87
  It is defined as:
97
88
 
98
89
  .. math::
99
- \text{f}(x) = \frac{1}{2}\exp(-|x|),
90
+ \text{f}(x) = \frac{1}{2}\exp(-|x|)
100
91
 
101
92
  Args:
102
93
  shape (Union[tuple, Tensor]): The shape of random tensor to be generated. Only constant value is allowed
103
94
  when the input type is tuple. And the operator supports dynamic shape only when the input type is Tensor.
104
- seed (int): Random seed. Default: 0.
105
- seed2 (int): Random seed2. Default: 0.
95
+ seed (int, optional): Seed is used as entropy source for Random number engines generating pseudo-random numbers.
96
+ Default: None, which will be treated as 0.
106
97
 
107
98
  Returns:
108
99
  Tensor. The shape that the input 'shape' denotes. The dtype is float32.
109
100
 
110
101
  Raises:
111
- TypeError: If seed or seed2 is not an int.
112
102
  TypeError: If shape is neither a tuple nor a Tensor.
113
- ValueError: If seed or seed2 is not a non-negative int.
114
103
  ValueError: If shape is a tuple containing non-positive items.
104
+ ValueError: If shape is a Tensor, and the rank of the Tensor is not equal to 1.
115
105
 
116
106
  Supported Platforms:
117
107
  ``Ascend`` ``GPU`` ``CPU``
@@ -124,10 +114,12 @@ def standard_laplace(shape, seed=0, seed2=0):
124
114
  >>> print(result)
125
115
  (4, 4)
126
116
  """
127
- standard_laplace_op = _get_cache_prim(P.StandardLaplace)(seed=seed, seed2=seed2)
117
+ seed1, seed2 = _get_seed(seed, "standard_laplace")
118
+ standard_laplace_op = _get_cache_prim(P.StandardLaplace)(seed=seed1, seed2=seed2)
128
119
  return standard_laplace_op(shape)
129
120
 
130
121
 
122
+ @_function_forbid_reuse
131
123
  def random_categorical(logits, num_sample, seed=0, dtype=mstype.int64):
132
124
  r"""
133
125
  Generates random samples from a given categorical distribution tensor.
@@ -165,6 +157,64 @@ def random_categorical(logits, num_sample, seed=0, dtype=mstype.int64):
165
157
  return random_categorical_(logits, num_sample, seed)
166
158
 
167
159
 
160
+ @_function_forbid_reuse
161
+ def multinomial_with_replacement(x, seed, offset, numsamples, replacement=False):
162
+ r"""
163
+ Returns a tensor where each row contains numsamples indices sampled from the
164
+ multinomial distribution with replacement. It is different from `multinomial` in that it allows
165
+ the same outcome to be chosen multiple times.
166
+
167
+ Note:
168
+ The rows of input do not need to sum to one (in which case we use the values as weights),
169
+ but must be non-negative, finite and have a non-zero sum.
170
+
171
+ Args:
172
+ x (Tensor): the input tensor containing the cumsum of probabilities, must be 1 or 2
173
+ dimensions. Must be one of the following types: float16, float32, float64.
174
+ seed (int): If seed is set to be -1, and offset is set to be 0, the random number
175
+ generator is seeded by a random seed. Otherwise, it is seeded by the given seed.
176
+ offset (int): Offset used to avoid seed collision.
177
+ numsamples (int): the number of samples to draw.
178
+ replacement (bool, optional): Whether to draw with replacement or not. Default: False.
179
+
180
+ Returns:
181
+ Tensor with the same rows as `x`, each row has `numsamples` sampled indices.
182
+
183
+ Raises:
184
+ TypeError: If `x` is not a 1D or 2D Tensor.
185
+ TypeError: If dtype of `x` is not float16, float32 or float64.
186
+ TypeError: If `numsamples` is not an int.
187
+ TypeError: If `replacement` is not a bool.
188
+ ValueError: If the value of `numsamples` is not greater than x_shape[-1] when `replacement` is False.
189
+ ValueError: If the sum of one row of `x` less than 0.
190
+ ValueError: If one of the element of each row of `x` less than 0.
191
+ ValueError: If `numsamples` equal or less than 0.
192
+
193
+ Supported Platforms:
194
+ ``CPU``
195
+
196
+ Examples:
197
+ >>> x = Tensor([[0., 9., 4., 0.]], mstype.float32)
198
+ >>> output = ops.multinomial_with_replacement(x, 2, 5, 2, True)
199
+ >>> print(output)
200
+ [[1 1]]
201
+ """
202
+ if not isinstance(seed, Tensor):
203
+ if not isinstance(seed, int):
204
+ raise TypeError("For multinomial_with_replacement,",
205
+ "the input[seed] must be int, but got {}.".format(type(seed)))
206
+ seed = Tensor(seed, dtype=mstype.int64)
207
+ if not isinstance(offset, Tensor):
208
+ if not isinstance(offset, int):
209
+ raise TypeError("For multinomial_with_replacement,",
210
+ "the input[offset] must be int, but got {}.".format(type(offset)))
211
+ offset = Tensor(offset, dtype=mstype.int64)
212
+ multinomial_with_replacement_ = _get_cache_prim(P.MultinomialWithReplacement)(numsamples=numsamples,
213
+ replacement=replacement)
214
+ return multinomial_with_replacement_(x, seed, offset)
215
+
216
+
217
+ @_function_forbid_reuse
168
218
  def uniform(shape, minval, maxval, seed=None, dtype=mstype.float32):
169
219
  """
170
220
  Generates random numbers according to the Uniform random number distribution.
@@ -173,9 +223,7 @@ def uniform(shape, minval, maxval, seed=None, dtype=mstype.float32):
173
223
  The number in tensor minval should be strictly less than maxval at any position after broadcasting.
174
224
 
175
225
  Args:
176
- shape (tuple): The shape of random tensor to be generated.
177
- The format is :math:`(N,*)` where :math:`*` means, any number of additional dimensions
178
- and the length of :math:`(N,*)` should be less than 8 in broadcast operation.
226
+ shape (Union[tuple, Tensor]): The shape of random tensor to be generated.
179
227
  minval (Tensor): The distribution parameter `a`.
180
228
  It defines the minimum possible generated value, with int32 or float32 data type.
181
229
  If dtype is int32, only one number is allowed.
@@ -194,14 +242,14 @@ def uniform(shape, minval, maxval, seed=None, dtype=mstype.float32):
194
242
  The dtype is designated as the input `dtype`.
195
243
 
196
244
  Raises:
197
- TypeError: If `shape` is not tuple.
245
+ TypeError: If `shape` is neither a tuple nor a Tensor.
198
246
  TypeError: If 'minval' or 'maxval' is neither int32 nor float32
199
247
  and dtype of 'minval' is not the same as 'maxval'.
200
248
  TypeError: If `seed` is not an int.
201
249
  TypeError: If 'dtype' is neither int32 nor float32.
202
250
 
203
251
  Supported Platforms:
204
- ``Ascend`` ``GPU`` ``CPU``
252
+ ``GPU`` ``CPU``
205
253
 
206
254
  Examples:
207
255
  >>> from mindspore import Tensor, ops
@@ -241,7 +289,8 @@ def uniform(shape, minval, maxval, seed=None, dtype=mstype.float32):
241
289
  return value
242
290
 
243
291
 
244
- def standard_normal(shape, seed=0, seed2=0):
292
+ @_function_forbid_reuse
293
+ def standard_normal(shape, seed=None):
245
294
  r"""
246
295
  Generates random numbers according to the standard Normal (or Gaussian) random number distribution.
247
296
 
@@ -252,17 +301,17 @@ def standard_normal(shape, seed=0, seed2=0):
252
301
  f(x)=\frac{1}{\sqrt{2 \pi}} e^{\left(-\frac{x^{2}}{2}\right)}
253
302
 
254
303
  Args:
255
- shape (tuple): The shape of random tensor to be generated. Only constant value is allowed.
256
- seed (int): Random seed, must be non-negative. Default: 0.
257
- seed2 (int): Random seed2, must be non-negative. A second seed to avoid seed collision. Default: 0.
304
+ shape (Union[tuple, Tensor]): The shape of random tensor to be generated. Only constant value is allowed
305
+ when the input type is tuple. And the operator supports dynamic shape only when the input type is Tensor.
306
+ seed (int, optional): Seed is used as entropy source for Random number engines generating pseudo-random numbers.
307
+ Default: None, which will be treated as 0.
258
308
 
259
309
  Returns:
260
- Tensor. The shape is the same as the input `shape`. The dtype is float32.
310
+ Tensor. The shape that the input 'shape' denotes. The dtype is float32.
261
311
 
262
312
  Raises:
263
- TypeError: If `seed` or `seed2` is not an int.
264
- TypeError: If `shape` is not a tuple.
265
- ValueError: If `shape` is not a constant value.
313
+ TypeError: If `shape` is neither a tuple nor a Tensor.
314
+ ValueError: If `shape` is a tuple containing non-positive items.
266
315
 
267
316
  Supported Platforms:
268
317
  ``Ascend`` ``GPU`` ``CPU``
@@ -275,11 +324,18 @@ def standard_normal(shape, seed=0, seed2=0):
275
324
  >>> print(result)
276
325
  (4, 4)
277
326
  """
278
- standard_normal_op = _get_cache_prim(P.StandardNormal)(seed=seed, seed2=seed2)
327
+ seed1, seed2 = _get_seed(seed, "standard_normal")
328
+ standard_normal_op = _get_cache_prim(P.StandardNormal)(seed=seed1, seed2=seed2)
279
329
  return standard_normal_op(shape)
280
330
 
281
331
 
282
- def uniform_candidate_sampler(true_classes, num_true, num_sampled, unique, range_max, seed=0,
332
+ @_function_forbid_reuse
333
+ def uniform_candidate_sampler(true_classes,
334
+ num_true,
335
+ num_sampled,
336
+ unique,
337
+ range_max,
338
+ seed=0,
283
339
  remove_accidental_hits=False):
284
340
  r"""
285
341
  Uniform candidate sampler.
@@ -288,7 +344,7 @@ def uniform_candidate_sampler(true_classes, num_true, num_sampled, unique, range
288
344
  If unique=True, candidates are drawn without replacement, else unique=False with replacement.
289
345
 
290
346
  Args:
291
- true_classes (Tensor): A Tensor. The target classes with a Tensor shape of (batch_size, num_true).
347
+ true_classes (Tensor): A Tensor. The target classes with a Tensor shape of :math:`(batch_size, num_true)` .
292
348
  num_true (int): The number of target classes in each training example.
293
349
  num_sampled (int): The number of classes to randomly sample. The sampled_candidates will have a shape
294
350
  of num_sampled. If unique=True, num_sampled must be less than or equal to range_max.
@@ -300,11 +356,11 @@ def uniform_candidate_sampler(true_classes, num_true, num_sampled, unique, range
300
356
 
301
357
  Returns:
302
358
  - **sampled_candidates** (Tensor) - The sampled_candidates is independent of the true classes.
303
- Shape: (num_sampled, ).
359
+ Shape: :math:`(num_sampled, )` .
304
360
  - **true_expected_count** (Tensor) - The expected counts under the sampling distribution of each
305
- of true_classes. Shape: (batch_size, num_true).
361
+ of true_classes. Shape: :math:`(batch_size, num_true)` .
306
362
  - **sampled_expected_count** (Tensor) - The expected counts under the sampling distribution of
307
- each of sampled_candidates. Shape: (num_sampled, ).
363
+ each of sampled_candidates. Shape: :math:`(num_sampled, )` .
308
364
 
309
365
  Raises:
310
366
  TypeError: If neither `num_true` nor `num_sampled` is an int.
@@ -316,7 +372,7 @@ def uniform_candidate_sampler(true_classes, num_true, num_sampled, unique, range
316
372
  ``Ascend`` ``GPU`` ``CPU``
317
373
 
318
374
  Examples:
319
- >>> data = Tensor(np.array([[1], [3], [4], [6], [3]], dtype=np.int32))
375
+ >>> data = Tensor(np.array([[1], [3], [4], [6], [3]], dtype=np.int64))
320
376
  >>> output1, output2, output3 = ops.uniform_candidate_sampler(data, 1, 3, False, 4, 1)
321
377
  >>> print(output1.shape)
322
378
  (3,)
@@ -325,15 +381,21 @@ def uniform_candidate_sampler(true_classes, num_true, num_sampled, unique, range
325
381
  >>> print(output3.shape)
326
382
  (3,)
327
383
  """
328
- sampler_op = _get_cache_prim(P.UniformCandidateSampler)(num_true, num_sampled, unique, range_max, seed=seed,
384
+ sampler_op = _get_cache_prim(P.UniformCandidateSampler)(num_true,
385
+ num_sampled,
386
+ unique,
387
+ range_max,
388
+ seed=seed,
329
389
  remove_accidental_hits=remove_accidental_hits)
330
390
  sampled_candidates, true_expected_count, sampled_expected_count = sampler_op(true_classes)
331
391
  return sampled_candidates, true_expected_count, sampled_expected_count
332
392
 
333
393
 
394
+ @_function_forbid_reuse
334
395
  def random_poisson(shape, rate, seed=None, dtype=mstype.float32):
335
396
  r"""
336
- Generates random numbers according to the Poisson random number distribution.
397
+ Generates random number Tensor with shape `shape` according to a Poisson distribution with mean `rate`.
398
+
337
399
 
338
400
  .. math::
339
401
 
@@ -342,11 +404,12 @@ def random_poisson(shape, rate, seed=None, dtype=mstype.float32):
342
404
  Args:
343
405
  shape (Tensor): The shape of random tensor to be sampled from each poisson distribution, 1-D `Tensor` whose
344
406
  dtype is mindspore.dtype.int32 or mindspore.dtype.int64.
345
- rate (Tensor): The μ parameter the distribution was constructed with. It represents the mean of the distribution
407
+ rate (Tensor): The :math:`μ` parameter the distribution is constructed with.
408
+ It represents the mean of the distribution
346
409
  and also the variance of the distribution. It should be a `Tensor` whose dtype is mindspore.dtype.int64,
347
410
  mindspore.dtype.int32, mindspore.dtype.float64, mindspore.dtype.float32 or mindspore.dtype.float16.
348
- seed (int): Seed is used as entropy source for the random number engines to generate pseudo-random numbers
349
- and must be non-negative. Default: None, which will be treated as 0.
411
+ seed (int, optional): Seed is used as entropy source for the random number engines to generate pseudo-random
412
+ numbers and must be non-negative. Default: None, which will be treated as 0.
350
413
  dtype (mindspore.dtype): The data type of output: mindspore.dtype.int64, mindspore.dtype.int32,
351
414
  mindspore.dtype.float64, mindspore.dtype.float32 or mindspore.dtype.float16. Default: mindspore.dtype.float32.
352
415
 
@@ -367,7 +430,7 @@ def random_poisson(shape, rate, seed=None, dtype=mstype.float32):
367
430
  ValueError: If any element of input `shape` tensor is not positive.
368
431
 
369
432
  Supported Platforms:
370
- ``CPU``
433
+ ``GPU`` ``CPU``
371
434
 
372
435
  Examples:
373
436
  >>> import mindspore
@@ -378,7 +441,7 @@ def random_poisson(shape, rate, seed=None, dtype=mstype.float32):
378
441
  >>> rate = Tensor(np.array([[5.0, 10.0], [5.0, 1.0]]), mindspore.float32)
379
442
  >>> output = ops.random_poisson(shape, rate, seed=5, dtype=mindspore.float64)
380
443
  >>> print(output.shape, output.dtype)
381
- (2, 2, 2, 2) float64
444
+ (2, 2, 2, 2) Float64
382
445
  >>> # case 2: 1-D shape, scalar rate, int64 output
383
446
  >>> shape = Tensor(np.array([2, 2]), mindspore.int64)
384
447
  >>> rate = Tensor(5.0, mindspore.float64)
@@ -392,45 +455,844 @@ def random_poisson(shape, rate, seed=None, dtype=mstype.float32):
392
455
  return value
393
456
 
394
457
 
395
- def random_shuffle(x, seed=0, seed2=0):
458
+ @_function_forbid_reuse
459
+ def shuffle(x, seed=None):
396
460
  r"""
397
461
  Randomly shuffles a Tensor along its first dimension.
398
462
 
399
463
  Args:
400
464
  x (Tensor): The Tensor need be shuffled.
401
- seed (int): The operator-level random seed, used to generate random numbers, must be non-negative. Default: 0.
402
- seed2 (int): The global random seed and it will combile with the operator-level random seed to determine the
403
- final generated random number, must be non-negative. Default: 0.
465
+ seed (int, optional): Random seed used for random number generation, must be non-negative. If `seed` is 0,
466
+ which will be replaced with a randomly generated value. Default: None, which will be treated as 0.
404
467
 
405
468
  Returns:
406
469
  Tensor. The shape and type are the same as the input `x`.
407
470
 
408
471
  Raises:
409
- TypeError: If data type of `seed` or `seed2` is not int.
472
+ TypeError: If data type of `seed` is not None or non-negative int.
410
473
 
411
474
  Supported Platforms:
412
- ``CPU``
475
+ ``Ascend`` ``GPU`` ``CPU``
413
476
 
414
477
  Examples:
415
478
  >>> x = Tensor(np.array([1, 2, 3, 4]), mstype.float32)
416
- >>> shuffle = ops.RandomShuffle(seed=1, seed2=1)
417
- >>> output = shuffle(x)
418
- >>> print(output.shape)
419
- (4,)
479
+ >>> output = ops.shuffle(x, seed=1)
480
+ >>> print(output)
481
+ (3. 4. 2. 1.)
420
482
  """
483
+ seed, seed2 = _get_seed(seed, "shuffle")
421
484
  random_shuffle_ = _get_cache_prim(RandomShuffle)(seed=seed, seed2=seed2)
422
485
  output = random_shuffle_(x)
423
486
  return output
424
487
 
425
488
 
489
+ @_function_forbid_reuse
490
+ def log_uniform_candidate_sampler(true_classes, num_true=1, num_sampled=5, unique=True, range_max=5, seed=0):
491
+ r"""
492
+ Generates random labels with a log-uniform distribution for sampled_candidates.
493
+
494
+ Randomly samples a tensor of sampled classes from the range of integers [0, range_max).
495
+
496
+ Args:
497
+ true_classes (Tensor): The target classes. With data type of int64 and
498
+ shape :math:`(batch\_size, num\_true)` .
499
+ num_true (int): The number of target classes per training example. Default: 1.
500
+ num_sampled (int): The number of classes to randomly sample. Default: 5.
501
+ unique (bool): Determines whether sample with rejection. If `unique` is True,
502
+ all sampled classes in a batch are unique. Default: True.
503
+ range_max (int): The number of possible classes. When `unique` is True,
504
+ `range_max` must be greater than or equal to `num_sampled`. Default: 5.
505
+ seed (int): Random seed, must be non-negative. Default: 0.
506
+
507
+ Returns:
508
+ Tuple of 3 Tensors.
509
+
510
+ - **sampled_candidates** (Tensor) - A Tensor with shape :math:`(num\_sampled,)`
511
+ and the same type as `true_classes`.
512
+ - **true_expected_count** (Tensor) - A Tensor with the same shape as `true_classes and` type float32.
513
+ - **sampled_expected_count** (Tensor) - A Tensor with the same shape as `sampled_candidates` and type float32.
514
+
515
+ Raises:
516
+ TypeError: If neither `num_true` nor `num_sampled` is an int.
517
+ TypeError: If `unique` is not a bool.
518
+ TypeError: If neither `range_max` nor `seed` is an int.
519
+ TypeError: If `true_classes` is not a Tensor.
520
+
521
+ Supported Platforms:
522
+ ``Ascend`` ``CPU``
523
+
524
+ Examples:
525
+ >>> import numpy as np
526
+ >>> from mindspore import Tensor, ops
527
+ >>> output1, output2, output3 = ops.log_uniform_candidate_sampler(
528
+ ... Tensor(np.array([[1, 7], [0, 4], [3, 3]])), 2, 5, True, 5)
529
+ >>> print(output1, output2, output3)
530
+ [3 2 0 4 1]
531
+ [[0.92312991 0.49336370]
532
+ [0.99248987 0.65806371]
533
+ [0.73553443 0.73553443]]
534
+ [0.73553443 0.82625800 0.99248987 0.65806371 0.92312991]
535
+
536
+ """
537
+
538
+ sampler = _get_cache_prim(P.LogUniformCandidateSampler)(num_true, num_sampled, unique, range_max, seed)
539
+ return sampler(true_classes)
540
+
541
+
542
+ @_function_forbid_reuse
543
+ def choice_with_mask(input_x, count=256, seed=None):
544
+ """
545
+ Generates a random sample as index tensor with a mask tensor from a given tensor.
546
+
547
+ The `input_x` must be a tensor whose dimension is not less than 1. If its dimension is greater than or equal to 2,
548
+ the first dimension specifies the number of samples.
549
+ The returned index tensor denotes the index of the nonzero
550
+ sample, the mask tensor denotes which elements in the index tensor are valid.
551
+
552
+ Args:
553
+ input_x (Tensor[bool]): The input tensor.
554
+ The input tensor rank must be greater than or equal to 1 and less than or equal to 5.
555
+ count (int, optional): Number of items expected to get and the number must be greater than 0. Default: 256.
556
+ seed (int, optional): Seed is used as entropy source for Random number engines generating pseudo-random numbers.
557
+ Default: None, which will be treated as 0.
558
+
559
+ Returns:
560
+ Two tensors, the first one is the index tensor and the other one is the mask tensor.
561
+
562
+ - **index** (Tensor) - The output shape is 2-D.
563
+ - **mask** (Tensor) - The output shape is 1-D.
564
+
565
+ Raises:
566
+ TypeError: If `count` is not an int.
567
+ TypeError: If `seed` is not an int.
568
+ TypeError: If `input_x` is not a Tensor.
569
+
570
+ Supported Platforms:
571
+ ``Ascend`` ``GPU`` ``CPU``
572
+
573
+ Examples:
574
+ >>> input_x = Tensor(np.ones(shape=[240000, 4]).astype(np.bool))
575
+ >>> output_y, output_mask = ops.choice_with_mask(input_x)
576
+ >>> result = output_y.shape
577
+ >>> print(result)
578
+ (256, 2)
579
+ >>> result = output_mask.shape
580
+ >>> print(result)
581
+ (256,)
582
+ """
583
+ seed1, seed2 = _get_seed(seed, "choice_with_mask")
584
+ choice_with_mask_ = _get_cache_prim(RandomChoiceWithMask)(count=count, seed=seed1, seed2=seed2)
585
+ output = choice_with_mask_(input_x)
586
+ return output
587
+
588
+
589
+ @constexpr
590
+ def is_cpu_backend():
591
+ """Check if the CPU is used"""
592
+ return context.get_context('device_target') == 'CPU'
593
+
594
+
595
+ @_function_forbid_reuse
596
+ def randperm(n, seed=0, offset=0, dtype=mstype.int64):
597
+ r"""
598
+ Generates random permutation of integers from 0 to n-1.
599
+
600
+ Returns the tensor with the determined shape inferred by n, the random numbers in it drawn from the data range
601
+ that a given type can represent.
602
+
603
+ Args:
604
+ n (Union[Tensor, int]): The input n Tensor with shape: () or (1,) and with data type of int64.
605
+ The value of `n` must be greater than zero.
606
+ seed (int, optional): Random seed. Default: 0. When seed is -1(only negative value), offset is 0,
607
+ it's determined by time.
608
+ offset (int, optional): Offset to generate random numbers. Priority is higher than random seed.
609
+ Default: 0. It must be non-negative.
610
+ dtype (mindspore.dtype, optional): The type of output.
611
+ Its value must be one of the following types: int32, int16, int8,
612
+ uint8, int64, float64, float32, float16. Default: int64.
613
+
614
+ Returns:
615
+ Tensor. Its shape is specified by the required args `n`. Its type is spcified by `dtype`. Otherwise is default.
616
+
617
+ Raises:
618
+ TypeError: If `dtype` is not allowed.
619
+ ValueError: If `n` is a negative or 0 element.
620
+ ValueError: If `seed` is a negative element.
621
+ ValueError: If `n` is larger than the maximal data of the set dtype.
622
+
623
+ Supported Platforms:
624
+ ``CPU``
625
+
626
+ Examples:
627
+ >>> n = 4
628
+ >>> seed = 0
629
+ >>> offset = 0
630
+ >>> output = ops.randperm(n, seed, offset, dtype=mstype.int64)
631
+ >>> print(output)
632
+ [1 0 2 3]
633
+ """
634
+ if not isinstance(n, Tensor):
635
+ n = Tensor(n)
636
+ randperm_ = _get_cache_prim(RandpermV2)(dtype=dtype)
637
+ return randperm_(n, seed, offset)
638
+
639
+
640
+ @_function_forbid_reuse
641
+ def normal(shape, mean, stddev, seed=None):
642
+ """
643
+ Generates random numbers according to the Normal (or Gaussian) random number distribution.
644
+
645
+ Args:
646
+ shape (tuple): The shape of random tensor to be generated.
647
+ The format is :math:`(N,*)` where :math:`*` means, any number of additional dimensions.
648
+ mean (Union[Tensor, int, float]): The mean μ distribution parameter, which specifies the location of the peak,
649
+ with data type in [int8, int16, int32, int64, float16, float32].
650
+ stddev (Union[Tensor, int, float]): The deviation σ distribution parameter. It should be greater than 0,
651
+ with data type in [int8, int16, int32, int64, float16, float32].
652
+ seed (int): Seed is used as entropy source for the Random number engines to generate pseudo-random numbers.
653
+ The value must be non-negative. Default: None, which will be treated as 0.
654
+
655
+ Returns:
656
+ Tensor. The shape should be equal to the broadcasted shape between the input `shape` and shapes
657
+ of `mean` and `stddev`.
658
+ The dtype is float32.
659
+
660
+ Supported Platforms:
661
+ ``Ascend`` ``GPU`` ``CPU``
662
+
663
+ Examples:
664
+ >>> import mindspore
665
+ >>> import numpy as np
666
+ >>> from mindspore import Tensor, ops
667
+ >>> shape = (3, 1, 2)
668
+ >>> mean = Tensor(np.array([[3, 4], [5, 6]]), mindspore.float32)
669
+ >>> stddev = Tensor(1.0, mindspore.float32)
670
+ >>> output = ops.normal(shape, mean, stddev, seed=5)
671
+ >>> result = output.shape
672
+ >>> print(result)
673
+ (3, 2, 2)
674
+ >>> shape = (3, 1, 3)
675
+ >>> mean = Tensor(np.array([[3, 4, 3], [3, 5, 6]]), mindspore.float32)
676
+ >>> stddev = Tensor(1.0, mindspore.float32)
677
+ >>> output = ops.normal(shape, mean, stddev, seed=5)
678
+ >>> result = output.shape
679
+ >>> print(result)
680
+ (3, 2, 3)
681
+ >>> shape = (3, 1, 3)
682
+ >>> mean = Tensor(np.array([[1, 2, 3], [3, 4, 3], [3, 5, 6]]), mindspore.float32)
683
+ >>> stddev = Tensor(1.0, mindspore.float32)
684
+ >>> output = ops.normal(shape, mean, stddev, seed=5)
685
+ >>> result = output.shape
686
+ >>> print(result)
687
+ (3, 3, 3)
688
+ """
689
+ _check_param("normal", "mean", mean)
690
+ _check_param("normal", "stddev", stddev)
691
+ if not isinstance(mean, Tensor):
692
+ mean = Tensor(mean)
693
+ if not isinstance(stddev, Tensor):
694
+ stddev = Tensor(stddev)
695
+ mean_dtype = F.dtype(mean)
696
+ stddev_dtype = F.dtype(stddev)
697
+ const_utils.check_type_valid(mean_dtype, mstype.int_type + (mstype.float16, mstype.float32), 'normal')
698
+ const_utils.check_type_valid(stddev_dtype, mstype.int_type + (mstype.float16, mstype.float32), 'normal')
699
+ seed1, seed2 = _get_seed(seed, "normal")
700
+ stdnormal = P.StandardNormal(seed1, seed2)
701
+ _check_shape(shape)
702
+ random_normal = stdnormal(shape)
703
+ value = random_normal * stddev + mean
704
+ return value
705
+
706
+
707
+ @_function_forbid_reuse
708
+ def laplace(shape, mean, lambda_param, seed=None):
709
+ r"""
710
+ Generates random numbers according to the Laplace random number distribution.
711
+ It is defined as:
712
+
713
+ .. math::
714
+ \text{f}(x;μ,λ) = \frac{1}{2λ}\exp(-\frac{|x-μ|}{λ}),
715
+
716
+ Args:
717
+ shape (tuple): The shape of random tensor to be generated.
718
+ The format is :math:`(N,*)` where :math:`*` means, any number of additional dimensions.
719
+ mean (Tensor): The mean μ distribution parameter, which specifies the location of the peak.
720
+ With float32 data type.
721
+ lambda_param (Tensor): The parameter used for controlling the variance of this random distribution. The
722
+ variance of Laplace distribution is equal to twice the square of lambda_param. With float32 data type.
723
+ seed (int, optional): Seed is used as entropy source for Random number engines generating pseudo-random numbers.
724
+ Default: None, which will be treated as 0.
725
+
726
+ Returns:
727
+ Tensor. The shape should be the broadcasted shape of input `shape` and shapes of `mean` and `lambda_param`.
728
+ The dtype is float32.
729
+
730
+ Supported Platforms:
731
+ ``Ascend`` ``GPU`` ``CPU``
732
+
733
+ Examples:
734
+ >>> import mindspore
735
+ >>> from mindspore import Tensor
736
+ >>> from mindspore import ops as ops
737
+ >>> shape = (2, 3)
738
+ >>> mean = Tensor(1.0, mindspore.float32)
739
+ >>> lambda_param = Tensor(1.0, mindspore.float32)
740
+ >>> output = ops.laplace(shape, mean, lambda_param, seed=5)
741
+ >>> print(output.shape)
742
+ (2, 3)
743
+ """
744
+ mean_dtype = F.dtype(mean)
745
+ lambda_param_dtype = F.dtype(lambda_param)
746
+ const_utils.check_tensors_dtype_same(mean_dtype, mstype.float32, "laplace")
747
+ const_utils.check_tensors_dtype_same(lambda_param_dtype, mstype.float32, "laplace")
748
+ seed1, seed2 = _get_seed(seed, "laplace")
749
+ stdlaplace = P.StandardLaplace(seed1, seed2)
750
+ _check_shape(shape)
751
+ rnd = stdlaplace(shape)
752
+ value = rnd * lambda_param + mean
753
+ return value
754
+
755
+
756
+ @_function_forbid_reuse
757
+ def gamma(shape, alpha, beta, seed=None):
758
+ r"""
759
+ Generates random numbers according to the Gamma random number distribution.
760
+
761
+ Args:
762
+ shape (tuple): The shape of random tensor to be generated.
763
+ alpha (Tensor): The :math:`\alpha` distribution parameter. It should be greater than 0 with float32 data type.
764
+ beta (Tensor): The :math:`\beta` distribution parameter. It should be greater than 0 with float32 data type.
765
+ seed (int): Seed is used as entropy source for the random number engines to generate
766
+ pseudo-random numbers, must be non-negative. Default: None, which will be treated as 0.
767
+
768
+ Returns:
769
+ Tensor. The shape should be equal to the broadcasted shape between the input `shape` and shapes
770
+ of `alpha` and `beta`.
771
+ The dtype is float32.
772
+
773
+ Raises:
774
+ TypeError: If `shape` is not a tuple.
775
+ TypeError: If neither `alpha` nor `beta` is a Tensor.
776
+ TypeError: If `seed` is not an int.
777
+ TypeError: If dtype of `alpha` and `beta` is not float32.
778
+
779
+ Supported Platforms:
780
+ ``Ascend``
781
+
782
+ Examples:
783
+ >>> import mindspore
784
+ >>> import numpy as np
785
+ >>> from mindspore import Tensor, ops
786
+ >>> # case 1: alpha_shape is (2, 2)
787
+ >>> shape = (3, 1, 2)
788
+ >>> alpha = Tensor(np.array([[3, 4], [5, 6]]), mindspore.float32)
789
+ >>> beta = Tensor(np.array([1.0]), mindspore.float32)
790
+ >>> output = ops.gamma(shape, alpha, beta, seed=5)
791
+ >>> result = output.shape
792
+ >>> print(result)
793
+ (3, 2, 2)
794
+ >>> # case 2: alpha_shape is (2, 3), so shape is (3, 1, 3)
795
+ >>> shape = (3, 1, 3)
796
+ >>> alpha = Tensor(np.array([[1, 3, 4], [2, 5, 6]]), mindspore.float32)
797
+ >>> beta = Tensor(np.array([1.0]), mindspore.float32)
798
+ >>> output = ops.gamma(shape, alpha, beta, seed=5)
799
+ >>> result = output.shape
800
+ >>> print(result)
801
+ (3, 2, 3)
802
+ >>> # case 3: beta_shape is (1, 2), the output is different.
803
+ >>> shape = (3, 1, 2)
804
+ >>> alpha = Tensor(np.array([[3, 4], [5, 6]]), mindspore.float32)
805
+ >>> beta = Tensor(np.array([1.0, 2]), mindspore.float32)
806
+ >>> output = ops.gamma(shape, alpha, beta, seed=5)
807
+ >>> result = output.shape
808
+ >>> print(output)
809
+ [[[ 2.2132034 5.8855834]]
810
+ [ 3.3981476 7.5805717]
811
+ [[ 3.3981476 7.5805717]]
812
+ [ 3.7190282 19.941492]
813
+ [[ 2.9512358 2.5969937]]
814
+ [ 3.786061 5.160872 ]]]
815
+ >>> # case 4: beta_shape is (2, 1), the output is different.
816
+ >>> shape = (3, 1, 2)
817
+ >>> alpha = Tensor(np.array([[3, 4], [5, 6]]), mindspore.float32)
818
+ >>> beta = Tensor(np.array([[1.0], [2.0]]), mindspore.float32)
819
+ >>> output = ops.gamma(shape, alpha, beta, seed=5)
820
+ >>> result = output.shape
821
+ >>> print(output)
822
+ [[[ 5.6085486 7.8280783]]
823
+ [ 15.97684 16.116285]
824
+ [[ 1.8347423 1.713663]]
825
+ [ 3.2434065 15.667398]
826
+ [[ 4.2922077 7.3365674]]
827
+ [ 5.3876944 13.159832 ]]]
828
+ """
829
+ seed1, seed2 = _get_seed(seed, "gamma")
830
+ gamma_v = P.Gamma(seed1, seed2)
831
+ value = gamma_v(shape, alpha, beta)
832
+ return value
833
+
834
+
835
+ @_primexpr
836
+ def _generate_shapes(shape):
837
+ """Generate shapes for randn and rand."""
838
+ if not shape:
839
+ size = (1,)
840
+ elif len(shape) == 1:
841
+ if isinstance(shape[0], int):
842
+ size = shape
843
+ elif isinstance(shape[0], list):
844
+ size = tuple(shape[0])
845
+ elif isinstance(shape[0], tuple):
846
+ size = shape[0]
847
+ else:
848
+ raise TypeError("If the length of the argument 'shape' is 1, the type of the argument 'shape' must be "
849
+ "one of ['int', 'list', 'tuple'], but got ", shape[0])
850
+ else:
851
+ for value in shape:
852
+ if not isinstance(value, int):
853
+ raise TypeError("If the length of the argument 'shape' is > 1, the type of the argument 'shape' must "
854
+ "all be int, but got ", value)
855
+ size = shape
856
+ return size
857
+
858
+
859
+ @_function_forbid_reuse
860
+ def rand(*size, dtype=None, seed=None):
861
+ r"""
862
+ Returns a new tensor that fills numbers from the uniform distribution over an interval :math:`[0, 1)`
863
+ based on the given shape and dtype.
864
+
865
+ Args:
866
+ size (Union[int, tuple(int), list(int)]): Shape of the new tensor, e.g. :math:`(2, 3)` or :math:`2`.
867
+
868
+ Keyword Args:
869
+ dtype (:class:`mindspore.dtype`, optional): Designated tensor dtype, it must be float type. If None,
870
+ `mindspore.float32` will be applied. Default: None.
871
+ seed (int, optional): Random seed, must be greater or equal to 0. Default: None, and 0 will be used.
872
+
873
+ Returns:
874
+ Tensor, with the designated shape and dtype, filled with random numbers from the uniform distribution on
875
+ the interval :math:`[0, 1)`.
876
+
877
+ Raises:
878
+ TypeError: `seed` is not a non-negative integer.
879
+ ValueError: If `dtype` is not a `mstype.float_type` type.
880
+
881
+ Supported Platforms:
882
+ ``Ascend`` ``GPU`` ``CPU``
883
+
884
+ Examples:
885
+ >>> import mindspore.ops as ops
886
+ >>> print(ops.rand((2,3)))
887
+ [[4.1702199e-01 9.9718481e-01 7.2032452e-01]
888
+ [9.3255734e-01 1.1438108e-04 1.2812445e-01]]
889
+ """
890
+ if dtype is None:
891
+ dtype = mstype.float32
892
+ elif dtype not in mstype.float_type:
893
+ raise ValueError(f"For 'rand', the 'dtype' must be a float type, but got {dtype}.")
894
+ shape = _generate_shapes(size)
895
+ cast_ = P.Cast()
896
+ seed1, seed2 = _get_seed(seed, 'rand')
897
+ rand_op = P.UniformReal(seed1, seed2)
898
+ output = rand_op(shape)
899
+ return cast_(output, dtype)
900
+
901
+
902
+ @_function_forbid_reuse
903
+ def rand_like(input, seed=None, *, dtype=None):
904
+ r"""
905
+ Returns a new tensor that fills numbers from the uniform distribution over an interval :math:`[0, 1)`
906
+ based on the given shape and dtype.
907
+
908
+ Args:
909
+ input (Tensor): Input Tensor to specify the output shape and its default dtype.
910
+ seed (int, optional): Random seed, must be greater or equal to 0. Default: None, and 0 will be used.
911
+
912
+ Keyword Args:
913
+ dtype (:class:`mindspore.dtype`, optional): Designated tensor dtype, it must be float type. If None,
914
+ the same dtype of `input` will be applied. Default: None.
915
+
916
+ Returns:
917
+ Tensor, with the designated shape and dtype, filled with random numbers from the uniform distribution on
918
+ the interval :math:`[0, 1)`.
919
+
920
+ Raises:
921
+ TypeError: If `seed` is not a non-negative integer.
922
+ ValueError: If `dtype` is not a `mstype.float_type` type.
923
+
924
+ Supported Platforms:
925
+ ``Ascend`` ``GPU`` ``CPU``
926
+
927
+ Examples:
928
+ >>> import mindspore as ms
929
+ >>> from mindspore import Tensor, ops
930
+ >>> a = Tensor([[2, 3, 4], [1, 2, 3]])
931
+ >>> print(ops.rand_like(a, dtype=ms.float32))
932
+ [[4.1702199e-01 9.9718481e-01 7.2032452e-01]
933
+ [9.3255734e-01 1.1438108e-04 1.2812445e-01]]
934
+ """
935
+
936
+ if dtype is None:
937
+ dtype = input.dtype
938
+ elif dtype not in mstype.float_type:
939
+ raise ValueError(f"For 'rand_like', the 'dtype' must be a float type, but got {dtype}.")
940
+ shape = input.shape
941
+ cast_ = P.Cast()
942
+ seed1, seed2 = _get_seed(seed, 'rand_like')
943
+ rand_op = P.UniformReal(seed1, seed2)
944
+ output = rand_op(shape)
945
+ return cast_(output, dtype)
946
+
947
+
948
+ @_function_forbid_reuse
949
+ def randn(*size, dtype=None, seed=None):
950
+ r"""
951
+ Returns a new Tensor with given shape and dtype, filled with a sample (or samples)
952
+ from the standard normal distribution.
953
+
954
+ Args:
955
+ size (Union[int, tuple(int), list(int)]): Shape of the new tensor, e.g., :math:`(2, 3)` or :math:`2`.
956
+
957
+ Keyword Args:
958
+ dtype (:class:`mindspore.dtype`, optional): Designated tensor dtype, it must be float type. If None,
959
+ `mindspore.float32` will be used. Default: None.
960
+ seed (int, optional): Random seed, must be greater or equal to 0. Default: None, and 0 will be used.
961
+
962
+ Returns:
963
+ Tensor, with the designated shape and dtype, filled with a sample (or samples) from the
964
+ "standard normal" distribution.
965
+
966
+ Raises:
967
+ TypeError: `seed` is not a non-negative integer.
968
+ ValueError: If `dtype` is not a `mstype.float_type`.
969
+ ValueError: If `size` contains invalid number.
970
+
971
+ Supported Platforms:
972
+ ``Ascend`` ``GPU`` ``CPU``
973
+
974
+ Examples:
975
+ >>> import mindspore.ops as ops
976
+ >>> print(ops.randn((2, 2)))
977
+ [[ 0.30639967 -0.42438635]
978
+ [-0.4287376 1.3054721 ]]
979
+ """
980
+ if dtype is None:
981
+ dtype = mstype.float32
982
+ elif dtype not in mstype.float_type:
983
+ raise ValueError(f"For 'randn', the 'dtype' must be a float type, but got {dtype}.")
984
+ shape = _generate_shapes(size)
985
+ cast_ = P.Cast()
986
+ seed1, seed2 = _get_seed(seed, 'randn')
987
+ rand_op = P.StandardNormal(seed1, seed2)
988
+ output = rand_op(shape)
989
+ return cast_(output, dtype)
990
+
991
+
992
+ @_function_forbid_reuse
993
+ def randn_like(input, seed=None, *, dtype=None):
994
+ r"""
995
+ Returns a new Tensor with given shape and dtype, filled with a sample (or samples) from the standard normal
996
+ distribution.
997
+
998
+ Args:
999
+ input (Tensor): Input Tensor to specify the output shape and its default dtype.
1000
+ seed (int, optional): Random seed, must be greater or equal to 0. Default: None, and 0 will be used.
1001
+
1002
+ Keyword Args:
1003
+ dtype (:class:`mindspore.dtype`, optional): Designated tensor dtype, it must be float type. If None,
1004
+ `mindspore.float32` will be used. Default: None.
1005
+
1006
+ Returns:
1007
+ Tensor, with the designated shape and dtype, filled with a sample (or samples) from the
1008
+ "standard normal" distribution.
1009
+
1010
+ Raises:
1011
+ TypeError: `seed` is not a non-negative integer.
1012
+ ValueError: If `dtype` is not a `mstype.float_type`.
1013
+
1014
+ Supported Platforms:
1015
+ ``Ascend`` ``GPU`` ``CPU``
1016
+
1017
+ Examples:
1018
+ >>> import mindspore as ms
1019
+ >>> from mindspore import Tensor, ops
1020
+ >>> a = Tensor([[1, 2, 3], [4, 5, 6]])
1021
+ >>> print(ops.randn_like(a, dtype=ms.float32))
1022
+ [[ 0.30639967 -0.42438635 -0.20454668]
1023
+ [-0.4287376 1.3054721 0.64747655]]
1024
+ """
1025
+ if dtype is None:
1026
+ dtype = input.dtype
1027
+ elif dtype not in mstype.float_type:
1028
+ raise ValueError(f"For 'randn_like', the 'dtype' must be a float type, but got {dtype}.")
1029
+ shape = input.shape
1030
+ cast_ = P.Cast()
1031
+ seed1, seed2 = _get_seed(seed, 'randn_like')
1032
+ rand_op = P.StandardNormal(seed1, seed2)
1033
+ output = rand_op(shape)
1034
+ return cast_(output, dtype)
1035
+
1036
+
1037
+ @_function_forbid_reuse
1038
+ def randint(low, high, size, seed=None, *, dtype=None):
1039
+ r"""
1040
+ Returns a Tensor whose elements are random integers in the range of [ `low` , `high` ) .
1041
+
1042
+ Args:
1043
+ low (int): Start value of interval.
1044
+ high (int): End value of interval.
1045
+ size (tuple): Shape of the new tensor.
1046
+ seed (int, optional): Random seed, must be greater or equal to 0. Default: None, and 0 will be used.
1047
+
1048
+ Keyword Args:
1049
+ dtype (:class:`mindspore.dtype`, optional): Designated tensor dtype, it must be int type. If None,
1050
+ `mindspore.int64` will be used. Default: None.
1051
+
1052
+ Returns:
1053
+ Tensor, with the designated shape and dtype, filled with random integers from low (inclusive)
1054
+ to high (exclusive).
1055
+
1056
+ Raises:
1057
+ TypeError: `seed` is not a non-negative integer.
1058
+ TypeError: `size` is not a tuple.
1059
+ TypeError: `low` or `high` is not an integer.
1060
+ ValueError: If `dtype` is not a `mstype.int_type`.
1061
+
1062
+
1063
+ Supported Platforms:
1064
+ ``Ascend`` ``GPU`` ``CPU``
1065
+
1066
+ Examples:
1067
+ >>> import mindspore.ops as ops
1068
+ >>> print(ops.randint(1, 10, (2,3)))
1069
+ [[4 9 7]
1070
+ [9 1 2]]
1071
+ """
1072
+ if dtype is None:
1073
+ dtype = mstype.int64
1074
+ elif dtype not in mstype.int_type:
1075
+ raise ValueError(f"For 'randint', the 'dtype' must be an int type, but got {dtype}.")
1076
+ if not isinstance(size, tuple):
1077
+ raise ValueError(f"For 'randint', the input 'size' must be a tuple, but got {size}.")
1078
+ if not isinstance(low, int) or not isinstance(high, int):
1079
+ raise TypeError(f"For 'randint', 'low' and 'high' must be an int, but got {type(low)} and {type(high)}.")
1080
+ seed1, seed2 = _get_seed(seed, 'randint')
1081
+ cast_ = P.Cast()
1082
+ rand_op = P.UniformInt(seed1, seed2)
1083
+ low_ = Tensor(low, mstype.int32)
1084
+ high_ = Tensor(high, mstype.int32)
1085
+ output = rand_op(size, low_, high_)
1086
+ return cast_(output, dtype)
1087
+
1088
+
1089
+ @_function_forbid_reuse
1090
+ def randint_like(input, low, high, seed=None, *, dtype=None):
1091
+ r"""
1092
+ Returns a tensor with the same shape as Tensor `input` whose elements are random integers in the range
1093
+ of [ `low` , `high` ) .
1094
+
1095
+ Args:
1096
+ input (Tensor): Input Tensor to specify the output shape and its default dtype.
1097
+ low(int): Start value of interval.
1098
+ high(int): End value of interval.
1099
+ seed (int, optional): Random seed, must be greater or equal to 0. Default: None, and 0 will be used.
1100
+
1101
+ Keyword Args:
1102
+ dtype (:class:`mindspore.dtype`, optional): Designated tensor dtype, it must be int type. If None,
1103
+ `mindspore.int64` will be used. Default is `mindspore.int64`.
1104
+
1105
+ Returns:
1106
+ Tensor, with the designated shape and dtype, filled with random integers from low (inclusive)
1107
+ to high (exclusive).
1108
+
1109
+ Raises:
1110
+ TypeError: `seed` is not a non-negative integer.
1111
+ TypeError: `low` or `high` is not an integer.
1112
+ ValueError: If `dtype` is not a `mstype.int_type`.
1113
+
1114
+ Supported Platforms:
1115
+ ``Ascend`` ``GPU`` ``CPU``
1116
+
1117
+ Examples:
1118
+ >>> from mindspore import Tensor, ops
1119
+ >>> a = Tensor([[1, 2, 3], [3, 2, 1]])
1120
+ >>> print(ops.randint_like(a, 1, 10))
1121
+ [[4 9 7]
1122
+ [9 1 2]]
1123
+ """
1124
+ if dtype is None:
1125
+ dtype = input.dtype
1126
+ elif dtype not in mstype.int_type:
1127
+ raise ValueError(f"For 'randint_like', the 'dtype' must be an int type, but got {dtype}.")
1128
+ if not isinstance(low, int) or not isinstance(high, int):
1129
+ raise TypeError(f"For 'randint_like', 'low' and 'high' must be an int, but got {type(low)} and {type(high)}.")
1130
+ size = input.shape
1131
+ seed1, seed2 = _get_seed(seed, 'randint_like')
1132
+ rand_op = P.UniformInt(seed1, seed2)
1133
+ cast_ = P.Cast()
1134
+ low_ = Tensor(low, mstype.int32)
1135
+ high_ = Tensor(high, mstype.int32)
1136
+ output = rand_op(size, low_, high_)
1137
+ return cast_(output, dtype)
1138
+
1139
+
1140
+ @_function_forbid_reuse
1141
+ def poisson(shape, mean, seed=None):
1142
+ r"""
1143
+ The ops.poisson is deprecated, please use :class:`mindspore.ops.random_poisson`
1144
+ Generates random numbers according to the Poisson random number distribution.
1145
+
1146
+ .. math::
1147
+
1148
+ \text{P}(i|μ) = \frac{\exp(-μ)μ^{i}}{i!}
1149
+
1150
+ Args:
1151
+ shape (tuple): The shape of random tensor to be generated.
1152
+ The format is :math:`(N,*)` where :math:`*` means, any number of additional dimensions.
1153
+ mean (Tensor): The mean μ distribution parameter. It should be greater than 0 with float32 data type.
1154
+ seed (int): Seed is used as entropy source for the random number engines to generate pseudo-random numbers
1155
+ and must be non-negative. Default: None, which will be treated as 0.
1156
+
1157
+ Returns:
1158
+ Tensor. The shape should be equal to the broadcasted shape between the input "shape" and shapes of `mean`.
1159
+ The dtype is float32.
1160
+
1161
+ Raises:
1162
+ TypeError: If `shape` is not a tuple.
1163
+ TypeError: If `mean` is not a Tensor whose dtype is not float32.
1164
+ TypeError: If `seed` is not an int.
1165
+
1166
+ Supported Platforms:
1167
+ deprecated
1168
+
1169
+ Examples:
1170
+ >>> from mindspore import Tensor, ops
1171
+ >>> import mindspore
1172
+ >>> # case 1: It can be broadcast.
1173
+ >>> shape = (4, 1)
1174
+ >>> mean = Tensor(np.array([5.0, 10.0]), mindspore.float32)
1175
+ >>> output = ops.poisson(shape, mean, seed=5)
1176
+ >>> result = output.shape
1177
+ >>> print(result)
1178
+ (4, 2)
1179
+ >>> # case 2: It can not be broadcast. It is recommended to use the same shape.
1180
+ >>> shape = (2, 2)
1181
+ >>> mean = Tensor(np.array([[5.0, 10.0], [5.0, 1.0]]), mindspore.float32)
1182
+ >>> output = ops.poisson(shape, mean, seed=5)
1183
+ >>> result = output.shape
1184
+ >>> print(result)
1185
+ (2, 2)
1186
+ """
1187
+ seed1, seed2 = _get_seed(seed, "poisson")
1188
+ random_poisson_op = P.Poisson(seed1, seed2)
1189
+ value = random_poisson_op(shape, mean)
1190
+ return value
1191
+
1192
+
1193
+ @_function_forbid_reuse
1194
+ def multinomial(input, num_samples, replacement=True, seed=None):
1195
+ r"""
1196
+ Returns a tensor sampled from the multinomial probability distribution located in the corresponding
1197
+ row of the input tensor.
1198
+
1199
+ Note:
1200
+ The rows of input do not need to sum to one (in which case we use the values as weights),
1201
+ but must be non-negative, finite and have a non-zero sum.
1202
+
1203
+ Args:
1204
+ input (Tensor): The input tensor containing probabilities, must be 1 or 2 dimensions, with
1205
+ float32 data type.
1206
+ num_samples (int): Number of samples to draw.
1207
+ replacement (bool, optional): Whether to draw with replacement or not, default: True.
1208
+ seed (int, optional): Seed is used as entropy source for the random number engines to generate
1209
+ pseudo-random numbers, must be non-negative. Default: None.
1210
+
1211
+ Returns:
1212
+ Tensor, has the same rows with input. The number of sampled indices of each row is `num_samples`.
1213
+ The dtype is float32.
1214
+
1215
+ Raises:
1216
+ TypeError: If `input` is not a Tensor whose dtype is not float32.
1217
+ TypeError: If `num_samples` is not an int.
1218
+ TypeError: If `seed` is neither an int nor None.
1219
+
1220
+ Supported Platforms:
1221
+ ``Ascend`` ``GPU`` ``CPU``
1222
+
1223
+ Examples:
1224
+ >>> import mindspore
1225
+ >>> from mindspore import Tensor, ops
1226
+ >>> from mindspore import dtype as mstype
1227
+ >>> # case 1: The output is random, and the length of the output is the same as num_sample.
1228
+ >>> input = Tensor([0, 9, 4, 0], mindspore.float32)
1229
+ >>> output = ops.multinomial(input, 2)
1230
+ >>> # print(output)
1231
+ >>> # [1 2] or [2 1]
1232
+ >>> # the case where the result is [2 1] in multiple times.
1233
+ >>> # This is because the value corresponding to the index 1 is larger than the value of the index 2.
1234
+ >>> print(len(output))
1235
+ 2
1236
+ >>> # case 2: The output is random, and the length of the output is the same as num_sample.
1237
+ >>> # replacement is False(Default).
1238
+ >>> # If the extracted value is 0, the index value of 1 will be returned.
1239
+ >>> input = Tensor([0, 9, 4, 0], mstype.float32)
1240
+ >>> output = ops.multinomial(input, 4)
1241
+ >>> print(output)
1242
+ [1 1 2 1]
1243
+ >>> # case 3: The output is random, num_sample == x_length = 4, and replacement is True,
1244
+ >>> # Can extract the same elements。
1245
+ >>> input = Tensor([0, 9, 4, 0], mstype.float32)
1246
+ >>> output = ops.multinomial(input, 4, True)
1247
+ >>> print(output)
1248
+ [1 1 2 2]
1249
+ """
1250
+ shape = P.Shape()
1251
+ reshape = P.Reshape()
1252
+ const_utils.check_valid_dim(len(shape(input)), "multinomial")
1253
+ seed1, seed2 = _get_seed(seed, "multinomial")
1254
+ if not replacement:
1255
+ if shape(input)[-1] < num_samples:
1256
+ const_utils.raise_value_error("For 'multinomial', the 'num_samples' must be less than "
1257
+ "the last dimension of input without 'replacement', "
1258
+ "but got 'num_samples': {} and "
1259
+ "'replacement': {}".format(num_samples, replacement))
1260
+ n_dist = 1
1261
+ if len(shape(input)) > 1:
1262
+ n_dist = shape(input)[-2]
1263
+ random_uniform = P.UniformReal(seed1, seed2)((n_dist * shape(input)[-1],))
1264
+ if n_dist != 1:
1265
+ random_uniform = reshape(random_uniform, (n_dist, shape(input)[-1]))
1266
+ vals = P.RealDiv()(P.Log()(random_uniform), input + 1e-6)
1267
+ _, indices = P.TopK()(vals, num_samples)
1268
+ return indices
1269
+ return P.Multinomial(seed1, seed2)(input, num_samples)
1270
+
1271
+
1272
+ def _check_shape(input_shape):
1273
+ """Check 'shape' value."""
1274
+ if not isinstance(input_shape, tuple):
1275
+ const_utils.raise_type_error("Type of 'shape' must be tuple, but got: {}".format(type(input_shape)))
1276
+ for item in input_shape:
1277
+ if not isinstance(item, int):
1278
+ const_utils.raise_type_error("Elements of 'shape' must be int, but got: {}".format(type(item)))
1279
+ if item < 1:
1280
+ const_utils.raise_value_error("Elements of 'shape' must be positive int, but got: {}".format(item))
1281
+ return True
1282
+
1283
+
1284
+ def _check_param(op_name, param_name, param_value):
1285
+ """Check type of param_value is Tensor, int, or float."""
1286
+ if not isinstance(param_value, (Tensor, int, float)):
1287
+ const_utils.raise_type_error("For '{}', the type of '{}' must be Tensor, int, or float, "
1288
+ "but got: {}".format(op_name, param_name, type(param_value)))
1289
+ return True
1290
+
1291
+
426
1292
  __all__ = [
427
- 'standard_laplace',
428
- 'random_categorical',
429
- 'uniform',
430
- 'standard_normal',
431
- 'random_gamma',
432
- 'uniform_candidate_sampler',
433
- 'random_poisson',
434
- 'random_shuffle',
1293
+ 'standard_laplace', 'random_categorical', 'uniform', 'standard_normal', 'random_gamma',
1294
+ 'uniform_candidate_sampler', 'random_poisson', 'log_uniform_candidate_sampler', 'shuffle', 'choice_with_mask',
1295
+ 'normal', 'laplace', 'gamma', 'poisson', 'multinomial', 'rand', 'rand_like', 'randn', 'randn_like', 'randint',
1296
+ 'randint_like', 'multinomial_with_replacement', 'randperm'
435
1297
  ]
436
1298
  __all__.sort()