metaflow 2.12.8__py2.py3-none-any.whl → 2.12.10__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- metaflow/__init__.py +2 -0
- metaflow/cli.py +12 -4
- metaflow/extension_support/plugins.py +1 -0
- metaflow/flowspec.py +8 -1
- metaflow/lint.py +13 -0
- metaflow/metaflow_current.py +0 -8
- metaflow/plugins/__init__.py +12 -0
- metaflow/plugins/argo/argo_workflows.py +616 -46
- metaflow/plugins/argo/argo_workflows_cli.py +70 -3
- metaflow/plugins/argo/argo_workflows_decorator.py +38 -7
- metaflow/plugins/argo/argo_workflows_deployer.py +290 -0
- metaflow/plugins/argo/daemon.py +59 -0
- metaflow/plugins/argo/jobset_input_paths.py +16 -0
- metaflow/plugins/aws/batch/batch_decorator.py +16 -13
- metaflow/plugins/aws/step_functions/step_functions_cli.py +45 -3
- metaflow/plugins/aws/step_functions/step_functions_deployer.py +251 -0
- metaflow/plugins/cards/card_cli.py +1 -1
- metaflow/plugins/kubernetes/kubernetes.py +279 -52
- metaflow/plugins/kubernetes/kubernetes_cli.py +26 -8
- metaflow/plugins/kubernetes/kubernetes_client.py +0 -1
- metaflow/plugins/kubernetes/kubernetes_decorator.py +56 -44
- metaflow/plugins/kubernetes/kubernetes_job.py +7 -6
- metaflow/plugins/kubernetes/kubernetes_jobsets.py +511 -272
- metaflow/plugins/parallel_decorator.py +108 -8
- metaflow/plugins/secrets/secrets_decorator.py +12 -3
- metaflow/plugins/test_unbounded_foreach_decorator.py +39 -4
- metaflow/runner/deployer.py +386 -0
- metaflow/runner/metaflow_runner.py +1 -20
- metaflow/runner/nbdeploy.py +130 -0
- metaflow/runner/nbrun.py +4 -28
- metaflow/runner/utils.py +49 -0
- metaflow/runtime.py +246 -134
- metaflow/version.py +1 -1
- {metaflow-2.12.8.dist-info → metaflow-2.12.10.dist-info}/METADATA +2 -2
- {metaflow-2.12.8.dist-info → metaflow-2.12.10.dist-info}/RECORD +39 -32
- {metaflow-2.12.8.dist-info → metaflow-2.12.10.dist-info}/WHEEL +1 -1
- {metaflow-2.12.8.dist-info → metaflow-2.12.10.dist-info}/LICENSE +0 -0
- {metaflow-2.12.8.dist-info → metaflow-2.12.10.dist-info}/entry_points.txt +0 -0
- {metaflow-2.12.8.dist-info → metaflow-2.12.10.dist-info}/top_level.txt +0 -0
@@ -4,11 +4,13 @@ import os
|
|
4
4
|
import re
|
5
5
|
import shlex
|
6
6
|
import sys
|
7
|
+
from typing import Tuple, List
|
7
8
|
from collections import defaultdict
|
8
9
|
from hashlib import sha1
|
9
10
|
from math import inf
|
10
11
|
|
11
12
|
from metaflow import JSONType, current
|
13
|
+
from metaflow.graph import DAGNode
|
12
14
|
from metaflow.decorators import flow_decorators
|
13
15
|
from metaflow.exception import MetaflowException
|
14
16
|
from metaflow.includefile import FilePathClass
|
@@ -47,6 +49,7 @@ from metaflow.metaflow_config import (
|
|
47
49
|
SERVICE_INTERNAL_URL,
|
48
50
|
UI_URL,
|
49
51
|
)
|
52
|
+
from metaflow.unbounded_foreach import UBF_CONTROL, UBF_TASK
|
50
53
|
from metaflow.metaflow_config_funcs import config_values
|
51
54
|
from metaflow.mflog import BASH_SAVE_LOGS, bash_capture_logs, export_mflog_env_vars
|
52
55
|
from metaflow.parameters import deploy_time_eval
|
@@ -54,6 +57,7 @@ from metaflow.plugins.kubernetes.kubernetes import (
|
|
54
57
|
parse_kube_keyvalue_list,
|
55
58
|
validate_kube_labels,
|
56
59
|
)
|
60
|
+
from metaflow.graph import FlowGraph
|
57
61
|
from metaflow.util import (
|
58
62
|
compress_list,
|
59
63
|
dict_to_cli_options,
|
@@ -61,6 +65,9 @@ from metaflow.util import (
|
|
61
65
|
to_camelcase,
|
62
66
|
to_unicode,
|
63
67
|
)
|
68
|
+
from metaflow.plugins.kubernetes.kubernetes_jobsets import (
|
69
|
+
KubernetesArgoJobSet,
|
70
|
+
)
|
64
71
|
|
65
72
|
from .argo_client import ArgoClient
|
66
73
|
|
@@ -82,14 +89,14 @@ class ArgoWorkflowsSchedulingException(MetaflowException):
|
|
82
89
|
# 5. Add Metaflow tags to labels/annotations.
|
83
90
|
# 6. Support Multi-cluster scheduling - https://github.com/argoproj/argo-workflows/issues/3523#issuecomment-792307297
|
84
91
|
# 7. Support R lang.
|
85
|
-
# 8. Ping @savin at slack.outerbounds.co for any feature request
|
92
|
+
# 8. Ping @savin at slack.outerbounds.co for any feature request
|
86
93
|
|
87
94
|
|
88
95
|
class ArgoWorkflows(object):
|
89
96
|
def __init__(
|
90
97
|
self,
|
91
98
|
name,
|
92
|
-
graph,
|
99
|
+
graph: FlowGraph,
|
93
100
|
flow,
|
94
101
|
code_package_sha,
|
95
102
|
code_package_url,
|
@@ -110,6 +117,7 @@ class ArgoWorkflows(object):
|
|
110
117
|
notify_on_success=False,
|
111
118
|
notify_slack_webhook_url=None,
|
112
119
|
notify_pager_duty_integration_key=None,
|
120
|
+
enable_heartbeat_daemon=True,
|
113
121
|
):
|
114
122
|
# Some high-level notes -
|
115
123
|
#
|
@@ -157,6 +165,7 @@ class ArgoWorkflows(object):
|
|
157
165
|
self.notify_on_success = notify_on_success
|
158
166
|
self.notify_slack_webhook_url = notify_slack_webhook_url
|
159
167
|
self.notify_pager_duty_integration_key = notify_pager_duty_integration_key
|
168
|
+
self.enable_heartbeat_daemon = enable_heartbeat_daemon
|
160
169
|
|
161
170
|
self.parameters = self._process_parameters()
|
162
171
|
self.triggers, self.trigger_options = self._process_triggers()
|
@@ -846,19 +855,21 @@ class ArgoWorkflows(object):
|
|
846
855
|
.templates(self._container_templates())
|
847
856
|
# Exit hook template(s)
|
848
857
|
.templates(self._exit_hook_templates())
|
858
|
+
# Sidecar templates (Daemon Containers)
|
859
|
+
.templates(self._daemon_templates())
|
849
860
|
)
|
850
861
|
)
|
851
862
|
|
852
863
|
# Visit every node and yield the uber DAGTemplate(s).
|
853
864
|
def _dag_templates(self):
|
854
865
|
def _visit(
|
855
|
-
node,
|
856
|
-
|
857
|
-
|
858
|
-
|
859
|
-
|
860
|
-
|
861
|
-
|
866
|
+
node,
|
867
|
+
exit_node=None,
|
868
|
+
templates=None,
|
869
|
+
dag_tasks=None,
|
870
|
+
parent_foreach=None,
|
871
|
+
): # Returns Tuple[List[Template], List[DAGTask]]
|
872
|
+
""" """
|
862
873
|
# Every for-each node results in a separate subDAG and an equivalent
|
863
874
|
# DAGTemplate rooted at the child of the for-each node. Each DAGTemplate
|
864
875
|
# has a unique name - the top-level DAGTemplate is named as the name of
|
@@ -872,7 +883,6 @@ class ArgoWorkflows(object):
|
|
872
883
|
templates = []
|
873
884
|
if exit_node is not None and exit_node is node.name:
|
874
885
|
return templates, dag_tasks
|
875
|
-
|
876
886
|
if node.name == "start":
|
877
887
|
# Start node has no dependencies.
|
878
888
|
dag_task = DAGTask(self._sanitize(node.name)).template(
|
@@ -881,13 +891,86 @@ class ArgoWorkflows(object):
|
|
881
891
|
elif (
|
882
892
|
node.is_inside_foreach
|
883
893
|
and self.graph[node.in_funcs[0]].type == "foreach"
|
894
|
+
and not self.graph[node.in_funcs[0]].parallel_foreach
|
895
|
+
# We need to distinguish what is a "regular" foreach (i.e something that doesn't care about to gang semantics)
|
896
|
+
# vs what is a "num_parallel" based foreach (i.e. something that follows gang semantics.)
|
897
|
+
# A `regular` foreach is basically any arbitrary kind of foreach.
|
884
898
|
):
|
885
899
|
# Child of a foreach node needs input-paths as well as split-index
|
886
900
|
# This child is the first node of the sub workflow and has no dependency
|
901
|
+
|
902
|
+
parameters = [
|
903
|
+
Parameter("input-paths").value("{{inputs.parameters.input-paths}}"),
|
904
|
+
Parameter("split-index").value("{{inputs.parameters.split-index}}"),
|
905
|
+
]
|
906
|
+
dag_task = (
|
907
|
+
DAGTask(self._sanitize(node.name))
|
908
|
+
.template(self._sanitize(node.name))
|
909
|
+
.arguments(Arguments().parameters(parameters))
|
910
|
+
)
|
911
|
+
elif node.parallel_step:
|
912
|
+
# This is the step where the @parallel decorator is defined.
|
913
|
+
# Since this DAGTask will call the for the `resource` [based templates]
|
914
|
+
# (https://argo-workflows.readthedocs.io/en/stable/walk-through/kubernetes-resources/)
|
915
|
+
# we have certain constraints on the way we can pass information inside the Jobset manifest
|
916
|
+
# [All templates will have access](https://argo-workflows.readthedocs.io/en/stable/variables/#all-templates)
|
917
|
+
# to the `inputs.parameters` so we will pass down ANY/ALL information using the
|
918
|
+
# input parameters.
|
919
|
+
# We define the usual parameters like input-paths/split-index etc. but we will also
|
920
|
+
# define the following:
|
921
|
+
# - `workerCount`: parameter which will be used to determine the number of
|
922
|
+
# parallel worker jobs
|
923
|
+
# - `jobset-name`: parameter which will be used to determine the name of the jobset.
|
924
|
+
# This parameter needs to be dynamic so that when we have retries we don't
|
925
|
+
# end up using the name of the jobset again (if we do, it will crash since k8s wont allow duplicated job names)
|
926
|
+
# - `retryCount`: parameter which will be used to determine the number of retries
|
927
|
+
# This parameter will *only* be available within the container templates like we
|
928
|
+
# have it for all other DAGTasks and NOT for custom kubernetes resource templates.
|
929
|
+
# So as a work-around, we will set it as the `retryCount` parameter instead of
|
930
|
+
# setting it as a {{ retries }} in the CLI code. Once set as a input parameter,
|
931
|
+
# we can use it in the Jobset Manifest templates as `{{inputs.parameters.retryCount}}`
|
932
|
+
# - `task-id-entropy`: This is a parameter which will help derive task-ids and jobset names. This parameter
|
933
|
+
# contains the relevant amount of entropy to ensure that task-ids and jobset names
|
934
|
+
# are uniquish. We will also use this in the join task to construct the task-ids of
|
935
|
+
# all parallel tasks since the task-ids for parallel task are minted formulaically.
|
887
936
|
parameters = [
|
888
937
|
Parameter("input-paths").value("{{inputs.parameters.input-paths}}"),
|
938
|
+
Parameter("num-parallel").value(
|
939
|
+
"{{inputs.parameters.num-parallel}}"
|
940
|
+
),
|
889
941
|
Parameter("split-index").value("{{inputs.parameters.split-index}}"),
|
942
|
+
Parameter("task-id-entropy").value(
|
943
|
+
"{{inputs.parameters.task-id-entropy}}"
|
944
|
+
),
|
945
|
+
# we cant just use hyphens with sprig.
|
946
|
+
# https://github.com/argoproj/argo-workflows/issues/10567#issuecomment-1452410948
|
947
|
+
Parameter("workerCount").value(
|
948
|
+
"{{=sprig.int(sprig.sub(sprig.int(inputs.parameters['num-parallel']),1))}}"
|
949
|
+
),
|
890
950
|
]
|
951
|
+
if any(d.name == "retry" for d in node.decorators):
|
952
|
+
parameters.extend(
|
953
|
+
[
|
954
|
+
Parameter("retryCount").value("{{retries}}"),
|
955
|
+
# The job-setname needs to be unique for each retry
|
956
|
+
# and we cannot use the `generateName` field in the
|
957
|
+
# Jobset Manifest since we need to construct the subdomain
|
958
|
+
# and control pod domain name pre-hand. So we will use
|
959
|
+
# the retry count to ensure that the jobset name is unique
|
960
|
+
Parameter("jobset-name").value(
|
961
|
+
"js-{{inputs.parameters.task-id-entropy}}{{retries}}",
|
962
|
+
),
|
963
|
+
]
|
964
|
+
)
|
965
|
+
else:
|
966
|
+
parameters.extend(
|
967
|
+
[
|
968
|
+
Parameter("jobset-name").value(
|
969
|
+
"js-{{inputs.parameters.task-id-entropy}}",
|
970
|
+
)
|
971
|
+
]
|
972
|
+
)
|
973
|
+
|
891
974
|
dag_task = (
|
892
975
|
DAGTask(self._sanitize(node.name))
|
893
976
|
.template(self._sanitize(node.name))
|
@@ -947,8 +1030,8 @@ class ArgoWorkflows(object):
|
|
947
1030
|
.template(self._sanitize(node.name))
|
948
1031
|
.arguments(Arguments().parameters(parameters))
|
949
1032
|
)
|
950
|
-
dag_tasks.append(dag_task)
|
951
1033
|
|
1034
|
+
dag_tasks.append(dag_task)
|
952
1035
|
# End the workflow if we have reached the end of the flow
|
953
1036
|
if node.type == "end":
|
954
1037
|
return [
|
@@ -974,14 +1057,30 @@ class ArgoWorkflows(object):
|
|
974
1057
|
parent_foreach,
|
975
1058
|
)
|
976
1059
|
# For foreach nodes generate a new sub DAGTemplate
|
1060
|
+
# We do this for "regular" foreaches (ie. `self.next(self.a, foreach=)`)
|
977
1061
|
elif node.type == "foreach":
|
978
1062
|
foreach_template_name = self._sanitize(
|
979
1063
|
"%s-foreach-%s"
|
980
1064
|
% (
|
981
1065
|
node.name,
|
982
|
-
node.foreach_param
|
1066
|
+
"parallel" if node.parallel_foreach else node.foreach_param
|
1067
|
+
# Since foreach's are derived based on `self.next(self.a, foreach="<varname>")`
|
1068
|
+
# vs @parallel foreach are done based on `self.next(self.a, num_parallel="<some-number>")`,
|
1069
|
+
# we need to ensure that `foreach_template_name` suffix is appropriately set based on the kind
|
1070
|
+
# of foreach.
|
983
1071
|
)
|
984
1072
|
)
|
1073
|
+
|
1074
|
+
# There are two separate "DAGTask"s created for the foreach node.
|
1075
|
+
# - The first one is a "jump-off" DAGTask where we propagate the
|
1076
|
+
# input-paths and split-index. This thing doesn't create
|
1077
|
+
# any actual containers and it responsible for only propagating
|
1078
|
+
# the parameters.
|
1079
|
+
# - The DAGTask that follows first DAGTask is the one
|
1080
|
+
# that uses the ContainerTemplate. This DAGTask is named the same
|
1081
|
+
# thing as the foreach node. We will leverage a similar pattern for the
|
1082
|
+
# @parallel tasks.
|
1083
|
+
#
|
985
1084
|
foreach_task = (
|
986
1085
|
DAGTask(foreach_template_name)
|
987
1086
|
.dependencies([self._sanitize(node.name)])
|
@@ -1005,9 +1104,26 @@ class ArgoWorkflows(object):
|
|
1005
1104
|
if parent_foreach
|
1006
1105
|
else []
|
1007
1106
|
)
|
1107
|
+
+ (
|
1108
|
+
# Disabiguate parameters for a regular `foreach` vs a `@parallel` foreach
|
1109
|
+
[
|
1110
|
+
Parameter("num-parallel").value(
|
1111
|
+
"{{tasks.%s.outputs.parameters.num-parallel}}"
|
1112
|
+
% self._sanitize(node.name)
|
1113
|
+
),
|
1114
|
+
Parameter("task-id-entropy").value(
|
1115
|
+
"{{tasks.%s.outputs.parameters.task-id-entropy}}"
|
1116
|
+
% self._sanitize(node.name)
|
1117
|
+
),
|
1118
|
+
]
|
1119
|
+
if node.parallel_foreach
|
1120
|
+
else []
|
1121
|
+
)
|
1008
1122
|
)
|
1009
1123
|
)
|
1010
1124
|
.with_param(
|
1125
|
+
# For @parallel workloads `num-splits` will be explicitly set to one so that
|
1126
|
+
# we can piggyback on the current mechanism with which we leverage argo.
|
1011
1127
|
"{{tasks.%s.outputs.parameters.num-splits}}"
|
1012
1128
|
% self._sanitize(node.name)
|
1013
1129
|
)
|
@@ -1020,17 +1136,34 @@ class ArgoWorkflows(object):
|
|
1020
1136
|
[],
|
1021
1137
|
node.name,
|
1022
1138
|
)
|
1139
|
+
|
1140
|
+
# How do foreach's work on Argo:
|
1141
|
+
# Lets say you have the following dag: (start[sets `foreach="x"`]) --> (task-a [actual foreach]) --> (join) --> (end)
|
1142
|
+
# With argo we will :
|
1143
|
+
# (start [sets num-splits]) --> (task-a-foreach-(0,0) [dummy task]) --> (task-a) --> (join) --> (end)
|
1144
|
+
# The (task-a-foreach-(0,0) [dummy task]) propagates the values of the `split-index` and the input paths.
|
1145
|
+
# to the actual foreach task.
|
1023
1146
|
templates.append(
|
1024
1147
|
Template(foreach_template_name)
|
1025
1148
|
.inputs(
|
1026
1149
|
Inputs().parameters(
|
1027
1150
|
[Parameter("input-paths"), Parameter("split-index")]
|
1028
1151
|
+ ([Parameter("root-input-path")] if parent_foreach else [])
|
1152
|
+
+ (
|
1153
|
+
[
|
1154
|
+
Parameter("num-parallel"),
|
1155
|
+
Parameter("task-id-entropy"),
|
1156
|
+
# Parameter("workerCount")
|
1157
|
+
]
|
1158
|
+
if node.parallel_foreach
|
1159
|
+
else []
|
1160
|
+
)
|
1029
1161
|
)
|
1030
1162
|
)
|
1031
1163
|
.outputs(
|
1032
1164
|
Outputs().parameters(
|
1033
1165
|
[
|
1166
|
+
# non @parallel tasks set task-ids as outputs
|
1034
1167
|
Parameter("task-id").valueFrom(
|
1035
1168
|
{
|
1036
1169
|
"parameter": "{{tasks.%s.outputs.parameters.task-id}}"
|
@@ -1040,29 +1173,67 @@ class ArgoWorkflows(object):
|
|
1040
1173
|
}
|
1041
1174
|
)
|
1042
1175
|
]
|
1176
|
+
if not node.parallel_foreach
|
1177
|
+
else [
|
1178
|
+
# @parallel tasks set `task-id-entropy` and `num-parallel`
|
1179
|
+
# as outputs so task-ids can be derived in the join step.
|
1180
|
+
# Both of these values should be propagated from the
|
1181
|
+
# jobset labels.
|
1182
|
+
Parameter("num-parallel").valueFrom(
|
1183
|
+
{
|
1184
|
+
"parameter": "{{tasks.%s.outputs.parameters.num-parallel}}"
|
1185
|
+
% self._sanitize(
|
1186
|
+
self.graph[node.matching_join].in_funcs[0]
|
1187
|
+
)
|
1188
|
+
}
|
1189
|
+
),
|
1190
|
+
Parameter("task-id-entropy").valueFrom(
|
1191
|
+
{
|
1192
|
+
"parameter": "{{tasks.%s.outputs.parameters.task-id-entropy}}"
|
1193
|
+
% self._sanitize(
|
1194
|
+
self.graph[node.matching_join].in_funcs[0]
|
1195
|
+
)
|
1196
|
+
}
|
1197
|
+
),
|
1198
|
+
]
|
1043
1199
|
)
|
1044
1200
|
)
|
1045
1201
|
.dag(DAGTemplate().fail_fast().tasks(dag_tasks_1))
|
1046
1202
|
)
|
1203
|
+
|
1047
1204
|
join_foreach_task = (
|
1048
1205
|
DAGTask(self._sanitize(self.graph[node.matching_join].name))
|
1049
1206
|
.template(self._sanitize(self.graph[node.matching_join].name))
|
1050
1207
|
.dependencies([foreach_template_name])
|
1051
1208
|
.arguments(
|
1052
1209
|
Arguments().parameters(
|
1053
|
-
|
1054
|
-
|
1055
|
-
"
|
1056
|
-
|
1057
|
-
|
1058
|
-
|
1059
|
-
"
|
1060
|
-
|
1061
|
-
|
1062
|
-
|
1210
|
+
(
|
1211
|
+
[
|
1212
|
+
Parameter("input-paths").value(
|
1213
|
+
"argo-{{workflow.name}}/%s/{{tasks.%s.outputs.parameters.task-id}}"
|
1214
|
+
% (node.name, self._sanitize(node.name))
|
1215
|
+
),
|
1216
|
+
Parameter("split-cardinality").value(
|
1217
|
+
"{{tasks.%s.outputs.parameters.split-cardinality}}"
|
1218
|
+
% self._sanitize(node.name)
|
1219
|
+
),
|
1220
|
+
]
|
1221
|
+
if not node.parallel_foreach
|
1222
|
+
else [
|
1223
|
+
Parameter("num-parallel").value(
|
1224
|
+
"{{tasks.%s.outputs.parameters.num-parallel}}"
|
1225
|
+
% self._sanitize(node.name)
|
1226
|
+
),
|
1227
|
+
Parameter("task-id-entropy").value(
|
1228
|
+
"{{tasks.%s.outputs.parameters.task-id-entropy}}"
|
1229
|
+
% self._sanitize(node.name)
|
1230
|
+
),
|
1231
|
+
]
|
1232
|
+
)
|
1063
1233
|
+ (
|
1064
1234
|
[
|
1065
1235
|
Parameter("split-index").value(
|
1236
|
+
# TODO : Pass down these parameters to the jobset stuff.
|
1066
1237
|
"{{inputs.parameters.split-index}}"
|
1067
1238
|
),
|
1068
1239
|
Parameter("root-input-path").value(
|
@@ -1098,7 +1269,13 @@ class ArgoWorkflows(object):
|
|
1098
1269
|
"Argo Workflows." % (node.type, node.name)
|
1099
1270
|
)
|
1100
1271
|
|
1101
|
-
|
1272
|
+
# Generate daemon tasks
|
1273
|
+
daemon_tasks = [
|
1274
|
+
DAGTask("%s-task" % daemon_template.name).template(daemon_template.name)
|
1275
|
+
for daemon_template in self._daemon_templates()
|
1276
|
+
]
|
1277
|
+
|
1278
|
+
templates, _ = _visit(node=self.graph["start"], dag_tasks=daemon_tasks)
|
1102
1279
|
return templates
|
1103
1280
|
|
1104
1281
|
# Visit every node and yield ContainerTemplates.
|
@@ -1140,7 +1317,17 @@ class ArgoWorkflows(object):
|
|
1140
1317
|
# export input_paths as it is used multiple times in the container script
|
1141
1318
|
# and we do not want to repeat the values.
|
1142
1319
|
input_paths_expr = "export INPUT_PATHS=''"
|
1143
|
-
|
1320
|
+
# If node is not a start step or a @parallel join then we will set the input paths.
|
1321
|
+
# To set the input-paths as a parameter, we need to ensure that the node
|
1322
|
+
# is not (a start node or a parallel join node). Start nodes will have no
|
1323
|
+
# input paths and parallel join will derive input paths based on a
|
1324
|
+
# formulaic approach using `num-parallel` and `task-id-entropy`.
|
1325
|
+
if not (
|
1326
|
+
node.name == "start"
|
1327
|
+
or (node.type == "join" and self.graph[node.in_funcs[0]].parallel_step)
|
1328
|
+
):
|
1329
|
+
# For parallel joins we don't pass the INPUT_PATHS but are dynamically constructed.
|
1330
|
+
# So we don't need to set the input paths.
|
1144
1331
|
input_paths_expr = (
|
1145
1332
|
"export INPUT_PATHS={{inputs.parameters.input-paths}}"
|
1146
1333
|
)
|
@@ -1169,13 +1356,23 @@ class ArgoWorkflows(object):
|
|
1169
1356
|
task_idx,
|
1170
1357
|
]
|
1171
1358
|
)
|
1359
|
+
if node.parallel_step:
|
1360
|
+
task_str = "-".join(
|
1361
|
+
[
|
1362
|
+
"$TASK_ID_PREFIX",
|
1363
|
+
"{{inputs.parameters.task-id-entropy}}", # id_base is addition entropy to based on node-name of the workflow
|
1364
|
+
"$TASK_ID_SUFFIX",
|
1365
|
+
]
|
1366
|
+
)
|
1367
|
+
else:
|
1368
|
+
# Generated task_ids need to be non-numeric - see register_task_id in
|
1369
|
+
# service.py. We do so by prefixing `t-`
|
1370
|
+
_task_id_base = (
|
1371
|
+
"$(echo %s | md5sum | cut -d ' ' -f 1 | tail -c 9)" % task_str
|
1372
|
+
)
|
1373
|
+
task_str = "(t-%s)" % _task_id_base
|
1172
1374
|
|
1173
|
-
|
1174
|
-
# service.py. We do so by prefixing `t-`
|
1175
|
-
task_id_expr = (
|
1176
|
-
"export METAFLOW_TASK_ID="
|
1177
|
-
"(t-$(echo %s | md5sum | cut -d ' ' -f 1 | tail -c 9))" % task_str
|
1178
|
-
)
|
1375
|
+
task_id_expr = "export METAFLOW_TASK_ID=" "%s" % task_str
|
1179
1376
|
task_id = "$METAFLOW_TASK_ID"
|
1180
1377
|
|
1181
1378
|
# Resolve retry strategy.
|
@@ -1194,9 +1391,20 @@ class ArgoWorkflows(object):
|
|
1194
1391
|
user_code_retries = max_user_code_retries
|
1195
1392
|
total_retries = max_user_code_retries + max_error_retries
|
1196
1393
|
# {{retries}} is only available if retryStrategy is specified
|
1394
|
+
# and they are only available in the container templates NOT for custom
|
1395
|
+
# Kubernetes manifests like Jobsets.
|
1396
|
+
# For custom kubernetes manifests, we will pass the retryCount as a parameter
|
1397
|
+
# and use that in the manifest.
|
1197
1398
|
retry_count = (
|
1198
|
-
|
1399
|
+
(
|
1400
|
+
"{{retries}}"
|
1401
|
+
if not node.parallel_step
|
1402
|
+
else "{{inputs.parameters.retryCount}}"
|
1403
|
+
)
|
1404
|
+
if total_retries
|
1405
|
+
else 0
|
1199
1406
|
)
|
1407
|
+
|
1200
1408
|
minutes_between_retries = int(minutes_between_retries)
|
1201
1409
|
|
1202
1410
|
# Configure log capture.
|
@@ -1302,13 +1510,24 @@ class ArgoWorkflows(object):
|
|
1302
1510
|
foreach_step = next(
|
1303
1511
|
n for n in node.in_funcs if self.graph[n].is_inside_foreach
|
1304
1512
|
)
|
1305
|
-
|
1306
|
-
|
1307
|
-
|
1308
|
-
|
1309
|
-
|
1513
|
+
if not self.graph[node.split_parents[-1]].parallel_foreach:
|
1514
|
+
input_paths = (
|
1515
|
+
"$(python -m metaflow.plugins.argo.generate_input_paths %s {{workflow.creationTimestamp}} %s {{inputs.parameters.split-cardinality}})"
|
1516
|
+
% (
|
1517
|
+
foreach_step,
|
1518
|
+
input_paths,
|
1519
|
+
)
|
1520
|
+
)
|
1521
|
+
else:
|
1522
|
+
# When we run Jobsets with Argo Workflows we need to ensure that `input_paths` are generated using the a formulaic approach
|
1523
|
+
# because our current strategy of using volume mounts for outputs won't work with Jobsets
|
1524
|
+
input_paths = (
|
1525
|
+
"$(python -m metaflow.plugins.argo.jobset_input_paths %s %s {{inputs.parameters.task-id-entropy}} {{inputs.parameters.num-parallel}})"
|
1526
|
+
% (
|
1527
|
+
run_id,
|
1528
|
+
foreach_step,
|
1529
|
+
)
|
1310
1530
|
)
|
1311
|
-
)
|
1312
1531
|
step = [
|
1313
1532
|
"step",
|
1314
1533
|
node.name,
|
@@ -1318,7 +1537,14 @@ class ArgoWorkflows(object):
|
|
1318
1537
|
"--max-user-code-retries %d" % user_code_retries,
|
1319
1538
|
"--input-paths %s" % input_paths,
|
1320
1539
|
]
|
1321
|
-
if
|
1540
|
+
if node.parallel_step:
|
1541
|
+
step.append(
|
1542
|
+
"--split-index ${MF_CONTROL_INDEX:-$((MF_WORKER_REPLICA_INDEX + 1))}"
|
1543
|
+
)
|
1544
|
+
# This is needed for setting the value of the UBF context in the CLI.
|
1545
|
+
step.append("--ubf-context $UBF_CONTEXT")
|
1546
|
+
|
1547
|
+
elif any(self.graph[n].type == "foreach" for n in node.in_funcs):
|
1322
1548
|
# Pass split-index to a foreach task
|
1323
1549
|
step.append("--split-index {{inputs.parameters.split-index}}")
|
1324
1550
|
if self.tags:
|
@@ -1481,17 +1707,47 @@ class ArgoWorkflows(object):
|
|
1481
1707
|
# join task deterministically inside the join task without resorting to
|
1482
1708
|
# passing a rather long list of (albiet compressed)
|
1483
1709
|
inputs = []
|
1484
|
-
|
1710
|
+
# To set the input-paths as a parameter, we need to ensure that the node
|
1711
|
+
# is not (a start node or a parallel join node). Start nodes will have no
|
1712
|
+
# input paths and parallel join will derive input paths based on a
|
1713
|
+
# formulaic approach.
|
1714
|
+
if not (
|
1715
|
+
node.name == "start"
|
1716
|
+
or (node.type == "join" and self.graph[node.in_funcs[0]].parallel_step)
|
1717
|
+
):
|
1485
1718
|
inputs.append(Parameter("input-paths"))
|
1486
1719
|
if any(self.graph[n].type == "foreach" for n in node.in_funcs):
|
1487
1720
|
# Fetch split-index from parent
|
1488
1721
|
inputs.append(Parameter("split-index"))
|
1722
|
+
|
1489
1723
|
if (
|
1490
1724
|
node.type == "join"
|
1491
1725
|
and self.graph[node.split_parents[-1]].type == "foreach"
|
1492
1726
|
):
|
1493
|
-
#
|
1494
|
-
|
1727
|
+
# @parallel join tasks require `num-parallel` and `task-id-entropy`
|
1728
|
+
# to construct the input paths, so we pass them down as input parameters.
|
1729
|
+
if self.graph[node.split_parents[-1]].parallel_foreach:
|
1730
|
+
inputs.extend(
|
1731
|
+
[Parameter("num-parallel"), Parameter("task-id-entropy")]
|
1732
|
+
)
|
1733
|
+
else:
|
1734
|
+
# append this only for joins of foreaches, not static splits
|
1735
|
+
inputs.append(Parameter("split-cardinality"))
|
1736
|
+
# We can use an `elif` condition because the first `if` condition validates if its
|
1737
|
+
# a foreach join node, hence we can safely assume that if that condition fails then
|
1738
|
+
# we can check if the node is a @parallel node.
|
1739
|
+
elif node.parallel_step:
|
1740
|
+
inputs.extend(
|
1741
|
+
[
|
1742
|
+
Parameter("num-parallel"),
|
1743
|
+
Parameter("task-id-entropy"),
|
1744
|
+
Parameter("jobset-name"),
|
1745
|
+
Parameter("workerCount"),
|
1746
|
+
]
|
1747
|
+
)
|
1748
|
+
if any(d.name == "retry" for d in node.decorators):
|
1749
|
+
inputs.append(Parameter("retryCount"))
|
1750
|
+
|
1495
1751
|
if node.is_inside_foreach and self.graph[node.out_funcs[0]].type == "join":
|
1496
1752
|
if any(
|
1497
1753
|
self.graph[parent].matching_join
|
@@ -1508,7 +1764,9 @@ class ArgoWorkflows(object):
|
|
1508
1764
|
inputs.append(Parameter("root-input-path"))
|
1509
1765
|
|
1510
1766
|
outputs = []
|
1511
|
-
|
1767
|
+
# @parallel steps will not have a task-id as an output parameter since task-ids
|
1768
|
+
# are derived at runtime.
|
1769
|
+
if not (node.name == "end" or node.parallel_step):
|
1512
1770
|
outputs = [Parameter("task-id").valueFrom({"path": "/mnt/out/task_id"})]
|
1513
1771
|
if node.type == "foreach":
|
1514
1772
|
# Emit split cardinality from foreach task
|
@@ -1521,6 +1779,19 @@ class ArgoWorkflows(object):
|
|
1521
1779
|
)
|
1522
1780
|
)
|
1523
1781
|
|
1782
|
+
if node.parallel_foreach:
|
1783
|
+
outputs.extend(
|
1784
|
+
[
|
1785
|
+
Parameter("num-parallel").valueFrom(
|
1786
|
+
{"path": "/mnt/out/num_parallel"}
|
1787
|
+
),
|
1788
|
+
Parameter("task-id-entropy").valueFrom(
|
1789
|
+
{"path": "/mnt/out/task_id_entropy"}
|
1790
|
+
),
|
1791
|
+
]
|
1792
|
+
)
|
1793
|
+
# Outputs should be defined over here, Not in the _dag_template for the `num_parallel` stuff.
|
1794
|
+
|
1524
1795
|
# It makes no sense to set env vars to None (shows up as "None" string)
|
1525
1796
|
# Also we skip some env vars (e.g. in case we want to pull them from KUBERNETES_SECRETS)
|
1526
1797
|
env = {
|
@@ -1550,6 +1821,156 @@ class ArgoWorkflows(object):
|
|
1550
1821
|
# liked to inline this ContainerTemplate and avoid scanning the workflow
|
1551
1822
|
# twice, but due to issues with variable substitution, we will have to
|
1552
1823
|
# live with this routine.
|
1824
|
+
if node.parallel_step:
|
1825
|
+
|
1826
|
+
# Explicitly add the task-id-hint label. This is important because this label
|
1827
|
+
# is returned as an Output parameter of this step and is used subsequently an
|
1828
|
+
# an input in the join step. Even the num_parallel is used as an output parameter
|
1829
|
+
kubernetes_labels = self.kubernetes_labels.copy()
|
1830
|
+
jobset_name = "{{inputs.parameters.jobset-name}}"
|
1831
|
+
kubernetes_labels[
|
1832
|
+
"task_id_entropy"
|
1833
|
+
] = "{{inputs.parameters.task-id-entropy}}"
|
1834
|
+
kubernetes_labels["num_parallel"] = "{{inputs.parameters.num-parallel}}"
|
1835
|
+
jobset = KubernetesArgoJobSet(
|
1836
|
+
kubernetes_sdk=kubernetes_sdk,
|
1837
|
+
name=jobset_name,
|
1838
|
+
flow_name=self.flow.name,
|
1839
|
+
run_id=run_id,
|
1840
|
+
step_name=self._sanitize(node.name),
|
1841
|
+
task_id=task_id,
|
1842
|
+
attempt=retry_count,
|
1843
|
+
user=self.username,
|
1844
|
+
subdomain=jobset_name,
|
1845
|
+
command=cmds,
|
1846
|
+
namespace=resources["namespace"],
|
1847
|
+
image=resources["image"],
|
1848
|
+
image_pull_policy=resources["image_pull_policy"],
|
1849
|
+
service_account=resources["service_account"],
|
1850
|
+
secrets=(
|
1851
|
+
[
|
1852
|
+
k
|
1853
|
+
for k in (
|
1854
|
+
list(
|
1855
|
+
[]
|
1856
|
+
if not resources.get("secrets")
|
1857
|
+
else [resources.get("secrets")]
|
1858
|
+
if isinstance(resources.get("secrets"), str)
|
1859
|
+
else resources.get("secrets")
|
1860
|
+
)
|
1861
|
+
+ KUBERNETES_SECRETS.split(",")
|
1862
|
+
+ ARGO_WORKFLOWS_KUBERNETES_SECRETS.split(",")
|
1863
|
+
)
|
1864
|
+
if k
|
1865
|
+
]
|
1866
|
+
),
|
1867
|
+
node_selector=resources.get("node_selector"),
|
1868
|
+
cpu=str(resources["cpu"]),
|
1869
|
+
memory=str(resources["memory"]),
|
1870
|
+
disk=str(resources["disk"]),
|
1871
|
+
gpu=resources["gpu"],
|
1872
|
+
gpu_vendor=str(resources["gpu_vendor"]),
|
1873
|
+
tolerations=resources["tolerations"],
|
1874
|
+
use_tmpfs=use_tmpfs,
|
1875
|
+
tmpfs_tempdir=tmpfs_tempdir,
|
1876
|
+
tmpfs_size=tmpfs_size,
|
1877
|
+
tmpfs_path=tmpfs_path,
|
1878
|
+
timeout_in_seconds=run_time_limit,
|
1879
|
+
persistent_volume_claims=resources["persistent_volume_claims"],
|
1880
|
+
shared_memory=shared_memory,
|
1881
|
+
port=port,
|
1882
|
+
)
|
1883
|
+
|
1884
|
+
for k, v in env.items():
|
1885
|
+
jobset.environment_variable(k, v)
|
1886
|
+
|
1887
|
+
for k, v in kubernetes_labels.items():
|
1888
|
+
jobset.label(k, v)
|
1889
|
+
|
1890
|
+
## -----Jobset specific env vars START here-----
|
1891
|
+
jobset.environment_variable(
|
1892
|
+
"MF_MASTER_ADDR", jobset.jobset_control_addr
|
1893
|
+
)
|
1894
|
+
jobset.environment_variable("MF_MASTER_PORT", str(port))
|
1895
|
+
jobset.environment_variable(
|
1896
|
+
"MF_WORLD_SIZE", "{{inputs.parameters.num-parallel}}"
|
1897
|
+
)
|
1898
|
+
# for k, v in .items():
|
1899
|
+
jobset.environment_variables_from_selectors(
|
1900
|
+
{
|
1901
|
+
"MF_WORKER_REPLICA_INDEX": "metadata.annotations['jobset.sigs.k8s.io/job-index']",
|
1902
|
+
"JOBSET_RESTART_ATTEMPT": "metadata.annotations['jobset.sigs.k8s.io/restart-attempt']",
|
1903
|
+
"METAFLOW_KUBERNETES_JOBSET_NAME": "metadata.annotations['jobset.sigs.k8s.io/jobset-name']",
|
1904
|
+
"METAFLOW_KUBERNETES_POD_NAMESPACE": "metadata.namespace",
|
1905
|
+
"METAFLOW_KUBERNETES_POD_NAME": "metadata.name",
|
1906
|
+
"METAFLOW_KUBERNETES_POD_ID": "metadata.uid",
|
1907
|
+
"METAFLOW_KUBERNETES_SERVICE_ACCOUNT_NAME": "spec.serviceAccountName",
|
1908
|
+
"METAFLOW_KUBERNETES_NODE_IP": "status.hostIP",
|
1909
|
+
# `TASK_ID_SUFFIX` is needed for the construction of the task-ids
|
1910
|
+
"TASK_ID_SUFFIX": "metadata.annotations['jobset.sigs.k8s.io/job-index']",
|
1911
|
+
}
|
1912
|
+
)
|
1913
|
+
annotations = {
|
1914
|
+
# setting annotations explicitly as they wont be
|
1915
|
+
# passed down from WorkflowTemplate level
|
1916
|
+
"metaflow/step_name": node.name,
|
1917
|
+
"metaflow/attempt": str(retry_count),
|
1918
|
+
"metaflow/run_id": run_id,
|
1919
|
+
"metaflow/production_token": self.production_token,
|
1920
|
+
"metaflow/owner": self.username,
|
1921
|
+
"metaflow/user": "argo-workflows",
|
1922
|
+
"metaflow/flow_name": self.flow.name,
|
1923
|
+
}
|
1924
|
+
if current.get("project_name"):
|
1925
|
+
annotations.update(
|
1926
|
+
{
|
1927
|
+
"metaflow/project_name": current.project_name,
|
1928
|
+
"metaflow/branch_name": current.branch_name,
|
1929
|
+
"metaflow/project_flow_name": current.project_flow_name,
|
1930
|
+
}
|
1931
|
+
)
|
1932
|
+
for k, v in annotations.items():
|
1933
|
+
jobset.annotation(k, v)
|
1934
|
+
## -----Jobset specific env vars END here-----
|
1935
|
+
## ---- Jobset control/workers specific vars START here ----
|
1936
|
+
jobset.control.replicas(1)
|
1937
|
+
jobset.worker.replicas("{{=asInt(inputs.parameters.workerCount)}}")
|
1938
|
+
jobset.control.environment_variable("UBF_CONTEXT", UBF_CONTROL)
|
1939
|
+
jobset.worker.environment_variable("UBF_CONTEXT", UBF_TASK)
|
1940
|
+
jobset.control.environment_variable("MF_CONTROL_INDEX", "0")
|
1941
|
+
# `TASK_ID_PREFIX` needs to explicitly be `control` or `worker`
|
1942
|
+
# because the join task uses a formulaic approach to infer the task-ids
|
1943
|
+
jobset.control.environment_variable("TASK_ID_PREFIX", "control")
|
1944
|
+
jobset.worker.environment_variable("TASK_ID_PREFIX", "worker")
|
1945
|
+
|
1946
|
+
## ---- Jobset control/workers specific vars END here ----
|
1947
|
+
yield (
|
1948
|
+
Template(ArgoWorkflows._sanitize(node.name))
|
1949
|
+
.resource(
|
1950
|
+
"create",
|
1951
|
+
jobset.dump(),
|
1952
|
+
"status.terminalState == Completed",
|
1953
|
+
"status.terminalState == Failed",
|
1954
|
+
)
|
1955
|
+
.inputs(Inputs().parameters(inputs))
|
1956
|
+
.outputs(
|
1957
|
+
Outputs().parameters(
|
1958
|
+
[
|
1959
|
+
Parameter("task-id-entropy").valueFrom(
|
1960
|
+
{"jsonPath": "{.metadata.labels.task_id_entropy}"}
|
1961
|
+
),
|
1962
|
+
Parameter("num-parallel").valueFrom(
|
1963
|
+
{"jsonPath": "{.metadata.labels.num_parallel}"}
|
1964
|
+
),
|
1965
|
+
]
|
1966
|
+
)
|
1967
|
+
)
|
1968
|
+
.retry_strategy(
|
1969
|
+
times=total_retries,
|
1970
|
+
minutes_between_retries=minutes_between_retries,
|
1971
|
+
)
|
1972
|
+
)
|
1973
|
+
continue
|
1553
1974
|
yield (
|
1554
1975
|
Template(self._sanitize(node.name))
|
1555
1976
|
# Set @timeout values
|
@@ -1604,6 +2025,7 @@ class ArgoWorkflows(object):
|
|
1604
2025
|
kubernetes_sdk.V1Container(
|
1605
2026
|
name=self._sanitize(node.name),
|
1606
2027
|
command=cmds,
|
2028
|
+
termination_message_policy="FallbackToLogsOnError",
|
1607
2029
|
ports=[kubernetes_sdk.V1ContainerPort(container_port=port)]
|
1608
2030
|
if port
|
1609
2031
|
else None,
|
@@ -1656,9 +2078,11 @@ class ArgoWorkflows(object):
|
|
1656
2078
|
for k in list(
|
1657
2079
|
[]
|
1658
2080
|
if not resources.get("secrets")
|
1659
|
-
else
|
1660
|
-
|
1661
|
-
|
2081
|
+
else (
|
2082
|
+
[resources.get("secrets")]
|
2083
|
+
if isinstance(resources.get("secrets"), str)
|
2084
|
+
else resources.get("secrets")
|
2085
|
+
)
|
1662
2086
|
)
|
1663
2087
|
+ KUBERNETES_SECRETS.split(",")
|
1664
2088
|
+ ARGO_WORKFLOWS_KUBERNETES_SECRETS.split(",")
|
@@ -1710,6 +2134,13 @@ class ArgoWorkflows(object):
|
|
1710
2134
|
)
|
1711
2135
|
)
|
1712
2136
|
|
2137
|
+
# Return daemon container templates for workflow execution notifications.
|
2138
|
+
def _daemon_templates(self):
|
2139
|
+
templates = []
|
2140
|
+
if self.enable_heartbeat_daemon:
|
2141
|
+
templates.append(self._heartbeat_daemon_template())
|
2142
|
+
return templates
|
2143
|
+
|
1713
2144
|
# Return exit hook templates for workflow execution notifications.
|
1714
2145
|
def _exit_hook_templates(self):
|
1715
2146
|
templates = []
|
@@ -1838,7 +2269,7 @@ class ArgoWorkflows(object):
|
|
1838
2269
|
"fields": [
|
1839
2270
|
{
|
1840
2271
|
"type": "mrkdwn",
|
1841
|
-
"text": "*Project:* %s" % current.project_name
|
2272
|
+
"text": "*Project:* %s" % current.project_name
|
1842
2273
|
},
|
1843
2274
|
{
|
1844
2275
|
"type": "mrkdwn",
|
@@ -1916,6 +2347,117 @@ class ArgoWorkflows(object):
|
|
1916
2347
|
Http("POST").url(self.notify_slack_webhook_url).body(json.dumps(payload))
|
1917
2348
|
)
|
1918
2349
|
|
2350
|
+
def _heartbeat_daemon_template(self):
|
2351
|
+
# Use all the affordances available to _parameters task
|
2352
|
+
executable = self.environment.executable("_parameters")
|
2353
|
+
run_id = "argo-{{workflow.name}}"
|
2354
|
+
entrypoint = [executable, "-m metaflow.plugins.argo.daemon"]
|
2355
|
+
heartbeat_cmds = "{entrypoint} --flow_name {flow_name} --run_id {run_id} {tags} heartbeat".format(
|
2356
|
+
entrypoint=" ".join(entrypoint),
|
2357
|
+
flow_name=self.flow.name,
|
2358
|
+
run_id=run_id,
|
2359
|
+
tags=" ".join(["--tag %s" % t for t in self.tags]) if self.tags else "",
|
2360
|
+
)
|
2361
|
+
|
2362
|
+
# TODO: we do not really need MFLOG logging for the daemon at the moment, but might be good for the future.
|
2363
|
+
# Consider if we can do without this setup.
|
2364
|
+
# Configure log capture.
|
2365
|
+
mflog_expr = export_mflog_env_vars(
|
2366
|
+
datastore_type=self.flow_datastore.TYPE,
|
2367
|
+
stdout_path="$PWD/.logs/mflog_stdout",
|
2368
|
+
stderr_path="$PWD/.logs/mflog_stderr",
|
2369
|
+
flow_name=self.flow.name,
|
2370
|
+
run_id=run_id,
|
2371
|
+
step_name="_run_heartbeat_daemon",
|
2372
|
+
task_id="1",
|
2373
|
+
retry_count="0",
|
2374
|
+
)
|
2375
|
+
# TODO: Can the init be trimmed down?
|
2376
|
+
# Can we do without get_package_commands fetching the whole code package?
|
2377
|
+
init_cmds = " && ".join(
|
2378
|
+
[
|
2379
|
+
# For supporting sandboxes, ensure that a custom script is executed
|
2380
|
+
# before anything else is executed. The script is passed in as an
|
2381
|
+
# env var.
|
2382
|
+
'${METAFLOW_INIT_SCRIPT:+eval \\"${METAFLOW_INIT_SCRIPT}\\"}',
|
2383
|
+
"mkdir -p $PWD/.logs",
|
2384
|
+
mflog_expr,
|
2385
|
+
]
|
2386
|
+
+ self.environment.get_package_commands(
|
2387
|
+
self.code_package_url, self.flow_datastore.TYPE
|
2388
|
+
)[:-1]
|
2389
|
+
# Replace the line 'Task in starting'
|
2390
|
+
# FIXME: this can be brittle.
|
2391
|
+
+ ["mflog 'Heartbeat daemon is starting.'"]
|
2392
|
+
)
|
2393
|
+
|
2394
|
+
cmd_str = " && ".join([init_cmds, heartbeat_cmds])
|
2395
|
+
cmds = shlex.split('bash -c "%s"' % cmd_str)
|
2396
|
+
|
2397
|
+
# TODO: Check that this is the minimal env.
|
2398
|
+
# Env required for sending heartbeats to the metadata service, nothing extra.
|
2399
|
+
env = {
|
2400
|
+
# These values are needed by Metaflow to set it's internal
|
2401
|
+
# state appropriately.
|
2402
|
+
"METAFLOW_CODE_URL": self.code_package_url,
|
2403
|
+
"METAFLOW_CODE_SHA": self.code_package_sha,
|
2404
|
+
"METAFLOW_CODE_DS": self.flow_datastore.TYPE,
|
2405
|
+
"METAFLOW_SERVICE_URL": SERVICE_INTERNAL_URL,
|
2406
|
+
"METAFLOW_SERVICE_HEADERS": json.dumps(SERVICE_HEADERS),
|
2407
|
+
"METAFLOW_USER": "argo-workflows",
|
2408
|
+
"METAFLOW_DEFAULT_DATASTORE": self.flow_datastore.TYPE,
|
2409
|
+
"METAFLOW_DEFAULT_METADATA": DEFAULT_METADATA,
|
2410
|
+
"METAFLOW_OWNER": self.username,
|
2411
|
+
}
|
2412
|
+
# support Metaflow sandboxes
|
2413
|
+
env["METAFLOW_INIT_SCRIPT"] = KUBERNETES_SANDBOX_INIT_SCRIPT
|
2414
|
+
|
2415
|
+
# cleanup env values
|
2416
|
+
env = {
|
2417
|
+
k: v
|
2418
|
+
for k, v in env.items()
|
2419
|
+
if v is not None
|
2420
|
+
and k not in set(ARGO_WORKFLOWS_ENV_VARS_TO_SKIP.split(","))
|
2421
|
+
}
|
2422
|
+
|
2423
|
+
# We want to grab the base image used by the start step, as this is known to be pullable from within the cluster,
|
2424
|
+
# and it might contain the required libraries, allowing us to start up faster.
|
2425
|
+
start_step = next(step for step in self.flow if step.name == "start")
|
2426
|
+
resources = dict(
|
2427
|
+
[deco for deco in start_step.decorators if deco.name == "kubernetes"][
|
2428
|
+
0
|
2429
|
+
].attributes
|
2430
|
+
)
|
2431
|
+
from kubernetes import client as kubernetes_sdk
|
2432
|
+
|
2433
|
+
return DaemonTemplate("heartbeat-daemon").container(
|
2434
|
+
to_camelcase(
|
2435
|
+
kubernetes_sdk.V1Container(
|
2436
|
+
name="main",
|
2437
|
+
# TODO: Make the image configurable
|
2438
|
+
image=resources["image"],
|
2439
|
+
command=cmds,
|
2440
|
+
env=[
|
2441
|
+
kubernetes_sdk.V1EnvVar(name=k, value=str(v))
|
2442
|
+
for k, v in env.items()
|
2443
|
+
],
|
2444
|
+
resources=kubernetes_sdk.V1ResourceRequirements(
|
2445
|
+
# NOTE: base resources for this are kept to a minimum to save on running costs.
|
2446
|
+
# This has an adverse effect on startup time for the daemon, which can be completely
|
2447
|
+
# alleviated by using a base image that has the required dependencies pre-installed
|
2448
|
+
requests={
|
2449
|
+
"cpu": "200m",
|
2450
|
+
"memory": "100Mi",
|
2451
|
+
},
|
2452
|
+
limits={
|
2453
|
+
"cpu": "200m",
|
2454
|
+
"memory": "100Mi",
|
2455
|
+
},
|
2456
|
+
),
|
2457
|
+
)
|
2458
|
+
)
|
2459
|
+
)
|
2460
|
+
|
1919
2461
|
def _compile_sensor(self):
|
1920
2462
|
# This method compiles a Metaflow @trigger decorator into Argo Events Sensor.
|
1921
2463
|
#
|
@@ -2488,6 +3030,25 @@ class Metadata(object):
|
|
2488
3030
|
return json.dumps(self.to_json(), indent=4)
|
2489
3031
|
|
2490
3032
|
|
3033
|
+
class DaemonTemplate(object):
|
3034
|
+
def __init__(self, name):
|
3035
|
+
tree = lambda: defaultdict(tree)
|
3036
|
+
self.name = name
|
3037
|
+
self.payload = tree()
|
3038
|
+
self.payload["daemon"] = True
|
3039
|
+
self.payload["name"] = name
|
3040
|
+
|
3041
|
+
def container(self, container):
|
3042
|
+
self.payload["container"] = container
|
3043
|
+
return self
|
3044
|
+
|
3045
|
+
def to_json(self):
|
3046
|
+
return self.payload
|
3047
|
+
|
3048
|
+
def __str__(self):
|
3049
|
+
return json.dumps(self.payload, indent=4)
|
3050
|
+
|
3051
|
+
|
2491
3052
|
class Template(object):
|
2492
3053
|
# https://argoproj.github.io/argo-workflows/fields/#template
|
2493
3054
|
|
@@ -2612,6 +3173,15 @@ class Template(object):
|
|
2612
3173
|
def to_json(self):
|
2613
3174
|
return self.payload
|
2614
3175
|
|
3176
|
+
def resource(self, action, manifest, success_criteria, failure_criteria):
|
3177
|
+
self.payload["resource"] = {}
|
3178
|
+
self.payload["resource"]["action"] = action
|
3179
|
+
self.payload["setOwnerReference"] = True
|
3180
|
+
self.payload["resource"]["successCondition"] = success_criteria
|
3181
|
+
self.payload["resource"]["failureCondition"] = failure_criteria
|
3182
|
+
self.payload["resource"]["manifest"] = manifest
|
3183
|
+
return self
|
3184
|
+
|
2615
3185
|
def __str__(self):
|
2616
3186
|
return json.dumps(self.payload, indent=4)
|
2617
3187
|
|